xref: /openbmc/linux/drivers/bus/mhi/ep/main.c (revision b6af3a95417b91d2fd519deb0bb7c03729012877)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MHI Endpoint bus stack
4  *
5  * Copyright (C) 2022 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19 
20 #define M0_WAIT_DELAY_MS	100
21 #define M0_WAIT_COUNT		100
22 
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24 
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27 
28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 			     struct mhi_ring_element *el, bool bei)
30 {
31 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 	union mhi_ep_ring_ctx *ctx;
33 	struct mhi_ep_ring *ring;
34 	int ret;
35 
36 	mutex_lock(&mhi_cntrl->event_lock);
37 	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 	if (!ring->started) {
40 		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 		if (ret) {
42 			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 			goto err_unlock;
44 		}
45 	}
46 
47 	/* Add element to the event ring */
48 	ret = mhi_ep_ring_add_element(ring, el);
49 	if (ret) {
50 		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 		goto err_unlock;
52 	}
53 
54 	mutex_unlock(&mhi_cntrl->event_lock);
55 
56 	/*
57 	 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58 	 * set this flag for interrupt moderation as per MHI protocol.
59 	 */
60 	if (!bei)
61 		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62 
63 	return 0;
64 
65 err_unlock:
66 	mutex_unlock(&mhi_cntrl->event_lock);
67 
68 	return ret;
69 }
70 
71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72 					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73 {
74 	struct mhi_ring_element *event;
75 	int ret;
76 
77 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
78 	if (!event)
79 		return -ENOMEM;
80 
81 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
82 	event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
83 	event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
84 
85 	ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
86 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
87 
88 	return ret;
89 }
90 
91 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
92 {
93 	struct mhi_ring_element *event;
94 	int ret;
95 
96 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
97 	if (!event)
98 		return -ENOMEM;
99 
100 	event->dword[0] = MHI_SC_EV_DWORD0(state);
101 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
102 
103 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
104 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
105 
106 	return ret;
107 }
108 
109 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
110 {
111 	struct mhi_ring_element *event;
112 	int ret;
113 
114 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
115 	if (!event)
116 		return -ENOMEM;
117 
118 	event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
119 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
120 
121 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
122 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
123 
124 	return ret;
125 }
126 
127 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
128 {
129 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
130 	struct mhi_ring_element *event;
131 	int ret;
132 
133 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
134 	if (!event)
135 		return -ENOMEM;
136 
137 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
138 	event->dword[0] = MHI_CC_EV_DWORD0(code);
139 	event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
140 
141 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
142 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
143 
144 	return ret;
145 }
146 
147 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
148 {
149 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
150 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
151 	struct mhi_result result = {};
152 	struct mhi_ep_chan *mhi_chan;
153 	struct mhi_ep_ring *ch_ring;
154 	u32 tmp, ch_id;
155 	int ret;
156 
157 	ch_id = MHI_TRE_GET_CMD_CHID(el);
158 
159 	/* Check if the channel is supported by the controller */
160 	if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
161 		dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
162 		return -ENODEV;
163 	}
164 
165 	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
166 	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
167 
168 	switch (MHI_TRE_GET_CMD_TYPE(el)) {
169 	case MHI_PKT_TYPE_START_CHAN_CMD:
170 		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
171 
172 		mutex_lock(&mhi_chan->lock);
173 		/* Initialize and configure the corresponding channel ring */
174 		if (!ch_ring->started) {
175 			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
176 				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
177 			if (ret) {
178 				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
179 				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
180 							MHI_EV_CC_UNDEFINED_ERR);
181 				if (ret)
182 					dev_err(dev, "Error sending completion event: %d\n", ret);
183 
184 				goto err_unlock;
185 			}
186 
187 			mhi_chan->rd_offset = ch_ring->rd_offset;
188 		}
189 
190 		/* Set channel state to RUNNING */
191 		mhi_chan->state = MHI_CH_STATE_RUNNING;
192 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
193 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
194 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
195 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
196 
197 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
198 		if (ret) {
199 			dev_err(dev, "Error sending command completion event (%u)\n",
200 				MHI_EV_CC_SUCCESS);
201 			goto err_unlock;
202 		}
203 
204 		mutex_unlock(&mhi_chan->lock);
205 
206 		/*
207 		 * Create MHI device only during UL channel start. Since the MHI
208 		 * channels operate in a pair, we'll associate both UL and DL
209 		 * channels to the same device.
210 		 *
211 		 * We also need to check for mhi_dev != NULL because, the host
212 		 * will issue START_CHAN command during resume and we don't
213 		 * destroy the device during suspend.
