1 /* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38 #include <linux/interrupt.h> 39 #include <linux/blkdev.h> 40 #include <linux/blk-mq.h> 41 #include <linux/hdreg.h> 42 #include <linux/cdrom.h> 43 #include <linux/module.h> 44 #include <linux/slab.h> 45 #include <linux/major.h> 46 #include <linux/mutex.h> 47 #include <linux/scatterlist.h> 48 #include <linux/bitmap.h> 49 #include <linux/list.h> 50 #include <linux/workqueue.h> 51 #include <linux/sched/mm.h> 52 53 #include <xen/xen.h> 54 #include <xen/xenbus.h> 55 #include <xen/grant_table.h> 56 #include <xen/events.h> 57 #include <xen/page.h> 58 #include <xen/platform_pci.h> 59 60 #include <xen/interface/grant_table.h> 61 #include <xen/interface/io/blkif.h> 62 #include <xen/interface/io/protocols.h> 63 64 #include <asm/xen/hypervisor.h> 65 66 /* 67 * The minimal size of segment supported by the block framework is PAGE_SIZE. 68 * When Linux is using a different page size than Xen, it may not be possible 69 * to put all the data in a single segment. 70 * This can happen when the backend doesn't support indirect descriptor and 71 * therefore the maximum amount of data that a request can carry is 72 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 73 * 74 * Note that we only support one extra request. So the Linux page size 75 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 76 * 88KB. 77 */ 78 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 79 80 enum blkif_state { 81 BLKIF_STATE_DISCONNECTED, 82 BLKIF_STATE_CONNECTED, 83 BLKIF_STATE_SUSPENDED, 84 BLKIF_STATE_ERROR, 85 }; 86 87 struct grant { 88 grant_ref_t gref; 89 struct page *page; 90 struct list_head node; 91 }; 92 93 enum blk_req_status { 94 REQ_PROCESSING, 95 REQ_WAITING, 96 REQ_DONE, 97 REQ_ERROR, 98 REQ_EOPNOTSUPP, 99 }; 100 101 struct blk_shadow { 102 struct blkif_request req; 103 struct request *request; 104 struct grant **grants_used; 105 struct grant **indirect_grants; 106 struct scatterlist *sg; 107 unsigned int num_sg; 108 enum blk_req_status status; 109 110 #define NO_ASSOCIATED_ID ~0UL 111 /* 112 * Id of the sibling if we ever need 2 requests when handling a 113 * block I/O request 114 */ 115 unsigned long associated_id; 116 }; 117 118 struct blkif_req { 119 blk_status_t error; 120 }; 121 122 static inline struct blkif_req *blkif_req(struct request *rq) 123 { 124 return blk_mq_rq_to_pdu(rq); 125 } 126 127 static DEFINE_MUTEX(blkfront_mutex); 128 static const struct block_device_operations xlvbd_block_fops; 129 static struct delayed_work blkfront_work; 130 static LIST_HEAD(info_list); 131 132 /* 133 * Maximum number of segments in indirect requests, the actual value used by 134 * the frontend driver is the minimum of this value and the value provided 135 * by the backend driver. 136 */ 137 138 static unsigned int xen_blkif_max_segments = 32; 139 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 140 MODULE_PARM_DESC(max_indirect_segments, 141 "Maximum amount of segments in indirect requests (default is 32)"); 142 143 static unsigned int xen_blkif_max_queues = 4; 144 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 145 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 146 147 /* 148 * Maximum order of pages to be used for the shared ring between front and 149 * backend, 4KB page granularity is used. 150 */ 151 static unsigned int xen_blkif_max_ring_order; 152 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 153 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 154 155 static bool __read_mostly xen_blkif_trusted = true; 156 module_param_named(trusted, xen_blkif_trusted, bool, 0644); 157 MODULE_PARM_DESC(trusted, "Is the backend trusted"); 158 159 #define BLK_RING_SIZE(info) \ 160 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 161 162 /* 163 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 164 * characters are enough. Define to 20 to keep consistent with backend. 165 */ 166 #define RINGREF_NAME_LEN (20) 167 /* 168 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 169 */ 170 #define QUEUE_NAME_LEN (17) 171 172 /* 173 * Per-ring info. 174 * Every blkfront device can associate with one or more blkfront_ring_info, 175 * depending on how many hardware queues/rings to be used. 176 */ 177 struct blkfront_ring_info { 178 /* Lock to protect data in every ring buffer. */ 179 spinlock_t ring_lock; 180 struct blkif_front_ring ring; 181 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 182 unsigned int evtchn, irq; 183 struct work_struct work; 184 struct gnttab_free_callback callback; 185 struct list_head indirect_pages; 186 struct list_head grants; 187 unsigned int persistent_gnts_c; 188 unsigned long shadow_free; 189 struct blkfront_info *dev_info; 190 struct blk_shadow shadow[]; 191 }; 192 193 /* 194 * We have one of these per vbd, whether ide, scsi or 'other'. They 195 * hang in private_data off the gendisk structure. We may end up 196 * putting all kinds of interesting stuff here :-) 197 */ 198 struct blkfront_info 199 { 200 struct mutex mutex; 201 struct xenbus_device *xbdev; 202 struct gendisk *gd; 203 u16 sector_size; 204 unsigned int physical_sector_size; 205 unsigned long vdisk_info; 206 int vdevice; 207 blkif_vdev_t handle; 208 enum blkif_state connected; 209 /* Number of pages per ring buffer. */ 210 unsigned int nr_ring_pages; 211 struct request_queue *rq; 212 unsigned int feature_flush:1; 213 unsigned int feature_fua:1; 214 unsigned int feature_discard:1; 215 unsigned int feature_secdiscard:1; 216 /* Connect-time cached feature_persistent parameter */ 217 unsigned int feature_persistent_parm:1; 218 /* Persistent grants feature negotiation result */ 219 unsigned int feature_persistent:1; 220 unsigned int bounce:1; 221 unsigned int discard_granularity; 222 unsigned int discard_alignment; 223 /* Number of 4KB segments handled */ 224 unsigned int max_indirect_segments; 225 int is_ready; 226 struct blk_mq_tag_set tag_set; 227 struct blkfront_ring_info *rinfo; 228 unsigned int nr_rings; 229 unsigned int rinfo_size; 230 /* Save uncomplete reqs and bios for migration. */ 231 struct list_head requests; 232 struct bio_list bio_list; 233 struct list_head info_list; 234 }; 235 236 static unsigned int nr_minors; 237 static unsigned long *minors; 238 static DEFINE_SPINLOCK(minor_lock); 239 240 #define PARTS_PER_DISK 16 241 #define PARTS_PER_EXT_DISK 256 242 243 #define BLKIF_MAJOR(dev) ((dev)>>8) 244 #define BLKIF_MINOR(dev) ((dev) & 0xff) 245 246 #define EXT_SHIFT 28 247 #define EXTENDED (1<<EXT_SHIFT) 248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 250 #define EMULATED_HD_DISK_MINOR_OFFSET (0) 251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 252 #define EMULATED_SD_DISK_MINOR_OFFSET (0) 253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 254 255 #define DEV_NAME "xvd" /* name in /dev */ 256 257 /* 258 * Grants are always the same size as a Xen page (i.e 4KB). 259 * A physical segment is always the same size as a Linux page. 260 * Number of grants per physical segment 261 */ 262 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 263 264 #define GRANTS_PER_INDIRECT_FRAME \ 265 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 266 267 #define INDIRECT_GREFS(_grants) \ 268 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 269 270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 271 static void blkfront_gather_backend_features(struct blkfront_info *info); 272 static int negotiate_mq(struct blkfront_info *info); 273 274 #define for_each_rinfo(info, ptr, idx) \ 275 for ((ptr) = (info)->rinfo, (idx) = 0; \ 276 (idx) < (info)->nr_rings; \ 277 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 278 279 static inline struct blkfront_ring_info * 280 get_rinfo(const struct blkfront_info *info, unsigned int i) 281 { 282 BUG_ON(i >= info->nr_rings); 283 return (void *)info->rinfo + i * info->rinfo_size; 284 } 285 286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 287 { 288 unsigned long free = rinfo->shadow_free; 289 290 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 291 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 292 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 293 return free; 294 } 295 296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 297 unsigned long id) 298 { 299 if (rinfo->shadow[id].req.u.rw.id != id) 300 return -EINVAL; 301 if (rinfo->shadow[id].request == NULL) 302 return -EINVAL; 303 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 304 rinfo->shadow[id].request = NULL; 305 rinfo->shadow_free = id; 306 return 0; 307 } 308 309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 310 { 311 struct blkfront_info *info = rinfo->dev_info; 312 struct page *granted_page; 313 struct grant *gnt_list_entry, *n; 314 int i = 0; 315 316 while (i < num) { 317 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 318 if (!gnt_list_entry) 319 goto out_of_memory; 320 321 if (info->bounce) { 322 granted_page = alloc_page(GFP_NOIO | __GFP_ZERO); 323 if (!granted_page) { 324 kfree(gnt_list_entry); 325 goto out_of_memory; 326 } 327 gnt_list_entry->page = granted_page; 328 } 329 330 gnt_list_entry->gref = INVALID_GRANT_REF; 331 list_add(&gnt_list_entry->node, &rinfo->grants); 332 i++; 333 } 334 335 return 0; 336 337 out_of_memory: 338 list_for_each_entry_safe(gnt_list_entry, n, 339 &rinfo->grants, node) { 340 list_del(&gnt_list_entry->node); 341 if (info->bounce) 342 __free_page(gnt_list_entry->page); 343 kfree(gnt_list_entry); 344 i--; 345 } 346 BUG_ON(i != 0); 347 return -ENOMEM; 348 } 349 350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 351 { 352 struct grant *gnt_list_entry; 353 354 BUG_ON(list_empty(&rinfo->grants)); 355 