xref: /openbmc/linux/drivers/block/zram/zram_drv.c (revision 55e43d6abd078ed6d219902ce8cb4d68e3c993ba)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static const struct block_device_operations zram_devops;
55 
56 static void zram_free_page(struct zram *zram, size_t index);
57 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
58 			  struct bio *parent);
59 
60 static int zram_slot_trylock(struct zram *zram, u32 index)
61 {
62 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
63 }
64 
65 static void zram_slot_lock(struct zram *zram, u32 index)
66 {
67 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
68 }
69 
70 static void zram_slot_unlock(struct zram *zram, u32 index)
71 {
72 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
73 }
74 
75 static inline bool init_done(struct zram *zram)
76 {
77 	return zram->disksize;
78 }
79 
80 static inline struct zram *dev_to_zram(struct device *dev)
81 {
82 	return (struct zram *)dev_to_disk(dev)->private_data;
83 }
84 
85 static unsigned long zram_get_handle(struct zram *zram, u32 index)
86 {
87 	return zram->table[index].handle;
88 }
89 
90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
91 {
92 	zram->table[index].handle = handle;
93 }
94 
95 /* flag operations require table entry bit_spin_lock() being held */
96 static bool zram_test_flag(struct zram *zram, u32 index,
97 			enum zram_pageflags flag)
98 {
99 	return zram->table[index].flags & BIT(flag);
100 }
101 
102 static void zram_set_flag(struct zram *zram, u32 index,
103 			enum zram_pageflags flag)
104 {
105 	zram->table[index].flags |= BIT(flag);
106 }
107 
108 static void zram_clear_flag(struct zram *zram, u32 index,
109 			enum zram_pageflags flag)
110 {
111 	zram->table[index].flags &= ~BIT(flag);
112 }
113 
114 static inline void zram_set_element(struct zram *zram, u32 index,
115 			unsigned long element)
116 {
117 	zram->table[index].element = element;
118 }
119 
120 static unsigned long zram_get_element(struct zram *zram, u32 index)
121 {
122 	return zram->table[index].element;
123 }
124 
125 static size_t zram_get_obj_size(struct zram *zram, u32 index)
126 {
127 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
128 }
129 
130 static void zram_set_obj_size(struct zram *zram,
131 					u32 index, size_t size)
132 {
133 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
134 
135 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
136 }
137 
138 static inline bool zram_allocated(struct zram *zram, u32 index)
139 {
140 	return zram_get_obj_size(zram, index) ||
141 			zram_test_flag(zram, index, ZRAM_SAME) ||
142 			zram_test_flag(zram, index, ZRAM_WB);
143 }
144 
145 #if PAGE_SIZE != 4096
146 static inline bool is_partial_io(struct bio_vec *bvec)
147 {
148 	return bvec->bv_len != PAGE_SIZE;
149 }
150 #define ZRAM_PARTIAL_IO		1
151 #else
152 static inline bool is_partial_io(struct bio_vec *bvec)
153 {
154 	return false;
155 }
156 #endif
157 
158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
159 {
160 	prio &= ZRAM_COMP_PRIORITY_MASK;
161 	/*
162 	 * Clear previous priority value first, in case if we recompress
163 	 * further an already recompressed page
164 	 */
165 	zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
166 				      ZRAM_COMP_PRIORITY_BIT1);
167 	zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
168 }
169 
170 static inline u32 zram_get_priority(struct zram *zram, u32 index)
171 {
172 	u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
173 
174 	return prio & ZRAM_COMP_PRIORITY_MASK;
175 }
176 
177 static void zram_accessed(struct zram *zram, u32 index)
178 {
179 	zram_clear_flag(zram, index, ZRAM_IDLE);
180 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
181 	zram->table[index].ac_time = ktime_get_boottime();
182 #endif
183 }
184 
185 static inline void update_used_max(struct zram *zram,
186 					const unsigned long pages)
187 {
188 	unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
189 
190 	do {
191 		if (cur_max >= pages)
192 			return;
193 	} while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
194 					  &cur_max, pages));
195 }
196 
197 static inline void zram_fill_page(void *ptr, unsigned long len,
198 					unsigned long value)
199 {
200 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
201 	memset_l(ptr, value, len / sizeof(unsigned long));
202 }
203 
204 static bool page_same_filled(void *ptr, unsigned long *element)
205 {
206 	unsigned long *page;
207 	unsigned long val;
208 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
209 
210 	page = (unsigned long *)ptr;
211 	val = page[0];
212 
213 	if (val != page[last_pos])
214 		return false;
215 
216 	for (pos = 1; pos < last_pos; pos++) {
217 		if (val != page[pos])
218 			return false;
219 	}
220 
221 	*element = val;
222 
223 	return true;
224 }
225 
226 static ssize_t initstate_show(struct device *dev,
227 		struct device_attribute *attr, char *buf)
228 {
229 	u32 val;
230 	struct zram *zram = dev_to_zram(dev);
231 
232 	down_read(&zram->init_lock);
233 	val = init_done(zram);
234 	up_read(&zram->init_lock);
235 
236 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
237 }
238 
239 static ssize_t disksize_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct zram *zram = dev_to_zram(dev);
243 
244 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
245 }
246 
247 static ssize_t mem_limit_store(struct device *dev,
248 		struct device_attribute *attr, const char *buf, size_t len)
249 {
250 	u64 limit;
251 	char *tmp;
252 	struct zram *zram = dev_to_zram(dev);
253 
254 	limit = memparse(buf, &tmp);
255 	if (buf == tmp) /* no chars parsed, invalid input */
256 		return -EINVAL;
257 
258 	down_write(&zram->init_lock);
259 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
260 	up_write(&zram->init_lock);
261 
262 	return len;
263 }
264 
265 static ssize_t mem_used_max_store(struct device *dev,
266 		struct device_attribute *attr, const char *buf, size_t len)
267 {
268 	int err;
269 	unsigned long val;
270 	struct zram *zram = dev_to_zram(dev);
271 
272 	err = kstrtoul(buf, 10, &val);
273 	if (err || val != 0)
274 		return -EINVAL;
275 
276 	down_read(&zram->init_lock);
277 	if (init_done(zram)) {
278 		atomic_long_set(&zram->stats.max_used_pages,
279 				zs_get_total_pages(zram->mem_pool));
280 	}
281 	up_read(&zram->init_lock);
282 
283 	return len;
284 }
285 
286 /*
287  * Mark all pages which are older than or equal to cutoff as IDLE.
288  * Callers should hold the zram init lock in read mode
289  */
290 static void mark_idle(struct zram *zram, ktime_t cutoff)
291 {
292 	int is_idle = 1;
293 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
294 	int index;
295 
296 	for (index = 0; index < nr_pages; index++) {
297 		/*
298 		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
299 		 * See the comment in writeback_store.
300 		 *
301 		 * Also do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
302 		 * post-processing (recompress, writeback) happens to the
303 		 * ZRAM_SAME slot.
304 		 *
305 		 * And ZRAM_WB slots simply cannot be ZRAM_IDLE.
306 		 */
307 		zram_slot_lock(zram, index);
308 		if (!zram_allocated(zram, index) ||
309 		    zram_test_flag(zram, index, ZRAM_WB) ||
310 		    zram_test_flag(zram, index, ZRAM_UNDER_WB) ||
311 		    zram_test_flag(zram, index, ZRAM_SAME)) {
312 			zram_slot_unlock(zram, index);
313 			continue;
314 		}
315 
316 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
317 		is_idle = !cutoff ||
318 			ktime_after(cutoff, zram->table[index].ac_time);
319 #endif
320 		if (is_idle)
321 			zram_set_flag(zram, index, ZRAM_IDLE);
322 		else
323 			zram_clear_flag(zram, index, ZRAM_IDLE);
324 		zram_slot_unlock(zram, index);
325 	}
326 }
327 
328 static ssize_t idle_store(struct device *dev,
329 		struct device_attribute *attr, const char *buf, size_t len)
330 {
331 	struct zram *zram = dev_to_zram(dev);
332 	ktime_t cutoff_time = 0;
333 	ssize_t rv = -EINVAL;
334 
335 	if (!sysfs_streq(buf, "all")) {
336 		/*
337 		 * If it did not parse as 'all' try to treat it as an integer
338 		 * when we have memory tracking enabled.
339 		 */
340 		u64 age_sec;
341 
342 		if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
343 			cutoff_time = ktime_sub(ktime_get_boottime(),
344 					ns_to_ktime(age_sec * NSEC_PER_SEC));
345 		else
346 			goto out;
347 	}
348 
349 	down_read(&zram->init_lock);
350 	if (!init_done(zram))
351 		goto out_unlock;
352 
353 	/*
354 	 * A cutoff_time of 0 marks everything as idle, this is the
355 	 * "all" behavior.
