xref: /openbmc/linux/drivers/bus/mhi/ep/main.c (revision bd4f6f1f8948bda35cdb119689b2021cf610591b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MHI Endpoint bus stack
4  *
5  * Copyright (C) 2022 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19 
20 #define M0_WAIT_DELAY_MS	100
21 #define M0_WAIT_COUNT		100
22 
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24 
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27 
28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 			     struct mhi_ring_element *el, bool bei)
30 {
31 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 	union mhi_ep_ring_ctx *ctx;
33 	struct mhi_ep_ring *ring;
34 	int ret;
35 
36 	mutex_lock(&mhi_cntrl->event_lock);
37 	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 	if (!ring->started) {
40 		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 		if (ret) {
42 			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 			goto err_unlock;
44 		}
45 	}
46 
47 	/* Add element to the event ring */
48 	ret = mhi_ep_ring_add_element(ring, el);
49 	if (ret) {
50 		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 		goto err_unlock;
52 	}
53 
54 	mutex_unlock(&mhi_cntrl->event_lock);
55 
56 	/*
57 	 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58 	 * set this flag for interrupt moderation as per MHI protocol.
59 	 */
60 	if (!bei)
61 		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62 
63 	return 0;
64 
65 err_unlock:
66 	mutex_unlock(&mhi_cntrl->event_lock);
67 
68 	return ret;
69 }
70 
71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72 					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73 {
74 	struct mhi_ring_element *event;
75 	int ret;
76 
77 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
78 	if (!event)
79 		return -ENOMEM;
80 
81 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
82 	event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
83 	event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
84 
85 	ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
86 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
87 
88 	return ret;
89 }
90 
91 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
92 {
93 	struct mhi_ring_element *event;
94 	int ret;
95 
96 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
97 	if (!event)
98 		return -ENOMEM;
99 
100 	event->dword[0] = MHI_SC_EV_DWORD0(state);
101 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
102 
103 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
104 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
105 
106 	return ret;
107 }
108 
109 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
110 {
111 	struct mhi_ring_element *event;
112 	int ret;
113 
114 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
115 	if (!event)
116 		return -ENOMEM;
117 
118 	event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
119 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
120 
121 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
122 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
123 
124 	return ret;
125 }
126 
127 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
128 {
129 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
130 	struct mhi_ring_element *event;
131 	int ret;
132 
133 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
134 	if (!event)
135 		return -ENOMEM;
136 
137 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
138 	event->dword[0] = MHI_CC_EV_DWORD0(code);
139 	event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
140 
141 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
142 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
143 
144 	return ret;
145 }
146 
147 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
148 {
149 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
150 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
151 	struct mhi_result result = {};
152 	struct mhi_ep_chan *mhi_chan;
153 	struct mhi_ep_ring *ch_ring;
154 	u32 tmp, ch_id;
155 	int ret;
156 
157 	ch_id = MHI_TRE_GET_CMD_CHID(el);
158 
159 	/* Check if the channel is supported by the controller */
160 	if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
161 		dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
162 		return -ENODEV;
163 	}
164 
165 	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
166 	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
167 
168 	switch (MHI_TRE_GET_CMD_TYPE(el)) {
169 	case MHI_PKT_TYPE_START_CHAN_CMD:
170 		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
171 
172 		mutex_lock(&mhi_chan->lock);
173 		/* Initialize and configure the corresponding channel ring */
174 		if (!ch_ring->started) {
175 			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
176 				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
177 			if (ret) {
178 				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
179 				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
180 							MHI_EV_CC_UNDEFINED_ERR);
181 				if (ret)
182 					dev_err(dev, "Error sending completion event: %d\n", ret);
183 
184 				goto err_unlock;
185 			}
186 		}
187 
188 		/* Set channel state to RUNNING */
189 		mhi_chan->state = MHI_CH_STATE_RUNNING;
190 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
191 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
192 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
193 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
194 
195 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
196 		if (ret) {
197 			dev_err(dev, "Error sending command completion event (%u)\n",
198 				MHI_EV_CC_SUCCESS);
199 			goto err_unlock;
200 		}
201 
202 		mutex_unlock(&mhi_chan->lock);
203 
204 		/*
205 		 * Create MHI device only during UL channel start. Since the MHI
206 		 * channels operate in a pair, we'll associate both UL and DL
207 		 * channels to the same device.
208 		 *
209 		 * We also need to check for mhi_dev != NULL because, the host
210 		 * will issue START_CHAN command during resume and we don't
211 		 * destroy the device during suspend.