214 		 */
215 		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
216 			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
217 			if (ret) {
218 				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
219 				mhi_ep_handle_syserr(mhi_cntrl);
220 				return ret;
221 			}
222 		}
223 
224 		/* Finally, enable DB for the channel */
225 		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
226 
227 		break;
228 	case MHI_PKT_TYPE_STOP_CHAN_CMD:
229 		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
230 		if (!ch_ring->started) {
231 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
232 			return -ENODEV;
233 		}
234 
235 		mutex_lock(&mhi_chan->lock);
236 		/* Disable DB for the channel */
237 		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
238 
239 		/* Send channel disconnect status to client drivers */
240 		if (mhi_chan->xfer_cb) {
241 			result.transaction_status = -ENOTCONN;
242 			result.bytes_xferd = 0;
243 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
244 		}
245 
246 		/* Set channel state to STOP */
247 		mhi_chan->state = MHI_CH_STATE_STOP;
248 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
249 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
250 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
251 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
252 
253 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
254 		if (ret) {
255 			dev_err(dev, "Error sending command completion event (%u)\n",
256 				MHI_EV_CC_SUCCESS);
257 			goto err_unlock;
258 		}
259 
260 		mutex_unlock(&mhi_chan->lock);
261 		break;
262 	case MHI_PKT_TYPE_RESET_CHAN_CMD:
263 		dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
264 		if (!ch_ring->started) {
265 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
266 			return -ENODEV;
267 		}
268 
269 		mutex_lock(&mhi_chan->lock);
270 		/* Stop and reset the transfer ring */
271 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
272 
273 		/* Send channel disconnect status to client driver */
274 		if (mhi_chan->xfer_cb) {
275 			result.transaction_status = -ENOTCONN;
276 			result.bytes_xferd = 0;
277 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
278 		}
279 
280 		/* Set channel state to DISABLED */
281 		mhi_chan->state = MHI_CH_STATE_DISABLED;
282 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
283 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
284 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
285 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
286 
287 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
288 		if (ret) {
289 			dev_err(dev, "Error sending command completion event (%u)\n",
290 				MHI_EV_CC_SUCCESS);
291 			goto err_unlock;
292 		}
293 
294 		mutex_unlock(&mhi_chan->lock);
295 		break;
296 	default:
297 		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
298 			MHI_TRE_GET_CMD_TYPE(el), ch_id);
299 		return -EINVAL;
300 	}
301 
302 	return 0;
303 
304 err_unlock:
305 	mutex_unlock(&mhi_chan->lock);
306 
307 	return ret;
308 }
309 
310 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
311 {
312 	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
313 								mhi_dev->ul_chan;
314 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
315 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
316 
317 	return !!(mhi_chan->rd_offset == ring->wr_offset);
318 }
319 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
320 
321 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
322 				struct mhi_ep_ring *ring,
323 				struct mhi_result *result,
324 				u32 len)
325 {
326 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
327 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
328 	size_t tr_len, read_offset, write_offset;
329 	struct mhi_ep_buf_info buf_info = {};
330 	struct mhi_ring_element *el;
331 	bool tr_done = false;
332 	u32 buf_left;
333 	int ret;
334 
335 	buf_left = len;
336 
337 	do {
338 		/* Don't process the transfer ring if the channel is not in RUNNING state */
339 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
340 			dev_err(dev, "Channel not available\n");
341 			return -ENODEV;
342 		}
343 
344 		el = &ring->ring_cache[mhi_chan->rd_offset];
345 
346 		/* Check if there is data pending to be read from previous read operation */
347 		if (mhi_chan->tre_bytes_left) {
348 			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
349 			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
350 		} else {
351 			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
352 			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
353 			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
354 
355 			tr_len = min(buf_left, mhi_chan->tre_size);
356 		}
357 
358 		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
359 		write_offset = len - buf_left;
360 
361 		buf_info.host_addr = mhi_chan->tre_loc + read_offset;
362 		buf_info.dev_addr = result->buf_addr + write_offset;
363 		buf_info.size = tr_len;
364 
365 		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
366 		ret = mhi_cntrl->read_sync(mhi_cntrl, &buf_info);
367 		if (ret < 0) {
368 			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
369 			return ret;
370 		}
371 
372 		buf_left -= tr_len;
373 		mhi_chan->tre_bytes_left -= tr_len;
374 
375 		/*
376 		 * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been
377 		 * read completely:
378 		 *
379 		 * 1. Send completion event to the host based on the flags set in TRE.
380 		 * 2. Increment the local read offset of the transfer ring.
381 		 */
382 		if (!mhi_chan->tre_bytes_left) {
383 			/*
384 			 * The host will split the data packet into multiple TREs if it can't fit
385 			 * the packet in a single TRE. In that case, CHAIN flag will be set by the
386 			 * host for all TREs except the last one.
387 			 */
388 			if (MHI_TRE_DATA_GET_CHAIN(el)) {
389 				/*
390 				 * IEOB (Interrupt on End of Block) flag will be set by the host if
391 				 * it expects the completion event for all TREs of a TD.
392 				 */
393 				if (MHI_TRE_DATA_GET_IEOB(el)) {
394 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
395 								     MHI_TRE_DATA_GET_LEN(el),
396 								     MHI_EV_CC_EOB);
397 					if (ret < 0) {
398 						dev_err(&mhi_chan->mhi_dev->dev,
399 							"Error sending transfer compl. event\n");
400 						return ret;
401 					}
402 				}
403 			} else {
404 				/*
405 				 * IEOT (Interrupt on End of Transfer) flag will be set by the host
406 				 * for the last TRE of the TD and expects the completion event for
407 				 * the same.
408 				 */
409 				if (MHI_TRE_DATA_GET_IEOT(el)) {
410 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
411 								     MHI_TRE_DATA_GET_LEN(el),
412 								     MHI_EV_CC_EOT);
413 					if (ret < 0) {
414 						dev_err(&mhi_chan->mhi_dev->dev,
415 							"Error sending transfer compl. event\n");
416 						return ret;
417 					}
418 				}
419 
420 				tr_done = true;
421 			}
422 
423 			mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
424 			mhi_ep_ring_inc_index(ring);
425 		}
426 
427 		result->bytes_xferd += tr_len;
428 	} while (buf_left && !tr_done);
429 
430 	return 0;
431 }
432 
433 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
434 {
435 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
436 	struct mhi_result result = {};
437 	u32 len = MHI_EP_DEFAULT_MTU;
438 	struct mhi_ep_chan *mhi_chan;
439 	int ret;
440 
441 	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
442 
443 	/*
444 	 * Bail out if transfer callback is not registered for the channel.
445 	 * This is most likely due to the client driver not loaded at this point.