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 356 node); 357 list_del(&gnt_list_entry->node); 358 359 if (gnt_list_entry->gref != INVALID_GRANT_REF) 360 rinfo->persistent_gnts_c--; 361 362 return gnt_list_entry; 363 } 364 365 static inline void grant_foreign_access(const struct grant *gnt_list_entry, 366 const struct blkfront_info *info) 367 { 368 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 369 info->xbdev->otherend_id, 370 gnt_list_entry->page, 371 0); 372 } 373 374 static struct grant *get_grant(grant_ref_t *gref_head, 375 unsigned long gfn, 376 struct blkfront_ring_info *rinfo) 377 { 378 struct grant *gnt_list_entry = get_free_grant(rinfo); 379 struct blkfront_info *info = rinfo->dev_info; 380 381 if (gnt_list_entry->gref != INVALID_GRANT_REF) 382 return gnt_list_entry; 383 384 /* Assign a gref to this page */ 385 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 386 BUG_ON(gnt_list_entry->gref == -ENOSPC); 387 if (info->bounce) 388 grant_foreign_access(gnt_list_entry, info); 389 else { 390 /* Grant access to the GFN passed by the caller */ 391 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 392 info->xbdev->otherend_id, 393 gfn, 0); 394 } 395 396 return gnt_list_entry; 397 } 398 399 static struct grant *get_indirect_grant(grant_ref_t *gref_head, 400 struct blkfront_ring_info *rinfo) 401 { 402 struct grant *gnt_list_entry = get_free_grant(rinfo); 403 struct blkfront_info *info = rinfo->dev_info; 404 405 if (gnt_list_entry->gref != INVALID_GRANT_REF) 406 return gnt_list_entry; 407 408 /* Assign a gref to this page */ 409 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 410 BUG_ON(gnt_list_entry->gref == -ENOSPC); 411 if (!info->bounce) { 412 struct page *indirect_page; 413 414 /* Fetch a pre-allocated page to use for indirect grefs */ 415 BUG_ON(list_empty(&rinfo->indirect_pages)); 416 indirect_page = list_first_entry(&rinfo->indirect_pages, 417 struct page, lru); 418 list_del(&indirect_page->lru); 419 gnt_list_entry->page = indirect_page; 420 } 421 grant_foreign_access(gnt_list_entry, info); 422 423 return gnt_list_entry; 424 } 425 426 static const char *op_name(int op) 427 { 428 static const char *const names[] = { 429 [BLKIF_OP_READ] = "read", 430 [BLKIF_OP_WRITE] = "write", 431 [BLKIF_OP_WRITE_BARRIER] = "barrier", 432 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 433 [BLKIF_OP_DISCARD] = "discard" }; 434 435 if (op < 0 || op >= ARRAY_SIZE(names)) 436 return "unknown"; 437 438 if (!names[op]) 439 return "reserved"; 440 441 return names[op]; 442 } 443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 444 { 445 unsigned int end = minor + nr; 446 int rc; 447 448 if (end > nr_minors) { 449 unsigned long *bitmap, *old; 450 451 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 452 GFP_KERNEL); 453 if (bitmap == NULL) 454 return -ENOMEM; 455 456 spin_lock(&minor_lock); 457 if (end > nr_minors) { 458 old = minors; 459 memcpy(bitmap, minors, 460 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 461 minors = bitmap; 462 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 463 } else 464 old = bitmap; 465 spin_unlock(&minor_lock); 466 kfree(old); 467 } 468 469 spin_lock(&minor_lock); 470 if (find_next_bit(minors, end, minor) >= end) { 471 bitmap_set(minors, minor, nr); 472 rc = 0; 473 } else 474 rc = -EBUSY; 475 spin_unlock(&minor_lock); 476 477 return rc; 478 } 479 480 static void xlbd_release_minors(unsigned int minor, unsigned int nr) 481 { 482 unsigned int end = minor + nr; 483 484 BUG_ON(end > nr_minors); 485 spin_lock(&minor_lock); 486 bitmap_clear(minors, minor, nr); 487 spin_unlock(&minor_lock); 488 } 489 490 static void blkif_restart_queue_callback(void *arg) 491 { 492 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 493 schedule_work(&rinfo->work); 494 } 495 496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 497 { 498 /* We don't have real geometry info, but let's at least return 499 values consistent with the size of the device */ 500 sector_t nsect = get_capacity(bd->bd_disk); 501 sector_t cylinders = nsect; 502 503 hg->heads = 0xff; 504 hg->sectors = 0x3f; 505 sector_div(cylinders, hg->heads * hg->sectors); 506 hg->cylinders = cylinders; 507 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 508 hg->cylinders = 0xffff; 509 return 0; 510 } 511 512 static int blkif_ioctl(struct block_device *bdev, blk_mode_t mode, 513 unsigned command, unsigned long argument) 514 { 515 struct blkfront_info *info = bdev->bd_disk->private_data; 516 int i; 517 518 switch (command) { 519 case CDROMMULTISESSION: 520 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 521 if (put_user(0, (char __user *)(argument + i))) 522 return -EFAULT; 523 return 0; 524 case CDROM_GET_CAPABILITY: 525 if (!(info->vdisk_info & VDISK_CDROM)) 526 return -EINVAL; 527 return 0; 528 default: 529 return -EINVAL; 530 } 531 } 532 533 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 534 struct request *req, 535 struct blkif_request **ring_req) 536 { 537 unsigned long id; 538 539 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 540 rinfo->ring.req_prod_pvt++; 541 542 id = get_id_from_freelist(rinfo); 543 rinfo->shadow[id].request = req; 544 rinfo->shadow[id].status = REQ_PROCESSING; 545 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 546 547 rinfo->shadow[id].req.u.rw.id = id; 548 549 return id; 550 } 551 552 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 553 { 554 struct blkfront_info *info = rinfo->dev_info; 555 struct blkif_request *ring_req, *final_ring_req; 556 unsigned long id; 557 558 /* Fill out a communications ring structure. */ 559 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 560 ring_req = &rinfo->shadow[id].req; 561 562 ring_req->operation = BLKIF_OP_DISCARD; 563 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 564 ring_req->u.discard.id = id; 565 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 566 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 567 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 568 else 569 ring_req->u.discard.flag = 0; 570 571 /* Copy the request to the ring page. */ 572 *final_ring_req = *ring_req; 573 rinfo->shadow[id].status = REQ_WAITING; 574 575 return 0; 576 } 577 578 struct setup_rw_req { 579 unsigned int grant_idx; 580 struct blkif_request_segment *segments; 581 struct blkfront_ring_info *rinfo; 582 struct blkif_request *ring_req; 583 grant_ref_t gref_head; 584 unsigned int id; 585 /* Only used when persistent grant is used and it's a write request */ 586 bool need_copy; 587 unsigned int bvec_off; 588 char *bvec_data; 589 590 bool require_extra_req; 591 struct blkif_request *extra_ring_req; 592 }; 593 594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 595 unsigned int len, void *data) 596 { 597 struct setup_rw_req *setup = data; 598 int n, ref; 599 struct grant *gnt_list_entry; 600 unsigned int fsect, lsect; 601 /* Convenient aliases */ 602 unsigned int grant_idx = setup->grant_idx; 603 struct blkif_request *ring_req = setup->ring_req; 604 struct blkfront_ring_info *rinfo = setup->rinfo; 605 /* 606 * We always use the shadow of the first request to store the list 607 * of grant associated to the block I/O request. This made the 608 * completion more easy to handle even if the block I/O request is 609 * split. 610 */ 611 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 612 613 if (unlikely(setup->require_extra_req && 614 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 615 /* 616 * We are using the second request, setup grant_idx 617 * to be the index of the segment array. 618 */ 619 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 620 ring_req = setup->extra_ring_req; 621 } 622 623 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 624 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 625 if (setup->segments) 626 kunmap_atomic(setup->segments); 627 628 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 629 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 630 shadow->indirect_grants[n] = gnt_list_entry; 631 setup->segments = kmap_atomic(gnt_list_entry->page); 632 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 633 } 634 635 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 636 ref = gnt_list_entry->gref; 637 /* 638 * All the grants are stored in the shadow of the first 639 * request. Therefore we have to use the global index. 640 */ 641 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 642 643 if (setup->need_copy) { 644 void *shared_data; 645 646 shared_data = kmap_atomic(gnt_list_entry->page); 647 /* 648 * this does not wipe data stored outside the 649 * range sg->offset..sg->offset+sg->length. 