xref: /openbmc/linux/drivers/block/rbd.c (revision cfacc4d8c04d177911ae2c6601d9c320c5c5c29e)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
664 {
665 	struct rbd_device *rbd_dev = disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *rbdc = NULL, *iter;
760 
761 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762 		return NULL;
763 
764 	spin_lock(&rbd_client_list_lock);
765 	list_for_each_entry(iter, &rbd_client_list, node) {
766 		if (!ceph_compare_options(ceph_opts, iter->client)) {
767 			__rbd_get_client(iter);
768 
769 			rbdc = iter;
770 			break;
771 		}
772 	}
773 	spin_unlock(&rbd_client_list_lock);
774 
775 	return rbdc;
776 }
777 
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782 	Opt_queue_depth,
783 	Opt_alloc_size,
784 	Opt_lock_timeout,
785 	/* int args above */
786 	Opt_pool_ns,
787 	Opt_compression_hint,
788 	/* string args above */
789 	Opt_read_only,
790 	Opt_read_write,
791 	Opt_lock_on_read,
792 	Opt_exclusive,
793 	Opt_notrim,
794 };
795 
796 enum {
797 	Opt_compression_hint_none,
798 	Opt_compression_hint_compressible,
799 	Opt_compression_hint_incompressible,
800 };
801 
802 static const struct constant_table rbd_param_compression_hint[] = {
803 	{"none",		Opt_compression_hint_none},
804 	{"compressible",	Opt_compression_hint_compressible},
805 	{"incompressible",	Opt_compression_hint_incompressible},
806 	{}
807 };
808 
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 	fsparam_u32	("alloc_size",			Opt_alloc_size),
811 	fsparam_enum	("compression_hint",		Opt_compression_hint,
812 			 rbd_param_compression_hint),
813 	fsparam_flag	("exclusive",			Opt_exclusive),
814 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
815 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
816 	fsparam_flag	("notrim",			Opt_notrim),
817 	fsparam_string	("_pool_ns",			Opt_pool_ns),
818 	fsparam_u32	("queue_depth",			Opt_queue_depth),
819 	fsparam_flag	("read_only",			Opt_read_only),
820 	fsparam_flag	("read_write",			Opt_read_write),
821 	fsparam_flag	("ro",				Opt_read_only),
822 	fsparam_flag	("rw",				Opt_read_write),
823 	{}
824 };
825 
826 struct rbd_options {
827 	int	queue_depth;
828 	int	alloc_size;
829 	unsigned long	lock_timeout;
830 	bool	read_only;
831 	bool	lock_on_read;
832 	bool	exclusive;
833 	bool	trim;
834 
835 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837 
838 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT	false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT	false
844 #define RBD_TRIM_DEFAULT	true
845 
846 struct rbd_parse_opts_ctx {
847 	struct rbd_spec		*spec;
848 	struct ceph_options	*copts;
849 	struct rbd_options	*opts;
850 };
851 
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854 	switch (op_type) {
855 	case OBJ_OP_READ:
856 		return "read";
857 	case OBJ_OP_WRITE:
858 		return "write";
859 	case OBJ_OP_DISCARD:
860 		return "discard";
861 	case OBJ_OP_ZEROOUT:
862 		return "zeroout";
863 	default:
864 		return "???";
865 	}
866 }
867 
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
873 static void rbd_client_release(struct kref *kref)
874 {
875 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876 
877 	dout("%s: rbdc %p\n", __func__, rbdc);
878 	spin_lock(&rbd_client_list_lock);
879 	list_del(&rbdc->node);
880 	spin_unlock(&rbd_client_list_lock);
881 
882 	ceph_destroy_client(rbdc->client);
883 	kfree(rbdc);
884 }
885 
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892 	if (rbdc)
893 		kref_put(&rbdc->kref, rbd_client_release);
894 }
895 
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903 	struct rbd_client *rbdc;
904 	int ret;
905 
906 	mutex_lock(&client_mutex);
907 	rbdc = rbd_client_find(ceph_opts);
908 	if (rbdc) {
909 		ceph_destroy_options(ceph_opts);
910 
911 		/*
912 		 * Using an existing client.  Make sure ->pg_pools is up to
913 		 * date before we look up the pool id in do_rbd_add().