446 	 */
447 	if (!mhi_chan->xfer_cb) {
448 		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
449 		return -ENODEV;
450 	}
451 
452 	if (ring->ch_id % 2) {
453 		/* DL channel */
454 		result.dir = mhi_chan->dir;
455 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
456 	} else {
457 		/* UL channel */
458 		result.buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA);
459 		if (!result.buf_addr)
460 			return -ENOMEM;
461 
462 		do {
463 			ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len);
464 			if (ret < 0) {
465 				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
466 				kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
467 				return ret;
468 			}
469 
470 			result.dir = mhi_chan->dir;
471 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
472 			result.bytes_xferd = 0;
473 			memset(result.buf_addr, 0, len);
474 
475 			/* Read until the ring becomes empty */
476 		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
477 
478 		kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
479 	}
480 
481 	return 0;
482 }
483 
484 static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
485 {
486 	struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
487 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
488 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
489 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
490 	struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
491 	struct device *dev = &mhi_dev->dev;
492 	struct mhi_result result = {};
493 	int ret;
494 
495 	if (mhi_chan->xfer_cb) {
496 		result.buf_addr = buf_info->cb_buf;
497 		result.dir = mhi_chan->dir;
498 		result.bytes_xferd = buf_info->size;
499 
500 		mhi_chan->xfer_cb(mhi_dev, &result);
501 	}
502 
503 	ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
504 					   buf_info->code);
505 	if (ret) {
506 		dev_err(dev, "Error sending transfer completion event\n");
507 		return;
508 	}
509 
510 	mhi_ep_ring_inc_index(ring);
511 }
512 
513 /* TODO: Handle partially formed TDs */
514 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
515 {
516 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
517 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
518 	struct device *dev = &mhi_chan->mhi_dev->dev;
519 	struct mhi_ep_buf_info buf_info = {};
520 	struct mhi_ring_element *el;
521 	u32 buf_left, read_offset;
522 	struct mhi_ep_ring *ring;
523 	size_t tr_len;
524 	u32 tre_len;
525 	int ret;
526 
527 	buf_left = skb->len;
528 	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
529 
530 	mutex_lock(&mhi_chan->lock);
531 
532 	do {
533 		/* Don't process the transfer ring if the channel is not in RUNNING state */
534 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
535 			dev_err(dev, "Channel not available\n");
536 			ret = -ENODEV;
537 			goto err_exit;
538 		}
539 
540 		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
541 			dev_err(dev, "TRE not available!\n");
542 			ret = -ENOSPC;
543 			goto err_exit;
544 		}
545 
546 		el = &ring->ring_cache[mhi_chan->rd_offset];
547 		tre_len = MHI_TRE_DATA_GET_LEN(el);
548 
549 		tr_len = min(buf_left, tre_len);
550 		read_offset = skb->len - buf_left;
551 
552 		buf_info.dev_addr = skb->data + read_offset;
553 		buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
554 		buf_info.size = tr_len;
555 		buf_info.cb = mhi_ep_skb_completion;
556 		buf_info.cb_buf = skb;
557 		buf_info.mhi_dev = mhi_dev;
558 
559 		/*
560 		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
561 		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
562 		 * the host so that the host can adjust the packet boundary to next TREs. Else send
563 		 * the EOT event to the host indicating the packet boundary.
564 		 */
565 		if (buf_left - tr_len)
566 			buf_info.code = MHI_EV_CC_OVERFLOW;
567 		else
568 			buf_info.code = MHI_EV_CC_EOT;
569 
570 		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
571 		ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
572 		if (ret < 0) {
573 			dev_err(dev, "Error writing to the channel\n");
574 			goto err_exit;
575 		}
576 
577 		buf_left -= tr_len;
578 
579 		/*
580 		 * Update the read offset cached in mhi_chan. Actual read offset
581 		 * will be updated by the completion handler.
582 		 */
583 		mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
584 	} while (buf_left);
585 
586 	mutex_unlock(&mhi_chan->lock);
587 
588 	return 0;
589 
590 err_exit:
591 	mutex_unlock(&mhi_chan->lock);
592 
593 	return ret;
594 }
595 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
596 
597 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
598 {
599 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
600 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
601 	int ret;
602 
603 	/* Update the number of event rings (NER) programmed by the host */
604 	mhi_ep_mmio_update_ner(mhi_cntrl);
605 
606 	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
607 		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
608 
609 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
610 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
611 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
612 
613 	/* Get the channel context base pointer from host */
614 	mhi_ep_mmio_get_chc_base(mhi_cntrl);
615 
616 	/* Allocate and map memory for caching host channel context */
617 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
618 				   &mhi_cntrl->ch_ctx_cache_phys,
619 				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
620 				   ch_ctx_host_size);
621 	if (ret) {
622 		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
623 		return ret;
624 	}
625 
626 	/* Get the event context base pointer from host */
627 	mhi_ep_mmio_get_erc_base(mhi_cntrl);
628 
629 	/* Allocate and map memory for caching host event context */
630 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
631 				   &mhi_cntrl->ev_ctx_cache_phys,
632 				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
633 				   ev_ctx_host_size);
634 	if (ret) {
635 		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
636 		goto err_ch_ctx;
637 	}
638 
639 	/* Get the command context base pointer from host */
640 	mhi_ep_mmio_get_crc_base(mhi_cntrl);
641 
642 	/* Allocate and map memory for caching host command context */
643 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
644 				   &mhi_cntrl->cmd_ctx_cache_phys,
645 				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
646 				   cmd_ctx_host_size);
647 	if (ret) {
648 		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
649 		goto err_ev_ctx;
650 	}
651 
652 	/* Initialize command ring */
653 	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
654 				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
655 	if (ret) {
656 		dev_err(dev, "Failed to start the command ring\n");
657 		goto err_cmd_ctx;
658 	}
659 
660 	return ret;
661 
662 err_cmd_ctx:
663 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
664 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
665 
666 err_ev_ctx:
667 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
668 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
669 
670 err_ch_ctx:
671 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
672 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
673 
674 	return ret;
675 }
676 
677 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
678 {
679 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
680 
681 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
682 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
683 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
684 
685 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
686 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
687 
688 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
689 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
690 
691 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
692 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
693 }
694 
695 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
696 {
697 	/*
698 	 * Doorbell interrupts are enabled when the corresponding channel gets started.
699 	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
700 	 * associated with hw channels always get triggered.
