xref: /openbmc/linux/drivers/bluetooth/btintel.c (revision 1c9f8dff62d85ce00b0e99f774a84bd783af7cac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <linux/acpi.h>
13 #include <acpi/acpi_bus.h>
14 #include <asm/unaligned.h>
15 
16 #include <net/bluetooth/bluetooth.h>
17 #include <net/bluetooth/hci_core.h>
18 
19 #include "btintel.h"
20 
21 #define VERSION "0.1"
22 
23 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
24 #define RSA_HEADER_LEN		644
25 #define CSS_HEADER_OFFSET	8
26 #define ECDSA_OFFSET		644
27 #define ECDSA_HEADER_LEN	320
28 
29 #define BTINTEL_PPAG_NAME   "PPAG"
30 
31 enum {
32 	DSM_SET_WDISABLE2_DELAY = 1,
33 	DSM_SET_RESET_METHOD = 3,
34 };
35 
36 /* structure to store the PPAG data read from ACPI table */
37 struct btintel_ppag {
38 	u32	domain;
39 	u32     mode;
40 	acpi_status status;
41 	struct hci_dev *hdev;
42 };
43 
44 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
45 struct cmd_write_boot_params {
46 	__le32 boot_addr;
47 	u8  fw_build_num;
48 	u8  fw_build_ww;
49 	u8  fw_build_yy;
50 } __packed;
51 
52 static struct {
53 	const char *driver_name;
54 	u8         hw_variant;
55 	u32        fw_build_num;
56 } coredump_info;
57 
58 static const guid_t btintel_guid_dsm =
59 	GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
60 		  0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
61 
62 int btintel_check_bdaddr(struct hci_dev *hdev)
63 {
64 	struct hci_rp_read_bd_addr *bda;
65 	struct sk_buff *skb;
66 
67 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
68 			     HCI_INIT_TIMEOUT);
69 	if (IS_ERR(skb)) {
70 		int err = PTR_ERR(skb);
71 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
72 			   err);
73 		return err;
74 	}
75 
76 	if (skb->len != sizeof(*bda)) {
77 		bt_dev_err(hdev, "Intel device address length mismatch");
78 		kfree_skb(skb);
79 		return -EIO;
80 	}
81 
82 	bda = (struct hci_rp_read_bd_addr *)skb->data;
83 
84 	/* For some Intel based controllers, the default Bluetooth device
85 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
86 	 * fully operational, but have the danger of duplicate addresses
87 	 * and that in turn can cause problems with Bluetooth operation.
88 	 */
89 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
90 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
91 			   &bda->bdaddr);
92 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
93 	}
94 
95 	kfree_skb(skb);
96 
97 	return 0;
98 }
99 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
100 
101 int btintel_enter_mfg(struct hci_dev *hdev)
102 {
103 	static const u8 param[] = { 0x01, 0x00 };
104 	struct sk_buff *skb;
105 
106 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
107 	if (IS_ERR(skb)) {
108 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
109 			   PTR_ERR(skb));
110 		return PTR_ERR(skb);
111 	}
112 	kfree_skb(skb);
113 
114 	return 0;
115 }
116 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
117 
118 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
119 {
120 	u8 param[] = { 0x00, 0x00 };
121 	struct sk_buff *skb;
122 
123 	/* The 2nd command parameter specifies the manufacturing exit method:
124 	 * 0x00: Just disable the manufacturing mode (0x00).
125 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
126 	 * 0x02: Disable manufacturing mode and reset with patches activated.
127 	 */
128 	if (reset)
129 		param[1] |= patched ? 0x02 : 0x01;
130 
131 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
132 	if (IS_ERR(skb)) {
133 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
134 			   PTR_ERR(skb));
135 		return PTR_ERR(skb);
136 	}
137 	kfree_skb(skb);
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
142 
143 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
144 {
145 	struct sk_buff *skb;
146 	int err;
147 
148 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
149 	if (IS_ERR(skb)) {
150 		err = PTR_ERR(skb);
151 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
152 			   err);
153 		return err;
154 	}
155 	kfree_skb(skb);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
160 
161 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
162 {
163 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
164 	struct sk_buff *skb;
165 	int err;
166 
167 	if (debug)
168 		mask[1] |= 0x62;
169 
170 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
171 	if (IS_ERR(skb)) {
172 		err = PTR_ERR(skb);
173 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
174 		return err;
175 	}
176 	kfree_skb(skb);
177 
178 	return 0;
179 }
180 
181 int btintel_set_diag(struct hci_dev *hdev, bool enable)
182 {
183 	struct sk_buff *skb;
184 	u8 param[3];
185 	int err;
186 
187 	if (enable) {
188 		param[0] = 0x03;
189 		param[1] = 0x03;
190 		param[2] = 0x03;
191 	} else {
192 		param[0] = 0x00;
193 		param[1] = 0x00;
194 		param[2] = 0x00;
195 	}
196 
197 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
198 	if (IS_ERR(skb)) {
199 		err = PTR_ERR(skb);
200 		if (err == -ENODATA)
201 			goto done;
202 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
203 			   err);
204 		return err;
205 	}
206 	kfree_skb(skb);
207 
208 done:
209 	btintel_set_event_mask(hdev, enable);
210 	return 0;
211 }
212 EXPORT_SYMBOL_GPL(btintel_set_diag);
213 
214 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
215 {
216 	int err, ret;
217 
218 	err = btintel_enter_mfg(hdev);
219 	if (err)
220 		return err;
221 
222 	ret = btintel_set_diag(hdev, enable);
223 
224 	err = btintel_exit_mfg(hdev, false, false);
225 	if (err)
226 		return err;
227 
228 	return ret;
229 }
230 
231 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
232 {
233 	int ret;
234 
235 	/* Legacy ROM device needs to be in the manufacturer mode to apply
236 	 * diagnostic setting
237 	 *
238 	 * This flag is set after reading the Intel version.
239 	 */
240 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
241 		ret = btintel_set_diag_mfg(hdev, enable);
242 	else
243 		ret = btintel_set_diag(hdev, enable);
244 
245 	return ret;
246 }
247 
248 static void btintel_hw_error(struct hci_dev *hdev, u8 code)
249 {
250 	struct sk_buff *skb;
251 	u8 type = 0x00;
252 
253 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
254 
255 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
256 	if (IS_ERR(skb)) {
257 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
258 			   PTR_ERR(skb));
259 		return;
260 	}
261 	kfree_skb(skb);
262 
263 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
264 	if (IS_ERR(skb)) {
265 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
266 			   PTR_ERR(skb));
267 		return;
268 	}
269 
270 	if (skb->len != 13) {
271 		bt_dev_err(hdev, "Exception info size mismatch");
272 		kfree_skb(skb);
273 		return;
274 	}
275 
276 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
277 
278 	kfree_skb(skb);
279 }
280 
281 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
282 {
283 	const char *variant;
284 
285 	/* The hardware platform number has a fixed value of 0x37 and
286 	 * for now only accept this single value.
287 	 */
288 	if (ver->hw_platform != 0x37) {
289 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
290 			   ver->hw_platform);
291 		return -EINVAL;
292 	}
293 
294 	/* Check for supported iBT hardware variants of this firmware
295 	 * loading method.
296 	 *
297 	 * This check has been put in place to ensure correct forward
298 	 * compatibility options when newer hardware variants come along.
299 	 */
300 	switch (ver->hw_variant) {
301 	case 0x07:	/* WP - Legacy ROM */
302 	case 0x08:	/* StP - Legacy ROM */
303 	case 0x0b:      /* SfP */
304 	case 0x0c:      /* WsP */
305 	case 0x11:      /* JfP */
306 	case 0x12:      /* ThP */
307 	case 0x13:      /* HrP */
308 	case 0x14:      /* CcP */
309 		break;
310 	default:
311 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
312 			   ver->hw_variant);
313 		return -EINVAL;
314 	}
315 
316 	switch (ver->fw_variant) {
317 	case 0x01:
318 		variant = "Legacy ROM 2.5";
319 		break;
320 	case 0x06:
321 		variant = "Bootloader";
322 		break;
323 	case 0x22:
324 		variant = "Legacy ROM 2.x";
325 		break;
326 	case 0x23:
327 		variant = "Firmware";
328 		break;
329 	default:
330 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
331 		return -EINVAL;
332 	}
333 
334 	coredump_info.hw_variant = ver->hw_variant;
335 	coredump_info.fw_build_num = ver->fw_build_num;
336 
337 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
338 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
339 		    ver->fw_build_num, ver->fw_build_ww,
340 		    2000 + ver->fw_build_yy);
341 
342 	return 0;
343 }
344 EXPORT_SYMBOL_GPL(btintel_version_info);
345 
346 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
347 			       const void *param)
348 {
349 	while (plen > 0) {
350 		struct sk_buff *skb;
351 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
352 
353 		cmd_param[0] = fragment_type;
354 		memcpy(cmd_param + 1, param, fragment_len);
355 
356 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
357 				     cmd_param, HCI_INIT_TIMEOUT);
358 		if (IS_ERR(skb))
359 			return PTR_ERR(skb);
360 
361 		kfree_skb(skb);
362 
363 		plen -= fragment_len;
364 		param += fragment_len;
365 	}
366 
367 	return 0;
368 }
369 
370 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
371 {
372 	const struct firmware *fw;
373 	struct sk_buff *skb;
374 	const u8 *fw_ptr;
375 	int err;
376 
377 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
378 	if (err < 0) {
379 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
380 			   ddc_name, err);
381 		return err;
382 	}
383 
384 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
385 
386 	fw_ptr = fw->data;
387 
388 	/* DDC file contains one or more DDC structure which has
389 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
390 	 */
391 	while (fw->size > fw_ptr - fw->data) {
392 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
393 
394 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
395 				     HCI_INIT_TIMEOUT);
396 		if (IS_ERR(skb)) {
397 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
398 				   PTR_ERR(skb));
399 			release_firmware(fw);
400 			return PTR_ERR(skb);
401 		}
402 
403 		fw_ptr += cmd_plen;
404 		kfree_skb(skb);
405 	}
406 
407 	release_firmware(fw);
408 
409 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
410 
411 	return 0;
412 }
413 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
414 
415 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
416 {
417 	int err, ret;
418 
419 	err = btintel_enter_mfg(hdev);
420 	if (err)
421 		return err;
422 
423 	ret = btintel_set_event_mask(hdev, debug);
424 
425 	err = btintel_exit_mfg(hdev, false, false);
426 	if (err)
427 		return err;
428 
429 	return ret;
430 }
431 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
432 
433 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
434 {
435 	struct sk_buff *skb;
436 
437 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
438 	if (IS_ERR(skb)) {
439 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
440 			   PTR_ERR(skb));
441 		return PTR_ERR(skb);
442 	}
443 
444 	if (skb->len != sizeof(*ver)) {
445 		bt_dev_err(hdev, "Intel version event size mismatch");
446 		kfree_skb(skb);
447 		return -EILSEQ;
448 	}
449 
450 	memcpy(ver, skb->data, sizeof(*ver));
451 
452 	kfree_skb(skb);
453 
454 	return 0;
455 }
456 EXPORT_SYMBOL_GPL(btintel_read_version);
457 
458 static int btintel_version_info_tlv(struct hci_dev *hdev,
459 				    struct intel_version_tlv *version)
460 {
461 	const char *variant;
462 
463 	/* The hardware platform number has a fixed value of 0x37 and
464 	 * for now only accept this single value.