650 * Therefore, blkback *could* see data from 651 * previous requests. This is OK as long as 652 * persistent grants are shared with just one 653 * domain. It may need refactoring if this 654 * changes 655 */ 656 memcpy(shared_data + offset, 657 setup->bvec_data + setup->bvec_off, 658 len); 659 660 kunmap_atomic(shared_data); 661 setup->bvec_off += len; 662 } 663 664 fsect = offset >> 9; 665 lsect = fsect + (len >> 9) - 1; 666 if (ring_req->operation != BLKIF_OP_INDIRECT) { 667 ring_req->u.rw.seg[grant_idx] = 668 (struct blkif_request_segment) { 669 .gref = ref, 670 .first_sect = fsect, 671 .last_sect = lsect }; 672 } else { 673 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 674 (struct blkif_request_segment) { 675 .gref = ref, 676 .first_sect = fsect, 677 .last_sect = lsect }; 678 } 679 680 (setup->grant_idx)++; 681 } 682 683 static void blkif_setup_extra_req(struct blkif_request *first, 684 struct blkif_request *second) 685 { 686 uint16_t nr_segments = first->u.rw.nr_segments; 687 688 /* 689 * The second request is only present when the first request uses 690 * all its segments. It's always the continuity of the first one. 691 */ 692 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 693 694 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 695 second->u.rw.sector_number = first->u.rw.sector_number + 696 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 697 698 second->u.rw.handle = first->u.rw.handle; 699 second->operation = first->operation; 700 } 701 702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 703 { 704 struct blkfront_info *info = rinfo->dev_info; 705 struct blkif_request *ring_req, *extra_ring_req = NULL; 706 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL; 707 unsigned long id, extra_id = NO_ASSOCIATED_ID; 708 bool require_extra_req = false; 709 int i; 710 struct setup_rw_req setup = { 711 .grant_idx = 0, 712 .segments = NULL, 713 .rinfo = rinfo, 714 .need_copy = rq_data_dir(req) && info->bounce, 715 }; 716 717 /* 718 * Used to store if we are able to queue the request by just using 719 * existing persistent grants, or if we have to get new grants, 720 * as there are not sufficiently many free. 721 */ 722 bool new_persistent_gnts = false; 723 struct scatterlist *sg; 724 int num_sg, max_grefs, num_grant; 725 726 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 727 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 728 /* 729 * If we are using indirect segments we need to account 730 * for the indirect grefs used in the request. 731 */ 732 max_grefs += INDIRECT_GREFS(max_grefs); 733 734 /* Check if we have enough persistent grants to allocate a requests */ 735 if (rinfo->persistent_gnts_c < max_grefs) { 736 new_persistent_gnts = true; 737 738 if (gnttab_alloc_grant_references( 739 max_grefs - rinfo->persistent_gnts_c, 740 &setup.gref_head) < 0) { 741 gnttab_request_free_callback( 742 &rinfo->callback, 743 blkif_restart_queue_callback, 744 rinfo, 745 max_grefs - rinfo->persistent_gnts_c); 746 return 1; 747 } 748 } 749 750 /* Fill out a communications ring structure. */ 751 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 752 ring_req = &rinfo->shadow[id].req; 753 754 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 755 num_grant = 0; 756 /* Calculate the number of grant used */ 757 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 758 num_grant += gnttab_count_grant(sg->offset, sg->length); 759 760 require_extra_req = info->max_indirect_segments == 0 && 761 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 762 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 763 764 rinfo->shadow[id].num_sg = num_sg; 765 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 766 likely(!require_extra_req)) { 767 /* 768 * The indirect operation can only be a BLKIF_OP_READ or 769 * BLKIF_OP_WRITE 770 */ 771 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 772 ring_req->operation = BLKIF_OP_INDIRECT; 773 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 774 BLKIF_OP_WRITE : BLKIF_OP_READ; 775 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 776 ring_req->u.indirect.handle = info->handle; 777 ring_req->u.indirect.nr_segments = num_grant; 778 } else { 779 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 780 ring_req->u.rw.handle = info->handle; 781 ring_req->operation = rq_data_dir(req) ? 782 BLKIF_OP_WRITE : BLKIF_OP_READ; 783 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) { 784 /* 785 * Ideally we can do an unordered flush-to-disk. 786 * In case the backend onlysupports barriers, use that. 787 * A barrier request a superset of FUA, so we can 788 * implement it the same way. (It's also a FLUSH+FUA, 789 * since it is guaranteed ordered WRT previous writes.) 790 */ 791 if (info->feature_flush && info->feature_fua) 792 ring_req->operation = 793 BLKIF_OP_WRITE_BARRIER; 794 else if (info->feature_flush) 795 ring_req->operation = 796 BLKIF_OP_FLUSH_DISKCACHE; 797 else 798 ring_req->operation = 0; 799 } 800 ring_req->u.rw.nr_segments = num_grant; 801 if (unlikely(require_extra_req)) { 802 extra_id = blkif_ring_get_request(rinfo, req, 803 &final_extra_ring_req); 804 extra_ring_req = &rinfo->shadow[extra_id].req; 805 806 /* 807 * Only the first request contains the scatter-gather 808 * list. 809 */ 810 rinfo->shadow[extra_id].num_sg = 0; 811 812 blkif_setup_extra_req(ring_req, extra_ring_req); 813 814 /* Link the 2 requests together */ 815 rinfo->shadow[extra_id].associated_id = id; 816 rinfo->shadow[id].associated_id = extra_id; 817 } 818 } 819 820 setup.ring_req = ring_req; 821 setup.id = id; 822 823 setup.require_extra_req = require_extra_req; 824 if (unlikely(require_extra_req)) 825 setup.extra_ring_req = extra_ring_req; 826 827 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 828 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 829 830 if (setup.need_copy) { 831 setup.bvec_off = sg->offset; 832 setup.bvec_data = kmap_atomic(sg_page(sg)); 833 } 834 835 gnttab_foreach_grant_in_range(sg_page(sg), 836 sg->offset, 837 sg->length, 838 blkif_setup_rw_req_grant, 839 &setup); 840 841 if (setup.need_copy) 842 kunmap_atomic(setup.bvec_data); 843 } 844 if (setup.segments) 845 kunmap_atomic(setup.segments); 846 847 /* Copy request(s) to the ring page. */ 848 *final_ring_req = *ring_req; 849 rinfo->shadow[id].status = REQ_WAITING; 850 if (unlikely(require_extra_req)) { 851 *final_extra_ring_req = *extra_ring_req; 852 rinfo->shadow[extra_id].status = REQ_WAITING; 853 } 854 855 if (new_persistent_gnts) 856 gnttab_free_grant_references(setup.gref_head); 857 858 return 0; 859 } 860 861 /* 862 * Generate a Xen blkfront IO request from a blk layer request. Reads 863 * and writes are handled as expected. 864 * 865 * @req: a request struct 866 */ 867 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 868 { 869 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 870 return 1; 871 872 if (unlikely(req_op(req) == REQ_OP_DISCARD || 873 req_op(req) == REQ_OP_SECURE_ERASE)) 874 return blkif_queue_discard_req(req, rinfo); 875 else 876 return blkif_queue_rw_req(req, rinfo); 877 } 878 879 static inline void flush_requests(struct blkfront_ring_info *rinfo) 880 { 881 int notify; 882 883 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 884 885 if (notify) 886 notify_remote_via_irq(rinfo->irq); 887 } 888 889 static inline bool blkif_request_flush_invalid(struct request *req, 890 struct blkfront_info *info) 891 { 892 return (blk_rq_is_passthrough(req) || 893 ((req_op(req) == REQ_OP_FLUSH) && 894 !info->feature_flush) || 895 ((req->cmd_flags & REQ_FUA) && 896 !info->feature_fua)); 897 } 898 899 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 900 const struct blk_mq_queue_data *qd) 901 { 902 unsigned long flags; 903 int qid = hctx->queue_num; 904 struct blkfront_info *info = hctx->queue->queuedata; 905 struct blkfront_ring_info *rinfo = NULL; 906 907 rinfo = get_rinfo(info, qid); 908 blk_mq_start_request(qd->rq); 909 spin_lock_irqsave(&rinfo->ring_lock, flags); 910 if (RING_FULL(&rinfo->ring)) 911 goto out_busy; 912 913 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 914 goto out_err; 915 916 if (blkif_queue_request(qd->rq, rinfo)) 917 goto out_busy; 918 919 flush_requests(rinfo); 920 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 921 return BLK_STS_OK; 922 923 out_err: 924 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 925 return BLK_STS_IOERR; 926 927 out_busy: 928 blk_mq_stop_hw_queue(hctx); 929 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 930 return BLK_STS_DEV_RESOURCE; 931 } 932 933 static void blkif_complete_rq(struct request *rq) 934 { 935 blk_mq_end_request(rq, blkif_req(rq)->error); 936 } 937 938 static const struct blk_mq_ops blkfront_mq_ops = { 939 .queue_rq = blkif_queue_rq, 940 .complete = blkif_complete_rq, 941 }; 942 943 static void blkif_set_queue_limits(struct blkfront_info *info) 944 { 945 struct request_queue *rq = info->rq; 946 struct gendisk *gd = info->gd; 947 unsigned int segments = info->max_indirect_segments ? : 948 BLKIF_MAX_SEGMENTS_PER_REQUEST; 949 950 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 951 952 if (info->feature_discard) { 953 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 954 rq->limits.discard_granularity = info->discard_granularity ?: 955 info->physical_sector_size; 956 rq->limits.discard_alignment = info->discard_alignment; 957 if (info->feature_secdiscard) 958 blk_queue_max_secure_erase_sectors(rq, 959 get_capacity(gd)); 960 } 961 962 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 963 blk_queue_logical_block_size(rq, info->sector_size); 964 blk_queue_physical_block_size(rq, info->physical_sector_size); 965 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 966 967 /* Each segment in a request is up to an aligned page in size. */ 968 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 969 blk_queue_max_segment_size(rq, PAGE_SIZE); 970 971 /* Ensure a merged request will fit in a single I/O ring slot. */ 972 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 973 974 /* Make sure buffer addresses are sector-aligned. */ 975 blk_queue_dma_alignment(rq, 511); 976 } 977 978 static const char *flush_info(struct blkfront_info *info) 979 { 980 if (info->feature_flush && info->feature_fua) 981 return "barrier: enabled;"; 982 else if (info->feature_flush) 983 return "flush diskcache: enabled;"; 984 else 985 return "barrier or flush: disabled;"; 986 } 987 988 static void xlvbd_flush(struct blkfront_info *info) 989 { 990 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 991 info->feature_fua ? true : false); 992 pr_info("blkfront: %s: %s %s %s %s %s %s %s\n", 993 info->gd->disk_name, flush_info(info), 994 "persistent grants:", info->feature_persistent ? 