1 /* 2 * Compressed RAM block device 3 * 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta 5 * 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the licence that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 * 13 */ 14 15 #define KMSG_COMPONENT "zram" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/bitops.h> 22 #include <linux/blkdev.h> 23 #include <linux/buffer_head.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/vmalloc.h> 30 #include <linux/err.h> 31 #include <linux/idr.h> 32 #include <linux/sysfs.h> 33 #include <linux/debugfs.h> 34 #include <linux/cpuhotplug.h> 35 #include <linux/part_stat.h> 36 37 #include "zram_drv.h" 38 39 static DEFINE_IDR(zram_index_idr); 40 /* idr index must be protected */ 41 static DEFINE_MUTEX(zram_index_mutex); 42 43 static int zram_major; 44 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; 45 46 /* Module params (documentation at end) */ 47 static unsigned int num_devices = 1; 48 /* 49 * Pages that compress to sizes equals or greater than this are stored 50 * uncompressed in memory. 51 */ 52 static size_t huge_class_size; 53 54 static const struct block_device_operations zram_devops; 55 56 static void zram_free_page(struct zram *zram, size_t index); 57 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 58 struct bio *parent); 59 60 static int zram_slot_trylock(struct zram *zram, u32 index) 61 { 62 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); 63 } 64 65 static void zram_slot_lock(struct zram *zram, u32 index) 66 { 67 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); 68 } 69 70 static void zram_slot_unlock(struct zram *zram, u32 index) 71 { 72 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); 73 } 74 75 static inline bool init_done(struct zram *zram) 76 { 77 return zram->disksize; 78 } 79 80 static inline struct zram *dev_to_zram(struct device *dev) 81 { 82 return (struct zram *)dev_to_disk(dev)->private_data; 83 } 84 85 static unsigned long zram_get_handle(struct zram *zram, u32 index) 86 { 87 return zram->table[index].handle; 88 } 89 90 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) 91 { 92 zram->table[index].handle = handle; 93 } 94 95 /* flag operations require table entry bit_spin_lock() being held */ 96 static bool zram_test_flag(struct zram *zram, u32 index, 97 enum zram_pageflags flag) 98 { 99 return zram->table[index].flags & BIT(flag); 100 } 101 102 static void zram_set_flag(struct zram *zram, u32 index, 103 enum zram_pageflags flag) 104 { 105 zram->table[index].flags |= BIT(flag); 106 } 107 108 static void zram_clear_flag(struct zram *zram, u32 index, 109 enum zram_pageflags flag) 110 { 111 zram->table[index].flags &= ~BIT(flag); 112 } 113 114 static inline void zram_set_element(struct zram *zram, u32 index, 115 unsigned long element) 116 { 117 zram->table[index].element = element; 118 } 119 120 static unsigned long zram_get_element(struct zram *zram, u32 index) 121 { 122 return zram->table[index].element; 123 } 124 125 static size_t zram_get_obj_size(struct zram *zram, u32 index) 126 { 127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); 128 } 129 130 static void zram_set_obj_size(struct zram *zram, 131 u32 index, size_t size) 132 { 133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; 134 135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; 136 } 137 138 static inline bool zram_allocated(struct zram *zram, u32 index) 139 { 140 return zram_get_obj_size(zram, index) || 141 zram_test_flag(zram, index, ZRAM_SAME) || 142 zram_test_flag(zram, index, ZRAM_WB); 143 } 144 145 #if PAGE_SIZE != 4096 146 static inline bool is_partial_io(struct bio_vec *bvec) 147 { 148 return bvec->bv_len != PAGE_SIZE; 149 } 150 #define ZRAM_PARTIAL_IO 1 151 #else 152 static inline bool is_partial_io(struct bio_vec *bvec) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) 159 { 160 prio &= ZRAM_COMP_PRIORITY_MASK; 161 /* 162 * Clear previous priority value first, in case if we recompress 163 * further an already recompressed page 164 */ 165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << 166 ZRAM_COMP_PRIORITY_BIT1); 167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); 168 } 169 170 static inline u32 zram_get_priority(struct zram *zram, u32 index) 171 { 172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; 173 174 return prio & ZRAM_COMP_PRIORITY_MASK; 175 } 176 177 static void zram_accessed(struct zram *zram, u32 index) 178 { 179 zram_clear_flag(zram, index, ZRAM_IDLE); 180 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 181 zram->table[index].ac_time = ktime_get_boottime(); 182 #endif 183 } 184 185 static inline void update_used_max(struct zram *zram, 186 const unsigned long pages) 187 { 188 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); 189 190 do { 191 if (cur_max >= pages) 192 return; 193 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, 194 &cur_max, pages)); 195 } 196 197 static inline void zram_fill_page(void *ptr, unsigned long len, 198 unsigned long value) 199 { 200 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); 201 memset_l(ptr, value, len / sizeof(unsigned long)); 202 } 203 204 static bool page_same_filled(void *ptr, unsigned long *element) 205 { 206 unsigned long *page; 207 unsigned long val; 208 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 209 210 page = (unsigned long *)ptr; 211 val = page[0]; 212 213 if (val != page[last_pos]) 214 return false; 215 216 for (pos = 1; pos < last_pos; pos++) { 217 if (val != page[pos]) 218 return false; 219 } 220 221 *element = val; 222 223 return true; 224 } 225 226 static ssize_t initstate_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 u32 val; 230 struct zram *zram = dev_to_zram(dev); 231 232 down_read(&zram->init_lock); 233 val = init_done(zram); 234 up_read(&zram->init_lock); 235 236 return scnprintf(buf, PAGE_SIZE, "%u\n", val); 237 } 238 239 static ssize_t disksize_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct zram *zram = dev_to_zram(dev); 243 244 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); 245 } 246 247 static ssize_t mem_limit_store(struct device *dev, 248 struct device_attribute *attr, const char *buf, size_t len) 249 { 250 u64 limit; 251 char *tmp; 252 struct zram *zram = dev_to_zram(dev); 253 254 limit = memparse(buf, &tmp); 255 if (buf == tmp) /* no chars parsed, invalid input */ 256 return -EINVAL; 257 258 down_write(&zram->init_lock); 259 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; 260 up_write(&zram->init_lock); 261 262 return len; 263 } 264 265 static ssize_t mem_used_max_store(struct device *dev, 266 struct device_attribute *attr, const char *buf, size_t len) 267 { 268 int err; 269 unsigned long val; 270 struct zram *zram = dev_to_zram(dev); 271 272 err = kstrtoul(buf, 10, &val); 273 if (err || val != 0) 274 return -EINVAL; 275 276 down_read(&zram->init_lock); 277 if (init_done(zram)) { 278 atomic_long_set(&zram->stats.max_used_pages, 279 zs_get_total_pages(zram->mem_pool)); 280 } 281 up_read(&zram->init_lock); 282 283 return len; 284 } 285 286 /* 287 * Mark all pages which are older than or equal to cutoff as IDLE. 288 * Callers should hold the zram init lock in read mode 289 */ 290 static void mark_idle(struct zram *zram, ktime_t cutoff) 291 { 292 int is_idle = 1; 293 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 294 int index; 295 296 for (index = 0; index < nr_pages; index++) { 297 /* 298 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. 299 * See the comment in writeback_store. 300 * 301 * Also do not mark ZRAM_SAME slots as ZRAM_IDLE, because no 302 * post-processing (recompress, writeback) happens to the 303 * ZRAM_SAME slot. 304 * 305 * And ZRAM_WB slots simply cannot be ZRAM_IDLE. 306 */ 307 zram_slot_lock(zram, index); 308 if (!zram_allocated(zram, index) || 309 zram_test_flag(zram, index, ZRAM_WB) || 310 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 311 zram_test_flag(zram, index, ZRAM_SAME)) { 312 zram_slot_unlock(zram, index); 313 continue; 314 } 315 316 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 317 is_idle = !cutoff || 318 ktime_after(cutoff, zram->table[index].ac_time); 319 #endif 320 if (is_idle) 321 zram_set_flag(zram, index, ZRAM_IDLE); 322 else 323 zram_clear_flag(zram, index, ZRAM_IDLE); 324 zram_slot_unlock(zram, index); 325 } 326 } 327 328 static ssize_t idle_store(struct device *dev, 329 struct device_attribute *attr, const char *buf, size_t len) 330 { 331 struct zram *zram = dev_to_zram(dev); 332 ktime_t cutoff_time = 0; 333 ssize_t rv = -EINVAL; 334 335 if (!sysfs_streq(buf, "all")) { 336 /* 337 * If it did not parse as 'all' try to treat it as an integer 338 * when we have memory tracking enabled. 