465 	 */
466 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
467 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
468 			   INTEL_HW_PLATFORM(version->cnvi_bt));
469 		return -EINVAL;
470 	}
471 
472 	/* Check for supported iBT hardware variants of this firmware
473 	 * loading method.
474 	 *
475 	 * This check has been put in place to ensure correct forward
476 	 * compatibility options when newer hardware variants come along.
477 	 */
478 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
479 	case 0x17:	/* TyP */
480 	case 0x18:	/* Slr */
481 	case 0x19:	/* Slr-F */
482 	case 0x1b:      /* Mgr */
483 	case 0x1c:	/* Gale Peak (GaP) */
484 		break;
485 	default:
486 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
487 			   INTEL_HW_VARIANT(version->cnvi_bt));
488 		return -EINVAL;
489 	}
490 
491 	switch (version->img_type) {
492 	case 0x01:
493 		variant = "Bootloader";
494 		/* It is required that every single firmware fragment is acknowledged
495 		 * with a command complete event. If the boot parameters indicate
496 		 * that this bootloader does not send them, then abort the setup.
497 		 */
498 		if (version->limited_cce != 0x00) {
499 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
500 				   version->limited_cce);
501 			return -EINVAL;
502 		}
503 
504 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
505 		if (version->sbe_type > 0x01) {
506 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
507 				   version->sbe_type);
508 			return -EINVAL;
509 		}
510 
511 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
512 		bt_dev_info(hdev, "Secure boot is %s",
513 			    version->secure_boot ? "enabled" : "disabled");
514 		bt_dev_info(hdev, "OTP lock is %s",
515 			    version->otp_lock ? "enabled" : "disabled");
516 		bt_dev_info(hdev, "API lock is %s",
517 			    version->api_lock ? "enabled" : "disabled");
518 		bt_dev_info(hdev, "Debug lock is %s",
519 			    version->debug_lock ? "enabled" : "disabled");
520 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
521 			    version->min_fw_build_nn, version->min_fw_build_cw,
522 			    2000 + version->min_fw_build_yy);
523 		break;
524 	case 0x03:
525 		variant = "Firmware";
526 		break;
527 	default:
528 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
529 		return -EINVAL;
530 	}
531 
532 	coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
533 	coredump_info.fw_build_num = version->build_num;
534 
535 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
536 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
537 		    version->build_type, version->build_num);
538 
539 	return 0;
540 }
541 
542 static int btintel_parse_version_tlv(struct hci_dev *hdev,
543 				     struct intel_version_tlv *version,
544 				     struct sk_buff *skb)
545 {
546 	/* Consume Command Complete Status field */
547 	skb_pull(skb, 1);
548 
549 	/* Event parameters contatin multiple TLVs. Read each of them
550 	 * and only keep the required data. Also, it use existing legacy
551 	 * version field like hw_platform, hw_variant, and fw_variant
552 	 * to keep the existing setup flow
553 	 */
554 	while (skb->len) {
555 		struct intel_tlv *tlv;
556 
557 		/* Make sure skb has a minimum length of the header */
558 		if (skb->len < sizeof(*tlv))
559 			return -EINVAL;
560 
561 		tlv = (struct intel_tlv *)skb->data;
562 
563 		/* Make sure skb has a enough data */
564 		if (skb->len < tlv->len + sizeof(*tlv))
565 			return -EINVAL;
566 
567 		switch (tlv->type) {
568 		case INTEL_TLV_CNVI_TOP:
569 			version->cnvi_top = get_unaligned_le32(tlv->val);
570 			break;
571 		case INTEL_TLV_CNVR_TOP:
572 			version->cnvr_top = get_unaligned_le32(tlv->val);
573 			break;
574 		case INTEL_TLV_CNVI_BT:
575 			version->cnvi_bt = get_unaligned_le32(tlv->val);
576 			break;
577 		case INTEL_TLV_CNVR_BT:
578 			version->cnvr_bt = get_unaligned_le32(tlv->val);
579 			break;
580 		case INTEL_TLV_DEV_REV_ID:
581 			version->dev_rev_id = get_unaligned_le16(tlv->val);
582 			break;
583 		case INTEL_TLV_IMAGE_TYPE:
584 			version->img_type = tlv->val[0];
585 			break;
586 		case INTEL_TLV_TIME_STAMP:
587 			/* If image type is Operational firmware (0x03), then
588 			 * running FW Calendar Week and Year information can
589 			 * be extracted from Timestamp information
590 			 */
591 			version->min_fw_build_cw = tlv->val[0];
592 			version->min_fw_build_yy = tlv->val[1];
593 			version->timestamp = get_unaligned_le16(tlv->val);
594 			break;
595 		case INTEL_TLV_BUILD_TYPE:
596 			version->build_type = tlv->val[0];
597 			break;
598 		case INTEL_TLV_BUILD_NUM:
599 			/* If image type is Operational firmware (0x03), then
600 			 * running FW build number can be extracted from the
601 			 * Build information
602 			 */
603 			version->min_fw_build_nn = tlv->val[0];
604 			version->build_num = get_unaligned_le32(tlv->val);
605 			break;
606 		case INTEL_TLV_SECURE_BOOT:
607 			version->secure_boot = tlv->val[0];
608 			break;
609 		case INTEL_TLV_OTP_LOCK:
610 			version->otp_lock = tlv->val[0];
611 			break;
612 		case INTEL_TLV_API_LOCK:
613 			version->api_lock = tlv->val[0];
614 			break;
615 		case INTEL_TLV_DEBUG_LOCK:
616 			version->debug_lock = tlv->val[0];
617 			break;
618 		case INTEL_TLV_MIN_FW:
619 			version->min_fw_build_nn = tlv->val[0];
620 			version->min_fw_build_cw = tlv->val[1];
621 			version->min_fw_build_yy = tlv->val[2];
622 			break;
623 		case INTEL_TLV_LIMITED_CCE:
624 			version->limited_cce = tlv->val[0];
625 			break;
626 		case INTEL_TLV_SBE_TYPE:
627 			version->sbe_type = tlv->val[0];
628 			break;
629 		case INTEL_TLV_OTP_BDADDR:
630 			memcpy(&version->otp_bd_addr, tlv->val,
631 							sizeof(bdaddr_t));
632 			break;
633 		default:
634 			/* Ignore rest of information */
635 			break;
636 		}
637 		/* consume the current tlv and move to next*/
638 		skb_pull(skb, tlv->len + sizeof(*tlv));
639 	}
640 
641 	return 0;
642 }
643 
644 static int btintel_read_version_tlv(struct hci_dev *hdev,
645 				    struct intel_version_tlv *version)
646 {
647 	struct sk_buff *skb;
648 	const u8 param[1] = { 0xFF };
649 
650 	if (!version)
651 		return -EINVAL;
652 
653 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
654 	if (IS_ERR(skb)) {
655 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
656 			   PTR_ERR(skb));
657 		return PTR_ERR(skb);
658 	}
659 
660 	if (skb->data[0]) {
661 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
662 			   skb->data[0]);
663 		kfree_skb(skb);
664 		return -EIO;
665 	}
666 
667 	btintel_parse_version_tlv(hdev, version, skb);
668 
669 	kfree_skb(skb);
670 	return 0;
671 }
672 
673 /* ------- REGMAP IBT SUPPORT ------- */
674 
675 #define IBT_REG_MODE_8BIT  0x00
676 #define IBT_REG_MODE_16BIT 0x01
677 #define IBT_REG_MODE_32BIT 0x02
678 
679 struct regmap_ibt_context {
680 	struct hci_dev *hdev;
681 	__u16 op_write;
682 	__u16 op_read;
683 };
684 
685 struct ibt_cp_reg_access {
686 	__le32  addr;
687 	__u8    mode;
688 	__u8    len;
689 	__u8    data[];
690 } __packed;
691 
692 struct ibt_rp_reg_access {
693 	__u8    status;
694 	__le32  addr;
695 	__u8    data[];
696 } __packed;
697 
698 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
699 			   void *val, size_t val_size)
700 {
701 	struct regmap_ibt_context *ctx = context;
702 	struct ibt_cp_reg_access cp;
703 	struct ibt_rp_reg_access *rp;
704 	struct sk_buff *skb;
705 	int err = 0;
706 
707 	if (reg_size != sizeof(__le32))
708 		return -EINVAL;
709 
710 	switch (val_size) {
711 	case 1:
712 		cp.mode = IBT_REG_MODE_8BIT;
713 		break;
714 	case 2:
715 		cp.mode = IBT_REG_MODE_16BIT;
716 		break;
717 	case 4:
718 		cp.mode = IBT_REG_MODE_32BIT;
719 		break;
720 	default:
721 		return -EINVAL;
722 	}
723 
724 	/* regmap provides a little-endian formatted addr */
725 	cp.addr = *(__le32 *)addr;
726 	cp.len = val_size;
727 
728 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
729 
730 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
731 			   HCI_CMD_TIMEOUT);
732 	if (IS_ERR(skb)) {
733 		err = PTR_ERR(skb);
734 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
735 			   le32_to_cpu(cp.addr), err);
736 		return err;
737 	}
738 
739 	if (skb->len != sizeof(*rp) + val_size) {
740 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
741 			   le32_to_cpu(cp.addr));
742 		err = -EINVAL;
743 		goto done;
744 	}
745 
746 	rp = (struct ibt_rp_reg_access *)skb->data;
747 
748 	if (rp->addr != cp.addr) {
749 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
750 			   le32_to_cpu(rp->addr));
751 		err = -EINVAL;
752 		goto done;
753 	}
754 
755 	memcpy(val, rp->data, val_size);
756 
757 done:
758 	kfree_skb(skb);
759 	return err;
760 }
761 
762 static int regmap_ibt_gather_write(void *context,
763 				   const void *addr, size_t reg_size,
764 				   const void *val, size_t val_size)
765 {
766 	struct regmap_ibt_context *ctx = context;
767 	struct ibt_cp_reg_access *cp;
768 	struct sk_buff *skb;
769 	int plen = sizeof(*cp) + val_size;
770 	u8 mode;
771 	int err = 0;
772 
773 	if (reg_size != sizeof(__le32))
774 		return -EINVAL;
775 
776 	switch (val_size) {
777 	case 1:
778 		mode = IBT_REG_MODE_8BIT;
779 		break;
780 	case 2:
781 		mode = IBT_REG_MODE_16BIT;
782 		break;
783 	case 4:
784 		mode = IBT_REG_MODE_32BIT;
785 		break;
786 	default:
787 		return -EINVAL;
788 	}
789 
790 	cp = kmalloc(plen, GFP_KERNEL);
791 	if (!cp)
792 		return -ENOMEM;
793 
794 	/* regmap provides a little-endian formatted addr/value */
795 	cp->addr = *(__le32 *)addr;
796 	cp->mode = mode;
797 	cp->len = val_size;
798 	memcpy(&cp->data, val, val_size);
799 
800 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
801 
802 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
803 	if (IS_ERR(skb)) {
804 		err = PTR_ERR(skb);
805 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
806 			   le32_to_cpu(cp->addr), err);
807 		goto done;
808 	}
809 	kfree_skb(skb);
810 
811 done:
812 	kfree(cp);
813 	return err;
814 }
815 
816 static int regmap_ibt_write(void *context, const void *data, size_t count)
817 {
818 	/* data contains register+value, since we only support 32bit addr,
819 	 * minimum data size is 4 bytes.