701 	 */
702 	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
703 	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
704 }
705 
706 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
707 {
708 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
709 	enum mhi_state state;
710 	bool mhi_reset;
711 	u32 count = 0;
712 	int ret;
713 
714 	/* Wait for Host to set the M0 state */
715 	do {
716 		msleep(M0_WAIT_DELAY_MS);
717 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
718 		if (mhi_reset) {
719 			/* Clear the MHI reset if host is in reset state */
720 			mhi_ep_mmio_clear_reset(mhi_cntrl);
721 			dev_info(dev, "Detected Host reset while waiting for M0\n");
722 		}
723 		count++;
724 	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
725 
726 	if (state != MHI_STATE_M0) {
727 		dev_err(dev, "Host failed to enter M0\n");
728 		return -ETIMEDOUT;
729 	}
730 
731 	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
732 	if (ret) {
733 		dev_err(dev, "Failed to cache host config\n");
734 		return ret;
735 	}
736 
737 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
738 
739 	/* Enable all interrupts now */
740 	mhi_ep_enable_int(mhi_cntrl);
741 
742 	return 0;
743 }
744 
745 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
746 {
747 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
748 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
749 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
750 	struct mhi_ring_element *el;
751 	int ret;
752 
753 	/* Update the write offset for the ring */
754 	ret = mhi_ep_update_wr_offset(ring);
755 	if (ret) {
756 		dev_err(dev, "Error updating write offset for ring\n");
757 		return;
758 	}
759 
760 	/* Sanity check to make sure there are elements in the ring */
761 	if (ring->rd_offset == ring->wr_offset)
762 		return;
763 
764 	/*
765 	 * Process command ring element till write offset. In case of an error, just try to
766 	 * process next element.
767 	 */
768 	while (ring->rd_offset != ring->wr_offset) {
769 		el = &ring->ring_cache[ring->rd_offset];
770 
771 		ret = mhi_ep_process_cmd_ring(ring, el);
772 		if (ret && ret != -ENODEV)
773 			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
774 
775 		mhi_ep_ring_inc_index(ring);
776 	}
777 }
778 
779 static void mhi_ep_ch_ring_worker(struct work_struct *work)
780 {
781 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
782 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
783 	struct mhi_ep_ring_item *itr, *tmp;
784 	struct mhi_ring_element *el;
785 	struct mhi_ep_ring *ring;
786 	struct mhi_ep_chan *chan;
787 	unsigned long flags;
788 	LIST_HEAD(head);
789 	int ret;
790 
791 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
792 	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
793 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
794 
795 	/* Process each queued channel ring. In case of an error, just process next element. */
796 	list_for_each_entry_safe(itr, tmp, &head, node) {
797 		list_del(&itr->node);
798 		ring = itr->ring;
799 
800 		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
801 		mutex_lock(&chan->lock);
802 
803 		/*
804 		 * The ring could've stopped while we waited to grab the (chan->lock), so do
805 		 * a sanity check before going further.
806 		 */
807 		if (!ring->started) {
808 			mutex_unlock(&chan->lock);
809 			kfree(itr);
810 			continue;
811 		}
812 
813 		/* Update the write offset for the ring */
814 		ret = mhi_ep_update_wr_offset(ring);
815 		if (ret) {
816 			dev_err(dev, "Error updating write offset for ring\n");
817 			mutex_unlock(&chan->lock);
818 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
819 			continue;
820 		}
821 
822 		/* Sanity check to make sure there are elements in the ring */
823 		if (chan->rd_offset == ring->wr_offset) {
824 			mutex_unlock(&chan->lock);
825 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
826 			continue;
827 		}
828 
829 		el = &ring->ring_cache[ring->rd_offset];
830 
831 		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
832 		ret = mhi_ep_process_ch_ring(ring, el);
833 		if (ret) {
834 			dev_err(dev, "Error processing ring for channel (%u): %d\n",
835 				ring->ch_id, ret);
836 			mutex_unlock(&chan->lock);
837 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
838 			continue;
839 		}
840 
841 		mutex_unlock(&chan->lock);
842 		kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
843 	}
844 }
845 
846 static void mhi_ep_state_worker(struct work_struct *work)
847 {
848 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
849 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
850 	struct mhi_ep_state_transition *itr, *tmp;
851 	unsigned long flags;
852 	LIST_HEAD(head);
853 	int ret;
854 
855 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
856 	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
857 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
858 
859 	list_for_each_entry_safe(itr, tmp, &head, node) {
860 		list_del(&itr->node);
861 		dev_dbg(dev, "Handling MHI state transition to %s\n",
862 			 mhi_state_str(itr->state));
863 
864 		switch (itr->state) {
865 		case MHI_STATE_M0:
866 			ret = mhi_ep_set_m0_state(mhi_cntrl);
867 			if (ret)
868 				dev_err(dev, "Failed to transition to M0 state\n");
869 			break;
870 		case MHI_STATE_M3:
871 			ret = mhi_ep_set_m3_state(mhi_cntrl);
872 			if (ret)
873 				dev_err(dev, "Failed to transition to M3 state\n");
874 			break;
875 		default:
876 			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
877 			break;
878 		}
879 		kfree(itr);
880 	}
881 }
882 
883 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
884 				    u32 ch_idx)
885 {
886 	struct mhi_ep_ring_item *item;
887 	struct mhi_ep_ring *ring;
888 	bool work = !!ch_int;
889 	LIST_HEAD(head);
890 	u32 i;
891 
892 	/* First add the ring items to a local list */
893 	for_each_set_bit(i, &ch_int, 32) {
894 		/* Channel index varies for each register: 0, 32, 64, 96 */
895 		u32 ch_id = ch_idx + i;
896 
897 		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
898 		item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
899 		if (!item)
900 			return;
901 
902 		item->ring = ring;
903 		list_add_tail(&item->node, &head);
904 	}
905 
906 	/* Now, splice the local list into ch_db_list and queue the work item */
907 	if (work) {
908 		spin_lock(&mhi_cntrl->list_lock);
909 		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
910 		spin_unlock(&mhi_cntrl->list_lock);
911 
912 		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
913 	}
914 }
915 
916 /*
917  * Channel interrupt statuses are contained in 4 registers each of 32bit length.