914 		 */
915 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 					rbdc->client->options->mount_timeout);
917 		if (ret) {
918 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 			rbd_put_client(rbdc);
920 			rbdc = ERR_PTR(ret);
921 		}
922 	} else {
923 		rbdc = rbd_client_create(ceph_opts);
924 	}
925 	mutex_unlock(&client_mutex);
926 
927 	return rbdc;
928 }
929 
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932 	return image_format == 1 || image_format == 2;
933 }
934 
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937 	size_t size;
938 	u32 snap_count;
939 
940 	/* The header has to start with the magic rbd header text */
941 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942 		return false;
943 
944 	/* The bio layer requires at least sector-sized I/O */
945 
946 	if (ondisk->options.order < SECTOR_SHIFT)
947 		return false;
948 
949 	/* If we use u64 in a few spots we may be able to loosen this */
950 
951 	if (ondisk->options.order > 8 * sizeof (int) - 1)
952 		return false;
953 
954 	/*
955 	 * The size of a snapshot header has to fit in a size_t, and
956 	 * that limits the number of snapshots.
957 	 */
958 	snap_count = le32_to_cpu(ondisk->snap_count);
959 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 	if (snap_count > size / sizeof (__le64))
961 		return false;
962 
963 	/*
964 	 * Not only that, but the size of the entire the snapshot
965 	 * header must also be representable in a size_t.
966 	 */
967 	size -= snap_count * sizeof (__le64);
968 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969 		return false;
970 
971 	return true;
972 }
973 
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979 	return 1U << header->obj_order;
980 }
981 
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984 	if (rbd_dev->header.stripe_unit == 0 ||
985 	    rbd_dev->header.stripe_count == 0) {
986 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 		rbd_dev->header.stripe_count = 1;
988 	}
989 
990 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997 
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 				 struct rbd_image_header_ondisk *ondisk)
1004 {
1005 	struct rbd_image_header *header = &rbd_dev->header;
1006 	bool first_time = header->object_prefix == NULL;
1007 	struct ceph_snap_context *snapc;
1008 	char *object_prefix = NULL;
1009 	char *snap_names = NULL;
1010 	u64 *snap_sizes = NULL;
1011 	u32 snap_count;
1012 	int ret = -ENOMEM;
1013 	u32 i;
1014 
1015 	/* Allocate this now to avoid having to handle failure below */
1016 
1017 	if (first_time) {
1018 		object_prefix = kstrndup(ondisk->object_prefix,
1019 					 sizeof(ondisk->object_prefix),
1020 					 GFP_KERNEL);
1021 		if (!object_prefix)
1022 			return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the snapshot context and fill it in */
1026 
1027 	snap_count = le32_to_cpu(ondisk->snap_count);
1028 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029 	if (!snapc)
1030 		goto out_err;
1031 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032 	if (snap_count) {
1033 		struct rbd_image_snap_ondisk *snaps;
1034 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035 
1036 		/* We'll keep a copy of the snapshot names... */
1037 
1038 		if (snap_names_len > (u64)SIZE_MAX)
1039 			goto out_2big;
1040 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041 		if (!snap_names)
1042 			goto out_err;
1043 
1044 		/* ...as well as the array of their sizes. */
1045 		snap_sizes = kmalloc_array(snap_count,
1046 					   sizeof(*header->snap_sizes),
1047 					   GFP_KERNEL);
1048 		if (!snap_sizes)
1049 			goto out_err;
1050 
1051 		/*
1052 		 * Copy the names, and fill in each snapshot's id
1053 		 * and size.
1054 		 *
1055 		 * Note that rbd_dev_v1_header_info() guarantees the
1056 		 * ondisk buffer we're working with has
1057 		 * snap_names_len bytes beyond the end of the
1058 		 * snapshot id array, this memcpy() is safe.