820 	 */
821 	if (WARN_ONCE(count < 4, "Invalid register access"))
822 		return -EINVAL;
823 
824 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
825 }
826 
827 static void regmap_ibt_free_context(void *context)
828 {
829 	kfree(context);
830 }
831 
832 static const struct regmap_bus regmap_ibt = {
833 	.read = regmap_ibt_read,
834 	.write = regmap_ibt_write,
835 	.gather_write = regmap_ibt_gather_write,
836 	.free_context = regmap_ibt_free_context,
837 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
838 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
839 };
840 
841 /* Config is the same for all register regions */
842 static const struct regmap_config regmap_ibt_cfg = {
843 	.name      = "btintel_regmap",
844 	.reg_bits  = 32,
845 	.val_bits  = 32,
846 };
847 
848 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
849 				   u16 opcode_write)
850 {
851 	struct regmap_ibt_context *ctx;
852 
853 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
854 		    opcode_write);
855 
856 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
857 	if (!ctx)
858 		return ERR_PTR(-ENOMEM);
859 
860 	ctx->op_read = opcode_read;
861 	ctx->op_write = opcode_write;
862 	ctx->hdev = hdev;
863 
864 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
865 }
866 EXPORT_SYMBOL_GPL(btintel_regmap_init);
867 
868 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
869 {
870 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
871 	struct sk_buff *skb;
872 
873 	params.boot_param = cpu_to_le32(boot_param);
874 
875 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
876 			     HCI_INIT_TIMEOUT);
877 	if (IS_ERR(skb)) {
878 		bt_dev_err(hdev, "Failed to send Intel Reset command");
879 		return PTR_ERR(skb);
880 	}
881 
882 	kfree_skb(skb);
883 
884 	return 0;
885 }
886 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
887 
888 int btintel_read_boot_params(struct hci_dev *hdev,
889 			     struct intel_boot_params *params)
890 {
891 	struct sk_buff *skb;
892 
893 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
894 	if (IS_ERR(skb)) {
895 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
896 			   PTR_ERR(skb));
897 		return PTR_ERR(skb);
898 	}
899 
900 	if (skb->len != sizeof(*params)) {
901 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
902 		kfree_skb(skb);
903 		return -EILSEQ;
904 	}
905 
906 	memcpy(params, skb->data, sizeof(*params));
907 
908 	kfree_skb(skb);
909 
910 	if (params->status) {
911 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
912 			   params->status);
913 		return -bt_to_errno(params->status);
914 	}
915 
916 	bt_dev_info(hdev, "Device revision is %u",
917 		    le16_to_cpu(params->dev_revid));
918 
919 	bt_dev_info(hdev, "Secure boot is %s",
920 		    params->secure_boot ? "enabled" : "disabled");
921 
922 	bt_dev_info(hdev, "OTP lock is %s",
923 		    params->otp_lock ? "enabled" : "disabled");
924 
925 	bt_dev_info(hdev, "API lock is %s",
926 		    params->api_lock ? "enabled" : "disabled");
927 
928 	bt_dev_info(hdev, "Debug lock is %s",
929 		    params->debug_lock ? "enabled" : "disabled");
930 
931 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
932 		    params->min_fw_build_nn, params->min_fw_build_cw,
933 		    2000 + params->min_fw_build_yy);
934 
935 	return 0;
936 }
937 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
938 
939 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
940 					      const struct firmware *fw)
941 {
942 	int err;
943 
944 	/* Start the firmware download transaction with the Init fragment
945 	 * represented by the 128 bytes of CSS header.
946 	 */
947 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
948 	if (err < 0) {
949 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
950 		goto done;
951 	}
952 
953 	/* Send the 256 bytes of public key information from the firmware
954 	 * as the PKey fragment.
955 	 */
956 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
957 	if (err < 0) {
958 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
959 		goto done;
960 	}
961 
962 	/* Send the 256 bytes of signature information from the firmware
963 	 * as the Sign fragment.
964 	 */
965 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
966 	if (err < 0) {
967 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
968 		goto done;
969 	}
970 
971 done:
972 	return err;
973 }
974 
975 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
976 						const struct firmware *fw)
977 {
978 	int err;
979 
980 	/* Start the firmware download transaction with the Init fragment
981 	 * represented by the 128 bytes of CSS header.
982 	 */
983 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
984 	if (err < 0) {
985 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
986 		return err;
987 	}
988 
989 	/* Send the 96 bytes of public key information from the firmware
990 	 * as the PKey fragment.
991 	 */
992 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
993 	if (err < 0) {
994 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
995 		return err;
996 	}
997 
998 	/* Send the 96 bytes of signature information from the firmware
999 	 * as the Sign fragment
1000 	 */
1001 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1002 	if (err < 0) {
1003 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1004 			   err);
1005 		return err;
1006 	}
1007 	return 0;
1008 }
1009 
1010 static int btintel_download_firmware_payload(struct hci_dev *hdev,
1011 					     const struct firmware *fw,
1012 					     size_t offset)
1013 {
1014 	int err;
1015 	const u8 *fw_ptr;
1016 	u32 frag_len;
1017 
1018 	fw_ptr = fw->data + offset;
1019 	frag_len = 0;
1020 	err = -EINVAL;
1021 
1022 	while (fw_ptr - fw->data < fw->size) {
1023 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1024 
1025 		frag_len += sizeof(*cmd) + cmd->plen;
1026 
1027 		/* The parameter length of the secure send command requires
1028 		 * a 4 byte alignment. It happens so that the firmware file
1029 		 * contains proper Intel_NOP commands to align the fragments
1030 		 * as needed.
1031 		 *
1032 		 * Send set of commands with 4 byte alignment from the
1033 		 * firmware data buffer as a single Data fragement.
1034 		 */
1035 		if (!(frag_len % 4)) {
1036 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1037 			if (err < 0) {
1038 				bt_dev_err(hdev,
1039 					   "Failed to send firmware data (%d)",
1040 					   err);
1041 				goto done;
1042 			}
1043 
1044 			fw_ptr += frag_len;
1045 			frag_len = 0;
1046 		}
1047 	}
1048 
1049 done:
1050 	return err;
1051 }
1052 
1053 static bool btintel_firmware_version(struct hci_dev *hdev,
1054 				     u8 num, u8 ww, u8 yy,
1055 				     const struct firmware *fw,
1056 				     u32 *boot_addr)
1057 {
1058 	const u8 *fw_ptr;
1059 
1060 	fw_ptr = fw->data;
1061 
1062 	while (fw_ptr - fw->data < fw->size) {
1063 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1064 
1065 		/* Each SKU has a different reset parameter to use in the
1066 		 * HCI_Intel_Reset command and it is embedded in the firmware
1067 		 * data. So, instead of using static value per SKU, check
1068 		 * the firmware data and save it for later use.
1069 		 */
1070 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1071 			struct cmd_write_boot_params *params;
1072 
1073 			params = (void *)(fw_ptr + sizeof(*cmd));
1074 
1075 			*boot_addr = le32_to_cpu(params->boot_addr);
1076 
1077 			bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1078 
1079 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1080 				    params->fw_build_num, params->fw_build_ww,
1081 				    params->fw_build_yy);
1082 
1083 			return (num == params->fw_build_num &&
1084 				ww == params->fw_build_ww &&
1085 				yy == params->fw_build_yy);
1086 		}
1087 
1088 		fw_ptr += sizeof(*cmd) + cmd->plen;
1089 	}
1090 
1091 	return false;
1092 }
1093 
1094 int btintel_download_firmware(struct hci_dev *hdev,
1095 			      struct intel_version *ver,
1096 			      const struct firmware *fw,
1097 			      u32 *boot_param)
1098 {
1099 	int err;
1100 
1101 	/* SfP and WsP don't seem to update the firmware version on file
1102 	 * so version checking is currently not possible.
1103 	 */
1104 	switch (ver->hw_variant) {
1105 	case 0x0b:	/* SfP */
1106 	case 0x0c:	/* WsP */
1107 		/* Skip version checking */
1108 		break;
1109 	default:
1110 
1111 		/* Skip download if firmware has the same version */
1112 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1113 					     ver->fw_build_ww, ver->fw_build_yy,
1114 					     fw, boot_param)) {
1115 			bt_dev_info(hdev, "Firmware already loaded");
1116 			/* Return -EALREADY to indicate that the firmware has
1117 			 * already been loaded.
1118 			 */
1119 			return -EALREADY;
1120 		}
1121 	}
1122 
1123 	/* The firmware variant determines if the device is in bootloader
1124 	 * mode or is running operational firmware. The value 0x06 identifies
1125 	 * the bootloader and the value 0x23 identifies the operational
1126 	 * firmware.
1127 	 *
1128 	 * If the firmware version has changed that means it needs to be reset
1129 	 * to bootloader when operational so the new firmware can be loaded.
1130 	 */
1131 	if (ver->fw_variant == 0x23)
1132 		return -EINVAL;
1133 
1134 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1135 	if (err)
1136 		return err;
1137 
1138 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1139 }
1140 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1141 
1142 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1143 				   struct intel_version_tlv *ver,
1144 				   const struct firmware *fw, u32 *boot_param,
1145 				   u8 hw_variant, u8 sbe_type)
1146 {
1147 	int err;
1148 	u32 css_header_ver;
1149 
1150 	/* Skip download if firmware has the same version */
1151 	if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1152 				     ver->min_fw_build_cw,
1153 				     ver->min_fw_build_yy,
1154 				     fw, boot_param)) {
1155 		bt_dev_info(hdev, "Firmware already loaded");
1156 		/* Return -EALREADY to indicate that firmware has
1157 		 * already been loaded.
1158 		 */
1159 		return -EALREADY;
1160 	}
1161 
1162 	/* The firmware variant determines if the device is in bootloader
1163 	 * mode or is running operational firmware. The value 0x01 identifies
1164 	 * the bootloader and the value 0x03 identifies the operational
1165 	 * firmware.
1166 	 *
1167 	 * If the firmware version has changed that means it needs to be reset
1168 	 * to bootloader when operational so the new firmware can be loaded.
1169 	 */
1170 	if (ver->img_type == 0x03)
1171 		return -EINVAL;
1172 
1173 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1174 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1175 	 * have RSA header of 644 bytes followed by Command Buffer.
1176 	 *
1177 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1178 	 * secure boot engine. As a result, the corresponding sfi file will
1179 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1180 	 * Command Buffer.
1181 	 *
1182 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1183 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1184 	 */
1185 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1186 	if (css_header_ver != 0x00010000) {
1187 		bt_dev_err(hdev, "Invalid CSS Header version");
1188 		return -EINVAL;
1189 	}
1190 
1191 	if (hw_variant <= 0x14) {
1192 		if (sbe_type != 0x00) {
1193 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1194 				   hw_variant);
1195 			return -EINVAL;
1196 		}
1197 
1198 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1199 		if (err)
1200 			return err;
1201 
1202 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1203 		if (err)
1204 			return err;
1205 	} else if (hw_variant >= 0x17) {
1206 		/* Check if CSS header for ECDSA follows the RSA header */
1207 		if (fw->data[ECDSA_OFFSET] != 0x06)
1208 			return -EINVAL;
1209 
1210 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1211 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1212 		if (css_header_ver != 0x00020000) {
1213 			bt_dev_err(hdev, "Invalid CSS Header version");
1214 			return -EINVAL;
1215 		}
1216 
1217 		if (sbe_type == 0x00) {
1218 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1219 			if (err)
1220 				return err;
1221 
1222 			err = btintel_download_firmware_payload(hdev, fw,
1223 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1224 			if (err)
1225 				return err;
1226 		} else if (sbe_type == 0x01) {
1227 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1228 			if (err)
1229 				return err;
1230 
1231 			err = btintel_download_firmware_payload(hdev, fw,
1232 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1233 			if (err)
1234 				return err;
1235 		}
1236 	}
1237 	return 0;
1238 }
1239 
1240 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1241 {
1242 	struct intel_reset params;
1243 	struct sk_buff *skb;
1244 
1245 	/* Send Intel Reset command. This will result in
1246 	 * re-enumeration of BT controller.