995 "enabled;" : "disabled;", "indirect descriptors:", 996 info->max_indirect_segments ? "enabled;" : "disabled;", 997 "bounce buffer:", info->bounce ? "enabled" : "disabled;"); 998 } 999 1000 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1001 { 1002 int major; 1003 major = BLKIF_MAJOR(vdevice); 1004 *minor = BLKIF_MINOR(vdevice); 1005 switch (major) { 1006 case XEN_IDE0_MAJOR: 1007 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1008 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1009 EMULATED_HD_DISK_MINOR_OFFSET; 1010 break; 1011 case XEN_IDE1_MAJOR: 1012 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1013 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1014 EMULATED_HD_DISK_MINOR_OFFSET; 1015 break; 1016 case XEN_SCSI_DISK0_MAJOR: 1017 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1018 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1019 break; 1020 case XEN_SCSI_DISK1_MAJOR: 1021 case XEN_SCSI_DISK2_MAJOR: 1022 case XEN_SCSI_DISK3_MAJOR: 1023 case XEN_SCSI_DISK4_MAJOR: 1024 case XEN_SCSI_DISK5_MAJOR: 1025 case XEN_SCSI_DISK6_MAJOR: 1026 case XEN_SCSI_DISK7_MAJOR: 1027 *offset = (*minor / PARTS_PER_DISK) + 1028 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1029 EMULATED_SD_DISK_NAME_OFFSET; 1030 *minor = *minor + 1031 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1032 EMULATED_SD_DISK_MINOR_OFFSET; 1033 break; 1034 case XEN_SCSI_DISK8_MAJOR: 1035 case XEN_SCSI_DISK9_MAJOR: 1036 case XEN_SCSI_DISK10_MAJOR: 1037 case XEN_SCSI_DISK11_MAJOR: 1038 case XEN_SCSI_DISK12_MAJOR: 1039 case XEN_SCSI_DISK13_MAJOR: 1040 case XEN_SCSI_DISK14_MAJOR: 1041 case XEN_SCSI_DISK15_MAJOR: 1042 *offset = (*minor / PARTS_PER_DISK) + 1043 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1044 EMULATED_SD_DISK_NAME_OFFSET; 1045 *minor = *minor + 1046 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1047 EMULATED_SD_DISK_MINOR_OFFSET; 1048 break; 1049 case XENVBD_MAJOR: 1050 *offset = *minor / PARTS_PER_DISK; 1051 break; 1052 default: 1053 printk(KERN_WARNING "blkfront: your disk configuration is " 1054 "incorrect, please use an xvd device instead\n"); 1055 return -ENODEV; 1056 } 1057 return 0; 1058 } 1059 1060 static char *encode_disk_name(char *ptr, unsigned int n) 1061 { 1062 if (n >= 26) 1063 ptr = encode_disk_name(ptr, n / 26 - 1); 1064 *ptr = 'a' + n % 26; 1065 return ptr + 1; 1066 } 1067 1068 static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1069 struct blkfront_info *info, u16 sector_size, 1070 unsigned int physical_sector_size) 1071 { 1072 struct gendisk *gd; 1073 int nr_minors = 1; 1074 int err; 1075 unsigned int offset; 1076 int minor; 1077 int nr_parts; 1078 char *ptr; 1079 1080 BUG_ON(info->gd != NULL); 1081 BUG_ON(info->rq != NULL); 1082 1083 if ((info->vdevice>>EXT_SHIFT) > 1) { 1084 /* this is above the extended range; something is wrong */ 1085 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1086 return -ENODEV; 1087 } 1088 1089 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1090 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1091 if (err) 1092 return err; 1093 nr_parts = PARTS_PER_DISK; 1094 } else { 1095 minor = BLKIF_MINOR_EXT(info->vdevice); 1096 nr_parts = PARTS_PER_EXT_DISK; 1097 offset = minor / nr_parts; 1098 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1099 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1100 "emulated IDE disks,\n\t choose an xvd device name" 1101 "from xvde on\n", info->vdevice); 1102 } 1103 if (minor >> MINORBITS) { 1104 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1105 info->vdevice, minor); 1106 return -ENODEV; 1107 } 1108 1109 if ((minor % nr_parts) == 0) 1110 nr_minors = nr_parts; 1111 1112 err = xlbd_reserve_minors(minor, nr_minors); 1113 if (err) 1114 return err; 1115 1116 memset(&info->tag_set, 0, sizeof(info->tag_set)); 1117 info->tag_set.ops = &blkfront_mq_ops; 1118 info->tag_set.nr_hw_queues = info->nr_rings; 1119 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 1120 /* 1121 * When indirect descriptior is not supported, the I/O request 1122 * will be split between multiple request in the ring. 1123 * To avoid problems when sending the request, divide by 1124 * 2 the depth of the queue. 1125 */ 1126 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 1127 } else 1128 info->tag_set.queue_depth = BLK_RING_SIZE(info); 1129 info->tag_set.numa_node = NUMA_NO_NODE; 1130 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1131 info->tag_set.cmd_size = sizeof(struct blkif_req); 1132 info->tag_set.driver_data = info; 1133 1134 err = blk_mq_alloc_tag_set(&info->tag_set); 1135 if (err) 1136 goto out_release_minors; 1137 1138 gd = blk_mq_alloc_disk(&info->tag_set, info); 1139 if (IS_ERR(gd)) { 1140 err = PTR_ERR(gd); 1141 goto out_free_tag_set; 1142 } 1143 1144 strcpy(gd->disk_name, DEV_NAME); 1145 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1146 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1147 if (nr_minors > 1) 1148 *ptr = 0; 1149 else 1150 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1151 "%d", minor & (nr_parts - 1)); 1152 1153 gd->major = XENVBD_MAJOR; 1154 gd->first_minor = minor; 1155 gd->minors = nr_minors; 1156 gd->fops = &xlvbd_block_fops; 1157 gd->private_data = info; 1158 set_capacity(gd, capacity); 1159 1160 info->rq = gd->queue; 1161 info->gd = gd; 1162 info->sector_size = sector_size; 1163 info->physical_sector_size = physical_sector_size; 1164 blkif_set_queue_limits(info); 1165 1166 xlvbd_flush(info); 1167 1168 if (info->vdisk_info & VDISK_READONLY) 1169 set_disk_ro(gd, 1); 1170 if (info->vdisk_info & VDISK_REMOVABLE) 1171 gd->flags |= GENHD_FL_REMOVABLE; 1172 1173 return 0; 1174 1175 out_free_tag_set: 1176 blk_mq_free_tag_set(&info->tag_set); 1177 out_release_minors: 1178 xlbd_release_minors(minor, nr_minors); 1179 return err; 1180 } 1181 1182 /* Already hold rinfo->ring_lock. */ 1183 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1184 { 1185 if (!RING_FULL(&rinfo->ring)) 1186 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1187 } 1188 1189 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1190 { 1191 unsigned long flags; 1192 1193 spin_lock_irqsave(&rinfo->ring_lock, flags); 1194 kick_pending_request_queues_locked(rinfo); 1195 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1196 } 1197 1198 static void blkif_restart_queue(struct work_struct *work) 1199 { 1200 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1201 1202 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1203 kick_pending_request_queues(rinfo); 1204 } 1205 1206 static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1207 { 1208 struct grant *persistent_gnt, *n; 1209 struct blkfront_info *info = rinfo->dev_info; 1210 int i, j, segs; 1211 1212 /* 1213 * Remove indirect pages, this only happens when using indirect 1214 * descriptors but not persistent grants 1215 */ 1216 if (!list_empty(&rinfo->indirect_pages)) { 1217 struct page *indirect_page, *n; 1218 1219 BUG_ON(info->bounce); 1220 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1221 list_del(&indirect_page->lru); 1222 __free_page(indirect_page); 1223 } 1224 } 1225 1226 /* Remove all persistent grants. */ 1227 if (!list_empty(&rinfo->grants)) { 1228 list_for_each_entry_safe(persistent_gnt, n, 1229 &rinfo->grants, node) { 1230 list_del(&persistent_gnt->node); 1231 if (persistent_gnt->gref != INVALID_GRANT_REF) { 1232 gnttab_end_foreign_access(persistent_gnt->gref, 1233 NULL); 1234 rinfo->persistent_gnts_c--; 1235 } 1236 if (info->bounce) 1237 __free_page(persistent_gnt->page); 1238 kfree(persistent_gnt); 1239 } 1240 } 1241 BUG_ON(rinfo->persistent_gnts_c != 0); 1242 1243 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1244 /* 1245 * Clear persistent grants present in requests already 1246 * on the shared ring 1247 */ 1248 if (!rinfo->shadow[i].request) 1249 goto free_shadow; 1250 1251 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1252 rinfo->shadow[i].req.u.indirect.nr_segments : 1253 rinfo->shadow[i].req.u.rw.nr_segments; 1254 for (j = 0; j < segs; j++) { 1255 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1256 gnttab_end_foreign_access(persistent_gnt->gref, NULL); 1257 if (info->bounce) 1258 __free_page(persistent_gnt->page); 1259 kfree(persistent_gnt); 1260 } 1261 1262 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1263 /* 1264 * If this is not an indirect operation don't try to 1265 * free indirect segments 1266 */ 1267 goto free_shadow; 1268 1269 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1270 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1271 gnttab_end_foreign_access(persistent_gnt->gref, NULL); 1272 __free_page(persistent_gnt->page); 1273 kfree(persistent_gnt); 1274 } 1275 1276 free_shadow: 1277 kvfree(rinfo->shadow[i].grants_used); 1278 rinfo->shadow[i].grants_used = NULL; 1279 kvfree(rinfo->shadow[i].indirect_grants); 1280 rinfo->shadow[i].indirect_grants = NULL; 1281 kvfree(rinfo->shadow[i].sg); 1282 rinfo->shadow[i].sg = NULL; 1283 } 1284 1285 /* No more gnttab callback work. */ 1286 gnttab_cancel_free_callback(&rinfo->callback); 1287 1288 /* Flush gnttab callback work. Must be done with no locks held. */ 1289 flush_work(&rinfo->work); 1290 1291 /* Free resources associated with old device channel. */ 1292 xenbus_teardown_ring((void **)&rinfo->ring.sring, info->nr_ring_pages, 1293 rinfo->ring_ref); 1294 1295 if (rinfo->irq) 1296 unbind_from_irqhandler(rinfo->irq, rinfo); 1297 rinfo->evtchn = rinfo->irq = 0; 1298 } 1299 1300 static void blkif_free(struct blkfront_info *info, int suspend) 1301 { 1302 unsigned int i; 1303 struct blkfront_ring_info *rinfo; 1304 1305 /* Prevent new requests being issued until we fix things up. */ 1306 info->connected = suspend ? 