356 	 */
357 	mark_idle(zram, cutoff_time);
358 	rv = len;
359 
360 out_unlock:
361 	up_read(&zram->init_lock);
362 out:
363 	return rv;
364 }
365 
366 #ifdef CONFIG_ZRAM_WRITEBACK
367 static ssize_t writeback_limit_enable_store(struct device *dev,
368 		struct device_attribute *attr, const char *buf, size_t len)
369 {
370 	struct zram *zram = dev_to_zram(dev);
371 	u64 val;
372 	ssize_t ret = -EINVAL;
373 
374 	if (kstrtoull(buf, 10, &val))
375 		return ret;
376 
377 	down_read(&zram->init_lock);
378 	spin_lock(&zram->wb_limit_lock);
379 	zram->wb_limit_enable = val;
380 	spin_unlock(&zram->wb_limit_lock);
381 	up_read(&zram->init_lock);
382 	ret = len;
383 
384 	return ret;
385 }
386 
387 static ssize_t writeback_limit_enable_show(struct device *dev,
388 		struct device_attribute *attr, char *buf)
389 {
390 	bool val;
391 	struct zram *zram = dev_to_zram(dev);
392 
393 	down_read(&zram->init_lock);
394 	spin_lock(&zram->wb_limit_lock);
395 	val = zram->wb_limit_enable;
396 	spin_unlock(&zram->wb_limit_lock);
397 	up_read(&zram->init_lock);
398 
399 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
400 }
401 
402 static ssize_t writeback_limit_store(struct device *dev,
403 		struct device_attribute *attr, const char *buf, size_t len)
404 {
405 	struct zram *zram = dev_to_zram(dev);
406 	u64 val;
407 	ssize_t ret = -EINVAL;
408 
409 	if (kstrtoull(buf, 10, &val))
410 		return ret;
411 
412 	down_read(&zram->init_lock);
413 	spin_lock(&zram->wb_limit_lock);
414 	zram->bd_wb_limit = val;
415 	spin_unlock(&zram->wb_limit_lock);
416 	up_read(&zram->init_lock);
417 	ret = len;
418 
419 	return ret;
420 }
421 
422 static ssize_t writeback_limit_show(struct device *dev,
423 		struct device_attribute *attr, char *buf)
424 {
425 	u64 val;
426 	struct zram *zram = dev_to_zram(dev);
427 
428 	down_read(&zram->init_lock);
429 	spin_lock(&zram->wb_limit_lock);
430 	val = zram->bd_wb_limit;
431 	spin_unlock(&zram->wb_limit_lock);
432 	up_read(&zram->init_lock);
433 
434 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
435 }
436 
437 static void reset_bdev(struct zram *zram)
438 {
439 	struct block_device *bdev;
440 
441 	if (!zram->backing_dev)
442 		return;
443 
444 	bdev = zram->bdev;
445 	blkdev_put(bdev, zram);
446 	/* hope filp_close flush all of IO */
447 	filp_close(zram->backing_dev, NULL);
448 	zram->backing_dev = NULL;
449 	zram->bdev = NULL;
450 	zram->disk->fops = &zram_devops;
451 	kvfree(zram->bitmap);
452 	zram->bitmap = NULL;
453 }
454 
455 static ssize_t backing_dev_show(struct device *dev,
456 		struct device_attribute *attr, char *buf)
457 {
458 	struct file *file;
459 	struct zram *zram = dev_to_zram(dev);
460 	char *p;
461 	ssize_t ret;
462 
463 	down_read(&zram->init_lock);
464 	file = zram->backing_dev;
465 	if (!file) {
466 		memcpy(buf, "none\n", 5);
467 		up_read(&zram->init_lock);
468 		return 5;
469 	}
470 
471 	p = file_path(file, buf, PAGE_SIZE - 1);
472 	if (IS_ERR(p)) {
473 		ret = PTR_ERR(p);
474 		goto out;
475 	}
476 
477 	ret = strlen(p);
478 	memmove(buf, p, ret);
479 	buf[ret++] = '\n';
480 out:
481 	up_read(&zram->init_lock);
482 	return ret;
483 }
484 
485 static ssize_t backing_dev_store(struct device *dev,
486 		struct device_attribute *attr, const char *buf, size_t len)
487 {
488 	char *file_name;
489 	size_t sz;
490 	struct file *backing_dev = NULL;
491 	struct inode *inode;
492 	struct address_space *mapping;
493 	unsigned int bitmap_sz;
494 	unsigned long nr_pages, *bitmap = NULL;
495 	struct block_device *bdev = NULL;
496 	int err;
497 	struct zram *zram = dev_to_zram(dev);
498 
499 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
500 	if (!file_name)
501 		return -ENOMEM;
502 
503 	down_write(&zram->init_lock);
504 	if (init_done(zram)) {
505 		pr_info("Can't setup backing device for initialized device\n");
506 		err = -EBUSY;
507 		goto out;
508 	}
509 
510 	strscpy(file_name, buf, PATH_MAX);
511 	/* ignore trailing newline */
512 	sz = strlen(file_name);
513 	if (sz > 0 && file_name[sz - 1] == '\n')
514 		file_name[sz - 1] = 0x00;
515 
516 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
517 	if (IS_ERR(backing_dev)) {
518 		err = PTR_ERR(backing_dev);
519 		backing_dev = NULL;
520 		goto out;
521 	}
522 
523 	mapping = backing_dev->f_mapping;
524 	inode = mapping->host;
525 
526 	/* Support only block device in this moment */
527 	if (!S_ISBLK(inode->i_mode)) {
528 		err = -ENOTBLK;
529 		goto out;
530 	}
531 
532 	bdev = blkdev_get_by_dev(inode->i_rdev, BLK_OPEN_READ | BLK_OPEN_WRITE,
533 				 zram, NULL);
534 	if (IS_ERR(bdev)) {
535 		err = PTR_ERR(bdev);
536 		bdev = NULL;
537 		goto out;
538 	}
539 
540 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
541 	/* Refuse to use zero sized device (also prevents self reference) */
542 	if (!nr_pages) {
543 		err = -EINVAL;
544 		goto out;
545 	}
546 
547 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
548 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
549 	if (!bitmap) {
550 		err = -ENOMEM;
551 		goto out;
552 	}
553 
554 	reset_bdev(zram);
555 
556 	zram->bdev = bdev;
557 	zram->backing_dev = backing_dev;
558 	zram->bitmap = bitmap;
559 	zram->nr_pages = nr_pages;
560 	up_write(&zram->init_lock);
561 
562 	pr_info("setup backing device %s\n", file_name);
563 	kfree(file_name);
564 
565 	return len;
566 out:
567 	kvfree(bitmap);
568 
569 	if (bdev)
570 		blkdev_put(bdev, zram);
571 
572 	if (backing_dev)
573 		filp_close(backing_dev, NULL);
574 
575 	up_write(&zram->init_lock);
576 
577 	kfree(file_name);
578 
579 	return err;
580 }
581 
582 static unsigned long alloc_block_bdev(struct zram *zram)
583 {
584 	unsigned long blk_idx = 1;
585 retry:
586 	/* skip 0 bit to confuse zram.handle = 0 */
587 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
588 	if (blk_idx == zram->nr_pages)
589 		return 0;
590 
591 	if (test_and_set_bit(blk_idx, zram->bitmap))
592 		goto retry;
593 
594 	atomic64_inc(&zram->stats.bd_count);
595 	return blk_idx;
596 }
597 
598 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
599 {
600 	int was_set;
601 
602 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
603 	WARN_ON_ONCE(!was_set);
604 	atomic64_dec(&zram->stats.bd_count);
605 }
606 
607 static void read_from_bdev_async(struct zram *zram, struct page *page,
608 			unsigned long entry, struct bio *parent)
609 {
610 	struct bio *bio;
611 
612 	bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
613 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
614 	__bio_add_page(bio, page, PAGE_SIZE, 0);
615 	bio_chain(bio, parent);
616 	submit_bio(bio);
617 }
618 
619 #define PAGE_WB_SIG "page_index="
620 
621 #define PAGE_WRITEBACK			0
622 #define HUGE_WRITEBACK			(1<<0)
623 #define IDLE_WRITEBACK			(1<<1)
624 #define INCOMPRESSIBLE_WRITEBACK	(1<<2)
625 
626 static ssize_t writeback_store(struct device *dev,
627 		struct device_attribute *attr, const char *buf, size_t len)
628 {
629 	struct zram *zram = dev_to_zram(dev);
630 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
631 	unsigned long index = 0;
632 	struct bio bio;
633 	struct bio_vec bio_vec;
634 	struct page *page;
635 	ssize_t ret = len;
636 	int mode, err;
637 	unsigned long blk_idx = 0;
638 
639 	if (sysfs_streq(buf, "idle"))
640 		mode = IDLE_WRITEBACK;
641 	else if (sysfs_streq(buf, "huge"))
642 		mode = HUGE_WRITEBACK;
643 	else if (sysfs_streq(buf, "huge_idle"))
644 		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
645 	else if (sysfs_streq(buf, "incompressible"))
646 		mode = INCOMPRESSIBLE_WRITEBACK;
647 	else {
648 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
649 			return -EINVAL;
650 
651 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
652 				index >= nr_pages)
653 			return -EINVAL;
654 
655 		nr_pages = 1;
656 		mode = PAGE_WRITEBACK;
657 	}
658 
659 	down_read(&zram->init_lock);
660 	if (!init_done(zram)) {
661 		ret = -EINVAL;
662 		goto release_init_lock;
663 	}
664 
665 	if (!zram->backing_dev) {
666 		ret = -ENODEV;
667 		goto release_init_lock;
668 	}
669 
670 	page = alloc_page(GFP_KERNEL);
671 	if (!page) {
672 		ret = -ENOMEM;
673 		goto release_init_lock;
674 	}
675 
676 	for (; nr_pages != 0; index++, nr_pages--) {
677 		spin_lock(&zram->wb_limit_lock);
678 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
679 			spin_unlock(&zram->wb_limit_lock);
680 			ret = -EIO;
681 			break;
682 		}
683 		spin_unlock(&zram->wb_limit_lock);
684 
685 		if (!blk_idx) {
686 			blk_idx = alloc_block_bdev(zram);
687 			if (!blk_idx) {
688 				ret = -ENOSPC;
689 				break;
690 			}
691 		}
692 
693 		zram_slot_lock(zram, index);
694 		if (!zram_allocated(zram, index))
695 			goto next;
696 
697 		if (zram_test_flag(zram, index, ZRAM_WB) ||
698 				zram_test_flag(zram, index, ZRAM_SAME) ||
699 				zram_test_flag(zram, index, ZRAM_UNDER_WB))
700 			goto next;
701 
702 		if (mode & IDLE_WRITEBACK &&
703 		    !zram_test_flag(zram, index, ZRAM_IDLE))
704 			goto next;
705 		if (mode & HUGE_WRITEBACK &&
706 		    !zram_test_flag(zram, index, ZRAM_HUGE))
707 			goto next;
708 		if (mode & INCOMPRESSIBLE_WRITEBACK &&
709 		    !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
710 			goto next;
711 
712 		/*
713 		 * Clearing ZRAM_UNDER_WB is duty of caller.