1247 	 *
1248 	 * Intel Reset parameter description:
1249 	 * reset_type :   0x00 (Soft reset),
1250 	 *		  0x01 (Hard reset)
1251 	 * patch_enable : 0x00 (Do not enable),
1252 	 *		  0x01 (Enable)
1253 	 * ddc_reload :   0x00 (Do not reload),
1254 	 *		  0x01 (Reload)
1255 	 * boot_option:   0x00 (Current image),
1256 	 *                0x01 (Specified boot address)
1257 	 * boot_param:    Boot address
1258 	 *
1259 	 */
1260 	params.reset_type = 0x01;
1261 	params.patch_enable = 0x01;
1262 	params.ddc_reload = 0x01;
1263 	params.boot_option = 0x00;
1264 	params.boot_param = cpu_to_le32(0x00000000);
1265 
1266 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1267 			     &params, HCI_INIT_TIMEOUT);
1268 	if (IS_ERR(skb)) {
1269 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1270 			   PTR_ERR(skb));
1271 		return;
1272 	}
1273 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1274 	kfree_skb(skb);
1275 
1276 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1277 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1278 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1279 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1280 	 */
1281 	msleep(150);
1282 }
1283 
1284 static int btintel_read_debug_features(struct hci_dev *hdev,
1285 				       struct intel_debug_features *features)
1286 {
1287 	struct sk_buff *skb;
1288 	u8 page_no = 1;
1289 
1290 	/* Intel controller supports two pages, each page is of 128-bit
1291 	 * feature bit mask. And each bit defines specific feature support
1292 	 */
1293 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1294 			     HCI_INIT_TIMEOUT);
1295 	if (IS_ERR(skb)) {
1296 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1297 			   PTR_ERR(skb));
1298 		return PTR_ERR(skb);
1299 	}
1300 
1301 	if (skb->len != (sizeof(features->page1) + 3)) {
1302 		bt_dev_err(hdev, "Supported features event size mismatch");
1303 		kfree_skb(skb);
1304 		return -EILSEQ;
1305 	}
1306 
1307 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1308 
1309 	/* Read the supported features page2 if required in future.
1310 	 */
1311 	kfree_skb(skb);
1312 	return 0;
1313 }
1314 
1315 static acpi_status btintel_ppag_callback(acpi_handle handle, u32 lvl, void *data,
1316 					 void **ret)
1317 {
1318 	acpi_status status;
1319 	size_t len;
1320 	struct btintel_ppag *ppag = data;
1321 	union acpi_object *p, *elements;
1322 	struct acpi_buffer string = {ACPI_ALLOCATE_BUFFER, NULL};
1323 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
1324 	struct hci_dev *hdev = ppag->hdev;
1325 
1326 	status = acpi_get_name(handle, ACPI_FULL_PATHNAME, &string);
1327 	if (ACPI_FAILURE(status)) {
1328 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
1329 		return status;
1330 	}
1331 
1332 	len = strlen(string.pointer);
1333 	if (len < strlen(BTINTEL_PPAG_NAME)) {
1334 		kfree(string.pointer);
1335 		return AE_OK;
1336 	}
1337 
1338 	if (strncmp((char *)string.pointer + len - 4, BTINTEL_PPAG_NAME, 4)) {
1339 		kfree(string.pointer);
1340 		return AE_OK;
1341 	}
1342 	kfree(string.pointer);
1343 
1344 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
1345 	if (ACPI_FAILURE(status)) {
1346 		ppag->status = status;
1347 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
1348 		return status;
1349 	}
1350 
1351 	p = buffer.pointer;
1352 	ppag = (struct btintel_ppag *)data;
1353 
1354 	if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
1355 		kfree(buffer.pointer);
1356 		bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
1357 			    p->type, p->package.count);
1358 		ppag->status = AE_ERROR;
1359 		return AE_ERROR;
1360 	}
1361 
1362 	elements = p->package.elements;
1363 
1364 	/* PPAG table is located at element[1] */
1365 	p = &elements[1];
1366 
1367 	ppag->domain = (u32)p->package.elements[0].integer.value;
1368 	ppag->mode = (u32)p->package.elements[1].integer.value;
1369 	ppag->status = AE_OK;
1370 	kfree(buffer.pointer);
1371 	return AE_CTRL_TERMINATE;
1372 }
1373 
1374 static int btintel_set_debug_features(struct hci_dev *hdev,
1375 			       const struct intel_debug_features *features)
1376 {
1377 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1378 			0x00, 0x00, 0x00 };
1379 	u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1380 	u8 trace_enable = 0x02;
1381 	struct sk_buff *skb;
1382 
1383 	if (!features) {
1384 		bt_dev_warn(hdev, "Debug features not read");
1385 		return -EINVAL;
1386 	}
1387 
1388 	if (!(features->page1[0] & 0x3f)) {
1389 		bt_dev_info(hdev, "Telemetry exception format not supported");
1390 		return 0;
1391 	}
1392 
1393 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1394 	if (IS_ERR(skb)) {
1395 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1396 			   PTR_ERR(skb));
1397 		return PTR_ERR(skb);
1398 	}
1399 	kfree_skb(skb);
1400 
1401 	skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1402 	if (IS_ERR(skb)) {
1403 		bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1404 			   PTR_ERR(skb));
1405 		return PTR_ERR(skb);
1406 	}
1407 	kfree_skb(skb);
1408 
1409 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1410 	if (IS_ERR(skb)) {
1411 		bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1412 			   PTR_ERR(skb));
1413 		return PTR_ERR(skb);
1414 	}
1415 	kfree_skb(skb);
1416 
1417 	bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1418 		    trace_enable, mask[3]);
1419 
1420 	return 0;
1421 }
1422 
1423 static int btintel_reset_debug_features(struct hci_dev *hdev,
1424 				 const struct intel_debug_features *features)
1425 {
1426 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1427 			0x00, 0x00, 0x00 };
1428 	u8 trace_enable = 0x00;
1429 	struct sk_buff *skb;
1430 
1431 	if (!features) {
1432 		bt_dev_warn(hdev, "Debug features not read");
1433 		return -EINVAL;
1434 	}
1435 
1436 	if (!(features->page1[0] & 0x3f)) {
1437 		bt_dev_info(hdev, "Telemetry exception format not supported");
1438 		return 0;
1439 	}
1440 
1441 	/* Should stop the trace before writing ddc event mask. */
1442 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1443 	if (IS_ERR(skb)) {
1444 		bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1445 			   PTR_ERR(skb));
1446 		return PTR_ERR(skb);
1447 	}
1448 	kfree_skb(skb);
1449 
1450 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1451 	if (IS_ERR(skb)) {
1452 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1453 			   PTR_ERR(skb));
1454 		return PTR_ERR(skb);
1455 	}
1456 	kfree_skb(skb);
1457 
1458 	bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1459 		    trace_enable, mask[3]);
1460 
1461 	return 0;
1462 }
1463 
1464 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1465 {
1466 	struct intel_debug_features features;
1467 	int err;
1468 
1469 	bt_dev_dbg(hdev, "enable %d", enable);
1470 
1471 	/* Read the Intel supported features and if new exception formats
1472 	 * supported, need to load the additional DDC config to enable.
1473 	 */
1474 	err = btintel_read_debug_features(hdev, &features);
1475 	if (err)
1476 		return err;
1477 
1478 	/* Set or reset the debug features. */
1479 	if (enable)
1480 		err = btintel_set_debug_features(hdev, &features);
1481 	else
1482 		err = btintel_reset_debug_features(hdev, &features);
1483 
1484 	return err;
1485 }
1486 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1487 
1488 static void btintel_coredump(struct hci_dev *hdev)
1489 {
1490 	struct sk_buff *skb;
1491 
1492 	skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1493 	if (IS_ERR(skb)) {
1494 		bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1495 		return;
1496 	}
1497 
1498 	kfree_skb(skb);
1499 }
1500 
1501 static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1502 {
1503 	char buf[80];
1504 
1505 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1506 		 coredump_info.hw_variant);
1507 	skb_put_data(skb, buf, strlen(buf));
1508 
1509 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1510 		 coredump_info.fw_build_num);
1511 	skb_put_data(skb, buf, strlen(buf));
1512 
1513 	snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1514 	skb_put_data(skb, buf, strlen(buf));
1515 
1516 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1517 	skb_put_data(skb, buf, strlen(buf));
1518 }
1519 
1520 static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1521 {
1522 	struct intel_debug_features features;
1523 	int err;
1524 
1525 	err = btintel_read_debug_features(hdev, &features);
1526 	if (err) {
1527 		bt_dev_info(hdev, "Error reading debug features");
1528 		return err;
1529 	}
1530 
1531 	if (!(features.page1[0] & 0x3f)) {
1532 		bt_dev_dbg(hdev, "Telemetry exception format not supported");
1533 		return -EOPNOTSUPP;
1534 	}
1535 
1536 	hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1537 
1538 	return err;
1539 }
1540 
1541 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1542 					       struct intel_version *ver)
1543 {
1544 	const struct firmware *fw;
1545 	char fwname[64];
1546 	int ret;
1547 
1548 	snprintf(fwname, sizeof(fwname),
1549 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1550 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1551 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1552 		 ver->fw_build_ww, ver->fw_build_yy);
1553 
1554 	ret = request_firmware(&fw, fwname, &hdev->dev);
1555 	if (ret < 0) {
1556 		if (ret == -EINVAL) {
1557 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1558 				   ret);
1559 			return NULL;
1560 		}
1561 
1562 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1563 			   fwname, ret);
1564 
1565 		/* If the correct firmware patch file is not found, use the
1566 		 * default firmware patch file instead
1567 		 */
1568 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1569 			 ver->hw_platform, ver->hw_variant);
1570 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1571 			bt_dev_err(hdev, "failed to open default fw file: %s",
1572 				   fwname);
1573 			return NULL;
1574 		}
1575 	}
1576 
1577 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1578 
1579 	return fw;
1580 }
1581 
1582 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1583 				      const struct firmware *fw,
1584 				      const u8 **fw_ptr, int *disable_patch)
1585 {
1586 	struct sk_buff *skb;
1587 	struct hci_command_hdr *cmd;
1588 	const u8 *cmd_param;
1589 	struct hci_event_hdr *evt = NULL;
1590 	const u8 *evt_param = NULL;
1591 	int remain = fw->size - (*fw_ptr - fw->data);
1592 
1593 	/* The first byte indicates the types of the patch command or event.
1594 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1595 	 * in the current firmware buffer doesn't start with 0x01 or
1596 	 * the size of remain buffer is smaller than HCI command header,
1597 	 * the firmware file is corrupted and it should stop the patching
1598 	 * process.