918  * For checking all interrupts, we need to loop through each registers and then
919  * check for bits set.
920  */
921 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
922 {
923 	u32 ch_int, ch_idx, i;
924 
925 	/* Bail out if there is no channel doorbell interrupt */
926 	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
927 		return;
928 
929 	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
930 		ch_idx = i * MHI_MASK_CH_LEN;
931 
932 		/* Only process channel interrupt if the mask is enabled */
933 		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
934 		if (ch_int) {
935 			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
936 			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
937 							mhi_cntrl->chdb[i].status);
938 		}
939 	}
940 }
941 
942 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
943 					 enum mhi_state state)
944 {
945 	struct mhi_ep_state_transition *item;
946 
947 	item = kzalloc(sizeof(*item), GFP_ATOMIC);
948 	if (!item)
949 		return;
950 
951 	item->state = state;
952 	spin_lock(&mhi_cntrl->list_lock);
953 	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
954 	spin_unlock(&mhi_cntrl->list_lock);
955 
956 	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
957 }
958 
959 /*
960  * Interrupt handler that services interrupts raised by the host writing to
961  * MHICTRL and Command ring doorbell (CRDB) registers for state change and
962  * channel interrupts.
963  */
964 static irqreturn_t mhi_ep_irq(int irq, void *data)
965 {
966 	struct mhi_ep_cntrl *mhi_cntrl = data;
967 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
968 	enum mhi_state state;
969 	u32 int_value;
970 	bool mhi_reset;
971 
972 	/* Acknowledge the ctrl interrupt */
973 	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
974 	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
975 
976 	/* Check for ctrl interrupt */
977 	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
978 		dev_dbg(dev, "Processing ctrl interrupt\n");
979 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
980 		if (mhi_reset) {
981 			dev_info(dev, "Host triggered MHI reset!\n");
982 			disable_irq_nosync(mhi_cntrl->irq);
983 			schedule_work(&mhi_cntrl->reset_work);
984 			return IRQ_HANDLED;
985 		}
986 
987 		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
988 	}
989 
990 	/* Check for command doorbell interrupt */
991 	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
992 		dev_dbg(dev, "Processing command doorbell interrupt\n");
993 		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
994 	}
995 
996 	/* Check for channel interrupts */
997 	mhi_ep_check_channel_interrupt(mhi_cntrl);
998 
999 	return IRQ_HANDLED;
1000 }
1001 
1002 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1003 {
1004 	struct mhi_ep_ring *ch_ring, *ev_ring;
1005 	struct mhi_result result = {};
1006 	struct mhi_ep_chan *mhi_chan;
1007 	int i;
1008 
1009 	/* Stop all the channels */
1010 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1011 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1012 		if (!mhi_chan->ring.started)
1013 			continue;
1014 
1015 		mutex_lock(&mhi_chan->lock);
1016 		/* Send channel disconnect status to client drivers */
1017 		if (mhi_chan->xfer_cb) {
1018 			result.transaction_status = -ENOTCONN;
1019 			result.bytes_xferd = 0;
1020 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1021 		}
1022 
1023 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1024 		mutex_unlock(&mhi_chan->lock);
1025 	}
1026 
1027 	flush_workqueue(mhi_cntrl->wq);
1028 
1029 	/* Destroy devices associated with all channels */
1030 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1031 
1032 	/* Stop and reset the transfer rings */
1033 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1034 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1035 		if (!mhi_chan->ring.started)
1036 			continue;
1037 
1038 		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1039 		mutex_lock(&mhi_chan->lock);
1040 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1041 		mutex_unlock(&mhi_chan->lock);
1042 	}
1043 
1044 	/* Stop and reset the event rings */
1045 	for (i = 0; i < mhi_cntrl->event_rings; i++) {
1046 		ev_ring = &mhi_cntrl->mhi_event[i].ring;
1047 		if (!ev_ring->started)
1048 			continue;
1049 
1050 		mutex_lock(&mhi_cntrl->event_lock);
1051 		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1052 		mutex_unlock(&mhi_cntrl->event_lock);
1053 	}
1054 
1055 	/* Stop and reset the command ring */
1056 	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1057 
1058 	mhi_ep_free_host_cfg(mhi_cntrl);
1059 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1060 
1061 	mhi_cntrl->enabled = false;
1062 }
1063 
1064 static void mhi_ep_reset_worker(struct work_struct *work)
1065 {
1066 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1067 	enum mhi_state cur_state;
1068 
1069 	mhi_ep_power_down(mhi_cntrl);
1070 
1071 	mutex_lock(&mhi_cntrl->state_lock);
1072 
1073 	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1074 	mhi_ep_mmio_reset(mhi_cntrl);
1075 	cur_state = mhi_cntrl->mhi_state;
1076 
1077 	/*
1078 	 * Only proceed further if the reset is due to SYS_ERR. The host will
1079 	 * issue reset during shutdown also and we don't need to do re-init in
1080 	 * that case.
1081 	 */
1082 	if (cur_state == MHI_STATE_SYS_ERR)
1083 		mhi_ep_power_up(mhi_cntrl);
1084 
1085 	mutex_unlock(&mhi_cntrl->state_lock);
1086 }
1087 
1088 /*
1089  * We don't need to do anything special other than setting the MHI SYS_ERR
1090  * state. The host will reset all contexts and issue MHI RESET so that we
1091  * could also recover from error state.
1092  */
1093 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1094 {
1095 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1096 	int ret;
1097 
1098 	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1099 	if (ret)
1100 		return;
1101 
1102 	/* Signal host that the device went to SYS_ERR state */
1103 	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1104 	if (ret)
1105 		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1106 }
1107 
1108 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1109 {
1110 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1111 	int ret, i;
1112 
1113 	/*
1114 	 * Mask all interrupts until the state machine is ready. Interrupts will
1115 	 * be enabled later with mhi_ep_enable().