1059 		 */
1060 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 		snaps = ondisk->snaps;
1062 		for (i = 0; i < snap_count; i++) {
1063 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065 		}
1066 	}
1067 
1068 	/* We won't fail any more, fill in the header */
1069 
1070 	if (first_time) {
1071 		header->object_prefix = object_prefix;
1072 		header->obj_order = ondisk->options.order;
1073 		rbd_init_layout(rbd_dev);
1074 	} else {
1075 		ceph_put_snap_context(header->snapc);
1076 		kfree(header->snap_names);
1077 		kfree(header->snap_sizes);
1078 	}
1079 
1080 	/* The remaining fields always get updated (when we refresh) */
1081 
1082 	header->image_size = le64_to_cpu(ondisk->image_size);
1083 	header->snapc = snapc;
1084 	header->snap_names = snap_names;
1085 	header->snap_sizes = snap_sizes;
1086 
1087 	return 0;
1088 out_2big:
1089 	ret = -EIO;
1090 out_err:
1091 	kfree(snap_sizes);
1092 	kfree(snap_names);
1093 	ceph_put_snap_context(snapc);
1094 	kfree(object_prefix);
1095 
1096 	return ret;
1097 }
1098 
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101 	const char *snap_name;
1102 
1103 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104 
1105 	/* Skip over names until we find the one we are looking for */
1106 
1107 	snap_name = rbd_dev->header.snap_names;
1108 	while (which--)
1109 		snap_name += strlen(snap_name) + 1;
1110 
1111 	return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113 
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120 	u64 snap_id1 = *(u64 *)s1;
1121 	u64 snap_id2 = *(u64 *)s2;
1122 
1123 	if (snap_id1 < snap_id2)
1124 		return 1;
1125 	return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127 
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141 	u64 *found;
1142 
1143 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 				sizeof (snap_id), snapid_compare_reverse);
1145 
1146 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148 
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150 					u64 snap_id)
1151 {
1152 	u32 which;
1153 	const char *snap_name;
1154 
1155 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 	if (which == BAD_SNAP_INDEX)
1157 		return ERR_PTR(-ENOENT);
1158 
1159 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162 
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165 	if (snap_id == CEPH_NOSNAP)
1166 		return RBD_SNAP_HEAD_NAME;
1167 
1168 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 	if (rbd_dev->image_format == 1)
1170 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171 
1172 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174 
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176 				u64 *snap_size)
1177 {
1178 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 	if (snap_id == CEPH_NOSNAP) {
1180 		*snap_size = rbd_dev->header.image_size;
1181 	} else if (rbd_dev->image_format == 1) {
1182 		u32 which;
1183 
1184 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 		if (which == BAD_SNAP_INDEX)
1186 			return -ENOENT;
1187 
1188 		*snap_size = rbd_dev->header.snap_sizes[which];
1189 	} else {
1190 		u64 size = 0;
1191 		int ret;
1192 
1193 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194 		if (ret)
1195 			return ret;
1196 
1197 		*snap_size = size;
1198 	}
1199 	return 0;
1200 }
1201 
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1203 {
1204 	u64 snap_id = rbd_dev->spec->snap_id;
1205 	u64 size = 0;
1206 	int ret;
1207 
1208 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1209 	if (ret)
1210 		return ret;
1211 
1212 	rbd_dev->mapping.size = size;
1213 	return 0;
1214 }
1215 
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1217 {
1218 	rbd_dev->mapping.size = 0;
1219 }
1220 
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1222 {
1223 	struct ceph_bio_iter it = *bio_pos;
1224 
1225 	ceph_bio_iter_advance(&it, off);
1226 	ceph_bio_iter_advance_step(&it, bytes, ({
1227 		memzero_bvec(&bv);
1228 	}));
1229 }
1230 
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1232 {
1233 	struct ceph_bvec_iter it = *bvec_pos;
1234 
1235 	ceph_bvec_iter_advance(&it, off);
1236 	ceph_bvec_iter_advance_step(&it, bytes, ({
1237 		memzero_bvec(&bv);
1238 	}));
1239 }
1240 
1241 /*
1242  * Zero a range in @obj_req data buffer defined by a bio (list) or
1243  * (private) bio_vec array.
1244  *
1245  * @off is relative to the start of the data buffer.
1246  */
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1248 			       u32 bytes)
1249 {
1250 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1251 
1252 	switch (obj_req->img_request->data_type) {
1253 	case OBJ_REQUEST_BIO:
1254 		zero_bios(&obj_req->bio_pos, off, bytes);
1255 		break;
1256 	case OBJ_REQUEST_BVECS:
1257 	case OBJ_REQUEST_OWN_BVECS:
1258 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1259 		break;
1260 	default:
1261 		BUG();
1262 	}
1263 }
1264 
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1267 {
1268 	rbd_assert(obj_request != NULL);
1269 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270 		kref_read(&obj_request->kref));
1271 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1272 }
1273 
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 					struct rbd_obj_request *obj_request)
1276 {
1277 	rbd_assert(obj_request->img_request == NULL);
1278 
1279 	/* Image request now owns object's original reference */
1280 	obj_request->img_request = img_request;
1281 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1282 }
1283 
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285 					struct rbd_obj_request *obj_request)
1286 {
1287 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288 	list_del(&obj_request->ex.oe_item);
1289 	rbd_assert(obj_request->img_request == img_request);
1290 	rbd_obj_request_put(obj_request);
1291 }
1292 
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1294 {
1295 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1296 
1297 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1300 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1301 }
1302 
1303 /*
1304  * The default/initial value for all image request flags is 0.  Each
1305  * is conditionally set to 1 at image request initialization time
1306  * and currently never change thereafter.