1599 	 */
1600 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1601 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1602 		return -EINVAL;
1603 	}
1604 	(*fw_ptr)++;
1605 	remain--;
1606 
1607 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1608 	*fw_ptr += sizeof(*cmd);
1609 	remain -= sizeof(*cmd);
1610 
1611 	/* Ensure that the remain firmware data is long enough than the length
1612 	 * of command parameter. If not, the firmware file is corrupted.
1613 	 */
1614 	if (remain < cmd->plen) {
1615 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1616 		return -EFAULT;
1617 	}
1618 
1619 	/* If there is a command that loads a patch in the firmware
1620 	 * file, then enable the patch upon success, otherwise just
1621 	 * disable the manufacturer mode, for example patch activation
1622 	 * is not required when the default firmware patch file is used
1623 	 * because there are no patch data to load.
1624 	 */
1625 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1626 		*disable_patch = 0;
1627 
1628 	cmd_param = *fw_ptr;
1629 	*fw_ptr += cmd->plen;
1630 	remain -= cmd->plen;
1631 
1632 	/* This reads the expected events when the above command is sent to the
1633 	 * device. Some vendor commands expects more than one events, for
1634 	 * example command status event followed by vendor specific event.
1635 	 * For this case, it only keeps the last expected event. so the command
1636 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1637 	 * last expected event.
1638 	 */
1639 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1640 		(*fw_ptr)++;
1641 		remain--;
1642 
1643 		evt = (struct hci_event_hdr *)(*fw_ptr);
1644 		*fw_ptr += sizeof(*evt);
1645 		remain -= sizeof(*evt);
1646 
1647 		if (remain < evt->plen) {
1648 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1649 			return -EFAULT;
1650 		}
1651 
1652 		evt_param = *fw_ptr;
1653 		*fw_ptr += evt->plen;
1654 		remain -= evt->plen;
1655 	}
1656 
1657 	/* Every HCI commands in the firmware file has its correspond event.
1658 	 * If event is not found or remain is smaller than zero, the firmware
1659 	 * file is corrupted.
1660 	 */
1661 	if (!evt || !evt_param || remain < 0) {
1662 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1663 		return -EFAULT;
1664 	}
1665 
1666 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1667 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1668 	if (IS_ERR(skb)) {
1669 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1670 			   cmd->opcode, PTR_ERR(skb));
1671 		return PTR_ERR(skb);
1672 	}
1673 
1674 	/* It ensures that the returned event matches the event data read from
1675 	 * the firmware file. At fist, it checks the length and then
1676 	 * the contents of the event.
1677 	 */
1678 	if (skb->len != evt->plen) {
1679 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1680 			   le16_to_cpu(cmd->opcode));
1681 		kfree_skb(skb);
1682 		return -EFAULT;
1683 	}
1684 
1685 	if (memcmp(skb->data, evt_param, evt->plen)) {
1686 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1687 			   le16_to_cpu(cmd->opcode));
1688 		kfree_skb(skb);
1689 		return -EFAULT;
1690 	}
1691 	kfree_skb(skb);
1692 
1693 	return 0;
1694 }
1695 
1696 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1697 				    struct intel_version *ver)
1698 {
1699 	const struct firmware *fw;
1700 	const u8 *fw_ptr;
1701 	int disable_patch, err;
1702 	struct intel_version new_ver;
1703 
1704 	BT_DBG("%s", hdev->name);
1705 
1706 	/* fw_patch_num indicates the version of patch the device currently
1707 	 * have. If there is no patch data in the device, it is always 0x00.
1708 	 * So, if it is other than 0x00, no need to patch the device again.
1709 	 */
1710 	if (ver->fw_patch_num) {
1711 		bt_dev_info(hdev,
1712 			    "Intel device is already patched. patch num: %02x",
1713 			    ver->fw_patch_num);
1714 		goto complete;
1715 	}
1716 
1717 	/* Opens the firmware patch file based on the firmware version read
1718 	 * from the controller. If it fails to open the matching firmware
1719 	 * patch file, it tries to open the default firmware patch file.
1720 	 * If no patch file is found, allow the device to operate without
1721 	 * a patch.
1722 	 */
1723 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1724 	if (!fw)
1725 		goto complete;
1726 	fw_ptr = fw->data;
1727 
1728 	/* Enable the manufacturer mode of the controller.
1729 	 * Only while this mode is enabled, the driver can download the
1730 	 * firmware patch data and configuration parameters.
1731 	 */
1732 	err = btintel_enter_mfg(hdev);
1733 	if (err) {
1734 		release_firmware(fw);
1735 		return err;
1736 	}
1737 
1738 	disable_patch = 1;
1739 
1740 	/* The firmware data file consists of list of Intel specific HCI
1741 	 * commands and its expected events. The first byte indicates the
1742 	 * type of the message, either HCI command or HCI event.
1743 	 *
1744 	 * It reads the command and its expected event from the firmware file,
1745 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1746 	 * the returned event is compared with the event read from the firmware
1747 	 * file and it will continue until all the messages are downloaded to
1748 	 * the controller.
1749 	 *
1750 	 * Once the firmware patching is completed successfully,
1751 	 * the manufacturer mode is disabled with reset and activating the
1752 	 * downloaded patch.
1753 	 *
1754 	 * If the firmware patching fails, the manufacturer mode is
1755 	 * disabled with reset and deactivating the patch.
1756 	 *
1757 	 * If the default patch file is used, no reset is done when disabling
1758 	 * the manufacturer.
1759 	 */
1760 	while (fw->size > fw_ptr - fw->data) {
1761 		int ret;
1762 
1763 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1764 						 &disable_patch);
1765 		if (ret < 0)
1766 			goto exit_mfg_deactivate;
1767 	}
1768 
1769 	release_firmware(fw);
1770 
1771 	if (disable_patch)
1772 		goto exit_mfg_disable;
1773 
1774 	/* Patching completed successfully and disable the manufacturer mode
1775 	 * with reset and activate the downloaded firmware patches.
1776 	 */
1777 	err = btintel_exit_mfg(hdev, true, true);
1778 	if (err)
1779 		return err;
1780 
1781 	/* Need build number for downloaded fw patches in
1782 	 * every power-on boot
1783 	 */
1784 	err = btintel_read_version(hdev, &new_ver);
1785 	if (err)
1786 		return err;
1787 
1788 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1789 		    new_ver.fw_patch_num);
1790 
1791 	goto complete;
1792 
1793 exit_mfg_disable:
1794 	/* Disable the manufacturer mode without reset */
1795 	err = btintel_exit_mfg(hdev, false, false);
1796 	if (err)
1797 		return err;
1798 
1799 	bt_dev_info(hdev, "Intel firmware patch completed");
1800 
1801 	goto complete;
1802 
1803 exit_mfg_deactivate:
1804 	release_firmware(fw);
1805 
1806 	/* Patching failed. Disable the manufacturer mode with reset and
1807 	 * deactivate the downloaded firmware patches.
1808 	 */
1809 	err = btintel_exit_mfg(hdev, true, false);
1810 	if (err)
1811 		return err;
1812 
1813 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1814 
1815 complete:
1816 	/* Set the event mask for Intel specific vendor events. This enables
1817 	 * a few extra events that are useful during general operation.
1818 	 */
1819 	btintel_set_event_mask_mfg(hdev, false);
1820 
1821 	btintel_check_bdaddr(hdev);
1822 
1823 	return 0;
1824 }
1825 
1826 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1827 {
1828 	ktime_t delta, rettime;
1829 	unsigned long long duration;
1830 	int err;
1831 
1832 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1833 
1834 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1835 
1836 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1837 					   TASK_INTERRUPTIBLE,
1838 					   msecs_to_jiffies(msec));
1839 	if (err == -EINTR) {
1840 		bt_dev_err(hdev, "Firmware loading interrupted");
1841 		return err;
1842 	}
1843 
1844 	if (err) {
1845 		bt_dev_err(hdev, "Firmware loading timeout");
1846 		return -ETIMEDOUT;
1847 	}
1848 
1849 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1850 		bt_dev_err(hdev, "Firmware loading failed");
1851 		return -ENOEXEC;
1852 	}
1853 
1854 	rettime = ktime_get();
1855 	delta = ktime_sub(rettime, calltime);
1856 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1857 
1858 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1859 
1860 	return 0;
1861 }
1862 
1863 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1864 {
1865 	ktime_t delta, rettime;
1866 	unsigned long long duration;
1867 	int err;
1868 
1869 	bt_dev_info(hdev, "Waiting for device to boot");
1870 
1871 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1872 					   TASK_INTERRUPTIBLE,
1873 					   msecs_to_jiffies(msec));
1874 	if (err == -EINTR) {
1875 		bt_dev_err(hdev, "Device boot interrupted");
1876 		return -EINTR;
1877 	}
1878 
1879 	if (err) {
1880 		bt_dev_err(hdev, "Device boot timeout");
1881 		return -ETIMEDOUT;
1882 	}
1883 
1884 	rettime = ktime_get();
1885 	delta = ktime_sub(rettime, calltime);
1886 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1887 
1888 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1889 
1890 	return 0;
1891 }
1892 
1893 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1894 {
1895 	ktime_t calltime;
1896 	int err;
1897 
1898 	calltime = ktime_get();
1899 
1900 	btintel_set_flag(hdev, INTEL_BOOTING);
1901 
1902 	err = btintel_send_intel_reset(hdev, boot_addr);
1903 	if (err) {
1904 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1905 		btintel_reset_to_bootloader(hdev);
1906 		return err;
1907 	}
1908 
1909 	/* The bootloader will not indicate when the device is ready. This
1910 	 * is done by the operational firmware sending bootup notification.
1911 	 *
1912 	 * Booting into operational firmware should not take longer than
1913 	 * 1 second. However if that happens, then just fail the setup
1914 	 * since something went wrong.
1915 	 */
1916 	err = btintel_boot_wait(hdev, calltime, 1000);
1917 	if (err == -ETIMEDOUT)
1918 		btintel_reset_to_bootloader(hdev);
1919 
1920 	return err;
1921 }
1922 
1923 static int btintel_get_fw_name(struct intel_version *ver,
1924 					     struct intel_boot_params *params,
1925 					     char *fw_name, size_t len,
1926 					     const char *suffix)
1927 {
1928 	switch (ver->hw_variant) {
1929 	case 0x0b:	/* SfP */
1930 	case 0x0c:	/* WsP */
1931 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1932 			 ver->hw_variant,
1933 			 le16_to_cpu(params->dev_revid),
1934 			 suffix);
1935 		break;
1936 	case 0x11:	/* JfP */
1937 	case 0x12:	/* ThP */
1938 	case 0x13:	/* HrP */
1939 	case 0x14:	/* CcP */
1940 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1941 			 ver->hw_variant,
1942 			 ver->hw_revision,
1943 			 ver->fw_revision,
1944 			 suffix);
1945 		break;
1946 	default:
1947 		return -EINVAL;
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 static int btintel_download_fw(struct hci_dev *hdev,
1954 					 struct intel_version *ver,
1955 					 struct intel_boot_params *params,
1956 					 u32 *boot_param)
1957 {
1958 	const struct firmware *fw;
1959 	char fwname[64];
1960 	int err;
1961 	ktime_t calltime;
1962 
1963 	if (!ver || !params)
1964 		return -EINVAL;
1965 
1966 	/* The firmware variant determines if the device is in bootloader
1967 	 * mode or is running operational firmware. The value 0x06 identifies
1968 	 * the bootloader and the value 0x23 identifies the operational
1969 	 * firmware.