1116 	 */
1117 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1118 	mhi_ep_mmio_init(mhi_cntrl);
1119 
1120 	mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1121 					GFP_KERNEL);
1122 	if (!mhi_cntrl->mhi_event)
1123 		return -ENOMEM;
1124 
1125 	/* Initialize command, channel and event rings */
1126 	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1127 	for (i = 0; i < mhi_cntrl->max_chan; i++)
1128 		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1129 	for (i = 0; i < mhi_cntrl->event_rings; i++)
1130 		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1131 
1132 	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1133 
1134 	/* Set AMSS EE before signaling ready state */
1135 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1136 
1137 	/* All set, notify the host that we are ready */
1138 	ret = mhi_ep_set_ready_state(mhi_cntrl);
1139 	if (ret)
1140 		goto err_free_event;
1141 
1142 	dev_dbg(dev, "READY state notification sent to the host\n");
1143 
1144 	ret = mhi_ep_enable(mhi_cntrl);
1145 	if (ret) {
1146 		dev_err(dev, "Failed to enable MHI endpoint\n");
1147 		goto err_free_event;
1148 	}
1149 
1150 	enable_irq(mhi_cntrl->irq);
1151 	mhi_cntrl->enabled = true;
1152 
1153 	return 0;
1154 
1155 err_free_event:
1156 	kfree(mhi_cntrl->mhi_event);
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1161 
1162 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1163 {
1164 	if (mhi_cntrl->enabled) {
1165 		mhi_ep_abort_transfer(mhi_cntrl);
1166 		kfree(mhi_cntrl->mhi_event);
1167 		disable_irq(mhi_cntrl->irq);
1168 	}
1169 }
1170 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1171 
1172 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1173 {
1174 	struct mhi_ep_chan *mhi_chan;
1175 	u32 tmp;
1176 	int i;
1177 
1178 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1179 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1180 
1181 		if (!mhi_chan->mhi_dev)
1182 			continue;
1183 
1184 		mutex_lock(&mhi_chan->lock);
1185 		/* Skip if the channel is not currently running */
1186 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1187 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1188 			mutex_unlock(&mhi_chan->lock);
1189 			continue;
1190 		}
1191 
1192 		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1193 		/* Set channel state to SUSPENDED */
1194 		mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1195 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1196 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1197 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1198 		mutex_unlock(&mhi_chan->lock);
1199 	}
1200 }
1201 
1202 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1203 {
1204 	struct mhi_ep_chan *mhi_chan;
1205 	u32 tmp;
1206 	int i;
1207 
1208 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1209 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1210 
1211 		if (!mhi_chan->mhi_dev)
1212 			continue;
1213 
1214 		mutex_lock(&mhi_chan->lock);
1215 		/* Skip if the channel is not currently suspended */
1216 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1217 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1218 			mutex_unlock(&mhi_chan->lock);
1219 			continue;
1220 		}
1221 
1222 		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1223 		/* Set channel state to RUNNING */
1224 		mhi_chan->state = MHI_CH_STATE_RUNNING;
1225 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1226 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1227 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1228 		mutex_unlock(&mhi_chan->lock);
1229 	}
1230 }
1231 
1232 static void mhi_ep_release_device(struct device *dev)
1233 {
1234 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1235 
1236 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1237 		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1238 
1239 	/*
1240 	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1241 	 * devices for the channels will only get created in mhi_ep_create_device()
1242 	 * if the mhi_dev associated with it is NULL.
1243 	 */
1244 	if (mhi_dev->ul_chan)
1245 		mhi_dev->ul_chan->mhi_dev = NULL;
1246 
1247 	if (mhi_dev->dl_chan)
1248 		mhi_dev->dl_chan->mhi_dev = NULL;
1249 
1250 	kfree(mhi_dev);
1251 }
1252 
1253 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1254 						 enum mhi_device_type dev_type)
1255 {
1256 	struct mhi_ep_device *mhi_dev;
1257 	struct device *dev;
1258 
1259 	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1260 	if (!mhi_dev)
1261 		return ERR_PTR(-ENOMEM);
1262 
1263 	dev = &mhi_dev->dev;
1264 	device_initialize(dev);
1265 	dev->bus = &mhi_ep_bus_type;
1266 	dev->release = mhi_ep_release_device;
1267 
1268 	/* Controller device is always allocated first */
1269 	if (dev_type == MHI_DEVICE_CONTROLLER)
1270 		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1271 		dev->parent = mhi_cntrl->cntrl_dev;
1272 	else
1273 		/* for MHI client devices, parent is the MHI controller device */
1274 		dev->parent = &mhi_cntrl->mhi_dev->dev;
1275 
1276 	mhi_dev->mhi_cntrl = mhi_cntrl;
1277 	mhi_dev->dev_type = dev_type;
1278 
1279 	return mhi_dev;
1280 }
1281 
1282 /*
1283  * MHI channels are always defined in pairs with UL as the even numbered
1284  * channel and DL as odd numbered one. This function gets UL channel (primary)
1285  * as the ch_id and always looks after the next entry in channel list for
1286  * the corresponding DL channel (secondary).