714 		 * IOW, zram_free_page never clear it.
715 		 */
716 		zram_set_flag(zram, index, ZRAM_UNDER_WB);
717 		/* Need for hugepage writeback racing */
718 		zram_set_flag(zram, index, ZRAM_IDLE);
719 		zram_slot_unlock(zram, index);
720 		if (zram_read_page(zram, page, index, NULL)) {
721 			zram_slot_lock(zram, index);
722 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
723 			zram_clear_flag(zram, index, ZRAM_IDLE);
724 			zram_slot_unlock(zram, index);
725 			continue;
726 		}
727 
728 		bio_init(&bio, zram->bdev, &bio_vec, 1,
729 			 REQ_OP_WRITE | REQ_SYNC);
730 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
731 		__bio_add_page(&bio, page, PAGE_SIZE, 0);
732 
733 		/*
734 		 * XXX: A single page IO would be inefficient for write
735 		 * but it would be not bad as starter.
736 		 */
737 		err = submit_bio_wait(&bio);
738 		if (err) {
739 			zram_slot_lock(zram, index);
740 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
741 			zram_clear_flag(zram, index, ZRAM_IDLE);
742 			zram_slot_unlock(zram, index);
743 			/*
744 			 * BIO errors are not fatal, we continue and simply
745 			 * attempt to writeback the remaining objects (pages).
746 			 * At the same time we need to signal user-space that
747 			 * some writes (at least one, but also could be all of
748 			 * them) were not successful and we do so by returning
749 			 * the most recent BIO error.
750 			 */
751 			ret = err;
752 			continue;
753 		}
754 
755 		atomic64_inc(&zram->stats.bd_writes);
756 		/*
757 		 * We released zram_slot_lock so need to check if the slot was
758 		 * changed. If there is freeing for the slot, we can catch it
759 		 * easily by zram_allocated.
760 		 * A subtle case is the slot is freed/reallocated/marked as
761 		 * ZRAM_IDLE again. To close the race, idle_store doesn't
762 		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
763 		 * Thus, we could close the race by checking ZRAM_IDLE bit.
764 		 */
765 		zram_slot_lock(zram, index);
766 		if (!zram_allocated(zram, index) ||
767 			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
768 			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
769 			zram_clear_flag(zram, index, ZRAM_IDLE);
770 			goto next;
771 		}
772 
773 		zram_free_page(zram, index);
774 		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
775 		zram_set_flag(zram, index, ZRAM_WB);
776 		zram_set_element(zram, index, blk_idx);
777 		blk_idx = 0;
778 		atomic64_inc(&zram->stats.pages_stored);
779 		spin_lock(&zram->wb_limit_lock);
780 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
781 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
782 		spin_unlock(&zram->wb_limit_lock);
783 next:
784 		zram_slot_unlock(zram, index);
785 	}
786 
787 	if (blk_idx)
788 		free_block_bdev(zram, blk_idx);
789 	__free_page(page);
790 release_init_lock:
791 	up_read(&zram->init_lock);
792 
793 	return ret;
794 }
795 
796 struct zram_work {
797 	struct work_struct work;
798 	struct zram *zram;
799 	unsigned long entry;
800 	struct page *page;
801 	int error;
802 };
803 
804 static void zram_sync_read(struct work_struct *work)
805 {
806 	struct zram_work *zw = container_of(work, struct zram_work, work);
807 	struct bio_vec bv;
808 	struct bio bio;
809 
810 	bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
811 	bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
812 	__bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
813 	zw->error = submit_bio_wait(&bio);
814 }
815 
816 /*
817  * Block layer want one ->submit_bio to be active at a time, so if we use
818  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
819  * use a worker thread context.
820  */
821 static int read_from_bdev_sync(struct zram *zram, struct page *page,
822 				unsigned long entry)
823 {
824 	struct zram_work work;
825 
826 	work.page = page;
827 	work.zram = zram;
828 	work.entry = entry;
829 
830 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
831 	queue_work(system_unbound_wq, &work.work);
832 	flush_work(&work.work);
833 	destroy_work_on_stack(&work.work);
834 
835 	return work.error;
836 }
837 
838 static int read_from_bdev(struct zram *zram, struct page *page,
839 			unsigned long entry, struct bio *parent)
840 {
841 	atomic64_inc(&zram->stats.bd_reads);
842 	if (!parent) {
843 		if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
844 			return -EIO;
845 		return read_from_bdev_sync(zram, page, entry);
846 	}
847 	read_from_bdev_async(zram, page, entry, parent);
848 	return 0;
849 }
850 #else
851 static inline void reset_bdev(struct zram *zram) {};
852 static int read_from_bdev(struct zram *zram, struct page *page,
853 			unsigned long entry, struct bio *parent)
854 {
855 	return -EIO;
856 }
857 
858 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
859 #endif
860 
861 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
862 
863 static struct dentry *zram_debugfs_root;
864 
865 static void zram_debugfs_create(void)
866 {
867 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
868 }
869 
870 static void zram_debugfs_destroy(void)
871 {
872 	debugfs_remove_recursive(zram_debugfs_root);
873 }
874 
875 static ssize_t read_block_state(struct file *file, char __user *buf,
876 				size_t count, loff_t *ppos)
877 {
878 	char *kbuf;
879 	ssize_t index, written = 0;
880 	struct zram *zram = file->private_data;
881 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
882 	struct timespec64 ts;
883 
884 	kbuf = kvmalloc(count, GFP_KERNEL);
885 	if (!kbuf)
886 		return -ENOMEM;
887 
888 	down_read(&zram->init_lock);
889 	if (!init_done(zram)) {
890 		up_read(&zram->init_lock);
891 		kvfree(kbuf);
892 		return -EINVAL;
893 	}
894 
895 	for (index = *ppos; index < nr_pages; index++) {
896 		int copied;
897 
898 		zram_slot_lock(zram, index);
899 		if (!zram_allocated(zram, index))
900 			goto next;
901 
902 		ts = ktime_to_timespec64(zram->table[index].ac_time);
903 		copied = snprintf(kbuf + written, count,
904 			"%12zd %12lld.%06lu %c%c%c%c%c%c\n",
905 			index, (s64)ts.tv_sec,
906 			ts.tv_nsec / NSEC_PER_USEC,
907 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
908 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
909 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
910 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
911 			zram_get_priority(zram, index) ? 'r' : '.',
912 			zram_test_flag(zram, index,
913 				       ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
914 
915 		if (count <= copied) {
916 			zram_slot_unlock(zram, index);
917 			break;
918 		}
919 		written += copied;
920 		count -= copied;
921 next:
922 		zram_slot_unlock(zram, index);
923 		*ppos += 1;
924 	}
925 
926 	up_read(&zram->init_lock);
927 	if (copy_to_user(buf, kbuf, written))
928 		written = -EFAULT;
929 	kvfree(kbuf);
930 
931 	return written;
932 }
933 
934 static const struct file_operations proc_zram_block_state_op = {
935 	.open = simple_open,
936 	.read = read_block_state,
937 	.llseek = default_llseek,
938 };
939 
940 static void zram_debugfs_register(struct zram *zram)
941 {
942 	if (!zram_debugfs_root)
943 		return;
944 
945 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
946 						zram_debugfs_root);
947 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
948 				zram, &proc_zram_block_state_op);
949 }
950 
951 static void zram_debugfs_unregister(struct zram *zram)
952 {
953 	debugfs_remove_recursive(zram->debugfs_dir);
954 }
955 #else
956 static void zram_debugfs_create(void) {};
957 static void zram_debugfs_destroy(void) {};
958 static void zram_debugfs_register(struct zram *zram) {};
959 static void zram_debugfs_unregister(struct zram *zram) {};
960 #endif
961 
962 /*
963  * We switched to per-cpu streams and this attr is not needed anymore.
964  * However, we will keep it around for some time, because:
965  * a) we may revert per-cpu streams in the future
966  * b) it's visible to user space and we need to follow our 2 years
967  *    retirement rule; but we already have a number of 'soon to be
968  *    altered' attrs, so max_comp_streams need to wait for the next
969  *    layoff cycle.