1970 	 *
1971 	 * When the operational firmware is already present, then only
1972 	 * the check for valid Bluetooth device address is needed. This
1973 	 * determines if the device will be added as configured or
1974 	 * unconfigured controller.
1975 	 *
1976 	 * It is not possible to use the Secure Boot Parameters in this
1977 	 * case since that command is only available in bootloader mode.
1978 	 */
1979 	if (ver->fw_variant == 0x23) {
1980 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1981 		btintel_check_bdaddr(hdev);
1982 
1983 		/* SfP and WsP don't seem to update the firmware version on file
1984 		 * so version checking is currently possible.
1985 		 */
1986 		switch (ver->hw_variant) {
1987 		case 0x0b:	/* SfP */
1988 		case 0x0c:	/* WsP */
1989 			return 0;
1990 		}
1991 
1992 		/* Proceed to download to check if the version matches */
1993 		goto download;
1994 	}
1995 
1996 	/* Read the secure boot parameters to identify the operating
1997 	 * details of the bootloader.
1998 	 */
1999 	err = btintel_read_boot_params(hdev, params);
2000 	if (err)
2001 		return err;
2002 
2003 	/* It is required that every single firmware fragment is acknowledged
2004 	 * with a command complete event. If the boot parameters indicate
2005 	 * that this bootloader does not send them, then abort the setup.
2006 	 */
2007 	if (params->limited_cce != 0x00) {
2008 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
2009 			   params->limited_cce);
2010 		return -EINVAL;
2011 	}
2012 
2013 	/* If the OTP has no valid Bluetooth device address, then there will
2014 	 * also be no valid address for the operational firmware.
2015 	 */
2016 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2017 		bt_dev_info(hdev, "No device address configured");
2018 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2019 	}
2020 
2021 download:
2022 	/* With this Intel bootloader only the hardware variant and device
2023 	 * revision information are used to select the right firmware for SfP
2024 	 * and WsP.
2025 	 *
2026 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2027 	 *
2028 	 * Currently the supported hardware variants are:
2029 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
2030 	 *   12 (0x0c) for iBT3.5 (WsP)
2031 	 *
2032 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
2033 	 * variant, HW revision and FW revision, as these are dependent on CNVi
2034 	 * and RF Combination.
2035 	 *
2036 	 *   17 (0x11) for iBT3.5 (JfP)
2037 	 *   18 (0x12) for iBT3.5 (ThP)
2038 	 *
2039 	 * The firmware file name for these will be
2040 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
2041 	 *
2042 	 */
2043 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
2044 	if (err < 0) {
2045 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2046 			/* Firmware has already been loaded */
2047 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2048 			return 0;
2049 		}
2050 
2051 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2052 		return -EINVAL;
2053 	}
2054 
2055 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2056 	if (err < 0) {
2057 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2058 			/* Firmware has already been loaded */
2059 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2060 			return 0;
2061 		}
2062 
2063 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2064 			   fwname, err);
2065 		return err;
2066 	}
2067 
2068 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2069 
2070 	if (fw->size < 644) {
2071 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2072 			   fw->size);
2073 		err = -EBADF;
2074 		goto done;
2075 	}
2076 
2077 	calltime = ktime_get();
2078 
2079 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2080 
2081 	/* Start firmware downloading and get boot parameter */
2082 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
2083 	if (err < 0) {
2084 		if (err == -EALREADY) {
2085 			/* Firmware has already been loaded */
2086 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2087 			err = 0;
2088 			goto done;
2089 		}
2090 
2091 		/* When FW download fails, send Intel Reset to retry
2092 		 * FW download.
2093 		 */
2094 		btintel_reset_to_bootloader(hdev);
2095 		goto done;
2096 	}
2097 
2098 	/* Before switching the device into operational mode and with that
2099 	 * booting the loaded firmware, wait for the bootloader notification
2100 	 * that all fragments have been successfully received.
2101 	 *
2102 	 * When the event processing receives the notification, then the
2103 	 * INTEL_DOWNLOADING flag will be cleared.
2104 	 *
2105 	 * The firmware loading should not take longer than 5 seconds
2106 	 * and thus just timeout if that happens and fail the setup
2107 	 * of this device.
2108 	 */
2109 	err = btintel_download_wait(hdev, calltime, 5000);
2110 	if (err == -ETIMEDOUT)
2111 		btintel_reset_to_bootloader(hdev);
2112 
2113 done:
2114 	release_firmware(fw);
2115 	return err;
2116 }
2117 
2118 static int btintel_bootloader_setup(struct hci_dev *hdev,
2119 				    struct intel_version *ver)
2120 {
2121 	struct intel_version new_ver;
2122 	struct intel_boot_params params;
2123 	u32 boot_param;
2124 	char ddcname[64];
2125 	int err;
2126 
2127 	BT_DBG("%s", hdev->name);
2128 
2129 	/* Set the default boot parameter to 0x0 and it is updated to
2130 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2131 	 * command while downloading the firmware.
2132 	 */
2133 	boot_param = 0x00000000;
2134 
2135 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2136 
2137 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
2138 	if (err)
2139 		return err;
2140 
2141 	/* controller is already having an operational firmware */
2142 	if (ver->fw_variant == 0x23)
2143 		goto finish;
2144 
2145 	err = btintel_boot(hdev, boot_param);
2146 	if (err)
2147 		return err;
2148 
2149 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2150 
2151 	err = btintel_get_fw_name(ver, &params, ddcname,
2152 						sizeof(ddcname), "ddc");
2153 
2154 	if (err < 0) {
2155 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2156 	} else {
2157 		/* Once the device is running in operational mode, it needs to
2158 		 * apply the device configuration (DDC) parameters.
2159 		 *
2160 		 * The device can work without DDC parameters, so even if it
2161 		 * fails to load the file, no need to fail the setup.
2162 		 */
2163 		btintel_load_ddc_config(hdev, ddcname);
2164 	}
2165 
2166 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2167 
2168 	/* Read the Intel version information after loading the FW  */
2169 	err = btintel_read_version(hdev, &new_ver);
2170 	if (err)
2171 		return err;
2172 
2173 	btintel_version_info(hdev, &new_ver);
2174 
2175 finish:
2176 	/* Set the event mask for Intel specific vendor events. This enables
2177 	 * a few extra events that are useful during general operation. It
2178 	 * does not enable any debugging related events.
2179 	 *
2180 	 * The device will function correctly without these events enabled
2181 	 * and thus no need to fail the setup.
2182 	 */
2183 	btintel_set_event_mask(hdev, false);
2184 
2185 	return 0;
2186 }
2187 
2188 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2189 				    char *fw_name, size_t len,
2190 				    const char *suffix)
2191 {
2192 	/* The firmware file name for new generation controllers will be
2193 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2194 	 */
2195 	snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s",
2196 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2197 					  INTEL_CNVX_TOP_STEP(ver->cnvi_top)),
2198 		 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2199 					  INTEL_CNVX_TOP_STEP(ver->cnvr_top)),
2200 		 suffix);
2201 }
2202 
2203 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2204 					   struct intel_version_tlv *ver,
2205 					   u32 *boot_param)
2206 {
2207 	const struct firmware *fw;
2208 	char fwname[64];
2209 	int err;
2210 	ktime_t calltime;
2211 
2212 	if (!ver || !boot_param)
2213 		return -EINVAL;
2214 
2215 	/* The firmware variant determines if the device is in bootloader
2216 	 * mode or is running operational firmware. The value 0x03 identifies
2217 	 * the bootloader and the value 0x23 identifies the operational
2218 	 * firmware.
2219 	 *
2220 	 * When the operational firmware is already present, then only
2221 	 * the check for valid Bluetooth device address is needed. This
2222 	 * determines if the device will be added as configured or
2223 	 * unconfigured controller.
2224 	 *
2225 	 * It is not possible to use the Secure Boot Parameters in this
2226 	 * case since that command is only available in bootloader mode.
2227 	 */
2228 	if (ver->img_type == 0x03) {
2229 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2230 		btintel_check_bdaddr(hdev);
2231 	} else {
2232 		/*
2233 		 * Check for valid bd address in boot loader mode. Device
2234 		 * will be marked as unconfigured if empty bd address is
2235 		 * found.
2236 		 */
2237 		if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2238 			bt_dev_info(hdev, "No device address configured");
2239 			set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2240 		}
2241 	}
2242 
2243 	btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2244 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2245 	if (err < 0) {
2246 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2247 			/* Firmware has already been loaded */
2248 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2249 			return 0;
2250 		}
2251 
2252 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2253 			   fwname, err);
2254 
2255 		return err;
2256 	}
2257 
2258 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2259 
2260 	if (fw->size < 644) {
2261 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2262 			   fw->size);
2263 		err = -EBADF;
2264 		goto done;
2265 	}
2266 
2267 	calltime = ktime_get();
2268 
2269 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2270 
2271 	/* Start firmware downloading and get boot parameter */
2272 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2273 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2274 					       ver->sbe_type);
2275 	if (err < 0) {
2276 		if (err == -EALREADY) {
2277 			/* Firmware has already been loaded */
2278 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2279 			err = 0;
2280 			goto done;
2281 		}
2282 
2283 		/* When FW download fails, send Intel Reset to retry
2284 		 * FW download.
2285 		 */
2286 		btintel_reset_to_bootloader(hdev);
2287 		goto done;
2288 	}
2289 
2290 	/* Before switching the device into operational mode and with that
2291 	 * booting the loaded firmware, wait for the bootloader notification
2292 	 * that all fragments have been successfully received.
2293 	 *
2294 	 * When the event processing receives the notification, then the
2295 	 * BTUSB_DOWNLOADING flag will be cleared.
2296 	 *
2297 	 * The firmware loading should not take longer than 5 seconds
2298 	 * and thus just timeout if that happens and fail the setup
2299 	 * of this device.