339 */ 340 u64 age_sec; 341 342 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec)) 343 cutoff_time = ktime_sub(ktime_get_boottime(), 344 ns_to_ktime(age_sec * NSEC_PER_SEC)); 345 else 346 goto out; 347 } 348 349 down_read(&zram->init_lock); 350 if (!init_done(zram)) 351 goto out_unlock; 352 353 /* 354 * A cutoff_time of 0 marks everything as idle, this is the 355 * "all" behavior. 356 */ 357 mark_idle(zram, cutoff_time); 358 rv = len; 359 360 out_unlock: 361 up_read(&zram->init_lock); 362 out: 363 return rv; 364 } 365 366 #ifdef CONFIG_ZRAM_WRITEBACK 367 static ssize_t writeback_limit_enable_store(struct device *dev, 368 struct device_attribute *attr, const char *buf, size_t len) 369 { 370 struct zram *zram = dev_to_zram(dev); 371 u64 val; 372 ssize_t ret = -EINVAL; 373 374 if (kstrtoull(buf, 10, &val)) 375 return ret; 376 377 down_read(&zram->init_lock); 378 spin_lock(&zram->wb_limit_lock); 379 zram->wb_limit_enable = val; 380 spin_unlock(&zram->wb_limit_lock); 381 up_read(&zram->init_lock); 382 ret = len; 383 384 return ret; 385 } 386 387 static ssize_t writeback_limit_enable_show(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 bool val; 391 struct zram *zram = dev_to_zram(dev); 392 393 down_read(&zram->init_lock); 394 spin_lock(&zram->wb_limit_lock); 395 val = zram->wb_limit_enable; 396 spin_unlock(&zram->wb_limit_lock); 397 up_read(&zram->init_lock); 398 399 return scnprintf(buf, PAGE_SIZE, "%d\n", val); 400 } 401 402 static ssize_t writeback_limit_store(struct device *dev, 403 struct device_attribute *attr, const char *buf, size_t len) 404 { 405 struct zram *zram = dev_to_zram(dev); 406 u64 val; 407 ssize_t ret = -EINVAL; 408 409 if (kstrtoull(buf, 10, &val)) 410 return ret; 411 412 down_read(&zram->init_lock); 413 spin_lock(&zram->wb_limit_lock); 414 zram->bd_wb_limit = val; 415 spin_unlock(&zram->wb_limit_lock); 416 up_read(&zram->init_lock); 417 ret = len; 418 419 return ret; 420 } 421 422 static ssize_t writeback_limit_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 u64 val; 426 struct zram *zram = dev_to_zram(dev); 427 428 down_read(&zram->init_lock); 429 spin_lock(&zram->wb_limit_lock); 430 val = zram->bd_wb_limit; 431 spin_unlock(&zram->wb_limit_lock); 432 up_read(&zram->init_lock); 433 434 return scnprintf(buf, PAGE_SIZE, "%llu\n", val); 435 } 436 437 static void reset_bdev(struct zram *zram) 438 { 439 struct block_device *bdev; 440 441 if (!zram->backing_dev) 442 return; 443 444 bdev = zram->bdev; 445 blkdev_put(bdev, zram); 446 /* hope filp_close flush all of IO */ 447 filp_close(zram->backing_dev, NULL); 448 zram->backing_dev = NULL; 449 zram->bdev = NULL; 450 zram->disk->fops = &zram_devops; 451 kvfree(zram->bitmap); 452 zram->bitmap = NULL; 453 } 454 455 static ssize_t backing_dev_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct file *file; 459 struct zram *zram = dev_to_zram(dev); 460 char *p; 461 ssize_t ret; 462 463 down_read(&zram->init_lock); 464 file = zram->backing_dev; 465 if (!file) { 466 memcpy(buf, "none\n", 5); 467 up_read(&zram->init_lock); 468 return 5; 469 } 470 471 p = file_path(file, buf, PAGE_SIZE - 1); 472 if (IS_ERR(p)) { 473 ret = PTR_ERR(p); 474 goto out; 475 } 476 477 ret = strlen(p); 478 memmove(buf, p, ret); 479 buf[ret++] = '\n'; 480 out: 481 up_read(&zram->init_lock); 482 return ret; 483 } 484 485 static ssize_t backing_dev_store(struct device *dev, 486 struct device_attribute *attr, const char *buf, size_t len) 487 { 488 char *file_name; 489 size_t sz; 490 struct file *backing_dev = NULL; 491 struct inode *inode; 492 struct address_space *mapping; 493 unsigned int bitmap_sz; 494 unsigned long nr_pages, *bitmap = NULL; 495 struct block_device *bdev = NULL; 496 int err; 497 struct zram *zram = dev_to_zram(dev); 498 499 file_name = kmalloc(PATH_MAX, GFP_KERNEL); 500 if (!file_name) 501 return -ENOMEM; 502 503 down_write(&zram->init_lock); 504 if (init_done(zram)) { 505 pr_info("Can't setup backing device for initialized device\n"); 506 err = -EBUSY; 507 goto out; 508 } 509 510 strscpy(file_name, buf, PATH_MAX); 511 /* ignore trailing newline */ 512 sz = strlen(file_name); 513 if (sz > 0 && file_name[sz - 1] == '\n') 514 file_name[sz - 1] = 0x00; 515 516 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); 517 if (IS_ERR(backing_dev)) { 518 err = PTR_ERR(backing_dev); 519 backing_dev = NULL; 520 goto out; 521 } 522 523 mapping = backing_dev->f_mapping; 524 inode = mapping->host; 525 526 /* Support only block device in this moment */ 527 if (!S_ISBLK(inode->i_mode)) { 528 err = -ENOTBLK; 529 goto out; 530 } 531 532 bdev = blkdev_get_by_dev(inode->i_rdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 533 zram, NULL); 534 if (IS_ERR(bdev)) { 535 err = PTR_ERR(bdev); 536 bdev = NULL; 537 goto out; 538 } 539 540 nr_pages = i_size_read(inode) >> PAGE_SHIFT; 541 /* Refuse to use zero sized device (also prevents self reference) */ 542 if (!nr_pages) { 543 err = -EINVAL; 544 goto out; 545 } 546 547 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); 548 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); 549 if (!bitmap) { 550 err = -ENOMEM; 551 goto out; 552 } 553 554 reset_bdev(zram); 555 556 zram->bdev = bdev; 557 zram->backing_dev = backing_dev; 558 zram->bitmap = bitmap; 559 zram->nr_pages = nr_pages; 560 up_write(&zram->init_lock); 561 562 pr_info("setup backing device %s\n", file_name); 563 kfree(file_name); 564 565 return len; 566 out: 567 kvfree(bitmap); 568 569 if (bdev) 570 blkdev_put(bdev, zram); 571 572 if (backing_dev) 573 filp_close(backing_dev, NULL); 574 575 up_write(&zram->init_lock); 576 577 kfree(file_name); 578 579 return err; 580 } 581 582 static unsigned long alloc_block_bdev(struct zram *zram) 583 { 584 unsigned long blk_idx = 1; 585 retry: 586 /* skip 0 bit to confuse zram.handle = 0 */ 587 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); 588 if (blk_idx == zram->nr_pages) 589 return 0; 590 591 if (test_and_set_bit(blk_idx, zram->bitmap)) 592 goto retry; 593 594 atomic64_inc(&zram->stats.bd_count); 595 return blk_idx; 596 } 597 598 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) 599 { 600 int was_set; 601 602 was_set = test_and_clear_bit(blk_idx, zram->bitmap); 603 WARN_ON_ONCE(!was_set); 604 atomic64_dec(&zram->stats.bd_count); 605 } 606 607 static void read_from_bdev_async(struct zram *zram, struct page *page, 608 unsigned long entry, struct bio *parent) 609 { 610 struct bio *bio; 611 612 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO); 613 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); 614 __bio_add_page(bio, page, PAGE_SIZE, 0); 615 bio_chain(bio, parent); 616 submit_bio(bio); 617 } 618 619 #define PAGE_WB_SIG "page_index=" 620 621 #define PAGE_WRITEBACK 0 622 #define HUGE_WRITEBACK (1<<0) 623 #define IDLE_WRITEBACK (1<<1) 624 #define INCOMPRESSIBLE_WRITEBACK (1<<2) 625 626 static ssize_t writeback_store(struct device *dev, 627 struct device_attribute *attr, const char *buf, size_t len) 628 { 629 struct zram *zram = dev_to_zram(dev); 630 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 631 unsigned long index = 0; 632 struct bio bio; 633 struct bio_vec bio_vec; 634 struct page *page; 635 ssize_t ret = len; 636 int mode, err; 637 unsigned long blk_idx = 0; 638 639 if (sysfs_streq(buf, "idle")) 640 mode = IDLE_WRITEBACK; 641 else if (sysfs_streq(buf, "huge")) 642 mode = HUGE_WRITEBACK; 643 else if (sysfs_streq(buf, "huge_idle")) 644 mode = IDLE_WRITEBACK | HUGE_WRITEBACK; 645 else if (sysfs_streq(buf, "incompressible")) 646 mode = INCOMPRESSIBLE_WRITEBACK; 647 else { 648 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) 649 return -EINVAL; 650 651 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || 652 index >= nr_pages) 653 return -EINVAL; 654 655 nr_pages = 1; 656 mode = PAGE_WRITEBACK; 657 } 658 659 down_read(&zram->init_lock); 660 if (!init_done(zram)) { 661 ret = -EINVAL; 662 goto release_init_lock; 663 } 664 665 if (!zram->backing_dev) { 666 ret = -ENODEV; 667 goto release_init_lock; 668 } 669 670 page = alloc_page(GFP_KERNEL); 671 if (!page) { 672 ret = -ENOMEM; 673 goto release_init_lock; 674 } 675 676 for (; nr_pages != 0; index++, nr_pages--) { 677 spin_lock(&zram->wb_limit_lock); 678 if (zram->wb_limit_enable && !zram->bd_wb_limit) { 679 spin_unlock(&zram->wb_limit_lock); 680 ret = -EIO; 681 break; 682 } 683 spin_unlock(&zram->wb_limit_lock); 684 685 if (!blk_idx) { 686 blk_idx = alloc_block_bdev(zram); 687 if (!blk_idx) { 688 ret = -ENOSPC; 689 break; 690 } 691 } 692 693 zram_slot_lock(zram, index); 694 if (!zram_allocated(zram, index)) 695 goto next; 696 697 if (zram_test_flag(zram, index, ZRAM_WB) || 698 zram_test_flag(zram, index, ZRAM_SAME) || 699 zram_test_flag(zram, index, ZRAM_UNDER_WB)) 700 goto next; 701 702 if (mode & IDLE_WRITEBACK && 703 !zram_test_flag(zram, index, ZRAM_IDLE)) 704 goto next; 705 if (mode & HUGE_WRITEBACK && 706 !zram_test_flag(zram, index, ZRAM_HUGE)) 707 goto next; 708 if (mode & INCOMPRESSIBLE_WRITEBACK && 709 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 710 goto next; 711 712 /* 713 * Clearing ZRAM_UNDER_WB is duty of caller. 