970  */
971 static ssize_t max_comp_streams_show(struct device *dev,
972 		struct device_attribute *attr, char *buf)
973 {
974 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
975 }
976 
977 static ssize_t max_comp_streams_store(struct device *dev,
978 		struct device_attribute *attr, const char *buf, size_t len)
979 {
980 	return len;
981 }
982 
983 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
984 {
985 	/* Do not free statically defined compression algorithms */
986 	if (zram->comp_algs[prio] != default_compressor)
987 		kfree(zram->comp_algs[prio]);
988 
989 	zram->comp_algs[prio] = alg;
990 }
991 
992 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
993 {
994 	ssize_t sz;
995 
996 	down_read(&zram->init_lock);
997 	sz = zcomp_available_show(zram->comp_algs[prio], buf);
998 	up_read(&zram->init_lock);
999 
1000 	return sz;
1001 }
1002 
1003 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
1004 {
1005 	char *compressor;
1006 	size_t sz;
1007 
1008 	sz = strlen(buf);
1009 	if (sz >= CRYPTO_MAX_ALG_NAME)
1010 		return -E2BIG;
1011 
1012 	compressor = kstrdup(buf, GFP_KERNEL);
1013 	if (!compressor)
1014 		return -ENOMEM;
1015 
1016 	/* ignore trailing newline */
1017 	if (sz > 0 && compressor[sz - 1] == '\n')
1018 		compressor[sz - 1] = 0x00;
1019 
1020 	if (!zcomp_available_algorithm(compressor)) {
1021 		kfree(compressor);
1022 		return -EINVAL;
1023 	}
1024 
1025 	down_write(&zram->init_lock);
1026 	if (init_done(zram)) {
1027 		up_write(&zram->init_lock);
1028 		kfree(compressor);
1029 		pr_info("Can't change algorithm for initialized device\n");
1030 		return -EBUSY;
1031 	}
1032 
1033 	comp_algorithm_set(zram, prio, compressor);
1034 	up_write(&zram->init_lock);
1035 	return 0;
1036 }
1037 
1038 static ssize_t comp_algorithm_show(struct device *dev,
1039 				   struct device_attribute *attr,
1040 				   char *buf)
1041 {
1042 	struct zram *zram = dev_to_zram(dev);
1043 
1044 	return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1045 }
1046 
1047 static ssize_t comp_algorithm_store(struct device *dev,
1048 				    struct device_attribute *attr,
1049 				    const char *buf,
1050 				    size_t len)
1051 {
1052 	struct zram *zram = dev_to_zram(dev);
1053 	int ret;
1054 
1055 	ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1056 	return ret ? ret : len;
1057 }
1058 
1059 #ifdef CONFIG_ZRAM_MULTI_COMP
1060 static ssize_t recomp_algorithm_show(struct device *dev,
1061 				     struct device_attribute *attr,
1062 				     char *buf)
1063 {
1064 	struct zram *zram = dev_to_zram(dev);
1065 	ssize_t sz = 0;
1066 	u32 prio;
1067 
1068 	for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1069 		if (!zram->comp_algs[prio])
1070 			continue;
1071 
1072 		sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
1073 		sz += __comp_algorithm_show(zram, prio, buf + sz);
1074 	}
1075 
1076 	return sz;
1077 }
1078 
1079 static ssize_t recomp_algorithm_store(struct device *dev,
1080 				      struct device_attribute *attr,
1081 				      const char *buf,
1082 				      size_t len)
1083 {
1084 	struct zram *zram = dev_to_zram(dev);
1085 	int prio = ZRAM_SECONDARY_COMP;
1086 	char *args, *param, *val;
1087 	char *alg = NULL;
1088 	int ret;
1089 
1090 	args = skip_spaces(buf);
1091 	while (*args) {
1092 		args = next_arg(args, &param, &val);
1093 
1094 		if (!val || !*val)
1095 			return -EINVAL;
1096 
1097 		if (!strcmp(param, "algo")) {
1098 			alg = val;
1099 			continue;
1100 		}
1101 
1102 		if (!strcmp(param, "priority")) {
1103 			ret = kstrtoint(val, 10, &prio);
1104 			if (ret)
1105 				return ret;
1106 			continue;
1107 		}
1108 	}
1109 
1110 	if (!alg)
1111 		return -EINVAL;
1112 
1113 	if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1114 		return -EINVAL;
1115 
1116 	ret = __comp_algorithm_store(zram, prio, alg);
1117 	return ret ? ret : len;
1118 }
1119 #endif
1120 
1121 static ssize_t compact_store(struct device *dev,
1122 		struct device_attribute *attr, const char *buf, size_t len)
1123 {
1124 	struct zram *zram = dev_to_zram(dev);
1125 
1126 	down_read(&zram->init_lock);
1127 	if (!init_done(zram)) {
1128 		up_read(&zram->init_lock);
1129 		return -EINVAL;
1130 	}
1131 
1132 	zs_compact(zram->mem_pool);
1133 	up_read(&zram->init_lock);
1134 
1135 	return len;
1136 }
1137 
1138 static ssize_t io_stat_show(struct device *dev,
1139 		struct device_attribute *attr, char *buf)
1140 {
1141 	struct zram *zram = dev_to_zram(dev);
1142 	ssize_t ret;
1143 
1144 	down_read(&zram->init_lock);
1145 	ret = scnprintf(buf, PAGE_SIZE,
1146 			"%8llu %8llu 0 %8llu\n",
1147 			(u64)atomic64_read(&zram->stats.failed_reads),
1148 			(u64)atomic64_read(&zram->stats.failed_writes),
1149 			(u64)atomic64_read(&zram->stats.notify_free));
1150 	up_read(&zram->init_lock);
1151 
1152 	return ret;
1153 }
1154 
1155 static ssize_t mm_stat_show(struct device *dev,
1156 		struct device_attribute *attr, char *buf)
1157 {
1158 	struct zram *zram = dev_to_zram(dev);
1159 	struct zs_pool_stats pool_stats;
1160 	u64 orig_size, mem_used = 0;
1161 	long max_used;
1162 	ssize_t ret;
1163 
1164 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1165 
1166 	down_read(&zram->init_lock);
1167 	if (init_done(zram)) {
1168 		mem_used = zs_get_total_pages(zram->mem_pool);
1169 		zs_pool_stats(zram->mem_pool, &pool_stats);
1170 	}
1171 
1172 	orig_size = atomic64_read(&zram->stats.pages_stored);
1173 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1174 
1175 	ret = scnprintf(buf, PAGE_SIZE,
1176 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1177 			orig_size << PAGE_SHIFT,
1178 			(u64)atomic64_read(&zram->stats.compr_data_size),
1179 			mem_used << PAGE_SHIFT,
1180 			zram->limit_pages << PAGE_SHIFT,
1181 			max_used << PAGE_SHIFT,
1182 			(u64)atomic64_read(&zram->stats.same_pages),
1183 			atomic_long_read(&pool_stats.pages_compacted),
1184 			(u64)atomic64_read(&zram->stats.huge_pages),
1185 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1186 	up_read(&zram->init_lock);
1187 
1188 	return ret;
1189 }
1190 
1191 #ifdef CONFIG_ZRAM_WRITEBACK
1192 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1193 static ssize_t bd_stat_show(struct device *dev,
1194 		struct device_attribute *attr, char *buf)
1195 {
1196 	struct zram *zram = dev_to_zram(dev);
1197 	ssize_t ret;
1198 
1199 	down_read(&zram->init_lock);
1200 	ret = scnprintf(buf, PAGE_SIZE,
1201 		"%8llu %8llu %8llu\n",
1202 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1203 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1204 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1205 	up_read(&zram->init_lock);
1206 
1207 	return ret;
1208 }
1209 #endif
1210 
1211 static ssize_t debug_stat_show(struct device *dev,
1212 		struct device_attribute *attr, char *buf)
1213 {
1214 	int version = 1;
1215 	struct zram *zram = dev_to_zram(dev);
1216 	ssize_t ret;
1217 
1218 	down_read(&zram->init_lock);
1219 	ret = scnprintf(buf, PAGE_SIZE,
1220 			"version: %d\n%8llu %8llu\n",
1221 			version,
1222 			(u64)atomic64_read(&zram->stats.writestall),
1223 			(u64)atomic64_read(&zram->stats.miss_free));
1224 	up_read(&zram->init_lock);
1225 
1226 	return ret;
1227 }
1228 
1229 static DEVICE_ATTR_RO(io_stat);
1230 static DEVICE_ATTR_RO(mm_stat);
1231 #ifdef CONFIG_ZRAM_WRITEBACK
1232 static DEVICE_ATTR_RO(bd_stat);
1233 #endif
1234 static DEVICE_ATTR_RO(debug_stat);
1235 
1236 static void zram_meta_free(struct zram *zram, u64 disksize)
1237 {
1238 	size_t num_pages = disksize >> PAGE_SHIFT;
1239 	size_t index;
1240 
1241 	if (!zram->table)
1242 		return;
1243 
1244 	/* Free all pages that are still in this zram device */
1245 	for (index = 0; index < num_pages; index++)
1246 		zram_free_page(zram, index);
1247 
1248 	zs_destroy_pool(zram->mem_pool);
1249 	vfree(zram->table);
1250 	zram->table = NULL;
1251 }
1252 
1253 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1254 {
1255 	size_t num_pages;
1256 
1257 	num_pages = disksize >> PAGE_SHIFT;
1258 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1259 	if (!zram->table)
1260 		return false;
1261 
1262 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1263 	if (!zram->mem_pool) {
1264 		vfree(zram->table);
1265 		return false;
1266 	}
1267 
1268 	if (!huge_class_size)
1269 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1270 	return true;
1271 }
1272 
1273 /*
1274  * To protect concurrent access to the same index entry,
1275  * caller should hold this table index entry's bit_spinlock to
1276  * indicate this index entry is accessing.
1277  */
1278 static void zram_free_page(struct zram *zram, size_t index)
1279 {
1280 	unsigned long handle;
1281 
1282 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1283 	zram->table[index].ac_time = 0;
1284 #endif
1285 	if (zram_test_flag(zram, index, ZRAM_IDLE))
1286 		zram_clear_flag(zram, index, ZRAM_IDLE);
1287 
1288 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1289 		zram_clear_flag(zram, index, ZRAM_HUGE);
1290 		atomic64_dec(&zram->stats.huge_pages);
1291 	}
1292 
1293 	if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1294 		zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1295 
1296 	zram_set_priority(zram, index, 0);
1297 
1298 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1299 		zram_clear_flag(zram, index, ZRAM_WB);
1300 		free_block_bdev(zram, zram_get_element(zram, index));
1301 		goto out;
1302 	}
1303 
1304 	/*
1305 	 * No memory is allocated for same element filled pages.
1306 	 * Simply clear same page flag.
1307 	 */
1308 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1309 		zram_clear_flag(zram, index, ZRAM_SAME);
1310 		atomic64_dec(&zram->stats.same_pages);
1311 		goto out;
1312 	}
1313 
1314 	handle = zram_get_handle(zram, index);
1315 	if (!handle)
1316 		return;
1317 
1318 	zs_free(zram->mem_pool, handle);
1319 
1320 	atomic64_sub(zram_get_obj_size(zram, index),
1321 			&zram->stats.compr_data_size);
1322 out:
1323 	atomic64_dec(&zram->stats.pages_stored);
1324 	zram_set_handle(zram, index, 0);
1325 	zram_set_obj_size(zram, index, 0);
1326 	WARN_ON_ONCE(zram->table[index].flags &
1327 		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1328 }
1329 
1330 /*
1331  * Reads (decompresses if needed) a page from zspool (zsmalloc).