212 		 */
213 		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
214 			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
215 			if (ret) {
216 				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
217 				mhi_ep_handle_syserr(mhi_cntrl);
218 				return ret;
219 			}
220 		}
221 
222 		/* Finally, enable DB for the channel */
223 		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
224 
225 		break;
226 	case MHI_PKT_TYPE_STOP_CHAN_CMD:
227 		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
228 		if (!ch_ring->started) {
229 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
230 			return -ENODEV;
231 		}
232 
233 		mutex_lock(&mhi_chan->lock);
234 		/* Disable DB for the channel */
235 		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
236 
237 		/* Send channel disconnect status to client drivers */
238 		if (mhi_chan->xfer_cb) {
239 			result.transaction_status = -ENOTCONN;
240 			result.bytes_xferd = 0;
241 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
242 		}
243 
244 		/* Set channel state to STOP */
245 		mhi_chan->state = MHI_CH_STATE_STOP;
246 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
247 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
248 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
249 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
250 
251 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
252 		if (ret) {
253 			dev_err(dev, "Error sending command completion event (%u)\n",
254 				MHI_EV_CC_SUCCESS);
255 			goto err_unlock;
256 		}
257 
258 		mutex_unlock(&mhi_chan->lock);
259 		break;
260 	case MHI_PKT_TYPE_RESET_CHAN_CMD:
261 		dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
262 		if (!ch_ring->started) {
263 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
264 			return -ENODEV;
265 		}
266 
267 		mutex_lock(&mhi_chan->lock);
268 		/* Stop and reset the transfer ring */
269 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
270 
271 		/* Send channel disconnect status to client driver */
272 		if (mhi_chan->xfer_cb) {
273 			result.transaction_status = -ENOTCONN;
274 			result.bytes_xferd = 0;
275 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
276 		}
277 
278 		/* Set channel state to DISABLED */
279 		mhi_chan->state = MHI_CH_STATE_DISABLED;
280 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
281 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
282 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
283 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
284 
285 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
286 		if (ret) {
287 			dev_err(dev, "Error sending command completion event (%u)\n",
288 				MHI_EV_CC_SUCCESS);
289 			goto err_unlock;
290 		}
291 
292 		mutex_unlock(&mhi_chan->lock);
293 		break;
294 	default:
295 		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
296 			MHI_TRE_GET_CMD_TYPE(el), ch_id);
297 		return -EINVAL;
298 	}
299 
300 	return 0;
301 
302 err_unlock:
303 	mutex_unlock(&mhi_chan->lock);
304 
305 	return ret;
306 }
307 
308 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
309 {
310 	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
311 								mhi_dev->ul_chan;
312 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
313 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
314 
315 	return !!(ring->rd_offset == ring->wr_offset);
316 }
317 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
318 
319 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
320 				struct mhi_ep_ring *ring,
321 				struct mhi_result *result,
322 				u32 len)
323 {
324 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
325 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
326 	size_t tr_len, read_offset, write_offset;
327 	struct mhi_ring_element *el;
328 	bool tr_done = false;
329 	void *write_addr;
330 	u64 read_addr;
331 	u32 buf_left;
332 	int ret;
333 
334 	buf_left = len;
335 
336 	do {
337 		/* Don't process the transfer ring if the channel is not in RUNNING state */
338 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
339 			dev_err(dev, "Channel not available\n");
340 			return -ENODEV;
341 		}
342 
343 		el = &ring->ring_cache[ring->rd_offset];
344 
345 		/* Check if there is data pending to be read from previous read operation */
346 		if (mhi_chan->tre_bytes_left) {
347 			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
348 			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
349 		} else {
350 			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
351 			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
352 			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
353 
354 			tr_len = min(buf_left, mhi_chan->tre_size);
355 		}
356 
357 		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
358 		write_offset = len - buf_left;
359 		read_addr = mhi_chan->tre_loc + read_offset;
360 		write_addr = result->buf_addr + write_offset;
361 
362 		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
363 		ret = mhi_cntrl->read_from_host(mhi_cntrl, read_addr, write_addr, tr_len);
364 		if (ret < 0) {
365 			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
366 			return ret;
367 		}
368 
369 		buf_left -= tr_len;
370 		mhi_chan->tre_bytes_left -= tr_len;
371 
372 		/*
373 		 * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been
374 		 * read completely:
375 		 *
376 		 * 1. Send completion event to the host based on the flags set in TRE.
377 		 * 2. Increment the local read offset of the transfer ring.
378 		 */
379 		if (!mhi_chan->tre_bytes_left) {
380 			/*
381 			 * The host will split the data packet into multiple TREs if it can't fit
382 			 * the packet in a single TRE. In that case, CHAIN flag will be set by the
383 			 * host for all TREs except the last one.
384 			 */
385 			if (MHI_TRE_DATA_GET_CHAIN(el)) {
386 				/*
387 				 * IEOB (Interrupt on End of Block) flag will be set by the host if
388 				 * it expects the completion event for all TREs of a TD.
389 				 */
390 				if (MHI_TRE_DATA_GET_IEOB(el)) {
391 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
392 								     MHI_TRE_DATA_GET_LEN(el),
393 								     MHI_EV_CC_EOB);
394 					if (ret < 0) {
395 						dev_err(&mhi_chan->mhi_dev->dev,
396 							"Error sending transfer compl. event\n");
397 						return ret;
398 					}
399 				}
400 			} else {
401 				/*
402 				 * IEOT (Interrupt on End of Transfer) flag will be set by the host
403 				 * for the last TRE of the TD and expects the completion event for
404 				 * the same.
405 				 */
406 				if (MHI_TRE_DATA_GET_IEOT(el)) {
407 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
408 								     MHI_TRE_DATA_GET_LEN(el),
409 								     MHI_EV_CC_EOT);
410 					if (ret < 0) {
411 						dev_err(&mhi_chan->mhi_dev->dev,
412 							"Error sending transfer compl. event\n");
413 						return ret;
414 					}
415 				}
416 
417 				tr_done = true;
418 			}
419 
420 			mhi_ep_ring_inc_index(ring);
421 		}
422 
423 		result->bytes_xferd += tr_len;
424 	} while (buf_left && !tr_done);
425 
426 	return 0;
427 }
428 
429 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
430 {
431 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
432 	struct mhi_result result = {};
433 	u32 len = MHI_EP_DEFAULT_MTU;
434 	struct mhi_ep_chan *mhi_chan;
435 	int ret;
436 
437 	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
438 
439 	/*
440 	 * Bail out if transfer callback is not registered for the channel.
441 	 * This is most likely due to the client driver not loaded at this point.