714 * IOW, zram_free_page never clear it. 715 */ 716 zram_set_flag(zram, index, ZRAM_UNDER_WB); 717 /* Need for hugepage writeback racing */ 718 zram_set_flag(zram, index, ZRAM_IDLE); 719 zram_slot_unlock(zram, index); 720 if (zram_read_page(zram, page, index, NULL)) { 721 zram_slot_lock(zram, index); 722 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 723 zram_clear_flag(zram, index, ZRAM_IDLE); 724 zram_slot_unlock(zram, index); 725 continue; 726 } 727 728 bio_init(&bio, zram->bdev, &bio_vec, 1, 729 REQ_OP_WRITE | REQ_SYNC); 730 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); 731 __bio_add_page(&bio, page, PAGE_SIZE, 0); 732 733 /* 734 * XXX: A single page IO would be inefficient for write 735 * but it would be not bad as starter. 736 */ 737 err = submit_bio_wait(&bio); 738 if (err) { 739 zram_slot_lock(zram, index); 740 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 741 zram_clear_flag(zram, index, ZRAM_IDLE); 742 zram_slot_unlock(zram, index); 743 /* 744 * BIO errors are not fatal, we continue and simply 745 * attempt to writeback the remaining objects (pages). 746 * At the same time we need to signal user-space that 747 * some writes (at least one, but also could be all of 748 * them) were not successful and we do so by returning 749 * the most recent BIO error. 750 */ 751 ret = err; 752 continue; 753 } 754 755 atomic64_inc(&zram->stats.bd_writes); 756 /* 757 * We released zram_slot_lock so need to check if the slot was 758 * changed. If there is freeing for the slot, we can catch it 759 * easily by zram_allocated. 760 * A subtle case is the slot is freed/reallocated/marked as 761 * ZRAM_IDLE again. To close the race, idle_store doesn't 762 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. 763 * Thus, we could close the race by checking ZRAM_IDLE bit. 764 */ 765 zram_slot_lock(zram, index); 766 if (!zram_allocated(zram, index) || 767 !zram_test_flag(zram, index, ZRAM_IDLE)) { 768 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 769 zram_clear_flag(zram, index, ZRAM_IDLE); 770 goto next; 771 } 772 773 zram_free_page(zram, index); 774 zram_clear_flag(zram, index, ZRAM_UNDER_WB); 775 zram_set_flag(zram, index, ZRAM_WB); 776 zram_set_element(zram, index, blk_idx); 777 blk_idx = 0; 778 atomic64_inc(&zram->stats.pages_stored); 779 spin_lock(&zram->wb_limit_lock); 780 if (zram->wb_limit_enable && zram->bd_wb_limit > 0) 781 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); 782 spin_unlock(&zram->wb_limit_lock); 783 next: 784 zram_slot_unlock(zram, index); 785 } 786 787 if (blk_idx) 788 free_block_bdev(zram, blk_idx); 789 __free_page(page); 790 release_init_lock: 791 up_read(&zram->init_lock); 792 793 return ret; 794 } 795 796 struct zram_work { 797 struct work_struct work; 798 struct zram *zram; 799 unsigned long entry; 800 struct page *page; 801 int error; 802 }; 803 804 static void zram_sync_read(struct work_struct *work) 805 { 806 struct zram_work *zw = container_of(work, struct zram_work, work); 807 struct bio_vec bv; 808 struct bio bio; 809 810 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ); 811 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); 812 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); 813 zw->error = submit_bio_wait(&bio); 814 } 815 816 /* 817 * Block layer want one ->submit_bio to be active at a time, so if we use 818 * chained IO with parent IO in same context, it's a deadlock. To avoid that, 819 * use a worker thread context. 820 */ 821 static int read_from_bdev_sync(struct zram *zram, struct page *page, 822 unsigned long entry) 823 { 824 struct zram_work work; 825 826 work.page = page; 827 work.zram = zram; 828 work.entry = entry; 829 830 INIT_WORK_ONSTACK(&work.work, zram_sync_read); 831 queue_work(system_unbound_wq, &work.work); 832 flush_work(&work.work); 833 destroy_work_on_stack(&work.work); 834 835 return work.error; 836 } 837 838 static int read_from_bdev(struct zram *zram, struct page *page, 839 unsigned long entry, struct bio *parent) 840 { 841 atomic64_inc(&zram->stats.bd_reads); 842 if (!parent) { 843 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) 844 return -EIO; 845 return read_from_bdev_sync(zram, page, entry); 846 } 847 read_from_bdev_async(zram, page, entry, parent); 848 return 0; 849 } 850 #else 851 static inline void reset_bdev(struct zram *zram) {}; 852 static int read_from_bdev(struct zram *zram, struct page *page, 853 unsigned long entry, struct bio *parent) 854 { 855 return -EIO; 856 } 857 858 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; 859 #endif 860 861 #ifdef CONFIG_ZRAM_MEMORY_TRACKING 862 863 static struct dentry *zram_debugfs_root; 864 865 static void zram_debugfs_create(void) 866 { 867 zram_debugfs_root = debugfs_create_dir("zram", NULL); 868 } 869 870 static void zram_debugfs_destroy(void) 871 { 872 debugfs_remove_recursive(zram_debugfs_root); 873 } 874 875 static ssize_t read_block_state(struct file *file, char __user *buf, 876 size_t count, loff_t *ppos) 877 { 878 char *kbuf; 879 ssize_t index, written = 0; 880 struct zram *zram = file->private_data; 881 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 882 struct timespec64 ts; 883 884 kbuf = kvmalloc(count, GFP_KERNEL); 885 if (!kbuf) 886 return -ENOMEM; 887 888 down_read(&zram->init_lock); 889 if (!init_done(zram)) { 890 up_read(&zram->init_lock); 891 kvfree(kbuf); 892 return -EINVAL; 893 } 894 895 for (index = *ppos; index < nr_pages; index++) { 896 int copied; 897 898 zram_slot_lock(zram, index); 899 if (!zram_allocated(zram, index)) 900 goto next; 901 902 ts = ktime_to_timespec64(zram->table[index].ac_time); 903 copied = snprintf(kbuf + written, count, 904 "%12zd %12lld.%06lu %c%c%c%c%c%c\n", 905 index, (s64)ts.tv_sec, 906 ts.tv_nsec / NSEC_PER_USEC, 907 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', 908 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', 909 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', 910 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', 911 zram_get_priority(zram, index) ? 'r' : '.', 912 zram_test_flag(zram, index, 913 ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); 914 915 if (count <= copied) { 916 zram_slot_unlock(zram, index); 917 break; 918 } 919 written += copied; 920 count -= copied; 921 next: 922 zram_slot_unlock(zram, index); 923 *ppos += 1; 924 } 925 926 up_read(&zram->init_lock); 927 if (copy_to_user(buf, kbuf, written)) 928 written = -EFAULT; 929 kvfree(kbuf); 930 931 return written; 932 } 933 934 static const struct file_operations proc_zram_block_state_op = { 935 .open = simple_open, 936 .read = read_block_state, 937 .llseek = default_llseek, 938 }; 939 940 static void zram_debugfs_register(struct zram *zram) 941 { 942 if (!zram_debugfs_root) 943 return; 944 945 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, 946 zram_debugfs_root); 947 debugfs_create_file("block_state", 0400, zram->debugfs_dir, 948 zram, &proc_zram_block_state_op); 949 } 950 951 static void zram_debugfs_unregister(struct zram *zram) 952 { 953 debugfs_remove_recursive(zram->debugfs_dir); 954 } 955 #else 956 static void zram_debugfs_create(void) {}; 957 static void zram_debugfs_destroy(void) {}; 958 static void zram_debugfs_register(struct zram *zram) {}; 959 static void zram_debugfs_unregister(struct zram *zram) {}; 960 #endif 961 962 /* 963 * We switched to per-cpu streams and this attr is not needed anymore. 964 * However, we will keep it around for some time, because: 965 * a) we may revert per-cpu streams in the future 966 * b) it's visible to user space and we need to follow our 2 years 967 * retirement rule; but we already have a number of 'soon to be 968 * altered' attrs, so max_comp_streams need to wait for the next 969 * layoff cycle. 