1332  * Corresponding ZRAM slot should be locked.
1333  */
1334 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1335 				 u32 index)
1336 {
1337 	struct zcomp_strm *zstrm;
1338 	unsigned long handle;
1339 	unsigned int size;
1340 	void *src, *dst;
1341 	u32 prio;
1342 	int ret;
1343 
1344 	handle = zram_get_handle(zram, index);
1345 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1346 		unsigned long value;
1347 		void *mem;
1348 
1349 		value = handle ? zram_get_element(zram, index) : 0;
1350 		mem = kmap_atomic(page);
1351 		zram_fill_page(mem, PAGE_SIZE, value);
1352 		kunmap_atomic(mem);
1353 		return 0;
1354 	}
1355 
1356 	size = zram_get_obj_size(zram, index);
1357 
1358 	if (size != PAGE_SIZE) {
1359 		prio = zram_get_priority(zram, index);
1360 		zstrm = zcomp_stream_get(zram->comps[prio]);
1361 	}
1362 
1363 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1364 	if (size == PAGE_SIZE) {
1365 		dst = kmap_atomic(page);
1366 		memcpy(dst, src, PAGE_SIZE);
1367 		kunmap_atomic(dst);
1368 		ret = 0;
1369 	} else {
1370 		dst = kmap_atomic(page);
1371 		ret = zcomp_decompress(zstrm, src, size, dst);
1372 		kunmap_atomic(dst);
1373 		zcomp_stream_put(zram->comps[prio]);
1374 	}
1375 	zs_unmap_object(zram->mem_pool, handle);
1376 	return ret;
1377 }
1378 
1379 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1380 			  struct bio *parent)
1381 {
1382 	int ret;
1383 
1384 	zram_slot_lock(zram, index);
1385 	if (!zram_test_flag(zram, index, ZRAM_WB)) {
1386 		/* Slot should be locked through out the function call */
1387 		ret = zram_read_from_zspool(zram, page, index);
1388 		zram_slot_unlock(zram, index);
1389 	} else {
1390 		/*
1391 		 * The slot should be unlocked before reading from the backing
1392 		 * device.
1393 		 */
1394 		zram_slot_unlock(zram, index);
1395 
1396 		ret = read_from_bdev(zram, page, zram_get_element(zram, index),
1397 				     parent);
1398 	}
1399 
1400 	/* Should NEVER happen. Return bio error if it does. */
1401 	if (WARN_ON(ret < 0))
1402 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1403 
1404 	return ret;
1405 }
1406 
1407 /*
1408  * Use a temporary buffer to decompress the page, as the decompressor
1409  * always expects a full page for the output.
1410  */
1411 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1412 				  u32 index, int offset)
1413 {
1414 	struct page *page = alloc_page(GFP_NOIO);
1415 	int ret;
1416 
1417 	if (!page)
1418 		return -ENOMEM;
1419 	ret = zram_read_page(zram, page, index, NULL);
1420 	if (likely(!ret))
1421 		memcpy_to_bvec(bvec, page_address(page) + offset);
1422 	__free_page(page);
1423 	return ret;
1424 }
1425 
1426 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1427 			  u32 index, int offset, struct bio *bio)
1428 {
1429 	if (is_partial_io(bvec))
1430 		return zram_bvec_read_partial(zram, bvec, index, offset);
1431 	return zram_read_page(zram, bvec->bv_page, index, bio);
1432 }
1433 
1434 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1435 {
1436 	int ret = 0;
1437 	unsigned long alloced_pages;
1438 	unsigned long handle = -ENOMEM;
1439 	unsigned int comp_len = 0;
1440 	void *src, *dst, *mem;
1441 	struct zcomp_strm *zstrm;
1442 	unsigned long element = 0;
1443 	enum zram_pageflags flags = 0;
1444 
1445 	mem = kmap_atomic(page);
1446 	if (page_same_filled(mem, &element)) {
1447 		kunmap_atomic(mem);
1448 		/* Free memory associated with this sector now. */
1449 		flags = ZRAM_SAME;
1450 		atomic64_inc(&zram->stats.same_pages);
1451 		goto out;
1452 	}
1453 	kunmap_atomic(mem);
1454 
1455 compress_again:
1456 	zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1457 	src = kmap_atomic(page);
1458 	ret = zcomp_compress(zstrm, src, &comp_len);
1459 	kunmap_atomic(src);
1460 
1461 	if (unlikely(ret)) {
1462 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1463 		pr_err("Compression failed! err=%d\n", ret);
1464 		zs_free(zram->mem_pool, handle);
1465 		return ret;
1466 	}
1467 
1468 	if (comp_len >= huge_class_size)
1469 		comp_len = PAGE_SIZE;
1470 	/*
1471 	 * handle allocation has 2 paths:
1472 	 * a) fast path is executed with preemption disabled (for
1473 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1474 	 *  since we can't sleep;
1475 	 * b) slow path enables preemption and attempts to allocate
1476 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1477 	 *  put per-cpu compression stream and, thus, to re-do
1478 	 *  the compression once handle is allocated.
1479 	 *
1480 	 * if we have a 'non-null' handle here then we are coming
1481 	 * from the slow path and handle has already been allocated.
1482 	 */
1483 	if (IS_ERR_VALUE(handle))
1484 		handle = zs_malloc(zram->mem_pool, comp_len,
1485 				__GFP_KSWAPD_RECLAIM |
1486 				__GFP_NOWARN |
1487 				__GFP_HIGHMEM |
1488 				__GFP_MOVABLE);
1489 	if (IS_ERR_VALUE(handle)) {
1490 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1491 		atomic64_inc(&zram->stats.writestall);
1492 		handle = zs_malloc(zram->mem_pool, comp_len,
1493 				GFP_NOIO | __GFP_HIGHMEM |
1494 				__GFP_MOVABLE);
1495 		if (IS_ERR_VALUE(handle))
1496 			return PTR_ERR((void *)handle);
1497 
1498 		if (comp_len != PAGE_SIZE)
1499 			goto compress_again;
1500 		/*
1501 		 * If the page is not compressible, you need to acquire the
1502 		 * lock and execute the code below. The zcomp_stream_get()
1503 		 * call is needed to disable the cpu hotplug and grab the
1504 		 * zstrm buffer back. It is necessary that the dereferencing
1505 		 * of the zstrm variable below occurs correctly.
1506 		 */
1507 		zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1508 	}
1509 
1510 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1511 	update_used_max(zram, alloced_pages);
1512 
1513 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1514 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1515 		zs_free(zram->mem_pool, handle);
1516 		return -ENOMEM;
1517 	}
1518 
1519 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1520 
1521 	src = zstrm->buffer;
1522 	if (comp_len == PAGE_SIZE)
1523 		src = kmap_atomic(page);
1524 	memcpy(dst, src, comp_len);
1525 	if (comp_len == PAGE_SIZE)
1526 		kunmap_atomic(src);
1527 
1528 	zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1529 	zs_unmap_object(zram->mem_pool, handle);
1530 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1531 out:
1532 	/*
1533 	 * Free memory associated with this sector
1534 	 * before overwriting unused sectors.
1535 	 */
1536 	zram_slot_lock(zram, index);
1537 	zram_free_page(zram, index);
1538 
1539 	if (comp_len == PAGE_SIZE) {
1540 		zram_set_flag(zram, index, ZRAM_HUGE);
1541 		atomic64_inc(&zram->stats.huge_pages);
1542 		atomic64_inc(&zram->stats.huge_pages_since);
1543 	}
1544 
1545 	if (flags) {
1546 		zram_set_flag(zram, index, flags);
1547 		zram_set_element(zram, index, element);
1548 	}  else {
1549 		zram_set_handle(zram, index, handle);
1550 		zram_set_obj_size(zram, index, comp_len);
1551 	}
1552 	zram_slot_unlock(zram, index);
1553 
1554 	/* Update stats */
1555 	atomic64_inc(&zram->stats.pages_stored);
1556 	return ret;
1557 }
1558 
1559 /*
1560  * This is a partial IO. Read the full page before writing the changes.
1561  */
1562 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1563 				   u32 index, int offset, struct bio *bio)
1564 {
1565 	struct page *page = alloc_page(GFP_NOIO);
1566 	int ret;
1567 
1568 	if (!page)
1569 		return -ENOMEM;
1570 
1571 	ret = zram_read_page(zram, page, index, bio);
1572 	if (!ret) {
1573 		memcpy_from_bvec(page_address(page) + offset, bvec);
1574 		ret = zram_write_page(zram, page, index);
1575 	}
1576 	__free_page(page);
1577 	return ret;
1578 }
1579 
1580 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1581 			   u32 index, int offset, struct bio *bio)
1582 {
1583 	if (is_partial_io(bvec))
1584 		return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1585 	return zram_write_page(zram, bvec->bv_page, index);
1586 }
1587 
1588 #ifdef CONFIG_ZRAM_MULTI_COMP
1589 /*
1590  * This function will decompress (unless it's ZRAM_HUGE) the page and then
1591  * attempt to compress it using provided compression algorithm priority
1592  * (which is potentially more effective).
1593  *
1594  * Corresponding ZRAM slot should be locked.
1595  */
1596 static int zram_recompress(struct zram *zram, u32 index, struct page *page,
1597 			   u32 threshold, u32 prio, u32 prio_max)
1598 {
1599 	struct zcomp_strm *zstrm = NULL;
1600 	unsigned long handle_old;
1601 	unsigned long handle_new;
1602 	unsigned int comp_len_old;
1603 	unsigned int comp_len_new;
1604 	unsigned int class_index_old;
1605 	unsigned int class_index_new;
1606 	u32 num_recomps = 0;
1607 	void *src, *dst;
1608 	int ret;
1609 
1610 	handle_old = zram_get_handle(zram, index);
1611 	if (!handle_old)
1612 		return -EINVAL;
1613 
1614 	comp_len_old = zram_get_obj_size(zram, index);
1615 	/*
1616 	 * Do not recompress objects that are already "small enough".