442 	 */
443 	if (!mhi_chan->xfer_cb) {
444 		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
445 		return -ENODEV;
446 	}
447 
448 	if (ring->ch_id % 2) {
449 		/* DL channel */
450 		result.dir = mhi_chan->dir;
451 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
452 	} else {
453 		/* UL channel */
454 		result.buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA);
455 		if (!result.buf_addr)
456 			return -ENOMEM;
457 
458 		do {
459 			ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len);
460 			if (ret < 0) {
461 				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
462 				kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
463 				return ret;
464 			}
465 
466 			result.dir = mhi_chan->dir;
467 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
468 			result.bytes_xferd = 0;
469 			memset(result.buf_addr, 0, len);
470 
471 			/* Read until the ring becomes empty */
472 		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
473 
474 		kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
475 	}
476 
477 	return 0;
478 }
479 
480 /* TODO: Handle partially formed TDs */
481 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
482 {
483 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
484 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
485 	struct device *dev = &mhi_chan->mhi_dev->dev;
486 	struct mhi_ring_element *el;
487 	u32 buf_left, read_offset;
488 	struct mhi_ep_ring *ring;
489 	enum mhi_ev_ccs code;
490 	void *read_addr;
491 	u64 write_addr;
492 	size_t tr_len;
493 	u32 tre_len;
494 	int ret;
495 
496 	buf_left = skb->len;
497 	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
498 
499 	mutex_lock(&mhi_chan->lock);
500 
501 	do {
502 		/* Don't process the transfer ring if the channel is not in RUNNING state */
503 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
504 			dev_err(dev, "Channel not available\n");
505 			ret = -ENODEV;
506 			goto err_exit;
507 		}
508 
509 		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
510 			dev_err(dev, "TRE not available!\n");
511 			ret = -ENOSPC;
512 			goto err_exit;
513 		}
514 
515 		el = &ring->ring_cache[ring->rd_offset];
516 		tre_len = MHI_TRE_DATA_GET_LEN(el);
517 
518 		tr_len = min(buf_left, tre_len);
519 		read_offset = skb->len - buf_left;
520 		read_addr = skb->data + read_offset;
521 		write_addr = MHI_TRE_DATA_GET_PTR(el);
522 
523 		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
524 		ret = mhi_cntrl->write_to_host(mhi_cntrl, read_addr, write_addr, tr_len);
525 		if (ret < 0) {
526 			dev_err(dev, "Error writing to the channel\n");
527 			goto err_exit;
528 		}
529 
530 		buf_left -= tr_len;
531 		/*
532 		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
533 		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
534 		 * the host so that the host can adjust the packet boundary to next TREs. Else send
535 		 * the EOT event to the host indicating the packet boundary.
536 		 */
537 		if (buf_left)
538 			code = MHI_EV_CC_OVERFLOW;
539 		else
540 			code = MHI_EV_CC_EOT;
541 
542 		ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, tr_len, code);
543 		if (ret) {
544 			dev_err(dev, "Error sending transfer completion event\n");
545 			goto err_exit;
546 		}
547 
548 		mhi_ep_ring_inc_index(ring);
549 	} while (buf_left);
550 
551 	mutex_unlock(&mhi_chan->lock);
552 
553 	return 0;
554 
555 err_exit:
556 	mutex_unlock(&mhi_chan->lock);
557 
558 	return ret;
559 }
560 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
561 
562 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
563 {
564 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
565 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
566 	int ret;
567 
568 	/* Update the number of event rings (NER) programmed by the host */
569 	mhi_ep_mmio_update_ner(mhi_cntrl);
570 
571 	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
572 		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
573 
574 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
575 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
576 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
577 
578 	/* Get the channel context base pointer from host */
579 	mhi_ep_mmio_get_chc_base(mhi_cntrl);
580 
581 	/* Allocate and map memory for caching host channel context */
582 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
583 				   &mhi_cntrl->ch_ctx_cache_phys,
584 				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
585 				   ch_ctx_host_size);
586 	if (ret) {
587 		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
588 		return ret;
589 	}
590 
591 	/* Get the event context base pointer from host */
592 	mhi_ep_mmio_get_erc_base(mhi_cntrl);
593 
594 	/* Allocate and map memory for caching host event context */
595 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
596 				   &mhi_cntrl->ev_ctx_cache_phys,
597 				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
598 				   ev_ctx_host_size);
599 	if (ret) {
600 		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
601 		goto err_ch_ctx;
602 	}
603 
604 	/* Get the command context base pointer from host */
605 	mhi_ep_mmio_get_crc_base(mhi_cntrl);
606 
607 	/* Allocate and map memory for caching host command context */
608 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
609 				   &mhi_cntrl->cmd_ctx_cache_phys,
610 				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
611 				   cmd_ctx_host_size);
612 	if (ret) {
613 		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
614 		goto err_ev_ctx;
615 	}
616 
617 	/* Initialize command ring */
618 	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
619 				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
620 	if (ret) {
621 		dev_err(dev, "Failed to start the command ring\n");
622 		goto err_cmd_ctx;
623 	}
624 
625 	return ret;
626 
627 err_cmd_ctx:
628 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
629 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
630 
631 err_ev_ctx:
632 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
633 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
634 
635 err_ch_ctx:
636 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
637 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
638 
639 	return ret;
640 }
641 
642 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
643 {
644 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
645 
646 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
647 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
648 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
649 
650 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
651 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
652 
653 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
654 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
655 
656 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
657 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
658 }
659 
660 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
661 {
662 	/*
663 	 * Doorbell interrupts are enabled when the corresponding channel gets started.
664 	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
665 	 * associated with hw channels always get triggered.