1287  */
1288 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1289 {
1290 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1291 	struct device *dev = mhi_cntrl->cntrl_dev;
1292 	struct mhi_ep_device *mhi_dev;
1293 	int ret;
1294 
1295 	/* Check if the channel name is same for both UL and DL */
1296 	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1297 		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1298 			mhi_chan->name, mhi_chan[1].name);
1299 		return -EINVAL;
1300 	}
1301 
1302 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1303 	if (IS_ERR(mhi_dev))
1304 		return PTR_ERR(mhi_dev);
1305 
1306 	/* Configure primary channel */
1307 	mhi_dev->ul_chan = mhi_chan;
1308 	get_device(&mhi_dev->dev);
1309 	mhi_chan->mhi_dev = mhi_dev;
1310 
1311 	/* Configure secondary channel as well */
1312 	mhi_chan++;
1313 	mhi_dev->dl_chan = mhi_chan;
1314 	get_device(&mhi_dev->dev);
1315 	mhi_chan->mhi_dev = mhi_dev;
1316 
1317 	/* Channel name is same for both UL and DL */
1318 	mhi_dev->name = mhi_chan->name;
1319 	ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1320 		     dev_name(&mhi_cntrl->mhi_dev->dev),
1321 		     mhi_dev->name);
1322 	if (ret) {
1323 		put_device(&mhi_dev->dev);
1324 		return ret;
1325 	}
1326 
1327 	ret = device_add(&mhi_dev->dev);
1328 	if (ret)
1329 		put_device(&mhi_dev->dev);
1330 
1331 	return ret;
1332 }
1333 
1334 static int mhi_ep_destroy_device(struct device *dev, void *data)
1335 {
1336 	struct mhi_ep_device *mhi_dev;
1337 	struct mhi_ep_cntrl *mhi_cntrl;
1338 	struct mhi_ep_chan *ul_chan, *dl_chan;
1339 
1340 	if (dev->bus != &mhi_ep_bus_type)
1341 		return 0;
1342 
1343 	mhi_dev = to_mhi_ep_device(dev);
1344 	mhi_cntrl = mhi_dev->mhi_cntrl;
1345 
1346 	/* Only destroy devices created for channels */
1347 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1348 		return 0;
1349 
1350 	ul_chan = mhi_dev->ul_chan;
1351 	dl_chan = mhi_dev->dl_chan;
1352 
1353 	if (ul_chan)
1354 		put_device(&ul_chan->mhi_dev->dev);
1355 
1356 	if (dl_chan)
1357 		put_device(&dl_chan->mhi_dev->dev);
1358 
1359 	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1360 		 mhi_dev->name);
1361 
1362 	/* Notify the client and remove the device from MHI bus */
1363 	device_del(dev);
1364 	put_device(dev);
1365 
1366 	return 0;
1367 }
1368 
1369 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1370 			    const struct mhi_ep_cntrl_config *config)
1371 {
1372 	const struct mhi_ep_channel_config *ch_cfg;
1373 	struct device *dev = mhi_cntrl->cntrl_dev;
1374 	u32 chan, i;
1375 	int ret = -EINVAL;
1376 
1377 	mhi_cntrl->max_chan = config->max_channels;
1378 
1379 	/*
1380 	 * Allocate max_channels supported by the MHI endpoint and populate
1381 	 * only the defined channels
1382 	 */
1383 	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1384 				      GFP_KERNEL);
1385 	if (!mhi_cntrl->mhi_chan)
1386 		return -ENOMEM;
1387 
1388 	for (i = 0; i < config->num_channels; i++) {
1389 		struct mhi_ep_chan *mhi_chan;
1390 
1391 		ch_cfg = &config->ch_cfg[i];
1392 
1393 		chan = ch_cfg->num;
1394 		if (chan >= mhi_cntrl->max_chan) {
1395 			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1396 				chan, mhi_cntrl->max_chan);
1397 			goto error_chan_cfg;
1398 		}
1399 
1400 		/* Bi-directional and direction less channels are not supported */
1401 		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1402 			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1403 				ch_cfg->dir, chan);
1404 			goto error_chan_cfg;
1405 		}
1406 
1407 		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1408 		mhi_chan->name = ch_cfg->name;
1409 		mhi_chan->chan = chan;
1410 		mhi_chan->dir = ch_cfg->dir;
1411 		mutex_init(&mhi_chan->lock);
1412 	}
1413 
1414 	return 0;
1415 
1416 error_chan_cfg:
1417 	kfree(mhi_cntrl->mhi_chan);
1418 
1419 	return ret;
1420 }
1421 
1422 /*
1423  * Allocate channel and command rings here. Event rings will be allocated
1424  * in mhi_ep_power_up() as the config comes from the host.
1425  */
1426 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1427 				const struct mhi_ep_cntrl_config *config)
1428 {
1429 	struct mhi_ep_device *mhi_dev;
1430 	int ret;
1431 
1432 	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1433 		return -EINVAL;
1434 
1435 	ret = mhi_ep_chan_init(mhi_cntrl, config);
1436 	if (ret)
1437 		return ret;
1438 
1439 	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1440 	if (!mhi_cntrl->mhi_cmd) {
1441 		ret = -ENOMEM;
1442 		goto err_free_ch;
1443 	}
1444 
1445 	mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1446 							sizeof(struct mhi_ring_element), 0,
1447 							SLAB_CACHE_DMA, NULL);
1448 	if (!mhi_cntrl->ev_ring_el_cache) {
1449 		ret = -ENOMEM;
1450 		goto err_free_cmd;
1451 	}
1452 
1453 	mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1454 						      SLAB_CACHE_DMA, NULL);
1455 	if (!mhi_cntrl->tre_buf_cache) {
1456 		ret = -ENOMEM;
1457 		goto err_destroy_ev_ring_el_cache;
1458 	}
1459 
1460 	mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1461 							sizeof(struct mhi_ep_ring_item), 0,
1462 							0, NULL);
1463 	if (!mhi_cntrl->ring_item_cache) {
1464 		ret = -ENOMEM;
1465 		goto err_destroy_tre_buf_cache;
1466 	}
1467 
1468 	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1469 	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1470 	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1471 	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1472 
1473 	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1474 	if (!mhi_cntrl->wq) {
1475 		ret = -ENOMEM;
1476 		goto err_destroy_ring_item_cache;
1477 	}
1478 
1479 	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1480 	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1481 	spin_lock_init(&mhi_cntrl->list_lock);
1482 	mutex_init(&mhi_cntrl->state_lock);
1483 	mutex_init(&mhi_cntrl->event_lock);
1484 
1485 	/* Set MHI version and AMSS EE before enumeration */
1486 	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1487 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1488 
1489 	/* Set controller index */
1490 	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1491 	if (ret < 0)
1492 		goto err_destroy_wq;
1493 
1494 	mhi_cntrl->index = ret;
1495 