970 */ 971 static ssize_t max_comp_streams_show(struct device *dev, 972 struct device_attribute *attr, char *buf) 973 { 974 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); 975 } 976 977 static ssize_t max_comp_streams_store(struct device *dev, 978 struct device_attribute *attr, const char *buf, size_t len) 979 { 980 return len; 981 } 982 983 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) 984 { 985 /* Do not free statically defined compression algorithms */ 986 if (zram->comp_algs[prio] != default_compressor) 987 kfree(zram->comp_algs[prio]); 988 989 zram->comp_algs[prio] = alg; 990 } 991 992 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) 993 { 994 ssize_t sz; 995 996 down_read(&zram->init_lock); 997 sz = zcomp_available_show(zram->comp_algs[prio], buf); 998 up_read(&zram->init_lock); 999 1000 return sz; 1001 } 1002 1003 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) 1004 { 1005 char *compressor; 1006 size_t sz; 1007 1008 sz = strlen(buf); 1009 if (sz >= CRYPTO_MAX_ALG_NAME) 1010 return -E2BIG; 1011 1012 compressor = kstrdup(buf, GFP_KERNEL); 1013 if (!compressor) 1014 return -ENOMEM; 1015 1016 /* ignore trailing newline */ 1017 if (sz > 0 && compressor[sz - 1] == '\n') 1018 compressor[sz - 1] = 0x00; 1019 1020 if (!zcomp_available_algorithm(compressor)) { 1021 kfree(compressor); 1022 return -EINVAL; 1023 } 1024 1025 down_write(&zram->init_lock); 1026 if (init_done(zram)) { 1027 up_write(&zram->init_lock); 1028 kfree(compressor); 1029 pr_info("Can't change algorithm for initialized device\n"); 1030 return -EBUSY; 1031 } 1032 1033 comp_algorithm_set(zram, prio, compressor); 1034 up_write(&zram->init_lock); 1035 return 0; 1036 } 1037 1038 static ssize_t comp_algorithm_show(struct device *dev, 1039 struct device_attribute *attr, 1040 char *buf) 1041 { 1042 struct zram *zram = dev_to_zram(dev); 1043 1044 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); 1045 } 1046 1047 static ssize_t comp_algorithm_store(struct device *dev, 1048 struct device_attribute *attr, 1049 const char *buf, 1050 size_t len) 1051 { 1052 struct zram *zram = dev_to_zram(dev); 1053 int ret; 1054 1055 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); 1056 return ret ? ret : len; 1057 } 1058 1059 #ifdef CONFIG_ZRAM_MULTI_COMP 1060 static ssize_t recomp_algorithm_show(struct device *dev, 1061 struct device_attribute *attr, 1062 char *buf) 1063 { 1064 struct zram *zram = dev_to_zram(dev); 1065 ssize_t sz = 0; 1066 u32 prio; 1067 1068 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 1069 if (!zram->comp_algs[prio]) 1070 continue; 1071 1072 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); 1073 sz += __comp_algorithm_show(zram, prio, buf + sz); 1074 } 1075 1076 return sz; 1077 } 1078 1079 static ssize_t recomp_algorithm_store(struct device *dev, 1080 struct device_attribute *attr, 1081 const char *buf, 1082 size_t len) 1083 { 1084 struct zram *zram = dev_to_zram(dev); 1085 int prio = ZRAM_SECONDARY_COMP; 1086 char *args, *param, *val; 1087 char *alg = NULL; 1088 int ret; 1089 1090 args = skip_spaces(buf); 1091 while (*args) { 1092 args = next_arg(args, ¶m, &val); 1093 1094 if (!val || !*val) 1095 return -EINVAL; 1096 1097 if (!strcmp(param, "algo")) { 1098 alg = val; 1099 continue; 1100 } 1101 1102 if (!strcmp(param, "priority")) { 1103 ret = kstrtoint(val, 10, &prio); 1104 if (ret) 1105 return ret; 1106 continue; 1107 } 1108 } 1109 1110 if (!alg) 1111 return -EINVAL; 1112 1113 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) 1114 return -EINVAL; 1115 1116 ret = __comp_algorithm_store(zram, prio, alg); 1117 return ret ? ret : len; 1118 } 1119 #endif 1120 1121 static ssize_t compact_store(struct device *dev, 1122 struct device_attribute *attr, const char *buf, size_t len) 1123 { 1124 struct zram *zram = dev_to_zram(dev); 1125 1126 down_read(&zram->init_lock); 1127 if (!init_done(zram)) { 1128 up_read(&zram->init_lock); 1129 return -EINVAL; 1130 } 1131 1132 zs_compact(zram->mem_pool); 1133 up_read(&zram->init_lock); 1134 1135 return len; 1136 } 1137 1138 static ssize_t io_stat_show(struct device *dev, 1139 struct device_attribute *attr, char *buf) 1140 { 1141 struct zram *zram = dev_to_zram(dev); 1142 ssize_t ret; 1143 1144 down_read(&zram->init_lock); 1145 ret = scnprintf(buf, PAGE_SIZE, 1146 "%8llu %8llu 0 %8llu\n", 1147 (u64)atomic64_read(&zram->stats.failed_reads), 1148 (u64)atomic64_read(&zram->stats.failed_writes), 1149 (u64)atomic64_read(&zram->stats.notify_free)); 1150 up_read(&zram->init_lock); 1151 1152 return ret; 1153 } 1154 1155 static ssize_t mm_stat_show(struct device *dev, 1156 struct device_attribute *attr, char *buf) 1157 { 1158 struct zram *zram = dev_to_zram(dev); 1159 struct zs_pool_stats pool_stats; 1160 u64 orig_size, mem_used = 0; 1161 long max_used; 1162 ssize_t ret; 1163 1164 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); 1165 1166 down_read(&zram->init_lock); 1167 if (init_done(zram)) { 1168 mem_used = zs_get_total_pages(zram->mem_pool); 1169 zs_pool_stats(zram->mem_pool, &pool_stats); 1170 } 1171 1172 orig_size = atomic64_read(&zram->stats.pages_stored); 1173 max_used = atomic_long_read(&zram->stats.max_used_pages); 1174 1175 ret = scnprintf(buf, PAGE_SIZE, 1176 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", 1177 orig_size << PAGE_SHIFT, 1178 (u64)atomic64_read(&zram->stats.compr_data_size), 1179 mem_used << PAGE_SHIFT, 1180 zram->limit_pages << PAGE_SHIFT, 1181 max_used << PAGE_SHIFT, 1182 (u64)atomic64_read(&zram->stats.same_pages), 1183 atomic_long_read(&pool_stats.pages_compacted), 1184 (u64)atomic64_read(&zram->stats.huge_pages), 1185 (u64)atomic64_read(&zram->stats.huge_pages_since)); 1186 up_read(&zram->init_lock); 1187 1188 return ret; 1189 } 1190 1191 #ifdef CONFIG_ZRAM_WRITEBACK 1192 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) 1193 static ssize_t bd_stat_show(struct device *dev, 1194 struct device_attribute *attr, char *buf) 1195 { 1196 struct zram *zram = dev_to_zram(dev); 1197 ssize_t ret; 1198 1199 down_read(&zram->init_lock); 1200 ret = scnprintf(buf, PAGE_SIZE, 1201 "%8llu %8llu %8llu\n", 1202 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), 1203 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), 1204 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); 1205 up_read(&zram->init_lock); 1206 1207 return ret; 1208 } 1209 #endif 1210 1211 static ssize_t debug_stat_show(struct device *dev, 1212 struct device_attribute *attr, char *buf) 1213 { 1214 int version = 1; 1215 struct zram *zram = dev_to_zram(dev); 1216 ssize_t ret; 1217 1218 down_read(&zram->init_lock); 1219 ret = scnprintf(buf, PAGE_SIZE, 1220 "version: %d\n%8llu %8llu\n", 1221 version, 1222 (u64)atomic64_read(&zram->stats.writestall), 1223 (u64)atomic64_read(&zram->stats.miss_free)); 1224 up_read(&zram->init_lock); 1225 1226 return ret; 1227 } 1228 1229 static DEVICE_ATTR_RO(io_stat); 1230 static DEVICE_ATTR_RO(mm_stat); 1231 #ifdef CONFIG_ZRAM_WRITEBACK 1232 static DEVICE_ATTR_RO(bd_stat); 1233 #endif 1234 static DEVICE_ATTR_RO(debug_stat); 1235 1236 static void zram_meta_free(struct zram *zram, u64 disksize) 1237 { 1238 size_t num_pages = disksize >> PAGE_SHIFT; 1239 size_t index; 1240 1241 if (!zram->table) 1242 return; 1243 1244 /* Free all pages that are still in this zram device */ 1245 for (index = 0; index < num_pages; index++) 1246 zram_free_page(zram, index); 1247 1248 zs_destroy_pool(zram->mem_pool); 1249 vfree(zram->table); 1250 zram->table = NULL; 1251 } 1252 1253 static bool zram_meta_alloc(struct zram *zram, u64 disksize) 1254 { 1255 size_t num_pages; 1256 1257 num_pages = disksize >> PAGE_SHIFT; 1258 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); 1259 if (!zram->table) 1260 return false; 1261 1262 zram->mem_pool = zs_create_pool(zram->disk->disk_name); 1263 if (!zram->mem_pool) { 1264 vfree(zram->table); 1265 return false; 1266 } 1267 1268 if (!huge_class_size) 1269 huge_class_size = zs_huge_class_size(zram->mem_pool); 1270 return true; 1271 } 1272 1273 /* 1274 * To protect concurrent access to the same index entry, 1275 * caller should hold this table index entry's bit_spinlock to 1276 * indicate this index entry is accessing. 