666 	 */
667 	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
668 	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
669 }
670 
671 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
672 {
673 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
674 	enum mhi_state state;
675 	bool mhi_reset;
676 	u32 count = 0;
677 	int ret;
678 
679 	/* Wait for Host to set the M0 state */
680 	do {
681 		msleep(M0_WAIT_DELAY_MS);
682 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
683 		if (mhi_reset) {
684 			/* Clear the MHI reset if host is in reset state */
685 			mhi_ep_mmio_clear_reset(mhi_cntrl);
686 			dev_info(dev, "Detected Host reset while waiting for M0\n");
687 		}
688 		count++;
689 	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
690 
691 	if (state != MHI_STATE_M0) {
692 		dev_err(dev, "Host failed to enter M0\n");
693 		return -ETIMEDOUT;
694 	}
695 
696 	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
697 	if (ret) {
698 		dev_err(dev, "Failed to cache host config\n");
699 		return ret;
700 	}
701 
702 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
703 
704 	/* Enable all interrupts now */
705 	mhi_ep_enable_int(mhi_cntrl);
706 
707 	return 0;
708 }
709 
710 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
711 {
712 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
713 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
714 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
715 	struct mhi_ring_element *el;
716 	int ret;
717 
718 	/* Update the write offset for the ring */
719 	ret = mhi_ep_update_wr_offset(ring);
720 	if (ret) {
721 		dev_err(dev, "Error updating write offset for ring\n");
722 		return;
723 	}
724 
725 	/* Sanity check to make sure there are elements in the ring */
726 	if (ring->rd_offset == ring->wr_offset)
727 		return;
728 
729 	/*
730 	 * Process command ring element till write offset. In case of an error, just try to
731 	 * process next element.
732 	 */
733 	while (ring->rd_offset != ring->wr_offset) {
734 		el = &ring->ring_cache[ring->rd_offset];
735 
736 		ret = mhi_ep_process_cmd_ring(ring, el);
737 		if (ret && ret != -ENODEV)
738 			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
739 
740 		mhi_ep_ring_inc_index(ring);
741 	}
742 }
743 
744 static void mhi_ep_ch_ring_worker(struct work_struct *work)
745 {
746 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
747 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
748 	struct mhi_ep_ring_item *itr, *tmp;
749 	struct mhi_ring_element *el;
750 	struct mhi_ep_ring *ring;
751 	struct mhi_ep_chan *chan;
752 	unsigned long flags;
753 	LIST_HEAD(head);
754 	int ret;
755 
756 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
757 	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
758 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
759 
760 	/* Process each queued channel ring. In case of an error, just process next element. */
761 	list_for_each_entry_safe(itr, tmp, &head, node) {
762 		list_del(&itr->node);
763 		ring = itr->ring;
764 
765 		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
766 		mutex_lock(&chan->lock);
767 
768 		/*
769 		 * The ring could've stopped while we waited to grab the (chan->lock), so do
770 		 * a sanity check before going further.
771 		 */
772 		if (!ring->started) {
773 			mutex_unlock(&chan->lock);
774 			kfree(itr);
775 			continue;
776 		}
777 
778 		/* Update the write offset for the ring */
779 		ret = mhi_ep_update_wr_offset(ring);
780 		if (ret) {
781 			dev_err(dev, "Error updating write offset for ring\n");
782 			mutex_unlock(&chan->lock);
783 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
784 			continue;
785 		}
786 
787 		/* Sanity check to make sure there are elements in the ring */
788 		if (ring->rd_offset == ring->wr_offset) {
789 			mutex_unlock(&chan->lock);
790 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
791 			continue;
792 		}
793 
794 		el = &ring->ring_cache[ring->rd_offset];
795 
796 		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
797 		ret = mhi_ep_process_ch_ring(ring, el);
798 		if (ret) {
799 			dev_err(dev, "Error processing ring for channel (%u): %d\n",
800 				ring->ch_id, ret);
801 			mutex_unlock(&chan->lock);
802 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
803 			continue;
804 		}
805 
806 		mutex_unlock(&chan->lock);
807 		kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
808 	}
809 }
810 
811 static void mhi_ep_state_worker(struct work_struct *work)
812 {
813 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
814 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
815 	struct mhi_ep_state_transition *itr, *tmp;
816 	unsigned long flags;
817 	LIST_HEAD(head);
818 	int ret;
819 
820 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
821 	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
822 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
823 
824 	list_for_each_entry_safe(itr, tmp, &head, node) {
825 		list_del(&itr->node);
826 		dev_dbg(dev, "Handling MHI state transition to %s\n",
827 			 mhi_state_str(itr->state));
828 
829 		switch (itr->state) {
830 		case MHI_STATE_M0:
831 			ret = mhi_ep_set_m0_state(mhi_cntrl);
832 			if (ret)
833 				dev_err(dev, "Failed to transition to M0 state\n");
834 			break;
835 		case MHI_STATE_M3:
836 			ret = mhi_ep_set_m3_state(mhi_cntrl);
837 			if (ret)
838 				dev_err(dev, "Failed to transition to M3 state\n");
839 			break;
840 		default:
841 			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
842 			break;
843 		}
844 		kfree(itr);
845 	}
846 }
847 
848 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
849 				    u32 ch_idx)
850 {
851 	struct mhi_ep_ring_item *item;
852 	struct mhi_ep_ring *ring;
853 	bool work = !!ch_int;
854 	LIST_HEAD(head);
855 	u32 i;
856 
857 	/* First add the ring items to a local list */
858 	for_each_set_bit(i, &ch_int, 32) {
859 		/* Channel index varies for each register: 0, 32, 64, 96 */
860 		u32 ch_id = ch_idx + i;
861 
862 		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
863 		item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
864 		if (!item)
865 			return;
866 
867 		item->ring = ring;
868 		list_add_tail(&item->node, &head);
869 	}
870 
871 	/* Now, splice the local list into ch_db_list and queue the work item */
872 	if (work) {
873 		spin_lock(&mhi_cntrl->list_lock);
874 		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
875 		spin_unlock(&mhi_cntrl->list_lock);
876 
877 		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
878 	}
879 }
880 
881 /*
882  * Channel interrupt statuses are contained in 4 registers each of 32bit length.
883  * For checking all interrupts, we need to loop through each registers and then
884  * check for bits set.