1617 	 */
1618 	if (comp_len_old < threshold)
1619 		return 0;
1620 
1621 	ret = zram_read_from_zspool(zram, page, index);
1622 	if (ret)
1623 		return ret;
1624 
1625 	/*
1626 	 * We touched this entry so mark it as non-IDLE. This makes sure that
1627 	 * we don't preserve IDLE flag and don't incorrectly pick this entry
1628 	 * for different post-processing type (e.g. writeback).
1629 	 */
1630 	zram_clear_flag(zram, index, ZRAM_IDLE);
1631 
1632 	class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
1633 	/*
1634 	 * Iterate the secondary comp algorithms list (in order of priority)
1635 	 * and try to recompress the page.
1636 	 */
1637 	for (; prio < prio_max; prio++) {
1638 		if (!zram->comps[prio])
1639 			continue;
1640 
1641 		/*
1642 		 * Skip if the object is already re-compressed with a higher
1643 		 * priority algorithm (or same algorithm).
1644 		 */
1645 		if (prio <= zram_get_priority(zram, index))
1646 			continue;
1647 
1648 		num_recomps++;
1649 		zstrm = zcomp_stream_get(zram->comps[prio]);
1650 		src = kmap_atomic(page);
1651 		ret = zcomp_compress(zstrm, src, &comp_len_new);
1652 		kunmap_atomic(src);
1653 
1654 		if (ret) {
1655 			zcomp_stream_put(zram->comps[prio]);
1656 			return ret;
1657 		}
1658 
1659 		class_index_new = zs_lookup_class_index(zram->mem_pool,
1660 							comp_len_new);
1661 
1662 		/* Continue until we make progress */
1663 		if (class_index_new >= class_index_old ||
1664 		    (threshold && comp_len_new >= threshold)) {
1665 			zcomp_stream_put(zram->comps[prio]);
1666 			continue;
1667 		}
1668 
1669 		/* Recompression was successful so break out */
1670 		break;
1671 	}
1672 
1673 	/*
1674 	 * We did not try to recompress, e.g. when we have only one
1675 	 * secondary algorithm and the page is already recompressed
1676 	 * using that algorithm
1677 	 */
1678 	if (!zstrm)
1679 		return 0;
1680 
1681 	if (class_index_new >= class_index_old) {
1682 		/*
1683 		 * Secondary algorithms failed to re-compress the page
1684 		 * in a way that would save memory, mark the object as
1685 		 * incompressible so that we will not try to compress
1686 		 * it again.
1687 		 *
1688 		 * We need to make sure that all secondary algorithms have
1689 		 * failed, so we test if the number of recompressions matches
1690 		 * the number of active secondary algorithms.
1691 		 */
1692 		if (num_recomps == zram->num_active_comps - 1)
1693 			zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1694 		return 0;
1695 	}
1696 
1697 	/* Successful recompression but above threshold */
1698 	if (threshold && comp_len_new >= threshold)
1699 		return 0;
1700 
1701 	/*
1702 	 * No direct reclaim (slow path) for handle allocation and no
1703 	 * re-compression attempt (unlike in zram_write_bvec()) since
1704 	 * we already have stored that object in zsmalloc. If we cannot
1705 	 * alloc memory for recompressed object then we bail out and
1706 	 * simply keep the old (existing) object in zsmalloc.
1707 	 */
1708 	handle_new = zs_malloc(zram->mem_pool, comp_len_new,
1709 			       __GFP_KSWAPD_RECLAIM |
1710 			       __GFP_NOWARN |
1711 			       __GFP_HIGHMEM |
1712 			       __GFP_MOVABLE);
1713 	if (IS_ERR_VALUE(handle_new)) {
1714 		zcomp_stream_put(zram->comps[prio]);
1715 		return PTR_ERR((void *)handle_new);
1716 	}
1717 
1718 	dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
1719 	memcpy(dst, zstrm->buffer, comp_len_new);
1720 	zcomp_stream_put(zram->comps[prio]);
1721 
1722 	zs_unmap_object(zram->mem_pool, handle_new);
1723 
1724 	zram_free_page(zram, index);
1725 	zram_set_handle(zram, index, handle_new);
1726 	zram_set_obj_size(zram, index, comp_len_new);
1727 	zram_set_priority(zram, index, prio);
1728 
1729 	atomic64_add(comp_len_new, &zram->stats.compr_data_size);
1730 	atomic64_inc(&zram->stats.pages_stored);
1731 
1732 	return 0;
1733 }
1734 
1735 #define RECOMPRESS_IDLE		(1 << 0)
1736 #define RECOMPRESS_HUGE		(1 << 1)
1737 
1738 static ssize_t recompress_store(struct device *dev,
1739 				struct device_attribute *attr,
1740 				const char *buf, size_t len)
1741 {
1742 	u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
1743 	struct zram *zram = dev_to_zram(dev);
1744 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1745 	char *args, *param, *val, *algo = NULL;
1746 	u32 mode = 0, threshold = 0;
1747 	unsigned long index;
1748 	struct page *page;
1749 	ssize_t ret;
1750 
1751 	args = skip_spaces(buf);
1752 	while (*args) {
1753 		args = next_arg(args, &param, &val);
1754 
1755 		if (!val || !*val)
1756 			return -EINVAL;
1757 
1758 		if (!strcmp(param, "type")) {
1759 			if (!strcmp(val, "idle"))
1760 				mode = RECOMPRESS_IDLE;
1761 			if (!strcmp(val, "huge"))
1762 				mode = RECOMPRESS_HUGE;
1763 			if (!strcmp(val, "huge_idle"))
1764 				mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
1765 			continue;
1766 		}
1767 
1768 		if (!strcmp(param, "threshold")) {
1769 			/*
1770 			 * We will re-compress only idle objects equal or
1771 			 * greater in size than watermark.
1772 			 */
1773 			ret = kstrtouint(val, 10, &threshold);
1774 			if (ret)
1775 				return ret;
1776 			continue;
1777 		}
1778 
1779 		if (!strcmp(param, "algo")) {
1780 			algo = val;
1781 			continue;
1782 		}
1783 	}
1784 
1785 	if (threshold >= huge_class_size)
1786 		return -EINVAL;
1787 
1788 	down_read(&zram->init_lock);
1789 	if (!init_done(zram)) {
1790 		ret = -EINVAL;
1791 		goto release_init_lock;
1792 	}
1793 
1794 	if (algo) {
1795 		bool found = false;
1796 
1797 		for (; prio < ZRAM_MAX_COMPS; prio++) {
1798 			if (!zram->comp_algs[prio])
1799 				continue;
1800 
1801 			if (!strcmp(zram->comp_algs[prio], algo)) {
1802 				prio_max = min(prio + 1, ZRAM_MAX_COMPS);
1803 				found = true;
1804 				break;
1805 			}
1806 		}
1807 
1808 		if (!found) {
1809 			ret = -EINVAL;
1810 			goto release_init_lock;
1811 		}
1812 	}
1813 
1814 	page = alloc_page(GFP_KERNEL);
1815 	if (!page) {
1816 		ret = -ENOMEM;
1817 		goto release_init_lock;
1818 	}
1819 
1820 	ret = len;
1821 	for (index = 0; index < nr_pages; index++) {
1822 		int err = 0;
1823 
1824 		zram_slot_lock(zram, index);
1825 
1826 		if (!zram_allocated(zram, index))
1827 			goto next;
1828 
1829 		if (mode & RECOMPRESS_IDLE &&
1830 		    !zram_test_flag(zram, index, ZRAM_IDLE))
1831 			goto next;
1832 
1833 		if (mode & RECOMPRESS_HUGE &&
1834 		    !zram_test_flag(zram, index, ZRAM_HUGE))
1835 			goto next;
1836 
1837 		if (zram_test_flag(zram, index, ZRAM_WB) ||
1838 		    zram_test_flag(zram, index, ZRAM_UNDER_WB) ||
1839 		    zram_test_flag(zram, index, ZRAM_SAME) ||
1840 		    zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1841 			goto next;
1842 
1843 		err = zram_recompress(zram, index, page, threshold,
1844 				      prio, prio_max);
1845 next:
1846 		zram_slot_unlock(zram, index);
1847 		if (err) {
1848 			ret = err;
1849 			break;
1850 		}
1851 
1852 		cond_resched();
1853 	}
1854 
1855 	__free_page(page);
1856 
1857 release_init_lock:
1858 	up_read(&zram->init_lock);
1859 	return ret;
1860 }
1861 #endif
1862 
1863 static void zram_bio_discard(struct zram *zram, struct bio *bio)
1864 {
1865 	size_t n = bio->bi_iter.bi_size;
1866 	u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1867 	u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1868 			SECTOR_SHIFT;
1869 
1870 	/*
1871 	 * zram manages data in physical block size units. Because logical block
1872 	 * size isn't identical with physical block size on some arch, we
1873 	 * could get a discard request pointing to a specific offset within a
1874 	 * certain physical block.  Although we can handle this request by
1875 	 * reading that physiclal block and decompressing and partially zeroing
1876 	 * and re-compressing and then re-storing it, this isn't reasonable
1877 	 * because our intent with a discard request is to save memory.  So
1878 	 * skipping this logical block is appropriate here.