1277 */ 1278 static void zram_free_page(struct zram *zram, size_t index) 1279 { 1280 unsigned long handle; 1281 1282 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME 1283 zram->table[index].ac_time = 0; 1284 #endif 1285 if (zram_test_flag(zram, index, ZRAM_IDLE)) 1286 zram_clear_flag(zram, index, ZRAM_IDLE); 1287 1288 if (zram_test_flag(zram, index, ZRAM_HUGE)) { 1289 zram_clear_flag(zram, index, ZRAM_HUGE); 1290 atomic64_dec(&zram->stats.huge_pages); 1291 } 1292 1293 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1294 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1295 1296 zram_set_priority(zram, index, 0); 1297 1298 if (zram_test_flag(zram, index, ZRAM_WB)) { 1299 zram_clear_flag(zram, index, ZRAM_WB); 1300 free_block_bdev(zram, zram_get_element(zram, index)); 1301 goto out; 1302 } 1303 1304 /* 1305 * No memory is allocated for same element filled pages. 1306 * Simply clear same page flag. 1307 */ 1308 if (zram_test_flag(zram, index, ZRAM_SAME)) { 1309 zram_clear_flag(zram, index, ZRAM_SAME); 1310 atomic64_dec(&zram->stats.same_pages); 1311 goto out; 1312 } 1313 1314 handle = zram_get_handle(zram, index); 1315 if (!handle) 1316 return; 1317 1318 zs_free(zram->mem_pool, handle); 1319 1320 atomic64_sub(zram_get_obj_size(zram, index), 1321 &zram->stats.compr_data_size); 1322 out: 1323 atomic64_dec(&zram->stats.pages_stored); 1324 zram_set_handle(zram, index, 0); 1325 zram_set_obj_size(zram, index, 0); 1326 WARN_ON_ONCE(zram->table[index].flags & 1327 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); 1328 } 1329 1330 /* 1331 * Reads (decompresses if needed) a page from zspool (zsmalloc). 1332 * Corresponding ZRAM slot should be locked. 1333 */ 1334 static int zram_read_from_zspool(struct zram *zram, struct page *page, 1335 u32 index) 1336 { 1337 struct zcomp_strm *zstrm; 1338 unsigned long handle; 1339 unsigned int size; 1340 void *src, *dst; 1341 u32 prio; 1342 int ret; 1343 1344 handle = zram_get_handle(zram, index); 1345 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { 1346 unsigned long value; 1347 void *mem; 1348 1349 value = handle ? zram_get_element(zram, index) : 0; 1350 mem = kmap_atomic(page); 1351 zram_fill_page(mem, PAGE_SIZE, value); 1352 kunmap_atomic(mem); 1353 return 0; 1354 } 1355 1356 size = zram_get_obj_size(zram, index); 1357 1358 if (size != PAGE_SIZE) { 1359 prio = zram_get_priority(zram, index); 1360 zstrm = zcomp_stream_get(zram->comps[prio]); 1361 } 1362 1363 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); 1364 if (size == PAGE_SIZE) { 1365 dst = kmap_atomic(page); 1366 memcpy(dst, src, PAGE_SIZE); 1367 kunmap_atomic(dst); 1368 ret = 0; 1369 } else { 1370 dst = kmap_atomic(page); 1371 ret = zcomp_decompress(zstrm, src, size, dst); 1372 kunmap_atomic(dst); 1373 zcomp_stream_put(zram->comps[prio]); 1374 } 1375 zs_unmap_object(zram->mem_pool, handle); 1376 return ret; 1377 } 1378 1379 static int zram_read_page(struct zram *zram, struct page *page, u32 index, 1380 struct bio *parent) 1381 { 1382 int ret; 1383 1384 zram_slot_lock(zram, index); 1385 if (!zram_test_flag(zram, index, ZRAM_WB)) { 1386 /* Slot should be locked through out the function call */ 1387 ret = zram_read_from_zspool(zram, page, index); 1388 zram_slot_unlock(zram, index); 1389 } else { 1390 /* 1391 * The slot should be unlocked before reading from the backing 1392 * device. 1393 */ 1394 zram_slot_unlock(zram, index); 1395 1396 ret = read_from_bdev(zram, page, zram_get_element(zram, index), 1397 parent); 1398 } 1399 1400 /* Should NEVER happen. Return bio error if it does. */ 1401 if (WARN_ON(ret < 0)) 1402 pr_err("Decompression failed! err=%d, page=%u\n", ret, index); 1403 1404 return ret; 1405 } 1406 1407 /* 1408 * Use a temporary buffer to decompress the page, as the decompressor 1409 * always expects a full page for the output. 1410 */ 1411 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, 1412 u32 index, int offset) 1413 { 1414 struct page *page = alloc_page(GFP_NOIO); 1415 int ret; 1416 1417 if (!page) 1418 return -ENOMEM; 1419 ret = zram_read_page(zram, page, index, NULL); 1420 if (likely(!ret)) 1421 memcpy_to_bvec(bvec, page_address(page) + offset); 1422 __free_page(page); 1423 return ret; 1424 } 1425 1426 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, 1427 u32 index, int offset, struct bio *bio) 1428 { 1429 if (is_partial_io(bvec)) 1430 return zram_bvec_read_partial(zram, bvec, index, offset); 1431 return zram_read_page(zram, bvec->bv_page, index, bio); 1432 } 1433 1434 static int zram_write_page(struct zram *zram, struct page *page, u32 index) 1435 { 1436 int ret = 0; 1437 unsigned long alloced_pages; 1438 unsigned long handle = -ENOMEM; 1439 unsigned int comp_len = 0; 1440 void *src, *dst, *mem; 1441 struct zcomp_strm *zstrm; 1442 unsigned long element = 0; 1443 enum zram_pageflags flags = 0; 1444 1445 mem = kmap_atomic(page); 1446 if (page_same_filled(mem, &element)) { 1447 kunmap_atomic(mem); 1448 /* Free memory associated with this sector now. */ 1449 flags = ZRAM_SAME; 1450 atomic64_inc(&zram->stats.same_pages); 1451 goto out; 1452 } 1453 kunmap_atomic(mem); 1454 1455 compress_again: 1456 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1457 src = kmap_atomic(page); 1458 ret = zcomp_compress(zstrm, src, &comp_len); 1459 kunmap_atomic(src); 1460 1461 if (unlikely(ret)) { 1462 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1463 pr_err("Compression failed! err=%d\n", ret); 1464 zs_free(zram->mem_pool, handle); 1465 return ret; 1466 } 1467 1468 if (comp_len >= huge_class_size) 1469 comp_len = PAGE_SIZE; 1470 /* 1471 * handle allocation has 2 paths: 1472 * a) fast path is executed with preemption disabled (for 1473 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, 1474 * since we can't sleep; 1475 * b) slow path enables preemption and attempts to allocate 1476 * the page with __GFP_DIRECT_RECLAIM bit set. we have to 1477 * put per-cpu compression stream and, thus, to re-do 1478 * the compression once handle is allocated. 1479 * 1480 * if we have a 'non-null' handle here then we are coming 1481 * from the slow path and handle has already been allocated. 1482 */ 1483 if (IS_ERR_VALUE(handle)) 1484 handle = zs_malloc(zram->mem_pool, comp_len, 1485 __GFP_KSWAPD_RECLAIM | 1486 __GFP_NOWARN | 1487 __GFP_HIGHMEM | 1488 __GFP_MOVABLE); 1489 if (IS_ERR_VALUE(handle)) { 1490 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1491 atomic64_inc(&zram->stats.writestall); 1492 handle = zs_malloc(zram->mem_pool, comp_len, 1493 GFP_NOIO | __GFP_HIGHMEM | 1494 __GFP_MOVABLE); 1495 if (IS_ERR_VALUE(handle)) 1496 return PTR_ERR((void *)handle); 1497 1498 if (comp_len != PAGE_SIZE) 1499 goto compress_again; 1500 /* 1501 * If the page is not compressible, you need to acquire the 1502 * lock and execute the code below. The zcomp_stream_get() 1503 * call is needed to disable the cpu hotplug and grab the 1504 * zstrm buffer back. It is necessary that the dereferencing 1505 * of the zstrm variable below occurs correctly. 1506 */ 1507 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); 1508 } 1509 1510 alloced_pages = zs_get_total_pages(zram->mem_pool); 1511 update_used_max(zram, alloced_pages); 1512 1513 if (zram->limit_pages && alloced_pages > zram->limit_pages) { 1514 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1515 zs_free(zram->mem_pool, handle); 1516 return -ENOMEM; 1517 } 1518 1519 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); 1520 1521 src = zstrm->buffer; 1522 if (comp_len == PAGE_SIZE) 1523 src = kmap_atomic(page); 1524 memcpy(dst, src, comp_len); 1525 if (comp_len == PAGE_SIZE) 1526 kunmap_atomic(src); 1527 1528 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); 1529 zs_unmap_object(zram->mem_pool, handle); 1530 atomic64_add(comp_len, &zram->stats.compr_data_size); 1531 out: 1532 /* 1533 * Free memory associated with this sector 1534 * before overwriting unused sectors. 1535 */ 1536 zram_slot_lock(zram, index); 1537 zram_free_page(zram, index); 1538 1539 if (comp_len == PAGE_SIZE) { 1540 zram_set_flag(zram, index, ZRAM_HUGE); 1541 atomic64_inc(&zram->stats.huge_pages); 1542 atomic64_inc(&zram->stats.huge_pages_since); 1543 } 1544 1545 if (flags) { 1546 zram_set_flag(zram, index, flags); 1547 zram_set_element(zram, index, element); 1548 } else { 1549 zram_set_handle(zram, index, handle); 1550 zram_set_obj_size(zram, index, comp_len); 1551 } 1552 zram_slot_unlock(zram, index); 1553 1554 /* Update stats */ 1555 atomic64_inc(&zram->stats.pages_stored); 1556 return ret; 1557 } 1558 1559 /* 1560 * This is a partial IO. Read the full page before writing the changes. 