885  */
886 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
887 {
888 	u32 ch_int, ch_idx, i;
889 
890 	/* Bail out if there is no channel doorbell interrupt */
891 	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
892 		return;
893 
894 	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
895 		ch_idx = i * MHI_MASK_CH_LEN;
896 
897 		/* Only process channel interrupt if the mask is enabled */
898 		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
899 		if (ch_int) {
900 			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
901 			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
902 							mhi_cntrl->chdb[i].status);
903 		}
904 	}
905 }
906 
907 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
908 					 enum mhi_state state)
909 {
910 	struct mhi_ep_state_transition *item;
911 
912 	item = kzalloc(sizeof(*item), GFP_ATOMIC);
913 	if (!item)
914 		return;
915 
916 	item->state = state;
917 	spin_lock(&mhi_cntrl->list_lock);
918 	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
919 	spin_unlock(&mhi_cntrl->list_lock);
920 
921 	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
922 }
923 
924 /*
925  * Interrupt handler that services interrupts raised by the host writing to
926  * MHICTRL and Command ring doorbell (CRDB) registers for state change and
927  * channel interrupts.
928  */
929 static irqreturn_t mhi_ep_irq(int irq, void *data)
930 {
931 	struct mhi_ep_cntrl *mhi_cntrl = data;
932 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
933 	enum mhi_state state;
934 	u32 int_value;
935 	bool mhi_reset;
936 
937 	/* Acknowledge the ctrl interrupt */
938 	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
939 	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
940 
941 	/* Check for ctrl interrupt */
942 	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
943 		dev_dbg(dev, "Processing ctrl interrupt\n");
944 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
945 		if (mhi_reset) {
946 			dev_info(dev, "Host triggered MHI reset!\n");
947 			disable_irq_nosync(mhi_cntrl->irq);
948 			schedule_work(&mhi_cntrl->reset_work);
949 			return IRQ_HANDLED;
950 		}
951 
952 		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
953 	}
954 
955 	/* Check for command doorbell interrupt */
956 	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
957 		dev_dbg(dev, "Processing command doorbell interrupt\n");
958 		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
959 	}
960 
961 	/* Check for channel interrupts */
962 	mhi_ep_check_channel_interrupt(mhi_cntrl);
963 
964 	return IRQ_HANDLED;
965 }
966 
967 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
968 {
969 	struct mhi_ep_ring *ch_ring, *ev_ring;
970 	struct mhi_result result = {};
971 	struct mhi_ep_chan *mhi_chan;
972 	int i;
973 
974 	/* Stop all the channels */
975 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
976 		mhi_chan = &mhi_cntrl->mhi_chan[i];
977 		if (!mhi_chan->ring.started)
978 			continue;
979 
980 		mutex_lock(&mhi_chan->lock);
981 		/* Send channel disconnect status to client drivers */
982 		if (mhi_chan->xfer_cb) {
983 			result.transaction_status = -ENOTCONN;
984 			result.bytes_xferd = 0;
985 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
986 		}
987 
988 		mhi_chan->state = MHI_CH_STATE_DISABLED;
989 		mutex_unlock(&mhi_chan->lock);
990 	}
991 
992 	flush_workqueue(mhi_cntrl->wq);
993 
994 	/* Destroy devices associated with all channels */
995 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
996 
997 	/* Stop and reset the transfer rings */
998 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
999 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1000 		if (!mhi_chan->ring.started)
1001 			continue;
1002 
1003 		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1004 		mutex_lock(&mhi_chan->lock);
1005 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1006 		mutex_unlock(&mhi_chan->lock);
1007 	}
1008 
1009 	/* Stop and reset the event rings */
1010 	for (i = 0; i < mhi_cntrl->event_rings; i++) {
1011 		ev_ring = &mhi_cntrl->mhi_event[i].ring;
1012 		if (!ev_ring->started)
1013 			continue;
1014 
1015 		mutex_lock(&mhi_cntrl->event_lock);
1016 		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1017 		mutex_unlock(&mhi_cntrl->event_lock);
1018 	}
1019 
1020 	/* Stop and reset the command ring */
1021 	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1022 
1023 	mhi_ep_free_host_cfg(mhi_cntrl);
1024 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1025 
1026 	mhi_cntrl->enabled = false;
1027 }
1028 
1029 static void mhi_ep_reset_worker(struct work_struct *work)
1030 {
1031 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1032 	enum mhi_state cur_state;
1033 
1034 	mhi_ep_power_down(mhi_cntrl);
1035 
1036 	mutex_lock(&mhi_cntrl->state_lock);
1037 
1038 	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1039 	mhi_ep_mmio_reset(mhi_cntrl);
1040 	cur_state = mhi_cntrl->mhi_state;
1041 
1042 	/*
1043 	 * Only proceed further if the reset is due to SYS_ERR. The host will
1044 	 * issue reset during shutdown also and we don't need to do re-init in
1045 	 * that case.
1046 	 */
1047 	if (cur_state == MHI_STATE_SYS_ERR)
1048 		mhi_ep_power_up(mhi_cntrl);
1049 
1050 	mutex_unlock(&mhi_cntrl->state_lock);
1051 }
1052 
1053 /*
1054  * We don't need to do anything special other than setting the MHI SYS_ERR
1055  * state. The host will reset all contexts and issue MHI RESET so that we
1056  * could also recover from error state.
1057  */
1058 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1059 {
1060 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1061 	int ret;
1062 
1063 	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1064 	if (ret)
1065 		return;
1066 
1067 	/* Signal host that the device went to SYS_ERR state */
1068 	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1069 	if (ret)
1070 		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1071 }
1072 
1073 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1074 {
1075 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1076 	int ret, i;
1077 
1078 	/*
1079 	 * Mask all interrupts until the state machine is ready. Interrupts will
1080 	 * be enabled later with mhi_ep_enable().