2300 	 */
2301 	err = btintel_download_wait(hdev, calltime, 5000);
2302 	if (err == -ETIMEDOUT)
2303 		btintel_reset_to_bootloader(hdev);
2304 
2305 done:
2306 	release_firmware(fw);
2307 	return err;
2308 }
2309 
2310 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2311 					 __u8 link, struct bt_codec *codec,
2312 					 __u8 *ven_len, __u8 **ven_data)
2313 {
2314 	int err = 0;
2315 
2316 	if (!ven_data || !ven_len)
2317 		return -EINVAL;
2318 
2319 	*ven_len = 0;
2320 	*ven_data = NULL;
2321 
2322 	if (link != ESCO_LINK) {
2323 		bt_dev_err(hdev, "Invalid link type(%u)", link);
2324 		return -EINVAL;
2325 	}
2326 
2327 	*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2328 	if (!*ven_data) {
2329 		err = -ENOMEM;
2330 		goto error;
2331 	}
2332 
2333 	/* supports only CVSD and mSBC offload codecs */
2334 	switch (codec->id) {
2335 	case 0x02:
2336 		**ven_data = 0x00;
2337 		break;
2338 	case 0x05:
2339 		**ven_data = 0x01;
2340 		break;
2341 	default:
2342 		err = -EINVAL;
2343 		bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2344 		goto error;
2345 	}
2346 	/* codec and its capabilities are pre-defined to ids
2347 	 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2348 	 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2349 	 */
2350 	*ven_len = sizeof(__u8);
2351 	return err;
2352 
2353 error:
2354 	kfree(*ven_data);
2355 	*ven_data = NULL;
2356 	return err;
2357 }
2358 
2359 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2360 {
2361 	/* Intel uses 1 as data path id for all the usecases */
2362 	*data_path_id = 1;
2363 	return 0;
2364 }
2365 
2366 static int btintel_configure_offload(struct hci_dev *hdev)
2367 {
2368 	struct sk_buff *skb;
2369 	int err = 0;
2370 	struct intel_offload_use_cases *use_cases;
2371 
2372 	skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2373 	if (IS_ERR(skb)) {
2374 		bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2375 			   PTR_ERR(skb));
2376 		return PTR_ERR(skb);
2377 	}
2378 
2379 	if (skb->len < sizeof(*use_cases)) {
2380 		err = -EIO;
2381 		goto error;
2382 	}
2383 
2384 	use_cases = (void *)skb->data;
2385 
2386 	if (use_cases->status) {
2387 		err = -bt_to_errno(skb->data[0]);
2388 		goto error;
2389 	}
2390 
2391 	if (use_cases->preset[0] & 0x03) {
2392 		hdev->get_data_path_id = btintel_get_data_path_id;
2393 		hdev->get_codec_config_data = btintel_get_codec_config_data;
2394 	}
2395 error:
2396 	kfree_skb(skb);
2397 	return err;
2398 }
2399 
2400 static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2401 {
2402 	struct btintel_ppag ppag;
2403 	struct sk_buff *skb;
2404 	struct hci_ppag_enable_cmd ppag_cmd;
2405 	acpi_handle handle;
2406 
2407 	/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2408 	switch (ver->cnvr_top & 0xFFF) {
2409 	case 0x504:     /* Hrp2 */
2410 	case 0x202:     /* Jfp2 */
2411 	case 0x201:     /* Jfp1 */
2412 		bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2413 			   ver->cnvr_top & 0xFFF);
2414 		return;
2415 	}
2416 
2417 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2418 	if (!handle) {
2419 		bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2420 		return;
2421 	}
2422 
2423 	memset(&ppag, 0, sizeof(ppag));
2424 
2425 	ppag.hdev = hdev;
2426 	ppag.status = AE_NOT_FOUND;
2427 	acpi_walk_namespace(ACPI_TYPE_PACKAGE, handle, 1, NULL,
2428 			    btintel_ppag_callback, &ppag, NULL);
2429 
2430 	if (ACPI_FAILURE(ppag.status)) {
2431 		if (ppag.status == AE_NOT_FOUND) {
2432 			bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2433 			return;
2434 		}
2435 		return;
2436 	}
2437 
2438 	if (ppag.domain != 0x12) {
2439 		bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2440 		return;
2441 	}
2442 
2443 	/* PPAG mode
2444 	 * BIT 0 : 0 Disabled in EU
2445 	 *         1 Enabled in EU
2446 	 * BIT 1 : 0 Disabled in China
2447 	 *         1 Enabled in China
2448 	 */
2449 	if ((ppag.mode & 0x01) != BIT(0) && (ppag.mode & 0x02) != BIT(1)) {
2450 		bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in CB/BIOS");
2451 		return;
2452 	}
2453 
2454 	ppag_cmd.ppag_enable_flags = cpu_to_le32(ppag.mode);
2455 
2456 	skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd), &ppag_cmd, HCI_CMD_TIMEOUT);
2457 	if (IS_ERR(skb)) {
2458 		bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2459 		return;
2460 	}
2461 	bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", ppag.mode);
2462 	kfree_skb(skb);
2463 }
2464 
2465 static int btintel_acpi_reset_method(struct hci_dev *hdev)
2466 {
2467 	int ret = 0;
2468 	acpi_status status;
2469 	union acpi_object *p, *ref;
2470 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2471 
2472 	status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2473 	if (ACPI_FAILURE(status)) {
2474 		bt_dev_err(hdev, "Failed to run _PRR method");
2475 		ret = -ENODEV;
2476 		return ret;
2477 	}
2478 	p = buffer.pointer;
2479 
2480 	if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2481 		bt_dev_err(hdev, "Invalid arguments");
2482 		ret = -EINVAL;
2483 		goto exit_on_error;
2484 	}
2485 
2486 	ref = &p->package.elements[0];
2487 	if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2488 		bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2489 		ret = -EINVAL;
2490 		goto exit_on_error;
2491 	}
2492 
2493 	status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2494 	if (ACPI_FAILURE(status)) {
2495 		bt_dev_err(hdev, "Failed to run_RST method");
2496 		ret = -ENODEV;
2497 		goto exit_on_error;
2498 	}
2499 
2500 exit_on_error:
2501 	kfree(buffer.pointer);
2502 	return ret;
2503 }
2504 
2505 static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2506 					 struct intel_version_tlv *ver_tlv)
2507 {
2508 	struct btintel_data *data = hci_get_priv(hdev);
2509 	acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2510 	u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2511 	union acpi_object *obj, argv4;
2512 	enum {
2513 		RESET_TYPE_WDISABLE2,
2514 		RESET_TYPE_VSEC
2515 	};
2516 
2517 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2518 
2519 	if (!handle) {
2520 		bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2521 		return;
2522 	}
2523 
2524 	if (!acpi_has_method(handle, "_PRR")) {
2525 		bt_dev_err(hdev, "No support for _PRR ACPI method");
2526 		return;
2527 	}
2528 
2529 	switch (ver_tlv->cnvi_top & 0xfff) {
2530 	case 0x910: /* GalePeak2 */
2531 		reset_payload[2] = RESET_TYPE_VSEC;
2532 		break;
2533 	default:
2534 		/* WDISABLE2 is the default reset method */
2535 		reset_payload[2] = RESET_TYPE_WDISABLE2;
2536 
2537 		if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2538 				    BIT(DSM_SET_WDISABLE2_DELAY))) {
2539 			bt_dev_err(hdev, "No dsm support to set reset delay");
2540 			return;
2541 		}
2542 		argv4.integer.type = ACPI_TYPE_INTEGER;
2543 		/* delay required to toggle BT power */
2544 		argv4.integer.value = 160;
2545 		obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2546 					DSM_SET_WDISABLE2_DELAY, &argv4);
2547 		if (!obj) {
2548 			bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2549 			return;
2550 		}
2551 		ACPI_FREE(obj);
2552 	}
2553 
2554 	bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2555 
2556 	if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2557 			    DSM_SET_RESET_METHOD)) {
2558 		bt_dev_warn(hdev, "No support for dsm to set reset method");
2559 		return;
2560 	}
2561 	argv4.buffer.type = ACPI_TYPE_BUFFER;
2562 	argv4.buffer.length = sizeof(reset_payload);
2563 	argv4.buffer.pointer = reset_payload;
2564 
2565 	obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2566 				DSM_SET_RESET_METHOD, &argv4);
2567 	if (!obj) {
2568 		bt_dev_err(hdev, "Failed to call dsm to set reset method");
2569 		return;
2570 	}
2571 	ACPI_FREE(obj);
2572 	data->acpi_reset_method = btintel_acpi_reset_method;
2573 }
2574 
2575 static int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2576 					struct intel_version_tlv *ver)
2577 {
2578 	u32 boot_param;
2579 	char ddcname[64];
2580 	int err;
2581 	struct intel_version_tlv new_ver;
2582 
2583 	bt_dev_dbg(hdev, "");
2584 
2585 	/* Set the default boot parameter to 0x0 and it is updated to
2586 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2587 	 * command while downloading the firmware.
2588 	 */
2589 	boot_param = 0x00000000;
2590 
2591 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2592 
2593 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2594 	if (err)
2595 		return err;
2596 
2597 	/* check if controller is already having an operational firmware */
2598 	if (ver->img_type == 0x03)
2599 		goto finish;
2600 
2601 	err = btintel_boot(hdev, boot_param);
2602 	if (err)
2603 		return err;
2604 
2605 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2606 
2607 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2608 	/* Once the device is running in operational mode, it needs to
2609 	 * apply the device configuration (DDC) parameters.
2610 	 *
2611 	 * The device can work without DDC parameters, so even if it
2612 	 * fails to load the file, no need to fail the setup.
2613 	 */
2614 	btintel_load_ddc_config(hdev, ddcname);
2615 
2616 	/* Read supported use cases and set callbacks to fetch datapath id */
2617 	btintel_configure_offload(hdev);
2618 
2619 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2620 
2621 	/* Set PPAG feature */
2622 	btintel_set_ppag(hdev, ver);
2623 
2624 	/* Read the Intel version information after loading the FW  */
2625 	err = btintel_read_version_tlv(hdev, &new_ver);
2626 	if (err)
2627 		return err;
2628 
2629 	btintel_version_info_tlv(hdev, &new_ver);
2630 
2631 finish:
2632 	/* Set the event mask for Intel specific vendor events. This enables
2633 	 * a few extra events that are useful during general operation. It
2634 	 * does not enable any debugging related events.
2635 	 *
2636 	 * The device will function correctly without these events enabled
2637 	 * and thus no need to fail the setup.
2638 	 */
2639 	btintel_set_event_mask(hdev, false);
2640 
2641 	return 0;
2642 }
2643 
2644 static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2645 {
2646 	switch (hw_variant) {
2647 	/* Legacy bootloader devices that supports MSFT Extension */
2648 	case 0x11:	/* JfP */
2649 	case 0x12:	/* ThP */
2650 	case 0x13:	/* HrP */
2651 	case 0x14:	/* CcP */
2652 	/* All Intel new genration controllers support the Microsoft vendor
2653 	 * extension are using 0xFC1E for VsMsftOpCode.
2654 	 */
2655 	case 0x17:
2656 	case 0x18:
2657 	case 0x19:
2658 	case 0x1b:
2659 	case 0x1c:
2660 		hci_set_msft_opcode(hdev, 0xFC1E);
2661 		break;
2662 	default:
2663 		/* Not supported */
2664 		break;
2665 	}
2666 }
2667 
2668 static int btintel_setup_combined(struct hci_dev *hdev)
2669 {
2670 	const u8 param[1] = { 0xFF };
2671 	struct intel_version ver;
2672 	struct intel_version_tlv ver_tlv;
2673 	struct sk_buff *skb;
2674 	int err;
2675 
2676 	BT_DBG("%s", hdev->name);
2677 
2678 	/* The some controllers have a bug with the first HCI command sent to it
2679 	 * returning number of completed commands as zero. This would stall the
2680 	 * command processing in the Bluetooth core.
2681 	 *
2682 	 * As a workaround, send HCI Reset command first which will reset the
2683 	 * number of completed commands and allow normal command processing
2684 	 * from now on.
2685 	 *
2686 	 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
2687 	 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
2688 	 * the shutdown() procedure, and once the device is in SW_RFKILL ON
2689 	 * state, the only way to exit out of it is sending the HCI_Reset
2690 	 * command.
2691 	 */
2692 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
2693 	    btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
2694 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
2695 				     HCI_INIT_TIMEOUT);
2696 		if (IS_ERR(skb)) {
2697 			bt_dev_err(hdev,
2698 				   "sending initial HCI reset failed (%ld)",
2699 				   PTR_ERR(skb));
2700 			return PTR_ERR(skb);
2701 		}
2702 		kfree_skb(skb);
2703 	}
2704 
2705 	/* Starting from TyP device, the command parameter and response are
2706 	 * changed even though the OCF for HCI_Intel_Read_Version command
2707 	 * remains same. The legacy devices can handle even if the
2708 	 * command has a parameter and returns a correct version information.
2709 	 * So, it uses new format to support both legacy and new format.