1561 */ 1562 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, 1563 u32 index, int offset, struct bio *bio) 1564 { 1565 struct page *page = alloc_page(GFP_NOIO); 1566 int ret; 1567 1568 if (!page) 1569 return -ENOMEM; 1570 1571 ret = zram_read_page(zram, page, index, bio); 1572 if (!ret) { 1573 memcpy_from_bvec(page_address(page) + offset, bvec); 1574 ret = zram_write_page(zram, page, index); 1575 } 1576 __free_page(page); 1577 return ret; 1578 } 1579 1580 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, 1581 u32 index, int offset, struct bio *bio) 1582 { 1583 if (is_partial_io(bvec)) 1584 return zram_bvec_write_partial(zram, bvec, index, offset, bio); 1585 return zram_write_page(zram, bvec->bv_page, index); 1586 } 1587 1588 #ifdef CONFIG_ZRAM_MULTI_COMP 1589 /* 1590 * This function will decompress (unless it's ZRAM_HUGE) the page and then 1591 * attempt to compress it using provided compression algorithm priority 1592 * (which is potentially more effective). 1593 * 1594 * Corresponding ZRAM slot should be locked. 1595 */ 1596 static int zram_recompress(struct zram *zram, u32 index, struct page *page, 1597 u32 threshold, u32 prio, u32 prio_max) 1598 { 1599 struct zcomp_strm *zstrm = NULL; 1600 unsigned long handle_old; 1601 unsigned long handle_new; 1602 unsigned int comp_len_old; 1603 unsigned int comp_len_new; 1604 unsigned int class_index_old; 1605 unsigned int class_index_new; 1606 u32 num_recomps = 0; 1607 void *src, *dst; 1608 int ret; 1609 1610 handle_old = zram_get_handle(zram, index); 1611 if (!handle_old) 1612 return -EINVAL; 1613 1614 comp_len_old = zram_get_obj_size(zram, index); 1615 /* 1616 * Do not recompress objects that are already "small enough". 1617 */ 1618 if (comp_len_old < threshold) 1619 return 0; 1620 1621 ret = zram_read_from_zspool(zram, page, index); 1622 if (ret) 1623 return ret; 1624 1625 /* 1626 * We touched this entry so mark it as non-IDLE. This makes sure that 1627 * we don't preserve IDLE flag and don't incorrectly pick this entry 1628 * for different post-processing type (e.g. writeback). 1629 */ 1630 zram_clear_flag(zram, index, ZRAM_IDLE); 1631 1632 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); 1633 /* 1634 * Iterate the secondary comp algorithms list (in order of priority) 1635 * and try to recompress the page. 1636 */ 1637 for (; prio < prio_max; prio++) { 1638 if (!zram->comps[prio]) 1639 continue; 1640 1641 /* 1642 * Skip if the object is already re-compressed with a higher 1643 * priority algorithm (or same algorithm). 1644 */ 1645 if (prio <= zram_get_priority(zram, index)) 1646 continue; 1647 1648 num_recomps++; 1649 zstrm = zcomp_stream_get(zram->comps[prio]); 1650 src = kmap_atomic(page); 1651 ret = zcomp_compress(zstrm, src, &comp_len_new); 1652 kunmap_atomic(src); 1653 1654 if (ret) { 1655 zcomp_stream_put(zram->comps[prio]); 1656 return ret; 1657 } 1658 1659 class_index_new = zs_lookup_class_index(zram->mem_pool, 1660 comp_len_new); 1661 1662 /* Continue until we make progress */ 1663 if (class_index_new >= class_index_old || 1664 (threshold && comp_len_new >= threshold)) { 1665 zcomp_stream_put(zram->comps[prio]); 1666 continue; 1667 } 1668 1669 /* Recompression was successful so break out */ 1670 break; 1671 } 1672 1673 /* 1674 * We did not try to recompress, e.g. when we have only one 1675 * secondary algorithm and the page is already recompressed 1676 * using that algorithm 1677 */ 1678 if (!zstrm) 1679 return 0; 1680 1681 if (class_index_new >= class_index_old) { 1682 /* 1683 * Secondary algorithms failed to re-compress the page 1684 * in a way that would save memory, mark the object as 1685 * incompressible so that we will not try to compress 1686 * it again. 1687 * 1688 * We need to make sure that all secondary algorithms have 1689 * failed, so we test if the number of recompressions matches 1690 * the number of active secondary algorithms. 1691 */ 1692 if (num_recomps == zram->num_active_comps - 1) 1693 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); 1694 return 0; 1695 } 1696 1697 /* Successful recompression but above threshold */ 1698 if (threshold && comp_len_new >= threshold) 1699 return 0; 1700 1701 /* 1702 * No direct reclaim (slow path) for handle allocation and no 1703 * re-compression attempt (unlike in zram_write_bvec()) since 1704 * we already have stored that object in zsmalloc. If we cannot 1705 * alloc memory for recompressed object then we bail out and 1706 * simply keep the old (existing) object in zsmalloc. 1707 */ 1708 handle_new = zs_malloc(zram->mem_pool, comp_len_new, 1709 __GFP_KSWAPD_RECLAIM | 1710 __GFP_NOWARN | 1711 __GFP_HIGHMEM | 1712 __GFP_MOVABLE); 1713 if (IS_ERR_VALUE(handle_new)) { 1714 zcomp_stream_put(zram->comps[prio]); 1715 return PTR_ERR((void *)handle_new); 1716 } 1717 1718 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); 1719 memcpy(dst, zstrm->buffer, comp_len_new); 1720 zcomp_stream_put(zram->comps[prio]); 1721 1722 zs_unmap_object(zram->mem_pool, handle_new); 1723 1724 zram_free_page(zram, index); 1725 zram_set_handle(zram, index, handle_new); 1726 zram_set_obj_size(zram, index, comp_len_new); 1727 zram_set_priority(zram, index, prio); 1728 1729 atomic64_add(comp_len_new, &zram->stats.compr_data_size); 1730 atomic64_inc(&zram->stats.pages_stored); 1731 1732 return 0; 1733 } 1734 1735 #define RECOMPRESS_IDLE (1 << 0) 1736 #define RECOMPRESS_HUGE (1 << 1) 1737 1738 static ssize_t recompress_store(struct device *dev, 1739 struct device_attribute *attr, 1740 const char *buf, size_t len) 1741 { 1742 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; 1743 struct zram *zram = dev_to_zram(dev); 1744 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; 1745 char *args, *param, *val, *algo = NULL; 1746 u32 mode = 0, threshold = 0; 1747 unsigned long index; 1748 struct page *page; 1749 ssize_t ret; 1750 1751 args = skip_spaces(buf); 1752 while (*args) { 1753 args = next_arg(args, ¶m, &val); 1754 1755 if (!val || !*val) 1756 return -EINVAL; 1757 1758 if (!strcmp(param, "type")) { 1759 if (!strcmp(val, "idle")) 1760 mode = RECOMPRESS_IDLE; 1761 if (!strcmp(val, "huge")) 1762 mode = RECOMPRESS_HUGE; 1763 if (!strcmp(val, "huge_idle")) 1764 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; 1765 continue; 1766 } 1767 1768 if (!strcmp(param, "threshold")) { 1769 /* 1770 * We will re-compress only idle objects equal or 1771 * greater in size than watermark. 1772 */ 1773 ret = kstrtouint(val, 10, &threshold); 1774 if (ret) 1775 return ret; 1776 continue; 1777 } 1778 1779 if (!strcmp(param, "algo")) { 1780 algo = val; 1781 continue; 1782 } 1783 } 1784 1785 if (threshold >= huge_class_size) 1786 return -EINVAL; 1787 1788 down_read(&zram->init_lock); 1789 if (!init_done(zram)) { 1790 ret = -EINVAL; 1791 goto release_init_lock; 1792 } 1793 1794 if (algo) { 1795 bool found = false; 1796 1797 for (; prio < ZRAM_MAX_COMPS; prio++) { 1798 if (!zram->comp_algs[prio]) 1799 continue; 1800 1801 if (!strcmp(zram->comp_algs[prio], algo)) { 1802 prio_max = min(prio + 1, ZRAM_MAX_COMPS); 1803 found = true; 1804 break; 1805 } 1806 } 1807 1808 if (!found) { 1809 ret = -EINVAL; 1810 goto release_init_lock; 1811 } 1812 } 1813 1814 page = alloc_page(GFP_KERNEL); 1815 if (!page) { 1816 ret = -ENOMEM; 1817 goto release_init_lock; 1818 } 1819 1820 ret = len; 1821 for (index = 0; index < nr_pages; index++) { 1822 int err = 0; 1823 1824 zram_slot_lock(zram, index); 1825 1826 if (!zram_allocated(zram, index)) 1827 goto next; 1828 1829 if (mode & RECOMPRESS_IDLE && 1830 !zram_test_flag(zram, index, ZRAM_IDLE)) 1831 goto next; 1832 1833 if (mode & RECOMPRESS_HUGE && 1834 !zram_test_flag(zram, index, ZRAM_HUGE)) 1835 goto next; 1836 1837 if (zram_test_flag(zram, index, ZRAM_WB) || 1838 zram_test_flag(zram, index, ZRAM_UNDER_WB) || 1839 zram_test_flag(zram, index, ZRAM_SAME) || 1840 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) 1841 goto next; 1842 1843 err = zram_recompress(zram, index, page, threshold, 1844 prio, prio_max); 1845 next: 1846 zram_slot_unlock(zram, index); 1847 if (err) { 1848 ret = err; 1849 break; 1850 } 1851 1852 cond_resched(); 1853 } 1854 1855 __free_page(page); 1856 1857 release_init_lock: 1858 up_read(&zram->init_lock); 1859 return ret; 1860 } 1861 #endif 1862 1863 static void zram_bio_discard(struct zram *zram, struct bio *bio) 1864 { 1865 size_t n = bio->bi_iter.bi_size; 1866 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1867 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1868 SECTOR_SHIFT; 1869 1870 /* 1871 * zram manages data in physical block size units. Because logical block 1872 * size isn't identical with physical block size on some arch, we 1873 * could get a discard request pointing to a specific offset within a 1874 * certain physical block. Although we can handle this request by 1875 * reading that physiclal block and decompressing and partially zeroing 1876 * and re-compressing and then re-storing it, this isn't reasonable 1877 * because our intent with a discard request is to save memory. So 1878 * skipping this logical block is appropriate here. 1879 */ 1880 if (offset) { 1881 if (n <= (PAGE_SIZE - offset)) 1882 return; 1883 1884 n -= (PAGE_SIZE - offset); 1885 index++; 1886 } 1887 1888 while (n >= PAGE_SIZE) { 1889 zram_slot_lock(zram, index); 1890 zram_free_page(zram, index); 1891 zram_slot_unlock(zram, index); 1892 atomic64_inc(&zram->stats.notify_free); 1893 index++; 1894 n -= PAGE_SIZE; 1895 } 1896 1897 bio_endio(bio); 1898 } 1899 1900 static void zram_bio_read(struct zram *zram, struct bio *bio) 1901 { 1902 unsigned long start_time = bio_start_io_acct(bio); 1903 struct bvec_iter iter = bio->bi_iter; 1904 1905 do { 1906 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1907 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1908 SECTOR_SHIFT; 1909 struct bio_vec bv = bio_iter_iovec(bio, iter); 1910 1911 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1912 1913 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { 1914 atomic64_inc(&zram->stats.failed_reads); 1915 bio->bi_status = BLK_STS_IOERR; 1916 break; 1917 } 1918 flush_dcache_page(bv.bv_page); 1919 1920 zram_slot_lock(zram, index); 1921 zram_accessed(zram, index); 1922 zram_slot_unlock(zram, index); 1923 1924 bio_advance_iter_single(bio, &iter, bv.bv_len); 1925 } while (iter.bi_size); 1926 1927 bio_end_io_acct(bio, start_time); 1928 bio_endio(bio); 1929 } 1930 1931 static void zram_bio_write(struct zram *zram, struct bio *bio) 1932 { 1933 unsigned long start_time = bio_start_io_acct(bio); 1934 struct bvec_iter iter = bio->bi_iter; 1935 1936 do { 1937 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; 1938 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << 1939 SECTOR_SHIFT; 1940 struct bio_vec bv = bio_iter_iovec(bio, iter); 1941 1942 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); 1943 1944 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { 1945 atomic64_inc(&zram->stats.failed_writes); 1946 bio->bi_status = BLK_STS_IOERR; 1947 break; 1948 } 1949 1950 zram_slot_lock(zram, index); 1951 zram_accessed(zram, index); 1952 zram_slot_unlock(zram, index); 1953 1954 bio_advance_iter_single(bio, &iter, bv.bv_len); 1955 } while (iter.bi_size); 1956 1957 bio_end_io_acct(bio, start_time); 1958 bio_endio(bio); 1959 } 1960 1961 /* 1962 * Handler function for all zram I/O requests. 1963 */ 1964 static void zram_submit_bio(struct bio *bio) 1965 { 1966 struct zram *zram = bio->bi_bdev->bd_disk->private_data; 1967 1968 switch (bio_op(bio)) { 1969 case REQ_OP_READ: 1970 zram_bio_read(zram, bio); 1971 break; 1972 case REQ_OP_WRITE: 1973 zram_bio_write(zram, bio); 1974 break; 1975 case REQ_OP_DISCARD: 1976 case REQ_OP_WRITE_ZEROES: 1977 zram_bio_discard(zram, bio); 1978 break; 1979 default: 1980 WARN_ON_ONCE(1); 1981 bio_endio(bio); 1982 } 1983 } 1984 1985 static void zram_slot_free_notify(struct block_device *bdev, 1986 unsigned long index) 1987 { 1988 struct zram *zram; 1989 1990 zram = bdev->bd_disk->private_data; 1991 1992 atomic64_inc(&zram->stats.notify_free); 1993 if (!zram_slot_trylock(zram, index)) { 1994 atomic64_inc(&zram->stats.miss_free); 1995 return; 1996 } 1997 1998 zram_free_page(zram, index); 1999 zram_slot_unlock(zram, index); 2000 } 2001 2002 static void zram_destroy_comps(struct zram *zram) 2003 { 2004 u32 prio; 2005 2006 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2007 struct zcomp *comp = zram->comps[prio]; 2008 2009 zram->comps[prio] = NULL; 2010 if (!comp) 2011 continue; 2012 zcomp_destroy(comp); 2013 zram->num_active_comps--; 2014 } 2015 2016 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { 2017 /* Do not free statically defined compression algorithms */ 2018 if (zram->comp_algs[prio] != default_compressor) 2019 kfree(zram->comp_algs[prio]); 2020 zram->comp_algs[prio] = NULL; 2021 } 2022 } 2023 2024 static void zram_reset_device(struct zram *zram) 2025 { 2026 down_write(&zram->init_lock); 2027 2028 zram->limit_pages = 0; 2029 2030 set_capacity_and_notify(zram->disk, 0); 2031 part_stat_set_all(zram->disk->part0, 0); 2032 2033 /* I/O operation under all of CPU are done so let's free */ 2034 zram_meta_free(zram, zram->disksize); 2035 zram->disksize = 0; 2036 zram_destroy_comps(zram); 2037 memset(&zram->stats, 0, sizeof(zram->stats)); 2038 reset_bdev(zram); 2039 2040 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2041 up_write(&zram->init_lock); 2042 } 2043 2044 static ssize_t disksize_store(struct device *dev, 2045 struct device_attribute *attr, const char *buf, size_t len) 2046 { 2047 u64 disksize; 2048 struct zcomp *comp; 2049 struct zram *zram = dev_to_zram(dev); 2050 int err; 2051 u32 prio; 2052 2053 disksize = memparse(buf, NULL); 2054 if (!disksize) 2055 return -EINVAL; 2056 2057 down_write(&zram->init_lock); 2058 if (init_done(zram)) { 2059 pr_info("Cannot change disksize for initialized device\n"); 2060 err = -EBUSY; 2061 goto out_unlock; 2062 } 2063 2064 disksize = PAGE_ALIGN(disksize); 2065 if (!zram_meta_alloc(zram, disksize)) { 2066 err = -ENOMEM; 2067 goto out_unlock; 2068 } 2069 2070 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { 2071 if (!zram->comp_algs[prio]) 2072 continue; 2073 2074 comp = zcomp_create(zram->comp_algs[prio]); 2075 if (IS_ERR(comp)) { 2076 pr_err("Cannot initialise %s compressing backend\n", 2077 zram->comp_algs[prio]); 2078 err = PTR_ERR(comp); 2079 goto out_free_comps; 2080 } 2081 2082 zram->comps[prio] = comp; 2083 zram->num_active_comps++; 2084 } 2085 zram->disksize = disksize; 2086 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); 2087 up_write(&zram->init_lock); 2088 2089 return len; 2090 2091 out_free_comps: 2092 zram_destroy_comps(zram); 2093 zram_meta_free(zram, disksize); 2094 out_unlock: 2095 up_write(&zram->init_lock); 2096 return err; 2097 } 2098 2099 static ssize_t reset_store(struct device *dev, 2100 struct device_attribute *attr, const char *buf, size_t len) 2101 { 2102 int ret; 2103 unsigned short do_reset; 2104 struct zram *zram; 2105 struct gendisk *disk; 2106 2107 ret = kstrtou16(buf, 10, &do_reset); 2108 if (ret) 2109 return ret; 2110 2111 if (!do_reset) 2112 return -EINVAL; 2113 2114 zram = dev_to_zram(dev); 2115 disk = zram->disk; 2116 2117 mutex_lock(&disk->open_mutex); 2118 /* Do not reset an active device or claimed device */ 2119 if (disk_openers(disk) || zram->claim) { 2120 mutex_unlock(&disk->open_mutex); 2121 return -EBUSY; 2122 } 2123 2124 /* From now on, anyone can't open /dev/zram[0-9] */ 2125 zram->claim = true; 2126 mutex_unlock(&disk->open_mutex); 2127 2128 /* Make sure all the pending I/O are finished */ 2129 sync_blockdev(disk->part0); 2130 zram_reset_device(zram); 2131 2132 mutex_lock(&disk->open_mutex); 2133 zram->claim = false; 2134 mutex_unlock(&disk->open_mutex); 2135 2136 return len; 2137 } 2138 2139 static int zram_open(struct gendisk *disk, blk_mode_t mode) 2140 { 2141 struct zram *zram = disk->private_data; 2142 2143 WARN_ON(!mutex_is_locked(&disk->open_mutex)); 2144 2145 /* zram was claimed to reset so open request fails */ 2146 if (zram->claim) 2147 return -EBUSY; 2148 return 0; 2149 } 2150 2151 static const struct block_device_operations zram_devops = { 2152 .open = zram_open, 2153 .submit_bio = zram_submit_bio, 2154 .swap_slot_free_notify = zram_slot_free_notify, 2155 .owner = THIS_MODULE 2156 }; 2157 2158 static DEVICE_ATTR_WO(compact); 2159 static DEVICE_ATTR_RW(disksize); 2160 static DEVICE_ATTR_RO(initstate); 2161 static DEVICE_ATTR_WO(reset); 2162 static DEVICE_ATTR_WO(mem_limit); 2163 static DEVICE_ATTR_WO(mem_used_max); 2164 static DEVICE_ATTR_WO(idle); 2165 static DEVICE_ATTR_RW(max_comp_streams); 2166 static DEVICE_ATTR_RW(comp_algorithm); 2167 #ifdef CONFIG_ZRAM_WRITEBACK 2168 static DEVICE_ATTR_RW(backing_dev); 2169 static DEVICE_ATTR_WO(writeback); 2170 static DEVICE_ATTR_RW(writeback_limit); 2171 static DEVICE_ATTR_RW(writeback_limit_enable); 2172 #endif 2173 #ifdef CONFIG_ZRAM_MULTI_COMP 2174 static DEVICE_ATTR_RW(recomp_algorithm); 2175 static DEVICE_ATTR_WO(recompress); 2176 #endif 2177 2178 static struct attribute *zram_disk_attrs[] = { 2179 &dev_attr_disksize.attr, 2180 &dev_attr_initstate.attr, 2181 &dev_attr_reset.attr, 2182 &dev_attr_compact.attr, 2183 &dev_attr_mem_limit.attr, 2184 &dev_attr_mem_used_max.attr, 2185 &dev_attr_idle.attr, 2186 &dev_attr_max_comp_streams.attr, 2187 &dev_attr_comp_algorithm.attr, 2188 #ifdef CONFIG_ZRAM_WRITEBACK 2189 &dev_attr_backing_dev.attr, 2190 &dev_attr_writeback.attr, 2191 &dev_attr_writeback_limit.attr, 2192 &dev_attr_writeback_limit_enable.attr, 2193 #endif 2194 &dev_attr_io_stat.attr, 2195 &dev_attr_mm_stat.attr, 2196 #ifdef CONFIG_ZRAM_WRITEBACK 2197 &dev_attr_bd_stat.attr, 2198 #endif 2199 &dev_attr_debug_stat.attr, 2200 #ifdef CONFIG_ZRAM_MULTI_COMP 2201 &dev_attr_recomp_algorithm.attr, 2202 &dev_attr_recompress.attr, 2203 #endif 2204 NULL, 2205 }; 2206 2207 ATTRIBUTE_GROUPS(zram_disk); 2208 2209 /* 2210 * Allocate and initialize new zram device. the function returns 2211 * '>= 0' device_id upon success, and negative value otherwise. 