1307 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1308 /* No more blkif_request(). */ 1309 if (info->rq) 1310 blk_mq_stop_hw_queues(info->rq); 1311 1312 for_each_rinfo(info, rinfo, i) 1313 blkif_free_ring(rinfo); 1314 1315 kvfree(info->rinfo); 1316 info->rinfo = NULL; 1317 info->nr_rings = 0; 1318 } 1319 1320 struct copy_from_grant { 1321 const struct blk_shadow *s; 1322 unsigned int grant_idx; 1323 unsigned int bvec_offset; 1324 char *bvec_data; 1325 }; 1326 1327 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1328 unsigned int len, void *data) 1329 { 1330 struct copy_from_grant *info = data; 1331 char *shared_data; 1332 /* Convenient aliases */ 1333 const struct blk_shadow *s = info->s; 1334 1335 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1336 1337 memcpy(info->bvec_data + info->bvec_offset, 1338 shared_data + offset, len); 1339 1340 info->bvec_offset += len; 1341 info->grant_idx++; 1342 1343 kunmap_atomic(shared_data); 1344 } 1345 1346 static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1347 { 1348 switch (rsp) 1349 { 1350 case BLKIF_RSP_OKAY: 1351 return REQ_DONE; 1352 case BLKIF_RSP_EOPNOTSUPP: 1353 return REQ_EOPNOTSUPP; 1354 case BLKIF_RSP_ERROR: 1355 default: 1356 return REQ_ERROR; 1357 } 1358 } 1359 1360 /* 1361 * Get the final status of the block request based on two ring response 1362 */ 1363 static int blkif_get_final_status(enum blk_req_status s1, 1364 enum blk_req_status s2) 1365 { 1366 BUG_ON(s1 < REQ_DONE); 1367 BUG_ON(s2 < REQ_DONE); 1368 1369 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1370 return BLKIF_RSP_ERROR; 1371 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1372 return BLKIF_RSP_EOPNOTSUPP; 1373 return BLKIF_RSP_OKAY; 1374 } 1375 1376 /* 1377 * Return values: 1378 * 1 response processed. 1379 * 0 missing further responses. 1380 * -1 error while processing. 1381 */ 1382 static int blkif_completion(unsigned long *id, 1383 struct blkfront_ring_info *rinfo, 1384 struct blkif_response *bret) 1385 { 1386 int i = 0; 1387 struct scatterlist *sg; 1388 int num_sg, num_grant; 1389 struct blkfront_info *info = rinfo->dev_info; 1390 struct blk_shadow *s = &rinfo->shadow[*id]; 1391 struct copy_from_grant data = { 1392 .grant_idx = 0, 1393 }; 1394 1395 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1396 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1397 1398 /* The I/O request may be split in two. */ 1399 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1400 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1401 1402 /* Keep the status of the current response in shadow. */ 1403 s->status = blkif_rsp_to_req_status(bret->status); 1404 1405 /* Wait the second response if not yet here. */ 1406 if (s2->status < REQ_DONE) 1407 return 0; 1408 1409 bret->status = blkif_get_final_status(s->status, 1410 s2->status); 1411 1412 /* 1413 * All the grants is stored in the first shadow in order 1414 * to make the completion code simpler. 1415 */ 1416 num_grant += s2->req.u.rw.nr_segments; 1417 1418 /* 1419 * The two responses may not come in order. Only the 1420 * first request will store the scatter-gather list. 1421 */ 1422 if (s2->num_sg != 0) { 1423 /* Update "id" with the ID of the first response. */ 1424 *id = s->associated_id; 1425 s = s2; 1426 } 1427 1428 /* 1429 * We don't need anymore the second request, so recycling 1430 * it now. 1431 */ 1432 if (add_id_to_freelist(rinfo, s->associated_id)) 1433 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1434 info->gd->disk_name, s->associated_id); 1435 } 1436 1437 data.s = s; 1438 num_sg = s->num_sg; 1439 1440 if (bret->operation == BLKIF_OP_READ && info->bounce) { 1441 for_each_sg(s->sg, sg, num_sg, i) { 1442 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1443 1444 data.bvec_offset = sg->offset; 1445 data.bvec_data = kmap_atomic(sg_page(sg)); 1446 1447 gnttab_foreach_grant_in_range(sg_page(sg), 1448 sg->offset, 1449 sg->length, 1450 blkif_copy_from_grant, 1451 &data); 1452 1453 kunmap_atomic(data.bvec_data); 1454 } 1455 } 1456 /* Add the persistent grant into the list of free grants */ 1457 for (i = 0; i < num_grant; i++) { 1458 if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) { 1459 /* 1460 * If the grant is still mapped by the backend (the 1461 * backend has chosen to make this grant persistent) 1462 * we add it at the head of the list, so it will be 1463 * reused first. 1464 */ 1465 if (!info->feature_persistent) { 1466 pr_alert("backed has not unmapped grant: %u\n", 1467 s->grants_used[i]->gref); 1468 return -1; 1469 } 1470 list_add(&s->grants_used[i]->node, &rinfo->grants); 1471 rinfo->persistent_gnts_c++; 1472 } else { 1473 /* 1474 * If the grant is not mapped by the backend we add it 1475 * to the tail of the list, so it will not be picked 1476 * again unless we run out of persistent grants. 1477 */ 1478 s->grants_used[i]->gref = INVALID_GRANT_REF; 1479 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1480 } 1481 } 1482 if (s->req.operation == BLKIF_OP_INDIRECT) { 1483 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1484 if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) { 1485 if (!info->feature_persistent) { 1486 pr_alert("backed has not unmapped grant: %u\n", 1487 s->indirect_grants[i]->gref); 1488 return -1; 1489 } 1490 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1491 rinfo->persistent_gnts_c++; 1492 } else { 1493 struct page *indirect_page; 1494 1495 /* 1496 * Add the used indirect page back to the list of 1497 * available pages for indirect grefs. 1498 */ 1499 if (!info->bounce) { 1500 indirect_page = s->indirect_grants[i]->page; 1501 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1502 } 1503 s->indirect_grants[i]->gref = INVALID_GRANT_REF; 1504 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1505 } 1506 } 1507 } 1508 1509 return 1; 1510 } 1511 1512 static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1513 { 1514 struct request *req; 1515 struct blkif_response bret; 1516 RING_IDX i, rp; 1517 unsigned long flags; 1518 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1519 struct blkfront_info *info = rinfo->dev_info; 1520 unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS; 1521 1522 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) { 1523 xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS); 1524 return IRQ_HANDLED; 1525 } 1526 1527 spin_lock_irqsave(&rinfo->ring_lock, flags); 1528 again: 1529 rp = READ_ONCE(rinfo->ring.sring->rsp_prod); 1530 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */ 1531 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) { 1532 pr_alert("%s: illegal number of responses %u\n", 1533 info->gd->disk_name, rp - rinfo->ring.rsp_cons); 1534 goto err; 1535 } 1536 1537 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1538 unsigned long id; 1539 unsigned int op; 1540 1541 eoiflag = 0; 1542 1543 RING_COPY_RESPONSE(&rinfo->ring, i, &bret); 1544 id = bret.id; 1545 1546 /* 1547 * The backend has messed up and given us an id that we would 1548 * never have given to it (we stamp it up to BLK_RING_SIZE - 1549 * look in get_id_from_freelist. 1550 */ 1551 if (id >= BLK_RING_SIZE(info)) { 1552 pr_alert("%s: response has incorrect id (%ld)\n", 1553 info->gd->disk_name, id); 1554 goto err; 1555 } 1556 if (rinfo->shadow[id].status != REQ_WAITING) { 1557 pr_alert("%s: response references no pending request\n", 1558 info->gd->disk_name); 1559 goto err; 1560 } 1561 1562 rinfo->shadow[id].status = REQ_PROCESSING; 1563 req = rinfo->shadow[id].request; 1564 1565 op = rinfo->shadow[id].req.operation; 1566 if (op == BLKIF_OP_INDIRECT) 1567 op = rinfo->shadow[id].req.u.indirect.indirect_op; 1568 if (bret.operation != op) { 1569 pr_alert("%s: response has wrong operation (%u instead of %u)\n", 1570 info->gd->disk_name, bret.operation, op); 1571 goto err; 1572 } 1573 1574 if (bret.operation != BLKIF_OP_DISCARD) { 1575 int ret; 1576 1577 /* 1578 * We may need to wait for an extra response if the 1579 * I/O request is split in 2 1580 */ 1581 ret = blkif_completion(&id, rinfo, &bret); 1582 if (!ret) 1583 continue; 1584 if (unlikely(ret < 0)) 1585 goto err; 1586 } 1587 1588 if (add_id_to_freelist(rinfo, id)) { 1589 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1590 info->gd->disk_name, op_name(bret.operation), id); 1591 continue; 1592 } 1593 1594 if (bret.status == BLKIF_RSP_OKAY) 1595 blkif_req(req)->error = BLK_STS_OK; 1596 else 1597 blkif_req(req)->error = BLK_STS_IOERR; 1598 1599 switch (bret.operation) { 1600 case BLKIF_OP_DISCARD: 1601 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1602 struct request_queue *rq = info->rq; 1603 1604 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1605 info->gd->disk_name, op_name(bret.operation)); 1606 blkif_req(req)->error = BLK_STS_NOTSUPP; 1607 info->feature_discard = 0; 1608 info->feature_secdiscard = 0; 1609 blk_queue_max_discard_sectors(rq, 0); 1610 blk_queue_max_secure_erase_sectors(rq, 0); 1611 } 1612 break; 1613 case BLKIF_OP_FLUSH_DISKCACHE: 1614 case BLKIF_OP_WRITE_BARRIER: 1615 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1616 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1617 info->gd->disk_name, op_name(bret.operation)); 1618 blkif_req(req)->error = BLK_STS_NOTSUPP; 1619 } 1620 if (unlikely(bret.status == BLKIF_RSP_ERROR && 1621 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1622 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n", 1623 info->gd->disk_name, op_name(bret.operation)); 1624 blkif_req(req)->error = BLK_STS_NOTSUPP; 1625 } 1626 if (unlikely(blkif_req(req)->error)) { 1627 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1628 