1081 	 */
1082 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1083 	mhi_ep_mmio_init(mhi_cntrl);
1084 
1085 	mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1086 					GFP_KERNEL);
1087 	if (!mhi_cntrl->mhi_event)
1088 		return -ENOMEM;
1089 
1090 	/* Initialize command, channel and event rings */
1091 	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1092 	for (i = 0; i < mhi_cntrl->max_chan; i++)
1093 		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1094 	for (i = 0; i < mhi_cntrl->event_rings; i++)
1095 		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1096 
1097 	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1098 
1099 	/* Set AMSS EE before signaling ready state */
1100 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1101 
1102 	/* All set, notify the host that we are ready */
1103 	ret = mhi_ep_set_ready_state(mhi_cntrl);
1104 	if (ret)
1105 		goto err_free_event;
1106 
1107 	dev_dbg(dev, "READY state notification sent to the host\n");
1108 
1109 	ret = mhi_ep_enable(mhi_cntrl);
1110 	if (ret) {
1111 		dev_err(dev, "Failed to enable MHI endpoint\n");
1112 		goto err_free_event;
1113 	}
1114 
1115 	enable_irq(mhi_cntrl->irq);
1116 	mhi_cntrl->enabled = true;
1117 
1118 	return 0;
1119 
1120 err_free_event:
1121 	kfree(mhi_cntrl->mhi_event);
1122 
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1126 
1127 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1128 {
1129 	if (mhi_cntrl->enabled) {
1130 		mhi_ep_abort_transfer(mhi_cntrl);
1131 		kfree(mhi_cntrl->mhi_event);
1132 		disable_irq(mhi_cntrl->irq);
1133 	}
1134 }
1135 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1136 
1137 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1138 {
1139 	struct mhi_ep_chan *mhi_chan;
1140 	u32 tmp;
1141 	int i;
1142 
1143 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1144 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1145 
1146 		if (!mhi_chan->mhi_dev)
1147 			continue;
1148 
1149 		mutex_lock(&mhi_chan->lock);
1150 		/* Skip if the channel is not currently running */
1151 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1152 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1153 			mutex_unlock(&mhi_chan->lock);
1154 			continue;
1155 		}
1156 
1157 		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1158 		/* Set channel state to SUSPENDED */
1159 		mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1160 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1161 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1162 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1163 		mutex_unlock(&mhi_chan->lock);
1164 	}
1165 }
1166 
1167 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1168 {
1169 	struct mhi_ep_chan *mhi_chan;
1170 	u32 tmp;
1171 	int i;
1172 
1173 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1174 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1175 
1176 		if (!mhi_chan->mhi_dev)
1177 			continue;
1178 
1179 		mutex_lock(&mhi_chan->lock);
1180 		/* Skip if the channel is not currently suspended */
1181 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1182 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1183 			mutex_unlock(&mhi_chan->lock);
1184 			continue;
1185 		}
1186 
1187 		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1188 		/* Set channel state to RUNNING */
1189 		mhi_chan->state = MHI_CH_STATE_RUNNING;
1190 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1191 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1192 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1193 		mutex_unlock(&mhi_chan->lock);
1194 	}
1195 }
1196 
1197 static void mhi_ep_release_device(struct device *dev)
1198 {
1199 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1200 
1201 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1202 		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1203 
1204 	/*
1205 	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1206 	 * devices for the channels will only get created in mhi_ep_create_device()
1207 	 * if the mhi_dev associated with it is NULL.
1208 	 */
1209 	if (mhi_dev->ul_chan)
1210 		mhi_dev->ul_chan->mhi_dev = NULL;
1211 
1212 	if (mhi_dev->dl_chan)
1213 		mhi_dev->dl_chan->mhi_dev = NULL;
1214 
1215 	kfree(mhi_dev);
1216 }
1217 
1218 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1219 						 enum mhi_device_type dev_type)
1220 {
1221 	struct mhi_ep_device *mhi_dev;
1222 	struct device *dev;
1223 
1224 	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1225 	if (!mhi_dev)
1226 		return ERR_PTR(-ENOMEM);
1227 
1228 	dev = &mhi_dev->dev;
1229 	device_initialize(dev);
1230 	dev->bus = &mhi_ep_bus_type;
1231 	dev->release = mhi_ep_release_device;
1232 
1233 	/* Controller device is always allocated first */
1234 	if (dev_type == MHI_DEVICE_CONTROLLER)
1235 		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1236 		dev->parent = mhi_cntrl->cntrl_dev;
1237 	else
1238 		/* for MHI client devices, parent is the MHI controller device */
1239 		dev->parent = &mhi_cntrl->mhi_dev->dev;
1240 
1241 	mhi_dev->mhi_cntrl = mhi_cntrl;
1242 	mhi_dev->dev_type = dev_type;
1243 
1244 	return mhi_dev;
1245 }
1246 
1247 /*
1248  * MHI channels are always defined in pairs with UL as the even numbered
1249  * channel and DL as odd numbered one. This function gets UL channel (primary)
1250  * as the ch_id and always looks after the next entry in channel list for
1251  * the corresponding DL channel (secondary).