1879 	 */
1880 	if (offset) {
1881 		if (n <= (PAGE_SIZE - offset))
1882 			return;
1883 
1884 		n -= (PAGE_SIZE - offset);
1885 		index++;
1886 	}
1887 
1888 	while (n >= PAGE_SIZE) {
1889 		zram_slot_lock(zram, index);
1890 		zram_free_page(zram, index);
1891 		zram_slot_unlock(zram, index);
1892 		atomic64_inc(&zram->stats.notify_free);
1893 		index++;
1894 		n -= PAGE_SIZE;
1895 	}
1896 
1897 	bio_endio(bio);
1898 }
1899 
1900 static void zram_bio_read(struct zram *zram, struct bio *bio)
1901 {
1902 	unsigned long start_time = bio_start_io_acct(bio);
1903 	struct bvec_iter iter = bio->bi_iter;
1904 
1905 	do {
1906 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1907 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1908 				SECTOR_SHIFT;
1909 		struct bio_vec bv = bio_iter_iovec(bio, iter);
1910 
1911 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1912 
1913 		if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
1914 			atomic64_inc(&zram->stats.failed_reads);
1915 			bio->bi_status = BLK_STS_IOERR;
1916 			break;
1917 		}
1918 		flush_dcache_page(bv.bv_page);
1919 
1920 		zram_slot_lock(zram, index);
1921 		zram_accessed(zram, index);
1922 		zram_slot_unlock(zram, index);
1923 
1924 		bio_advance_iter_single(bio, &iter, bv.bv_len);
1925 	} while (iter.bi_size);
1926 
1927 	bio_end_io_acct(bio, start_time);
1928 	bio_endio(bio);
1929 }
1930 
1931 static void zram_bio_write(struct zram *zram, struct bio *bio)
1932 {
1933 	unsigned long start_time = bio_start_io_acct(bio);
1934 	struct bvec_iter iter = bio->bi_iter;
1935 
1936 	do {
1937 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1938 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1939 				SECTOR_SHIFT;
1940 		struct bio_vec bv = bio_iter_iovec(bio, iter);
1941 
1942 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1943 
1944 		if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
1945 			atomic64_inc(&zram->stats.failed_writes);
1946 			bio->bi_status = BLK_STS_IOERR;
1947 			break;
1948 		}
1949 
1950 		zram_slot_lock(zram, index);
1951 		zram_accessed(zram, index);
1952 		zram_slot_unlock(zram, index);
1953 
1954 		bio_advance_iter_single(bio, &iter, bv.bv_len);
1955 	} while (iter.bi_size);
1956 
1957 	bio_end_io_acct(bio, start_time);
1958 	bio_endio(bio);
1959 }
1960 
1961 /*
1962  * Handler function for all zram I/O requests.
1963  */
1964 static void zram_submit_bio(struct bio *bio)
1965 {
1966 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1967 
1968 	switch (bio_op(bio)) {
1969 	case REQ_OP_READ:
1970 		zram_bio_read(zram, bio);
1971 		break;
1972 	case REQ_OP_WRITE:
1973 		zram_bio_write(zram, bio);
1974 		break;
1975 	case REQ_OP_DISCARD:
1976 	case REQ_OP_WRITE_ZEROES:
1977 		zram_bio_discard(zram, bio);
1978 		break;
1979 	default:
1980 		WARN_ON_ONCE(1);
1981 		bio_endio(bio);
1982 	}
1983 }
1984 
1985 static void zram_slot_free_notify(struct block_device *bdev,
1986 				unsigned long index)
1987 {
1988 	struct zram *zram;
1989 
1990 	zram = bdev->bd_disk->private_data;
1991 
1992 	atomic64_inc(&zram->stats.notify_free);
1993 	if (!zram_slot_trylock(zram, index)) {
1994 		atomic64_inc(&zram->stats.miss_free);
1995 		return;
1996 	}
1997 
1998 	zram_free_page(zram, index);
1999 	zram_slot_unlock(zram, index);
2000 }
2001 
2002 static void zram_destroy_comps(struct zram *zram)
2003 {
2004 	u32 prio;
2005 
2006 	for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
2007 		struct zcomp *comp = zram->comps[prio];
2008 
2009 		zram->comps[prio] = NULL;
2010 		if (!comp)
2011 			continue;
2012 		zcomp_destroy(comp);
2013 		zram->num_active_comps--;
2014 	}
2015 
2016 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2017 		/* Do not free statically defined compression algorithms */
2018 		if (zram->comp_algs[prio] != default_compressor)
2019 			kfree(zram->comp_algs[prio]);
2020 		zram->comp_algs[prio] = NULL;
2021 	}
2022 }
2023 
2024 static void zram_reset_device(struct zram *zram)
2025 {
2026 	down_write(&zram->init_lock);
2027 
2028 	zram->limit_pages = 0;
2029 
2030 	set_capacity_and_notify(zram->disk, 0);
2031 	part_stat_set_all(zram->disk->part0, 0);
2032 
2033 	/* I/O operation under all of CPU are done so let's free */
2034 	zram_meta_free(zram, zram->disksize);
2035 	zram->disksize = 0;
2036 	zram_destroy_comps(zram);
2037 	memset(&zram->stats, 0, sizeof(zram->stats));
2038 	reset_bdev(zram);
2039 
2040 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2041 	up_write(&zram->init_lock);
2042 }
2043 
2044 static ssize_t disksize_store(struct device *dev,
2045 		struct device_attribute *attr, const char *buf, size_t len)
2046 {
2047 	u64 disksize;
2048 	struct zcomp *comp;
2049 	struct zram *zram = dev_to_zram(dev);
2050 	int err;
2051 	u32 prio;
2052 
2053 	disksize = memparse(buf, NULL);
2054 	if (!disksize)
2055 		return -EINVAL;
2056 
2057 	down_write(&zram->init_lock);
2058 	if (init_done(zram)) {
2059 		pr_info("Cannot change disksize for initialized device\n");
2060 		err = -EBUSY;
2061 		goto out_unlock;
2062 	}
2063 
2064 	disksize = PAGE_ALIGN(disksize);
2065 	if (!zram_meta_alloc(zram, disksize)) {
2066 		err = -ENOMEM;
2067 		goto out_unlock;
2068 	}
2069 
2070 	for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
2071 		if (!zram->comp_algs[prio])
2072 			continue;
2073 
2074 		comp = zcomp_create(zram->comp_algs[prio]);
2075 		if (IS_ERR(comp)) {
2076 			pr_err("Cannot initialise %s compressing backend\n",
2077 			       zram->comp_algs[prio]);
2078 			err = PTR_ERR(comp);
2079 			goto out_free_comps;
2080 		}
2081 
2082 		zram->comps[prio] = comp;
2083 		zram->num_active_comps++;
2084 	}
2085 	zram->disksize = disksize;
2086 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2087 	up_write(&zram->init_lock);
2088 
2089 	return len;
2090 
2091 out_free_comps:
2092 	zram_destroy_comps(zram);
2093 	zram_meta_free(zram, disksize);
2094 out_unlock:
2095 	up_write(&zram->init_lock);
2096 	return err;
2097 }
2098 
2099 static ssize_t reset_store(struct device *dev,
2100 		struct device_attribute *attr, const char *buf, size_t len)
2101 {
2102 	int ret;
2103 	unsigned short do_reset;
2104 	struct zram *zram;
2105 	struct gendisk *disk;
2106 
2107 	ret = kstrtou16(buf, 10, &do_reset);
2108 	if (ret)
2109 		return ret;
2110 
2111 	if (!do_reset)
2112 		return -EINVAL;
2113 
2114 	zram = dev_to_zram(dev);
2115 	disk = zram->disk;
2116 
2117 	mutex_lock(&disk->open_mutex);
2118 	/* Do not reset an active device or claimed device */
2119 	if (disk_openers(disk) || zram->claim) {
2120 		mutex_unlock(&disk->open_mutex);
2121 		return -EBUSY;
2122 	}
2123 
2124 	/* From now on, anyone can't open /dev/zram[0-9] */
2125 	zram->claim = true;
2126 	mutex_unlock(&disk->open_mutex);
2127 
2128 	/* Make sure all the pending I/O are finished */
2129 	sync_blockdev(disk->part0);
2130 	zram_reset_device(zram);
2131 
2132 	mutex_lock(&disk->open_mutex);
2133 	zram->claim = false;
2134 	mutex_unlock(&disk->open_mutex);
2135 
2136 	return len;
2137 }
2138 
2139 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2140 {
2141 	struct zram *zram = disk->private_data;
2142 
2143 	WARN_ON(!mutex_is_locked(&disk->open_mutex));
2144 
2145 	/* zram was claimed to reset so open request fails */
2146 	if (zram->claim)
2147 		return -EBUSY;
2148 	return 0;
2149 }
2150 
2151 static const struct block_device_operations zram_devops = {
2152 	.open = zram_open,
2153 	.submit_bio = zram_submit_bio,
2154 	.swap_slot_free_notify = zram_slot_free_notify,
2155 	.owner = THIS_MODULE
2156 };
2157 
2158 static DEVICE_ATTR_WO(compact);
2159 static DEVICE_ATTR_RW(disksize);
2160 static DEVICE_ATTR_RO(initstate);
2161 static DEVICE_ATTR_WO(reset);
2162 static DEVICE_ATTR_WO(mem_limit);
2163 static DEVICE_ATTR_WO(mem_used_max);
2164 static DEVICE_ATTR_WO(idle);
2165 static DEVICE_ATTR_RW(max_comp_streams);
2166 static DEVICE_ATTR_RW(comp_algorithm);
2167 #ifdef CONFIG_ZRAM_WRITEBACK
2168 static DEVICE_ATTR_RW(backing_dev);
2169 static DEVICE_ATTR_WO(writeback);
2170 static DEVICE_ATTR_RW(writeback_limit);
2171 static DEVICE_ATTR_RW(writeback_limit_enable);
2172 #endif
2173 #ifdef CONFIG_ZRAM_MULTI_COMP
2174 static DEVICE_ATTR_RW(recomp_algorithm);
2175 static DEVICE_ATTR_WO(recompress);
2176 #endif
2177 
2178 static struct attribute *zram_disk_attrs[] = {
2179 	&dev_attr_disksize.attr,
2180 	&dev_attr_initstate.attr,
2181 	&dev_attr_reset.attr,
2182 	&dev_attr_compact.attr,
2183 	&dev_attr_mem_limit.attr,
2184 	&dev_attr_mem_used_max.attr,
2185 	&dev_attr_idle.attr,
2186 	&dev_attr_max_comp_streams.attr,
2187 	&dev_attr_comp_algorithm.attr,
2188 #ifdef CONFIG_ZRAM_WRITEBACK
2189 	&dev_attr_backing_dev.attr,
2190 	&dev_attr_writeback.attr,
2191 	&dev_attr_writeback_limit.attr,
2192 	&dev_attr_writeback_limit_enable.attr,
2193 #endif
2194 	&dev_attr_io_stat.attr,
2195 	&dev_attr_mm_stat.attr,
2196 #ifdef CONFIG_ZRAM_WRITEBACK
2197 	&dev_attr_bd_stat.attr,
2198 #endif
2199 	&dev_attr_debug_stat.attr,
2200 #ifdef CONFIG_ZRAM_MULTI_COMP
2201 	&dev_attr_recomp_algorithm.attr,
2202 	&dev_attr_recompress.attr,
2203 #endif
2204 	NULL,
2205 };
2206 
2207 ATTRIBUTE_GROUPS(zram_disk);
2208 
2209 /*
2210  * Allocate and initialize new zram device. the function returns
2211  * '>= 0' device_id upon success, and negative value otherwise.