blkif_req(req)->error = BLK_STS_OK; 1629 info->feature_fua = 0; 1630 info->feature_flush = 0; 1631 xlvbd_flush(info); 1632 } 1633 fallthrough; 1634 case BLKIF_OP_READ: 1635 case BLKIF_OP_WRITE: 1636 if (unlikely(bret.status != BLKIF_RSP_OKAY)) 1637 dev_dbg_ratelimited(&info->xbdev->dev, 1638 "Bad return from blkdev data request: %#x\n", 1639 bret.status); 1640 1641 break; 1642 default: 1643 BUG(); 1644 } 1645 1646 if (likely(!blk_should_fake_timeout(req->q))) 1647 blk_mq_complete_request(req); 1648 } 1649 1650 rinfo->ring.rsp_cons = i; 1651 1652 if (i != rinfo->ring.req_prod_pvt) { 1653 int more_to_do; 1654 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1655 if (more_to_do) 1656 goto again; 1657 } else 1658 rinfo->ring.sring->rsp_event = i + 1; 1659 1660 kick_pending_request_queues_locked(rinfo); 1661 1662 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1663 1664 xen_irq_lateeoi(irq, eoiflag); 1665 1666 return IRQ_HANDLED; 1667 1668 err: 1669 info->connected = BLKIF_STATE_ERROR; 1670 1671 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1672 1673 /* No EOI in order to avoid further interrupts. */ 1674 1675 pr_alert("%s disabled for further use\n", info->gd->disk_name); 1676 return IRQ_HANDLED; 1677 } 1678 1679 1680 static int setup_blkring(struct xenbus_device *dev, 1681 struct blkfront_ring_info *rinfo) 1682 { 1683 struct blkif_sring *sring; 1684 int err; 1685 struct blkfront_info *info = rinfo->dev_info; 1686 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1687 1688 err = xenbus_setup_ring(dev, GFP_NOIO, (void **)&sring, 1689 info->nr_ring_pages, rinfo->ring_ref); 1690 if (err) 1691 goto fail; 1692 1693 XEN_FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1694 1695 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1696 if (err) 1697 goto fail; 1698 1699 err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt, 1700 0, "blkif", rinfo); 1701 if (err <= 0) { 1702 xenbus_dev_fatal(dev, err, 1703 "bind_evtchn_to_irqhandler failed"); 1704 goto fail; 1705 } 1706 rinfo->irq = err; 1707 1708 return 0; 1709 fail: 1710 blkif_free(info, 0); 1711 return err; 1712 } 1713 1714 /* 1715 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1716 * ring buffer may have multi pages depending on ->nr_ring_pages. 1717 */ 1718 static int write_per_ring_nodes(struct xenbus_transaction xbt, 1719 struct blkfront_ring_info *rinfo, const char *dir) 1720 { 1721 int err; 1722 unsigned int i; 1723 const char *message = NULL; 1724 struct blkfront_info *info = rinfo->dev_info; 1725 1726 if (info->nr_ring_pages == 1) { 1727 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1728 if (err) { 1729 message = "writing ring-ref"; 1730 goto abort_transaction; 1731 } 1732 } else { 1733 for (i = 0; i < info->nr_ring_pages; i++) { 1734 char ring_ref_name[RINGREF_NAME_LEN]; 1735 1736 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1737 err = xenbus_printf(xbt, dir, ring_ref_name, 1738 "%u", rinfo->ring_ref[i]); 1739 if (err) { 1740 message = "writing ring-ref"; 1741 goto abort_transaction; 1742 } 1743 } 1744 } 1745 1746 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1747 if (err) { 1748 message = "writing event-channel"; 1749 goto abort_transaction; 1750 } 1751 1752 return 0; 1753 1754 abort_transaction: 1755 xenbus_transaction_end(xbt, 1); 1756 if (message) 1757 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1758 1759 return err; 1760 } 1761 1762 /* Enable the persistent grants feature. */ 1763 static bool feature_persistent = true; 1764 module_param(feature_persistent, bool, 0644); 1765 MODULE_PARM_DESC(feature_persistent, 1766 "Enables the persistent grants feature"); 1767 1768 /* Common code used when first setting up, and when resuming. */ 1769 static int talk_to_blkback(struct xenbus_device *dev, 1770 struct blkfront_info *info) 1771 { 1772 const char *message = NULL; 1773 struct xenbus_transaction xbt; 1774 int err; 1775 unsigned int i, max_page_order; 1776 unsigned int ring_page_order; 1777 struct blkfront_ring_info *rinfo; 1778 1779 if (!info) 1780 return -ENODEV; 1781 1782 /* Check if backend is trusted. */ 1783 info->bounce = !xen_blkif_trusted || 1784 !xenbus_read_unsigned(dev->nodename, "trusted", 1); 1785 1786 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1787 "max-ring-page-order", 0); 1788 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1789 info->nr_ring_pages = 1 << ring_page_order; 1790 1791 err = negotiate_mq(info); 1792 if (err) 1793 goto destroy_blkring; 1794 1795 for_each_rinfo(info, rinfo, i) { 1796 /* Create shared ring, alloc event channel. */ 1797 err = setup_blkring(dev, rinfo); 1798 if (err) 1799 goto destroy_blkring; 1800 } 1801 1802 again: 1803 err = xenbus_transaction_start(&xbt); 1804 if (err) { 1805 xenbus_dev_fatal(dev, err, "starting transaction"); 1806 goto destroy_blkring; 1807 } 1808 1809 if (info->nr_ring_pages > 1) { 1810 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1811 ring_page_order); 1812 if (err) { 1813 message = "writing ring-page-order"; 1814 goto abort_transaction; 1815 } 1816 } 1817 1818 /* We already got the number of queues/rings in _probe */ 1819 if (info->nr_rings == 1) { 1820 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1821 if (err) 1822 goto destroy_blkring; 1823 } else { 1824 char *path; 1825 size_t pathsize; 1826 1827 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1828 info->nr_rings); 1829 if (err) { 1830 message = "writing multi-queue-num-queues"; 1831 goto abort_transaction; 1832 } 1833 1834 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1835 path = kmalloc(pathsize, GFP_KERNEL); 1836 if (!path) { 1837 err = -ENOMEM; 1838 message = "ENOMEM while writing ring references"; 1839 goto abort_transaction; 1840 } 1841 1842 for_each_rinfo(info, rinfo, i) { 1843 memset(path, 0, pathsize); 1844 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1845 err = write_per_ring_nodes(xbt, rinfo, path); 1846 if (err) { 1847 kfree(path); 1848 goto destroy_blkring; 1849 } 1850 } 1851 kfree(path); 1852 } 1853 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1854 XEN_IO_PROTO_ABI_NATIVE); 1855 if (err) { 1856 message = "writing protocol"; 1857 goto abort_transaction; 1858 } 1859 info->feature_persistent_parm = feature_persistent; 1860 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1861 info->feature_persistent_parm); 1862 if (err) 1863 dev_warn(&dev->dev, 1864 "writing persistent grants feature to xenbus"); 1865 1866 err = xenbus_transaction_end(xbt, 0); 1867 if (err) { 1868 if (err == -EAGAIN) 1869 goto again; 1870 xenbus_dev_fatal(dev, err, "completing transaction"); 1871 goto destroy_blkring; 1872 } 1873 1874 for_each_rinfo(info, rinfo, i) { 1875 unsigned int j; 1876 1877 for (j = 0; j < BLK_RING_SIZE(info); j++) 1878 rinfo->shadow[j].req.u.rw.id = j + 1; 1879 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1880 } 1881 xenbus_switch_state(dev, XenbusStateInitialised); 1882 1883 return 0; 1884 1885 abort_transaction: 1886 xenbus_transaction_end(xbt, 1); 1887 if (message) 1888 xenbus_dev_fatal(dev, err, "%s", message); 1889 destroy_blkring: 1890 blkif_free(info, 0); 1891 return err; 1892 } 1893 1894 static int negotiate_mq(struct blkfront_info *info) 1895 { 1896 unsigned int backend_max_queues; 1897 unsigned int i; 1898 struct blkfront_ring_info *rinfo; 1899 1900 BUG_ON(info->nr_rings); 1901 1902 /* Check if backend supports multiple queues. */ 1903 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 1904 "multi-queue-max-queues", 1); 1905 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 1906 /* We need at least one ring. */ 1907 if (!info->nr_rings) 1908 info->nr_rings = 1; 1909 1910 info->rinfo_size = struct_size(info->rinfo, shadow, 1911 BLK_RING_SIZE(info)); 1912 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 1913 if (!info->rinfo) { 1914 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 1915 info->nr_rings = 0; 1916 return -ENOMEM; 1917 } 1918 1919 for_each_rinfo(info, rinfo, i) { 1920 INIT_LIST_HEAD(&rinfo->indirect_pages); 1921 INIT_LIST_HEAD(&rinfo->grants); 1922 rinfo->dev_info = info; 1923 INIT_WORK(&rinfo->work, blkif_restart_queue); 1924 spin_lock_init(&rinfo->ring_lock); 1925 } 1926 return 0; 1927 } 1928 1929 /* 1930 * Entry point to this code when a new device is created. Allocate the basic 1931 * structures and the ring buffer for communication with the backend, and 1932 * inform the backend of the appropriate details for those. Switch to 1933 * Initialised state. 