1252  */
1253 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1254 {
1255 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1256 	struct device *dev = mhi_cntrl->cntrl_dev;
1257 	struct mhi_ep_device *mhi_dev;
1258 	int ret;
1259 
1260 	/* Check if the channel name is same for both UL and DL */
1261 	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1262 		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1263 			mhi_chan->name, mhi_chan[1].name);
1264 		return -EINVAL;
1265 	}
1266 
1267 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1268 	if (IS_ERR(mhi_dev))
1269 		return PTR_ERR(mhi_dev);
1270 
1271 	/* Configure primary channel */
1272 	mhi_dev->ul_chan = mhi_chan;
1273 	get_device(&mhi_dev->dev);
1274 	mhi_chan->mhi_dev = mhi_dev;
1275 
1276 	/* Configure secondary channel as well */
1277 	mhi_chan++;
1278 	mhi_dev->dl_chan = mhi_chan;
1279 	get_device(&mhi_dev->dev);
1280 	mhi_chan->mhi_dev = mhi_dev;
1281 
1282 	/* Channel name is same for both UL and DL */
1283 	mhi_dev->name = mhi_chan->name;
1284 	ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1285 		     dev_name(&mhi_cntrl->mhi_dev->dev),
1286 		     mhi_dev->name);
1287 	if (ret) {
1288 		put_device(&mhi_dev->dev);
1289 		return ret;
1290 	}
1291 
1292 	ret = device_add(&mhi_dev->dev);
1293 	if (ret)
1294 		put_device(&mhi_dev->dev);
1295 
1296 	return ret;
1297 }
1298 
1299 static int mhi_ep_destroy_device(struct device *dev, void *data)
1300 {
1301 	struct mhi_ep_device *mhi_dev;
1302 	struct mhi_ep_cntrl *mhi_cntrl;
1303 	struct mhi_ep_chan *ul_chan, *dl_chan;
1304 
1305 	if (dev->bus != &mhi_ep_bus_type)
1306 		return 0;
1307 
1308 	mhi_dev = to_mhi_ep_device(dev);
1309 	mhi_cntrl = mhi_dev->mhi_cntrl;
1310 
1311 	/* Only destroy devices created for channels */
1312 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1313 		return 0;
1314 
1315 	ul_chan = mhi_dev->ul_chan;
1316 	dl_chan = mhi_dev->dl_chan;
1317 
1318 	if (ul_chan)
1319 		put_device(&ul_chan->mhi_dev->dev);
1320 
1321 	if (dl_chan)
1322 		put_device(&dl_chan->mhi_dev->dev);
1323 
1324 	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1325 		 mhi_dev->name);
1326 
1327 	/* Notify the client and remove the device from MHI bus */
1328 	device_del(dev);
1329 	put_device(dev);
1330 
1331 	return 0;
1332 }
1333 
1334 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1335 			    const struct mhi_ep_cntrl_config *config)
1336 {
1337 	const struct mhi_ep_channel_config *ch_cfg;
1338 	struct device *dev = mhi_cntrl->cntrl_dev;
1339 	u32 chan, i;
1340 	int ret = -EINVAL;
1341 
1342 	mhi_cntrl->max_chan = config->max_channels;
1343 
1344 	/*
1345 	 * Allocate max_channels supported by the MHI endpoint and populate
1346 	 * only the defined channels
1347 	 */
1348 	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1349 				      GFP_KERNEL);
1350 	if (!mhi_cntrl->mhi_chan)
1351 		return -ENOMEM;
1352 
1353 	for (i = 0; i < config->num_channels; i++) {
1354 		struct mhi_ep_chan *mhi_chan;
1355 
1356 		ch_cfg = &config->ch_cfg[i];
1357 
1358 		chan = ch_cfg->num;
1359 		if (chan >= mhi_cntrl->max_chan) {
1360 			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1361 				chan, mhi_cntrl->max_chan);
1362 			goto error_chan_cfg;
1363 		}
1364 
1365 		/* Bi-directional and direction less channels are not supported */
1366 		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1367 			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1368 				ch_cfg->dir, chan);
1369 			goto error_chan_cfg;
1370 		}
1371 
1372 		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1373 		mhi_chan->name = ch_cfg->name;
1374 		mhi_chan->chan = chan;
1375 		mhi_chan->dir = ch_cfg->dir;
1376 		mutex_init(&mhi_chan->lock);
1377 	}
1378 
1379 	return 0;
1380 
1381 error_chan_cfg:
1382 	kfree(mhi_cntrl->mhi_chan);
1383 
1384 	return ret;
1385 }
1386 
1387 /*
1388  * Allocate channel and command rings here. Event rings will be allocated
1389  * in mhi_ep_power_up() as the config comes from the host.
1390  */
1391 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1392 				const struct mhi_ep_cntrl_config *config)
1393 {
1394 	struct mhi_ep_device *mhi_dev;
1395 	int ret;
1396 
1397 	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1398 		return -EINVAL;
1399 
1400 	ret = mhi_ep_chan_init(mhi_cntrl, config);
1401 	if (ret)
1402 		return ret;
1403 
1404 	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1405 	if (!mhi_cntrl->mhi_cmd) {
1406 		ret = -ENOMEM;
1407 		goto err_free_ch;
1408 	}
1409 
1410 	mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1411 							sizeof(struct mhi_ring_element), 0,
1412 							SLAB_CACHE_DMA, NULL);
1413 	if (!mhi_cntrl->ev_ring_el_cache) {
1414 		ret = -ENOMEM;
1415 		goto err_free_cmd;
1416 	}
1417 
1418 	mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1419 						      SLAB_CACHE_DMA, NULL);
1420 	if (!mhi_cntrl->tre_buf_cache) {
1421 		ret = -ENOMEM;
1422 		goto err_destroy_ev_ring_el_cache;
1423 	}
1424 
1425 	mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1426 							sizeof(struct mhi_ep_ring_item), 0,
1427 							0, NULL);
1428 	if (!mhi_cntrl->ev_ring_el_cache) {
1429 		ret = -ENOMEM;
1430 		goto err_destroy_tre_buf_cache;
1431 	}
1432 
1433 	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1434 	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1435 	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1436 	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1437 
1438 	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1439 	if (!mhi_cntrl->wq) {
1440 		ret = -ENOMEM;
1441 		goto err_destroy_ring_item_cache;
1442 	}
1443 
1444 	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1445 	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1446 	spin_lock_init(&mhi_cntrl->list_lock);
1447 	mutex_init(&mhi_cntrl->state_lock);
1448 	mutex_init(&mhi_cntrl->event_lock);
1449 
1450 	/* Set MHI version and AMSS EE before enumeration */
1451 	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1452 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1453 
1454 	/* Set controller index */
1455 	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1456 	if (ret < 0)
1457 		goto err_destroy_wq;
1458 
1459 	mhi_cntrl->index = ret;
1460 