1496 	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1497 	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1498 			  "doorbell_irq", mhi_cntrl);
1499 	if (ret) {
1500 		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1501 		goto err_ida_free;
1502 	}
1503 
1504 	/* Allocate the controller device */
1505 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1506 	if (IS_ERR(mhi_dev)) {
1507 		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1508 		ret = PTR_ERR(mhi_dev);
1509 		goto err_free_irq;
1510 	}
1511 
1512 	ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1513 	if (ret)
1514 		goto err_put_dev;
1515 
1516 	mhi_dev->name = dev_name(&mhi_dev->dev);
1517 	mhi_cntrl->mhi_dev = mhi_dev;
1518 
1519 	ret = device_add(&mhi_dev->dev);
1520 	if (ret)
1521 		goto err_put_dev;
1522 
1523 	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1524 
1525 	return 0;
1526 
1527 err_put_dev:
1528 	put_device(&mhi_dev->dev);
1529 err_free_irq:
1530 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1531 err_ida_free:
1532 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1533 err_destroy_wq:
1534 	destroy_workqueue(mhi_cntrl->wq);
1535 err_destroy_ring_item_cache:
1536 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1537 err_destroy_ev_ring_el_cache:
1538 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1539 err_destroy_tre_buf_cache:
1540 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1541 err_free_cmd:
1542 	kfree(mhi_cntrl->mhi_cmd);
1543 err_free_ch:
1544 	kfree(mhi_cntrl->mhi_chan);
1545 
1546 	return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1549 
1550 /*
1551  * It is expected that the controller drivers will power down the MHI EP stack
1552  * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1553  */
1554 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1555 {
1556 	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1557 
1558 	destroy_workqueue(mhi_cntrl->wq);
1559 
1560 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1561 
1562 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1563 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1564 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1565 	kfree(mhi_cntrl->mhi_cmd);
1566 	kfree(mhi_cntrl->mhi_chan);
1567 
1568 	device_del(&mhi_dev->dev);
1569 	put_device(&mhi_dev->dev);
1570 
1571 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1572 }
1573 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1574 
1575 static int mhi_ep_driver_probe(struct device *dev)
1576 {
1577 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1578 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1579 	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1580 	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1581 
1582 	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1583 	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1584 
1585 	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1586 }
1587 
1588 static int mhi_ep_driver_remove(struct device *dev)
1589 {
1590 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1591 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1592 	struct mhi_result result = {};
1593 	struct mhi_ep_chan *mhi_chan;
1594 	int dir;
1595 
1596 	/* Skip if it is a controller device */
1597 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1598 		return 0;
1599 
1600 	/* Disconnect the channels associated with the driver */
1601 	for (dir = 0; dir < 2; dir++) {
1602 		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1603 
1604 		if (!mhi_chan)
1605 			continue;
1606 
1607 		mutex_lock(&mhi_chan->lock);
1608 		/* Send channel disconnect status to the client driver */
1609 		if (mhi_chan->xfer_cb) {
1610 			result.transaction_status = -ENOTCONN;
1611 			result.bytes_xferd = 0;
1612 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1613 		}
1614 
1615 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1616 		mhi_chan->xfer_cb = NULL;
1617 		mutex_unlock(&mhi_chan->lock);
1618 	}
1619 
1620 	/* Remove the client driver now */
1621 	mhi_drv->remove(mhi_dev);
1622 
1623 	return 0;
1624 }
1625 
1626 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1627 {
1628 	struct device_driver *driver = &mhi_drv->driver;
1629 
1630 	if (!mhi_drv->probe || !mhi_drv->remove)
1631 		return -EINVAL;
1632 
1633 	/* Client drivers should have callbacks defined for both channels */
1634 	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1635 		return -EINVAL;
1636 
1637 	driver->bus = &mhi_ep_bus_type;
1638 	driver->owner = owner;
1639 	driver->probe = mhi_ep_driver_probe;
1640 	driver->remove = mhi_ep_driver_remove;
1641 
1642 	return driver_register(driver);
1643 }
1644 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1645 
1646 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1647 {
1648 	driver_unregister(&mhi_drv->driver);
1649 }
1650 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1651 
1652 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1653 {
1654 	const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1655 
1656 	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1657 					mhi_dev->name);
1658 }
1659 
1660 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1661 {
1662 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1663 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1664 	const struct mhi_device_id *id;
1665 
1666 	/*
1667 	 * If the device is a controller type then there is no client driver
1668 	 * associated with it
1669 	 */
1670 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1671 		return 0;
1672 
1673 	for (id = mhi_drv->id_table; id->chan[0]; id++)
1674 		if (!strcmp(mhi_dev->name, id->chan)) {
1675 			mhi_dev->id = id;
1676 			return 1;
1677 		}
1678 
1679 	return 0;
1680 };
1681 
1682 struct bus_type mhi_ep_bus_type = {
1683 	.name = "mhi_ep",
1684 	.dev_name = "mhi_ep",
1685 	.match = mhi_ep_match,
1686 	.uevent = mhi_ep_uevent,
1687 };
1688 
1689 static int __init mhi_ep_init(void)
1690 {
1691 	return bus_register(&mhi_ep_bus_type);
1692 }
1693 
1694 static void __exit mhi_ep_exit(void)
1695 {
1696 	bus_unregister(&mhi_ep_bus_type);
1697 }
1698 
1699 postcore_initcall(mhi_ep_init);
1700 module_exit(mhi_ep_exit);
1701 
1702 MODULE_LICENSE("GPL v2");
1703 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1704 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1705