1934 */ 1935 static int blkfront_probe(struct xenbus_device *dev, 1936 const struct xenbus_device_id *id) 1937 { 1938 int err, vdevice; 1939 struct blkfront_info *info; 1940 1941 /* FIXME: Use dynamic device id if this is not set. */ 1942 err = xenbus_scanf(XBT_NIL, dev->nodename, 1943 "virtual-device", "%i", &vdevice); 1944 if (err != 1) { 1945 /* go looking in the extended area instead */ 1946 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 1947 "%i", &vdevice); 1948 if (err != 1) { 1949 xenbus_dev_fatal(dev, err, "reading virtual-device"); 1950 return err; 1951 } 1952 } 1953 1954 if (xen_hvm_domain()) { 1955 char *type; 1956 int len; 1957 /* no unplug has been done: do not hook devices != xen vbds */ 1958 if (xen_has_pv_and_legacy_disk_devices()) { 1959 int major; 1960 1961 if (!VDEV_IS_EXTENDED(vdevice)) 1962 major = BLKIF_MAJOR(vdevice); 1963 else 1964 major = XENVBD_MAJOR; 1965 1966 if (major != XENVBD_MAJOR) { 1967 printk(KERN_INFO 1968 "%s: HVM does not support vbd %d as xen block device\n", 1969 __func__, vdevice); 1970 return -ENODEV; 1971 } 1972 } 1973 /* do not create a PV cdrom device if we are an HVM guest */ 1974 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 1975 if (IS_ERR(type)) 1976 return -ENODEV; 1977 if (strncmp(type, "cdrom", 5) == 0) { 1978 kfree(type); 1979 return -ENODEV; 1980 } 1981 kfree(type); 1982 } 1983 info = kzalloc(sizeof(*info), GFP_KERNEL); 1984 if (!info) { 1985 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 1986 return -ENOMEM; 1987 } 1988 1989 info->xbdev = dev; 1990 1991 mutex_init(&info->mutex); 1992 info->vdevice = vdevice; 1993 info->connected = BLKIF_STATE_DISCONNECTED; 1994 1995 /* Front end dir is a number, which is used as the id. */ 1996 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 1997 dev_set_drvdata(&dev->dev, info); 1998 1999 mutex_lock(&blkfront_mutex); 2000 list_add(&info->info_list, &info_list); 2001 mutex_unlock(&blkfront_mutex); 2002 2003 return 0; 2004 } 2005 2006 static int blkif_recover(struct blkfront_info *info) 2007 { 2008 unsigned int r_index; 2009 struct request *req, *n; 2010 int rc; 2011 struct bio *bio; 2012 unsigned int segs; 2013 struct blkfront_ring_info *rinfo; 2014 2015 blkfront_gather_backend_features(info); 2016 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2017 blkif_set_queue_limits(info); 2018 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2019 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2020 2021 for_each_rinfo(info, rinfo, r_index) { 2022 rc = blkfront_setup_indirect(rinfo); 2023 if (rc) 2024 return rc; 2025 } 2026 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2027 2028 /* Now safe for us to use the shared ring */ 2029 info->connected = BLKIF_STATE_CONNECTED; 2030 2031 for_each_rinfo(info, rinfo, r_index) { 2032 /* Kick any other new requests queued since we resumed */ 2033 kick_pending_request_queues(rinfo); 2034 } 2035 2036 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2037 /* Requeue pending requests (flush or discard) */ 2038 list_del_init(&req->queuelist); 2039 BUG_ON(req->nr_phys_segments > segs); 2040 blk_mq_requeue_request(req, false); 2041 } 2042 blk_mq_start_stopped_hw_queues(info->rq, true); 2043 blk_mq_kick_requeue_list(info->rq); 2044 2045 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2046 /* Traverse the list of pending bios and re-queue them */ 2047 submit_bio(bio); 2048 } 2049 2050 return 0; 2051 } 2052 2053 /* 2054 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2055 * driver restart. We tear down our blkif structure and recreate it, but 2056 * leave the device-layer structures intact so that this is transparent to the 2057 * rest of the kernel. 2058 */ 2059 static int blkfront_resume(struct xenbus_device *dev) 2060 { 2061 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2062 int err = 0; 2063 unsigned int i, j; 2064 struct blkfront_ring_info *rinfo; 2065 2066 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2067 2068 bio_list_init(&info->bio_list); 2069 INIT_LIST_HEAD(&info->requests); 2070 for_each_rinfo(info, rinfo, i) { 2071 struct bio_list merge_bio; 2072 struct blk_shadow *shadow = rinfo->shadow; 2073 2074 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2075 /* Not in use? */ 2076 if (!shadow[j].request) 2077 continue; 2078 2079 /* 2080 * Get the bios in the request so we can re-queue them. 2081 */ 2082 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2083 req_op(shadow[j].request) == REQ_OP_DISCARD || 2084 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2085 shadow[j].request->cmd_flags & REQ_FUA) { 2086 /* 2087 * Flush operations don't contain bios, so 2088 * we need to requeue the whole request 2089 * 2090 * XXX: but this doesn't make any sense for a 2091 * write with the FUA flag set.. 2092 */ 2093 list_add(&shadow[j].request->queuelist, &info->requests); 2094 continue; 2095 } 2096 merge_bio.head = shadow[j].request->bio; 2097 merge_bio.tail = shadow[j].request->biotail; 2098 bio_list_merge(&info->bio_list, &merge_bio); 2099 shadow[j].request->bio = NULL; 2100 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2101 } 2102 } 2103 2104 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2105 2106 err = talk_to_blkback(dev, info); 2107 if (!err) 2108 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2109 2110 /* 2111 * We have to wait for the backend to switch to 2112 * connected state, since we want to read which 2113 * features it supports. 2114 */ 2115 2116 return err; 2117 } 2118 2119 static void blkfront_closing(struct blkfront_info *info) 2120 { 2121 struct xenbus_device *xbdev = info->xbdev; 2122 struct blkfront_ring_info *rinfo; 2123 unsigned int i; 2124 2125 if (xbdev->state == XenbusStateClosing) 2126 return; 2127 2128 /* No more blkif_request(). */ 2129 if (info->rq && info->gd) { 2130 blk_mq_stop_hw_queues(info->rq); 2131 blk_mark_disk_dead(info->gd); 2132 } 2133 2134 for_each_rinfo(info, rinfo, i) { 2135 /* No more gnttab callback work. */ 2136 gnttab_cancel_free_callback(&rinfo->callback); 2137 2138 /* Flush gnttab callback work. Must be done with no locks held. */ 2139 flush_work(&rinfo->work); 2140 } 2141 2142 xenbus_frontend_closed(xbdev); 2143 } 2144 2145 static void blkfront_setup_discard(struct blkfront_info *info) 2146 { 2147 info->feature_discard = 1; 2148 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2149 "discard-granularity", 2150 0); 2151 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2152 "discard-alignment", 0); 2153 info->feature_secdiscard = 2154 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2155 0); 2156 } 2157 2158 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2159 { 2160 unsigned int psegs, grants, memflags; 2161 int err, i; 2162 struct blkfront_info *info = rinfo->dev_info; 2163 2164 memflags = memalloc_noio_save(); 2165 2166 if (info->max_indirect_segments == 0) { 2167 if (!HAS_EXTRA_REQ) 2168 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2169 else { 2170 /* 2171 * When an extra req is required, the maximum 2172 * grants supported is related to the size of the 2173 * Linux block segment. 2174 */ 2175 grants = GRANTS_PER_PSEG; 2176 } 2177 } 2178 else 2179 grants = info->max_indirect_segments; 2180 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2181 2182 err = fill_grant_buffer(rinfo, 2183 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2184 if (err) 2185 goto out_of_memory; 2186 2187 if (!info->bounce && info->max_indirect_segments) { 2188 /* 2189 * We are using indirect descriptors but don't have a bounce 2190 * buffer, we need to allocate a set of pages that can be 2191 * used for mapping indirect grefs 2192 */ 2193 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2194 2195 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2196 for (i = 0; i < num; i++) { 2197 struct page *indirect_page = alloc_page(GFP_KERNEL | 2198 __GFP_ZERO); 2199 if (!indirect_page) 2200 goto out_of_memory; 2201 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2202 } 2203 } 2204 2205 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2206 rinfo->shadow[i].grants_used = 2207 kvcalloc(grants, 2208 sizeof(rinfo->shadow[i].grants_used[0]), 2209 GFP_KERNEL); 2210 rinfo->shadow[i].sg = kvcalloc(psegs, 2211 sizeof(rinfo->shadow[i].sg[0]), 2212 GFP_KERNEL); 2213 if (info->max_indirect_segments) 2214 rinfo->shadow[i].indirect_grants = 2215 kvcalloc(INDIRECT_GREFS(grants), 2216 sizeof(rinfo->shadow[i].indirect_grants[0]), 2217 GFP_KERNEL); 2218 if ((rinfo->shadow[i].grants_used == NULL) || 2219 (rinfo->shadow[i].sg == NULL) || 2220 (info->max_indirect_segments && 2221 (rinfo->shadow[i].indirect_grants == NULL))) 2222 goto out_of_memory; 2223 sg_init_table(rinfo->shadow[i].sg, psegs); 2224 } 2225 2226 memalloc_noio_restore(memflags); 2227 2228 return 0; 2229 2230 out_of_memory: 2231 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2232 kvfree(rinfo->shadow[i].grants_used); 2233 rinfo->shadow[i].grants_used = NULL; 2234 kvfree(rinfo->shadow[i].sg); 2235 rinfo->shadow[i].sg = NULL; 2236 kvfree(rinfo->shadow[i].indirect_grants); 2237 rinfo->shadow[i].indirect_grants = NULL; 2238 } 2239 if (!list_empty(&rinfo->indirect_pages)) { 2240 struct page *indirect_page, *n; 2241 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2242 list_del(&indirect_page->lru); 2243 __free_page(indirect_page); 2244 } 2245 } 2246 2247 memalloc_noio_restore(memflags); 2248 2249 return -ENOMEM; 2250 } 2251 2252 /* 2253 * Gather all backend feature-* 2254 */ 2255 static void blkfront_gather_backend_features(struct blkfront_info *info) 2256 { 2257 unsigned int indirect_segments; 2258 2259 info->feature_flush = 0; 2260 info->feature_fua = 0; 2261 2262 /* 2263 * If there's no "feature-barrier" defined, then it means 2264 * we're dealing with a very old backend which writes 2265 * synchronously; nothing to do. 2266 * 2267 * If there are barriers, then we use flush. 2268 */ 2269 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2270 info->feature_flush = 1; 2271 info->feature_fua = 1; 2272 } 2273 2274 /* 2275 * And if there is "feature-flush-cache" use that above 2276 * barriers. 2277 */ 2278 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2279 0)) { 2280 info->feature_flush = 1; 2281 info->feature_fua = 0; 2282 } 2283 2284 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2285 blkfront_setup_discard(info); 2286 2287 if (info->feature_persistent_parm) 2288 info->feature_persistent = 2289 !!xenbus_read_unsigned(info->xbdev->otherend, 2290 "feature-persistent", 0); 2291 if (info->feature_persistent) 2292 info->bounce = true; 2293 2294 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2295 "feature-max-indirect-segments", 0); 2296 if (indirect_segments > xen_blkif_max_segments) 2297 indirect_segments = xen_blkif_max_segments; 2298 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2299 indirect_segments = 0; 2300 info->max_indirect_segments = indirect_segments; 2301 2302 if (info->feature_persistent) { 2303 mutex_lock(&blkfront_mutex); 2304 schedule_delayed_work(&blkfront_work, HZ * 10); 2305 mutex_unlock(&blkfront_mutex); 2306 } 2307 } 2308 2309 /* 2310 * Invoked when the backend is finally 'ready' (and has told produced 2311 * the details about the physical device - #sectors, size, etc). 