1461 	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1462 	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1463 			  "doorbell_irq", mhi_cntrl);
1464 	if (ret) {
1465 		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1466 		goto err_ida_free;
1467 	}
1468 
1469 	/* Allocate the controller device */
1470 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1471 	if (IS_ERR(mhi_dev)) {
1472 		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1473 		ret = PTR_ERR(mhi_dev);
1474 		goto err_free_irq;
1475 	}
1476 
1477 	ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1478 	if (ret)
1479 		goto err_put_dev;
1480 
1481 	mhi_dev->name = dev_name(&mhi_dev->dev);
1482 	mhi_cntrl->mhi_dev = mhi_dev;
1483 
1484 	ret = device_add(&mhi_dev->dev);
1485 	if (ret)
1486 		goto err_put_dev;
1487 
1488 	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1489 
1490 	return 0;
1491 
1492 err_put_dev:
1493 	put_device(&mhi_dev->dev);
1494 err_free_irq:
1495 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1496 err_ida_free:
1497 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1498 err_destroy_wq:
1499 	destroy_workqueue(mhi_cntrl->wq);
1500 err_destroy_ring_item_cache:
1501 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1502 err_destroy_ev_ring_el_cache:
1503 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1504 err_destroy_tre_buf_cache:
1505 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1506 err_free_cmd:
1507 	kfree(mhi_cntrl->mhi_cmd);
1508 err_free_ch:
1509 	kfree(mhi_cntrl->mhi_chan);
1510 
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1514 
1515 /*
1516  * It is expected that the controller drivers will power down the MHI EP stack
1517  * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1518  */
1519 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1520 {
1521 	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1522 
1523 	destroy_workqueue(mhi_cntrl->wq);
1524 
1525 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1526 
1527 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1528 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1529 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1530 	kfree(mhi_cntrl->mhi_cmd);
1531 	kfree(mhi_cntrl->mhi_chan);
1532 
1533 	device_del(&mhi_dev->dev);
1534 	put_device(&mhi_dev->dev);
1535 
1536 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1537 }
1538 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1539 
1540 static int mhi_ep_driver_probe(struct device *dev)
1541 {
1542 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1543 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1544 	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1545 	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1546 
1547 	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1548 	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1549 
1550 	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1551 }
1552 
1553 static int mhi_ep_driver_remove(struct device *dev)
1554 {
1555 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1556 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1557 	struct mhi_result result = {};
1558 	struct mhi_ep_chan *mhi_chan;
1559 	int dir;
1560 
1561 	/* Skip if it is a controller device */
1562 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1563 		return 0;
1564 
1565 	/* Disconnect the channels associated with the driver */
1566 	for (dir = 0; dir < 2; dir++) {
1567 		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1568 
1569 		if (!mhi_chan)
1570 			continue;
1571 
1572 		mutex_lock(&mhi_chan->lock);
1573 		/* Send channel disconnect status to the client driver */
1574 		if (mhi_chan->xfer_cb) {
1575 			result.transaction_status = -ENOTCONN;
1576 			result.bytes_xferd = 0;
1577 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1578 		}
1579 
1580 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1581 		mhi_chan->xfer_cb = NULL;
1582 		mutex_unlock(&mhi_chan->lock);
1583 	}
1584 
1585 	/* Remove the client driver now */
1586 	mhi_drv->remove(mhi_dev);
1587 
1588 	return 0;
1589 }
1590 
1591 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1592 {
1593 	struct device_driver *driver = &mhi_drv->driver;
1594 
1595 	if (!mhi_drv->probe || !mhi_drv->remove)
1596 		return -EINVAL;
1597 
1598 	/* Client drivers should have callbacks defined for both channels */
1599 	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1600 		return -EINVAL;
1601 
1602 	driver->bus = &mhi_ep_bus_type;
1603 	driver->owner = owner;
1604 	driver->probe = mhi_ep_driver_probe;
1605 	driver->remove = mhi_ep_driver_remove;
1606 
1607 	return driver_register(driver);
1608 }
1609 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1610 
1611 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1612 {
1613 	driver_unregister(&mhi_drv->driver);
1614 }
1615 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1616 
1617 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1618 {
1619 	const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1620 
1621 	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1622 					mhi_dev->name);
1623 }
1624 
1625 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1626 {
1627 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1628 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1629 	const struct mhi_device_id *id;
1630 
1631 	/*
1632 	 * If the device is a controller type then there is no client driver
1633 	 * associated with it
1634 	 */
1635 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1636 		return 0;
1637 
1638 	for (id = mhi_drv->id_table; id->chan[0]; id++)
1639 		if (!strcmp(mhi_dev->name, id->chan)) {
1640 			mhi_dev->id = id;
1641 			return 1;
1642 		}
1643 
1644 	return 0;
1645 };
1646 
1647 struct bus_type mhi_ep_bus_type = {
1648 	.name = "mhi_ep",
1649 	.dev_name = "mhi_ep",
1650 	.match = mhi_ep_match,
1651 	.uevent = mhi_ep_uevent,
1652 };
1653 
1654 static int __init mhi_ep_init(void)
1655 {
1656 	return bus_register(&mhi_ep_bus_type);
1657 }
1658 
1659 static void __exit mhi_ep_exit(void)
1660 {
1661 	bus_unregister(&mhi_ep_bus_type);
1662 }
1663 
1664 postcore_initcall(mhi_ep_init);
1665 module_exit(mhi_ep_exit);
1666 
1667 MODULE_LICENSE("GPL v2");
1668 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1669 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1670