2710 	 */
2711 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2712 	if (IS_ERR(skb)) {
2713 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2714 			   PTR_ERR(skb));
2715 		return PTR_ERR(skb);
2716 	}
2717 
2718 	/* Check the status */
2719 	if (skb->data[0]) {
2720 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2721 			   skb->data[0]);
2722 		err = -EIO;
2723 		goto exit_error;
2724 	}
2725 
2726 	/* Apply the common HCI quirks for Intel device */
2727 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2728 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
2729 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
2730 
2731 	/* Set up the quality report callback for Intel devices */
2732 	hdev->set_quality_report = btintel_set_quality_report;
2733 
2734 	/* For Legacy device, check the HW platform value and size */
2735 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
2736 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
2737 
2738 		memcpy(&ver, skb->data, sizeof(ver));
2739 
2740 		/* Display version information */
2741 		btintel_version_info(hdev, &ver);
2742 
2743 		/* Check for supported iBT hardware variants of this firmware
2744 		 * loading method.
2745 		 *
2746 		 * This check has been put in place to ensure correct forward
2747 		 * compatibility options when newer hardware variants come
2748 		 * along.
2749 		 */
2750 		switch (ver.hw_variant) {
2751 		case 0x07:	/* WP */
2752 		case 0x08:	/* StP */
2753 			/* Legacy ROM product */
2754 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
2755 
2756 			/* Apply the device specific HCI quirks
2757 			 *
2758 			 * WBS for SdP - For the Legacy ROM products, only SdP
2759 			 * supports the WBS. But the version information is not
2760 			 * enough to use here because the StP2 and SdP have same
2761 			 * hw_variant and fw_variant. So, this flag is set by
2762 			 * the transport driver (btusb) based on the HW info
2763 			 * (idProduct)
2764 			 */
2765 			if (!btintel_test_flag(hdev,
2766 					       INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
2767 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2768 					&hdev->quirks);
2769 			if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
2770 				set_bit(HCI_QUIRK_VALID_LE_STATES,
2771 					&hdev->quirks);
2772 
2773 			err = btintel_legacy_rom_setup(hdev, &ver);
2774 			break;
2775 		case 0x0b:      /* SfP */
2776 		case 0x11:      /* JfP */
2777 		case 0x12:      /* ThP */
2778 		case 0x13:      /* HrP */
2779 		case 0x14:      /* CcP */
2780 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2781 			fallthrough;
2782 		case 0x0c:	/* WsP */
2783 			/* Apply the device specific HCI quirks
2784 			 *
2785 			 * All Legacy bootloader devices support WBS
2786 			 */
2787 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2788 				&hdev->quirks);
2789 
2790 			/* These variants don't seem to support LE Coded PHY */
2791 			set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
2792 
2793 			/* Setup MSFT Extension support */
2794 			btintel_set_msft_opcode(hdev, ver.hw_variant);
2795 
2796 			err = btintel_bootloader_setup(hdev, &ver);
2797 			btintel_register_devcoredump_support(hdev);
2798 			break;
2799 		default:
2800 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2801 				   ver.hw_variant);
2802 			err = -EINVAL;
2803 		}
2804 
2805 		goto exit_error;
2806 	}
2807 
2808 	/* memset ver_tlv to start with clean state as few fields are exclusive
2809 	 * to bootloader mode and are not populated in operational mode
2810 	 */
2811 	memset(&ver_tlv, 0, sizeof(ver_tlv));
2812 	/* For TLV type device, parse the tlv data */
2813 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2814 	if (err) {
2815 		bt_dev_err(hdev, "Failed to parse TLV version information");
2816 		goto exit_error;
2817 	}
2818 
2819 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
2820 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
2821 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
2822 		err = -EINVAL;
2823 		goto exit_error;
2824 	}
2825 
2826 	/* Check for supported iBT hardware variants of this firmware
2827 	 * loading method.
2828 	 *
2829 	 * This check has been put in place to ensure correct forward
2830 	 * compatibility options when newer hardware variants come
2831 	 * along.
2832 	 */
2833 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
2834 	case 0x11:      /* JfP */
2835 	case 0x12:      /* ThP */
2836 	case 0x13:      /* HrP */
2837 	case 0x14:      /* CcP */
2838 		/* Some legacy bootloader devices starting from JfP,
2839 		 * the operational firmware supports both old and TLV based
2840 		 * HCI_Intel_Read_Version command based on the command
2841 		 * parameter.
2842 		 *
2843 		 * For upgrading firmware case, the TLV based version cannot
2844 		 * be used because the firmware filename for legacy bootloader
2845 		 * is based on the old format.
2846 		 *
2847 		 * Also, it is not easy to convert TLV based version from the
2848 		 * legacy version format.
2849 		 *
2850 		 * So, as a workaround for those devices, use the legacy
2851 		 * HCI_Intel_Read_Version to get the version information and
2852 		 * run the legacy bootloader setup.
2853 		 */
2854 		err = btintel_read_version(hdev, &ver);
2855 		if (err)
2856 			break;
2857 
2858 		/* Apply the device specific HCI quirks
2859 		 *
2860 		 * All Legacy bootloader devices support WBS
2861 		 */
2862 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2863 
2864 		/* These variants don't seem to support LE Coded PHY */
2865 		set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
2866 
2867 		/* Set Valid LE States quirk */
2868 		set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2869 
2870 		/* Setup MSFT Extension support */
2871 		btintel_set_msft_opcode(hdev, ver.hw_variant);
2872 
2873 		err = btintel_bootloader_setup(hdev, &ver);
2874 		btintel_register_devcoredump_support(hdev);
2875 		break;
2876 	case 0x17:
2877 	case 0x18:
2878 	case 0x19:
2879 	case 0x1b:
2880 	case 0x1c:
2881 		/* Display version information of TLV type */
2882 		btintel_version_info_tlv(hdev, &ver_tlv);
2883 
2884 		/* Apply the device specific HCI quirks for TLV based devices
2885 		 *
2886 		 * All TLV based devices support WBS
2887 		 */
2888 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2889 
2890 		/* Apply LE States quirk from solar onwards */
2891 		set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2892 
2893 		/* Setup MSFT Extension support */
2894 		btintel_set_msft_opcode(hdev,
2895 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2896 		btintel_set_dsm_reset_method(hdev, &ver_tlv);
2897 
2898 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
2899 		btintel_register_devcoredump_support(hdev);
2900 		break;
2901 	default:
2902 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2903 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2904 		err = -EINVAL;
2905 		break;
2906 	}
2907 
2908 exit_error:
2909 	kfree_skb(skb);
2910 
2911 	return err;
2912 }
2913 
2914 static int btintel_shutdown_combined(struct hci_dev *hdev)
2915 {
2916 	struct sk_buff *skb;
2917 	int ret;
2918 
2919 	/* Send HCI Reset to the controller to stop any BT activity which
2920 	 * were triggered. This will help to save power and maintain the
2921 	 * sync b/w Host and controller
2922 	 */
2923 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
2924 	if (IS_ERR(skb)) {
2925 		bt_dev_err(hdev, "HCI reset during shutdown failed");
2926 		return PTR_ERR(skb);
2927 	}
2928 	kfree_skb(skb);
2929 
2930 
2931 	/* Some platforms have an issue with BT LED when the interface is
2932 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
2933 	 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
2934 	 * device in the RFKILL ON state which turns off the BT LED immediately.
2935 	 */
2936 	if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
2937 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
2938 		if (IS_ERR(skb)) {
2939 			ret = PTR_ERR(skb);
2940 			bt_dev_err(hdev, "turning off Intel device LED failed");
2941 			return ret;
2942 		}
2943 		kfree_skb(skb);
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
2950 {
2951 	hdev->manufacturer = 2;
2952 	hdev->setup = btintel_setup_combined;
2953 	hdev->shutdown = btintel_shutdown_combined;
2954 	hdev->hw_error = btintel_hw_error;
2955 	hdev->set_diag = btintel_set_diag_combined;
2956 	hdev->set_bdaddr = btintel_set_bdaddr;
2957 
2958 	coredump_info.driver_name = driver_name;
2959 
2960 	return 0;
2961 }
2962 EXPORT_SYMBOL_GPL(btintel_configure_setup);
2963 
2964 static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
2965 {
2966 	struct intel_tlv *tlv = (void *)&skb->data[5];
2967 
2968 	/* The first event is always an event type TLV */
2969 	if (tlv->type != INTEL_TLV_TYPE_ID)
2970 		goto recv_frame;
2971 
2972 	switch (tlv->val[0]) {
2973 	case INTEL_TLV_SYSTEM_EXCEPTION:
2974 	case INTEL_TLV_FATAL_EXCEPTION:
2975 	case INTEL_TLV_DEBUG_EXCEPTION:
2976 	case INTEL_TLV_TEST_EXCEPTION:
2977 		/* Generate devcoredump from exception */
2978 		if (!hci_devcd_init(hdev, skb->len)) {
2979 			hci_devcd_append(hdev, skb);
2980 			hci_devcd_complete(hdev);
2981 		} else {
2982 			bt_dev_err(hdev, "Failed to generate devcoredump");
2983 			kfree_skb(skb);
2984 		}
2985 		return 0;
2986 	default:
2987 		bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
2988 	}
2989 
2990 recv_frame:
2991 	return hci_recv_frame(hdev, skb);
2992 }
2993 
2994 int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
2995 {
2996 	struct hci_event_hdr *hdr = (void *)skb->data;
2997 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
2998 
2999 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3000 	    hdr->plen > 0) {
3001 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3002 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3003 
3004 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3005 			switch (skb->data[2]) {
3006 			case 0x02:
3007 				/* When switching to the operational firmware
3008 				 * the device sends a vendor specific event
3009 				 * indicating that the bootup completed.
3010 				 */
3011 				btintel_bootup(hdev, ptr, len);
3012 				break;
3013 			case 0x06:
3014 				/* When the firmware loading completes the
3015 				 * device sends out a vendor specific event
3016 				 * indicating the result of the firmware
3017 				 * loading.
3018 				 */
3019 				btintel_secure_send_result(hdev, ptr, len);
3020 				break;
3021 			}
3022 		}
3023 
3024 		/* Handle all diagnostics events separately. May still call
3025 		 * hci_recv_frame.
3026 		 */
3027 		if (len >= sizeof(diagnostics_hdr) &&
3028 		    memcmp(&skb->data[2], diagnostics_hdr,
3029 			   sizeof(diagnostics_hdr)) == 0) {
3030 			return btintel_diagnostics(hdev, skb);
3031 		}
3032 	}
3033 
3034 	return hci_recv_frame(hdev, skb);
3035 }
3036 EXPORT_SYMBOL_GPL(btintel_recv_event);
3037 
3038 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3039 {
3040 	const struct intel_bootup *evt = ptr;
3041 
3042 	if (len != sizeof(*evt))
3043 		return;
3044 
3045 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3046 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
3047 }
3048 EXPORT_SYMBOL_GPL(btintel_bootup);
3049 
3050 void btintel_secure_send_result(struct hci_dev *hdev,
3051 				const void *ptr, unsigned int len)
3052 {
3053 	const struct intel_secure_send_result *evt = ptr;
3054 
3055 	if (len != sizeof(*evt))
3056 		return;
3057 
3058 	if (evt->result)
3059 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3060 
3061 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3062 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3063 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3064 }
3065 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3066 
3067 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3068 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3069 MODULE_VERSION(VERSION);
3070 MODULE_LICENSE("GPL");
3071 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3072 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3073 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3074 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
3075