2212  */
2213 static int zram_add(void)
2214 {
2215 	struct zram *zram;
2216 	int ret, device_id;
2217 
2218 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2219 	if (!zram)
2220 		return -ENOMEM;
2221 
2222 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2223 	if (ret < 0)
2224 		goto out_free_dev;
2225 	device_id = ret;
2226 
2227 	init_rwsem(&zram->init_lock);
2228 #ifdef CONFIG_ZRAM_WRITEBACK
2229 	spin_lock_init(&zram->wb_limit_lock);
2230 #endif
2231 
2232 	/* gendisk structure */
2233 	zram->disk = blk_alloc_disk(NUMA_NO_NODE);
2234 	if (!zram->disk) {
2235 		pr_err("Error allocating disk structure for device %d\n",
2236 			device_id);
2237 		ret = -ENOMEM;
2238 		goto out_free_idr;
2239 	}
2240 
2241 	zram->disk->major = zram_major;
2242 	zram->disk->first_minor = device_id;
2243 	zram->disk->minors = 1;
2244 	zram->disk->flags |= GENHD_FL_NO_PART;
2245 	zram->disk->fops = &zram_devops;
2246 	zram->disk->private_data = zram;
2247 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2248 
2249 	/* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2250 	set_capacity(zram->disk, 0);
2251 	/* zram devices sort of resembles non-rotational disks */
2252 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
2253 	blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue);
2254 
2255 	/*
2256 	 * To ensure that we always get PAGE_SIZE aligned
2257 	 * and n*PAGE_SIZED sized I/O requests.
2258 	 */
2259 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
2260 	blk_queue_logical_block_size(zram->disk->queue,
2261 					ZRAM_LOGICAL_BLOCK_SIZE);
2262 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
2263 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
2264 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2265 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
2266 
2267 	/*
2268 	 * zram_bio_discard() will clear all logical blocks if logical block
2269 	 * size is identical with physical block size(PAGE_SIZE). But if it is
2270 	 * different, we will skip discarding some parts of logical blocks in
2271 	 * the part of the request range which isn't aligned to physical block
2272 	 * size.  So we can't ensure that all discarded logical blocks are
2273 	 * zeroed.
2274 	 */
2275 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
2276 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
2277 
2278 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
2279 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2280 	if (ret)
2281 		goto out_cleanup_disk;
2282 
2283 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2284 
2285 	zram_debugfs_register(zram);
2286 	pr_info("Added device: %s\n", zram->disk->disk_name);
2287 	return device_id;
2288 
2289 out_cleanup_disk:
2290 	put_disk(zram->disk);
2291 out_free_idr:
2292 	idr_remove(&zram_index_idr, device_id);
2293 out_free_dev:
2294 	kfree(zram);
2295 	return ret;
2296 }
2297 
2298 static int zram_remove(struct zram *zram)
2299 {
2300 	bool claimed;
2301 
2302 	mutex_lock(&zram->disk->open_mutex);
2303 	if (disk_openers(zram->disk)) {
2304 		mutex_unlock(&zram->disk->open_mutex);
2305 		return -EBUSY;
2306 	}
2307 
2308 	claimed = zram->claim;
2309 	if (!claimed)
2310 		zram->claim = true;
2311 	mutex_unlock(&zram->disk->open_mutex);
2312 
2313 	zram_debugfs_unregister(zram);
2314 
2315 	if (claimed) {
2316 		/*
2317 		 * If we were claimed by reset_store(), del_gendisk() will
2318 		 * wait until reset_store() is done, so nothing need to do.
2319 		 */
2320 		;
2321 	} else {
2322 		/* Make sure all the pending I/O are finished */
2323 		sync_blockdev(zram->disk->part0);
2324 		zram_reset_device(zram);
2325 	}
2326 
2327 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2328 
2329 	del_gendisk(zram->disk);
2330 
2331 	/* del_gendisk drains pending reset_store */
2332 	WARN_ON_ONCE(claimed && zram->claim);
2333 
2334 	/*
2335 	 * disksize_store() may be called in between zram_reset_device()
2336 	 * and del_gendisk(), so run the last reset to avoid leaking
2337 	 * anything allocated with disksize_store()
2338 	 */
2339 	zram_reset_device(zram);
2340 
2341 	put_disk(zram->disk);
2342 	kfree(zram);
2343 	return 0;
2344 }
2345 
2346 /* zram-control sysfs attributes */
2347 
2348 /*
2349  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2350  * sense that reading from this file does alter the state of your system -- it
2351  * creates a new un-initialized zram device and returns back this device's
2352  * device_id (or an error code if it fails to create a new device).
2353  */
2354 static ssize_t hot_add_show(const struct class *class,
2355 			const struct class_attribute *attr,
2356 			char *buf)
2357 {
2358 	int ret;
2359 
2360 	mutex_lock(&zram_index_mutex);
2361 	ret = zram_add();
2362 	mutex_unlock(&zram_index_mutex);
2363 
2364 	if (ret < 0)
2365 		return ret;
2366 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2367 }
2368 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2369 static struct class_attribute class_attr_hot_add =
2370 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2371 
2372 static ssize_t hot_remove_store(const struct class *class,
2373 			const struct class_attribute *attr,
2374 			const char *buf,
2375 			size_t count)
2376 {
2377 	struct zram *zram;
2378 	int ret, dev_id;
2379 
2380 	/* dev_id is gendisk->first_minor, which is `int' */
2381 	ret = kstrtoint(buf, 10, &dev_id);
2382 	if (ret)
2383 		return ret;
2384 	if (dev_id < 0)
2385 		return -EINVAL;
2386 
2387 	mutex_lock(&zram_index_mutex);
2388 
2389 	zram = idr_find(&zram_index_idr, dev_id);
2390 	if (zram) {
2391 		ret = zram_remove(zram);
2392 		if (!ret)
2393 			idr_remove(&zram_index_idr, dev_id);
2394 	} else {
2395 		ret = -ENODEV;
2396 	}
2397 
2398 	mutex_unlock(&zram_index_mutex);
2399 	return ret ? ret : count;
2400 }
2401 static CLASS_ATTR_WO(hot_remove);
2402 
2403 static struct attribute *zram_control_class_attrs[] = {
2404 	&class_attr_hot_add.attr,
2405 	&class_attr_hot_remove.attr,
2406 	NULL,
2407 };
2408 ATTRIBUTE_GROUPS(zram_control_class);
2409 
2410 static struct class zram_control_class = {
2411 	.name		= "zram-control",
2412 	.class_groups	= zram_control_class_groups,
2413 };
2414 
2415 static int zram_remove_cb(int id, void *ptr, void *data)
2416 {
2417 	WARN_ON_ONCE(zram_remove(ptr));
2418 	return 0;
2419 }
2420 
2421 static void destroy_devices(void)
2422 {
2423 	class_unregister(&zram_control_class);
2424 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2425 	zram_debugfs_destroy();
2426 	idr_destroy(&zram_index_idr);
2427 	unregister_blkdev(zram_major, "zram");
2428 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2429 }
2430 
2431 static int __init zram_init(void)
2432 {
2433 	int ret;
2434 
2435 	BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG);
2436 
2437 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2438 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2439 	if (ret < 0)
2440 		return ret;
2441 
2442 	ret = class_register(&zram_control_class);
2443 	if (ret) {
2444 		pr_err("Unable to register zram-control class\n");
2445 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2446 		return ret;
2447 	}
2448 
2449 	zram_debugfs_create();
2450 	zram_major = register_blkdev(0, "zram");
2451 	if (zram_major <= 0) {
2452 		pr_err("Unable to get major number\n");
2453 		class_unregister(&zram_control_class);
2454 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2455 		return -EBUSY;
2456 	}
2457 
2458 	while (num_devices != 0) {
2459 		mutex_lock(&zram_index_mutex);
2460 		ret = zram_add();
2461 		mutex_unlock(&zram_index_mutex);
2462 		if (ret < 0)
2463 			goto out_error;
2464 		num_devices--;
2465 	}
2466 
2467 	return 0;
2468 
2469 out_error:
2470 	destroy_devices();
2471 	return ret;
2472 }
2473 
2474 static void __exit zram_exit(void)
2475 {
2476 	destroy_devices();
2477 }
2478 
2479 module_init(zram_init);
2480 module_exit(zram_exit);
2481 
2482 module_param(num_devices, uint, 0);
2483 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2484 
2485 MODULE_LICENSE("Dual BSD/GPL");
2486 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2487 MODULE_DESCRIPTION("Compressed RAM Block Device");
2488