2212 */ 2213 static int zram_add(void) 2214 { 2215 struct zram *zram; 2216 int ret, device_id; 2217 2218 zram = kzalloc(sizeof(struct zram), GFP_KERNEL); 2219 if (!zram) 2220 return -ENOMEM; 2221 2222 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); 2223 if (ret < 0) 2224 goto out_free_dev; 2225 device_id = ret; 2226 2227 init_rwsem(&zram->init_lock); 2228 #ifdef CONFIG_ZRAM_WRITEBACK 2229 spin_lock_init(&zram->wb_limit_lock); 2230 #endif 2231 2232 /* gendisk structure */ 2233 zram->disk = blk_alloc_disk(NUMA_NO_NODE); 2234 if (!zram->disk) { 2235 pr_err("Error allocating disk structure for device %d\n", 2236 device_id); 2237 ret = -ENOMEM; 2238 goto out_free_idr; 2239 } 2240 2241 zram->disk->major = zram_major; 2242 zram->disk->first_minor = device_id; 2243 zram->disk->minors = 1; 2244 zram->disk->flags |= GENHD_FL_NO_PART; 2245 zram->disk->fops = &zram_devops; 2246 zram->disk->private_data = zram; 2247 snprintf(zram->disk->disk_name, 16, "zram%d", device_id); 2248 2249 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ 2250 set_capacity(zram->disk, 0); 2251 /* zram devices sort of resembles non-rotational disks */ 2252 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); 2253 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); 2254 2255 /* 2256 * To ensure that we always get PAGE_SIZE aligned 2257 * and n*PAGE_SIZED sized I/O requests. 2258 */ 2259 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); 2260 blk_queue_logical_block_size(zram->disk->queue, 2261 ZRAM_LOGICAL_BLOCK_SIZE); 2262 blk_queue_io_min(zram->disk->queue, PAGE_SIZE); 2263 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); 2264 zram->disk->queue->limits.discard_granularity = PAGE_SIZE; 2265 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); 2266 2267 /* 2268 * zram_bio_discard() will clear all logical blocks if logical block 2269 * size is identical with physical block size(PAGE_SIZE). But if it is 2270 * different, we will skip discarding some parts of logical blocks in 2271 * the part of the request range which isn't aligned to physical block 2272 * size. So we can't ensure that all discarded logical blocks are 2273 * zeroed. 2274 */ 2275 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) 2276 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); 2277 2278 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); 2279 ret = device_add_disk(NULL, zram->disk, zram_disk_groups); 2280 if (ret) 2281 goto out_cleanup_disk; 2282 2283 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); 2284 2285 zram_debugfs_register(zram); 2286 pr_info("Added device: %s\n", zram->disk->disk_name); 2287 return device_id; 2288 2289 out_cleanup_disk: 2290 put_disk(zram->disk); 2291 out_free_idr: 2292 idr_remove(&zram_index_idr, device_id); 2293 out_free_dev: 2294 kfree(zram); 2295 return ret; 2296 } 2297 2298 static int zram_remove(struct zram *zram) 2299 { 2300 bool claimed; 2301 2302 mutex_lock(&zram->disk->open_mutex); 2303 if (disk_openers(zram->disk)) { 2304 mutex_unlock(&zram->disk->open_mutex); 2305 return -EBUSY; 2306 } 2307 2308 claimed = zram->claim; 2309 if (!claimed) 2310 zram->claim = true; 2311 mutex_unlock(&zram->disk->open_mutex); 2312 2313 zram_debugfs_unregister(zram); 2314 2315 if (claimed) { 2316 /* 2317 * If we were claimed by reset_store(), del_gendisk() will 2318 * wait until reset_store() is done, so nothing need to do. 2319 */ 2320 ; 2321 } else { 2322 /* Make sure all the pending I/O are finished */ 2323 sync_blockdev(zram->disk->part0); 2324 zram_reset_device(zram); 2325 } 2326 2327 pr_info("Removed device: %s\n", zram->disk->disk_name); 2328 2329 del_gendisk(zram->disk); 2330 2331 /* del_gendisk drains pending reset_store */ 2332 WARN_ON_ONCE(claimed && zram->claim); 2333 2334 /* 2335 * disksize_store() may be called in between zram_reset_device() 2336 * and del_gendisk(), so run the last reset to avoid leaking 2337 * anything allocated with disksize_store() 2338 */ 2339 zram_reset_device(zram); 2340 2341 put_disk(zram->disk); 2342 kfree(zram); 2343 return 0; 2344 } 2345 2346 /* zram-control sysfs attributes */ 2347 2348 /* 2349 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a 2350 * sense that reading from this file does alter the state of your system -- it 2351 * creates a new un-initialized zram device and returns back this device's 2352 * device_id (or an error code if it fails to create a new device). 2353 */ 2354 static ssize_t hot_add_show(const struct class *class, 2355 const struct class_attribute *attr, 2356 char *buf) 2357 { 2358 int ret; 2359 2360 mutex_lock(&zram_index_mutex); 2361 ret = zram_add(); 2362 mutex_unlock(&zram_index_mutex); 2363 2364 if (ret < 0) 2365 return ret; 2366 return scnprintf(buf, PAGE_SIZE, "%d\n", ret); 2367 } 2368 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ 2369 static struct class_attribute class_attr_hot_add = 2370 __ATTR(hot_add, 0400, hot_add_show, NULL); 2371 2372 static ssize_t hot_remove_store(const struct class *class, 2373 const struct class_attribute *attr, 2374 const char *buf, 2375 size_t count) 2376 { 2377 struct zram *zram; 2378 int ret, dev_id; 2379 2380 /* dev_id is gendisk->first_minor, which is `int' */ 2381 ret = kstrtoint(buf, 10, &dev_id); 2382 if (ret) 2383 return ret; 2384 if (dev_id < 0) 2385 return -EINVAL; 2386 2387 mutex_lock(&zram_index_mutex); 2388 2389 zram = idr_find(&zram_index_idr, dev_id); 2390 if (zram) { 2391 ret = zram_remove(zram); 2392 if (!ret) 2393 idr_remove(&zram_index_idr, dev_id); 2394 } else { 2395 ret = -ENODEV; 2396 } 2397 2398 mutex_unlock(&zram_index_mutex); 2399 return ret ? ret : count; 2400 } 2401 static CLASS_ATTR_WO(hot_remove); 2402 2403 static struct attribute *zram_control_class_attrs[] = { 2404 &class_attr_hot_add.attr, 2405 &class_attr_hot_remove.attr, 2406 NULL, 2407 }; 2408 ATTRIBUTE_GROUPS(zram_control_class); 2409 2410 static struct class zram_control_class = { 2411 .name = "zram-control", 2412 .class_groups = zram_control_class_groups, 2413 }; 2414 2415 static int zram_remove_cb(int id, void *ptr, void *data) 2416 { 2417 WARN_ON_ONCE(zram_remove(ptr)); 2418 return 0; 2419 } 2420 2421 static void destroy_devices(void) 2422 { 2423 class_unregister(&zram_control_class); 2424 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); 2425 zram_debugfs_destroy(); 2426 idr_destroy(&zram_index_idr); 2427 unregister_blkdev(zram_major, "zram"); 2428 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2429 } 2430 2431 static int __init zram_init(void) 2432 { 2433 int ret; 2434 2435 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); 2436 2437 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", 2438 zcomp_cpu_up_prepare, zcomp_cpu_dead); 2439 if (ret < 0) 2440 return ret; 2441 2442 ret = class_register(&zram_control_class); 2443 if (ret) { 2444 pr_err("Unable to register zram-control class\n"); 2445 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2446 return ret; 2447 } 2448 2449 zram_debugfs_create(); 2450 zram_major = register_blkdev(0, "zram"); 2451 if (zram_major <= 0) { 2452 pr_err("Unable to get major number\n"); 2453 class_unregister(&zram_control_class); 2454 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); 2455 return -EBUSY; 2456 } 2457 2458 while (num_devices != 0) { 2459 mutex_lock(&zram_index_mutex); 2460 ret = zram_add(); 2461 mutex_unlock(&zram_index_mutex); 2462 if (ret < 0) 2463 goto out_error; 2464 num_devices--; 2465 } 2466 2467 return 0; 2468 2469 out_error: 2470 destroy_devices(); 2471 return ret; 2472 } 2473 2474 static void __exit zram_exit(void) 2475 { 2476 destroy_devices(); 2477 } 2478 2479 module_init(zram_init); 2480 module_exit(zram_exit); 2481 2482 module_param(num_devices, uint, 0); 2483 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); 2484 2485 MODULE_LICENSE("Dual BSD/GPL"); 2486 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2487 MODULE_DESCRIPTION("Compressed RAM Block Device"); 2488