2312 */ 2313 static void blkfront_connect(struct blkfront_info *info) 2314 { 2315 unsigned long long sectors; 2316 unsigned long sector_size; 2317 unsigned int physical_sector_size; 2318 int err, i; 2319 struct blkfront_ring_info *rinfo; 2320 2321 switch (info->connected) { 2322 case BLKIF_STATE_CONNECTED: 2323 /* 2324 * Potentially, the back-end may be signalling 2325 * a capacity change; update the capacity. 2326 */ 2327 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2328 "sectors", "%Lu", §ors); 2329 if (XENBUS_EXIST_ERR(err)) 2330 return; 2331 printk(KERN_INFO "Setting capacity to %Lu\n", 2332 sectors); 2333 set_capacity_and_notify(info->gd, sectors); 2334 2335 return; 2336 case BLKIF_STATE_SUSPENDED: 2337 /* 2338 * If we are recovering from suspension, we need to wait 2339 * for the backend to announce it's features before 2340 * reconnecting, at least we need to know if the backend 2341 * supports indirect descriptors, and how many. 2342 */ 2343 blkif_recover(info); 2344 return; 2345 2346 default: 2347 break; 2348 } 2349 2350 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2351 __func__, info->xbdev->otherend); 2352 2353 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2354 "sectors", "%llu", §ors, 2355 "info", "%u", &info->vdisk_info, 2356 "sector-size", "%lu", §or_size, 2357 NULL); 2358 if (err) { 2359 xenbus_dev_fatal(info->xbdev, err, 2360 "reading backend fields at %s", 2361 info->xbdev->otherend); 2362 return; 2363 } 2364 2365 /* 2366 * physical-sector-size is a newer field, so old backends may not 2367 * provide this. Assume physical sector size to be the same as 2368 * sector_size in that case. 2369 */ 2370 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2371 "physical-sector-size", 2372 sector_size); 2373 blkfront_gather_backend_features(info); 2374 for_each_rinfo(info, rinfo, i) { 2375 err = blkfront_setup_indirect(rinfo); 2376 if (err) { 2377 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2378 info->xbdev->otherend); 2379 blkif_free(info, 0); 2380 break; 2381 } 2382 } 2383 2384 err = xlvbd_alloc_gendisk(sectors, info, sector_size, 2385 physical_sector_size); 2386 if (err) { 2387 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2388 info->xbdev->otherend); 2389 goto fail; 2390 } 2391 2392 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2393 2394 /* Kick pending requests. */ 2395 info->connected = BLKIF_STATE_CONNECTED; 2396 for_each_rinfo(info, rinfo, i) 2397 kick_pending_request_queues(rinfo); 2398 2399 err = device_add_disk(&info->xbdev->dev, info->gd, NULL); 2400 if (err) { 2401 put_disk(info->gd); 2402 blk_mq_free_tag_set(&info->tag_set); 2403 info->rq = NULL; 2404 goto fail; 2405 } 2406 2407 info->is_ready = 1; 2408 return; 2409 2410 fail: 2411 blkif_free(info, 0); 2412 return; 2413 } 2414 2415 /* 2416 * Callback received when the backend's state changes. 2417 */ 2418 static void blkback_changed(struct xenbus_device *dev, 2419 enum xenbus_state backend_state) 2420 { 2421 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2422 2423 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2424 2425 switch (backend_state) { 2426 case XenbusStateInitWait: 2427 if (dev->state != XenbusStateInitialising) 2428 break; 2429 if (talk_to_blkback(dev, info)) 2430 break; 2431 break; 2432 case XenbusStateInitialising: 2433 case XenbusStateInitialised: 2434 case XenbusStateReconfiguring: 2435 case XenbusStateReconfigured: 2436 case XenbusStateUnknown: 2437 break; 2438 2439 case XenbusStateConnected: 2440 /* 2441 * talk_to_blkback sets state to XenbusStateInitialised 2442 * and blkfront_connect sets it to XenbusStateConnected 2443 * (if connection went OK). 2444 * 2445 * If the backend (or toolstack) decides to poke at backend 2446 * state (and re-trigger the watch by setting the state repeatedly 2447 * to XenbusStateConnected (4)) we need to deal with this. 2448 * This is allowed as this is used to communicate to the guest 2449 * that the size of disk has changed! 2450 */ 2451 if ((dev->state != XenbusStateInitialised) && 2452 (dev->state != XenbusStateConnected)) { 2453 if (talk_to_blkback(dev, info)) 2454 break; 2455 } 2456 2457 blkfront_connect(info); 2458 break; 2459 2460 case XenbusStateClosed: 2461 if (dev->state == XenbusStateClosed) 2462 break; 2463 fallthrough; 2464 case XenbusStateClosing: 2465 blkfront_closing(info); 2466 break; 2467 } 2468 } 2469 2470 static void blkfront_remove(struct xenbus_device *xbdev) 2471 { 2472 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2473 2474 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2475 2476 if (info->gd) 2477 del_gendisk(info->gd); 2478 2479 mutex_lock(&blkfront_mutex); 2480 list_del(&info->info_list); 2481 mutex_unlock(&blkfront_mutex); 2482 2483 blkif_free(info, 0); 2484 if (info->gd) { 2485 xlbd_release_minors(info->gd->first_minor, info->gd->minors); 2486 put_disk(info->gd); 2487 blk_mq_free_tag_set(&info->tag_set); 2488 } 2489 2490 kfree(info); 2491 } 2492 2493 static int blkfront_is_ready(struct xenbus_device *dev) 2494 { 2495 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2496 2497 return info->is_ready && info->xbdev; 2498 } 2499 2500 static const struct block_device_operations xlvbd_block_fops = 2501 { 2502 .owner = THIS_MODULE, 2503 .getgeo = blkif_getgeo, 2504 .ioctl = blkif_ioctl, 2505 .compat_ioctl = blkdev_compat_ptr_ioctl, 2506 }; 2507 2508 2509 static const struct xenbus_device_id blkfront_ids[] = { 2510 { "vbd" }, 2511 { "" } 2512 }; 2513 2514 static struct xenbus_driver blkfront_driver = { 2515 .ids = blkfront_ids, 2516 .probe = blkfront_probe, 2517 .remove = blkfront_remove, 2518 .resume = blkfront_resume, 2519 .otherend_changed = blkback_changed, 2520 .is_ready = blkfront_is_ready, 2521 }; 2522 2523 static void purge_persistent_grants(struct blkfront_info *info) 2524 { 2525 unsigned int i; 2526 unsigned long flags; 2527 struct blkfront_ring_info *rinfo; 2528 2529 for_each_rinfo(info, rinfo, i) { 2530 struct grant *gnt_list_entry, *tmp; 2531 LIST_HEAD(grants); 2532 2533 spin_lock_irqsave(&rinfo->ring_lock, flags); 2534 2535 if (rinfo->persistent_gnts_c == 0) { 2536 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2537 continue; 2538 } 2539 2540 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2541 node) { 2542 if (gnt_list_entry->gref == INVALID_GRANT_REF || 2543 !gnttab_try_end_foreign_access(gnt_list_entry->gref)) 2544 continue; 2545 2546 list_del(&gnt_list_entry->node); 2547 rinfo->persistent_gnts_c--; 2548 gnt_list_entry->gref = INVALID_GRANT_REF; 2549 list_add_tail(&gnt_list_entry->node, &grants); 2550 } 2551 2552 list_splice_tail(&grants, &rinfo->grants); 2553 2554 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2555 } 2556 } 2557 2558 static void blkfront_delay_work(struct work_struct *work) 2559 { 2560 struct blkfront_info *info; 2561 bool need_schedule_work = false; 2562 2563 /* 2564 * Note that when using bounce buffers but not persistent grants 2565 * there's no need to run blkfront_delay_work because grants are 2566 * revoked in blkif_completion or else an error is reported and the 2567 * connection is closed. 2568 */ 2569 2570 mutex_lock(&blkfront_mutex); 2571 2572 list_for_each_entry(info, &info_list, info_list) { 2573 if (info->feature_persistent) { 2574 need_schedule_work = true; 2575 mutex_lock(&info->mutex); 2576 purge_persistent_grants(info); 2577 mutex_unlock(&info->mutex); 2578 } 2579 } 2580 2581 if (need_schedule_work) 2582 schedule_delayed_work(&blkfront_work, HZ * 10); 2583 2584 mutex_unlock(&blkfront_mutex); 2585 } 2586 2587 static int __init xlblk_init(void) 2588 { 2589 int ret; 2590 int nr_cpus = num_online_cpus(); 2591 2592 if (!xen_domain()) 2593 return -ENODEV; 2594 2595 if (!xen_has_pv_disk_devices()) 2596 return -ENODEV; 2597 2598 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2599 pr_warn("xen_blk: can't get major %d with name %s\n", 2600 XENVBD_MAJOR, DEV_NAME); 2601 return -ENODEV; 2602 } 2603 2604 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2605 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2606 2607 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2608 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2609 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2610 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2611 } 2612 2613 if (xen_blkif_max_queues > nr_cpus) { 2614 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2615 xen_blkif_max_queues, nr_cpus); 2616 xen_blkif_max_queues = nr_cpus; 2617 } 2618 2619 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2620 2621 ret = xenbus_register_frontend(&blkfront_driver); 2622 if (ret) { 2623 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2624 return ret; 2625 } 2626 2627 return 0; 2628 } 2629 module_init(xlblk_init); 2630 2631 2632 static void __exit xlblk_exit(void) 2633 { 2634 cancel_delayed_work_sync(&blkfront_work); 2635 2636 xenbus_unregister_driver(&blkfront_driver); 2637 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2638 kfree(minors); 2639 } 2640 module_exit(xlblk_exit); 2641 2642 MODULE_DESCRIPTION("Xen virtual block device frontend"); 2643 MODULE_LICENSE("GPL"); 2644 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2645 MODULE_ALIAS("xen:vbd"); 2646 MODULE_ALIAS("xenblk"); 2647