1307  */
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1309 {
1310 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1311 }
1312 
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1314 {
1315 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1316 }
1317 
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1319 {
1320 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1321 
1322 	return !obj_req->ex.oe_off &&
1323 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1324 }
1325 
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1327 {
1328 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1329 
1330 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331 					rbd_dev->layout.object_size;
1332 }
1333 
1334 /*
1335  * Must be called after rbd_obj_calc_img_extents().
1336  */
1337 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1338 {
1339 	rbd_assert(obj_req->img_request->snapc);
1340 
1341 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1342 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1343 		     obj_req->ex.oe_objno);
1344 		return;
1345 	}
1346 
1347 	if (!obj_req->num_img_extents) {
1348 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1349 		     obj_req->ex.oe_objno);
1350 		return;
1351 	}
1352 
1353 	if (rbd_obj_is_entire(obj_req) &&
1354 	    !obj_req->img_request->snapc->num_snaps) {
1355 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1356 		     obj_req->ex.oe_objno);
1357 		return;
1358 	}
1359 
1360 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1361 }
1362 
1363 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1364 {
1365 	return ceph_file_extents_bytes(obj_req->img_extents,
1366 				       obj_req->num_img_extents);
1367 }
1368 
1369 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1370 {
1371 	switch (img_req->op_type) {
1372 	case OBJ_OP_READ:
1373 		return false;
1374 	case OBJ_OP_WRITE:
1375 	case OBJ_OP_DISCARD:
1376 	case OBJ_OP_ZEROOUT:
1377 		return true;
1378 	default:
1379 		BUG();
1380 	}
1381 }
1382 
1383 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1384 {
1385 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1386 	int result;
1387 
1388 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1389 	     osd_req->r_result, obj_req);
1390 
1391 	/*
1392 	 * Writes aren't allowed to return a data payload.  In some
1393 	 * guarded write cases (e.g. stat + zero on an empty object)
1394 	 * a stat response makes it through, but we don't care.
1395 	 */
1396 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1397 		result = 0;
1398 	else
1399 		result = osd_req->r_result;
1400 
1401 	rbd_obj_handle_request(obj_req, result);
1402 }
1403 
1404 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1405 {
1406 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1407 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1408 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1409 
1410 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1411 	osd_req->r_snapid = obj_request->img_request->snap_id;
1412 }
1413 
1414 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1415 {
1416 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1417 
1418 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1419 	ktime_get_real_ts64(&osd_req->r_mtime);
1420 	osd_req->r_data_offset = obj_request->ex.oe_off;
1421 }
1422 
1423 static struct ceph_osd_request *
1424 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1425 			  struct ceph_snap_context *snapc, int num_ops)
1426 {
1427 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1428 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1429 	struct ceph_osd_request *req;
1430 	const char *name_format = rbd_dev->image_format == 1 ?
1431 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1432 	int ret;
1433 
1434 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1435 	if (!req)
1436 		return ERR_PTR(-ENOMEM);
1437 
1438 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1439 	req->r_callback = rbd_osd_req_callback;
1440 	req->r_priv = obj_req;
1441 
1442 	/*
1443 	 * Data objects may be stored in a separate pool, but always in
1444 	 * the same namespace in that pool as the header in its pool.
1445 	 */
1446 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1447 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1448 
1449 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1450 			       rbd_dev->header.object_prefix,
1451 			       obj_req->ex.oe_objno);
1452 	if (ret)
1453 		return ERR_PTR(ret);
1454 
1455 	return req;
1456 }
1457 
1458 static struct ceph_osd_request *
1459 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1460 {
1461 	rbd_assert(obj_req->img_request->snapc);
1462 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1463 					 num_ops);
1464 }
1465 
1466 static struct rbd_obj_request *rbd_obj_request_create(void)
1467 {
1468 	struct rbd_obj_request *obj_request;
1469 
1470 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1471 	if (!obj_request)
1472 		return NULL;
1473 
1474 	ceph_object_extent_init(&obj_request->ex);
1475 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1476 	mutex_init(&obj_request->state_mutex);
1477 	kref_init(&obj_request->kref);
1478 
1479 	dout("%s %p\n", __func__, obj_request);
1480 	return obj_request;
1481 }
1482 
1483 static void rbd_obj_request_destroy(struct kref *kref)
1484 {
1485 	struct rbd_obj_request *obj_request;
1486 	struct ceph_osd_request *osd_req;
1487 	u32 i;
1488 
1489 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1490 
1491 	dout("%s: obj %p\n", __func__, obj_request);
1492 
1493 	while (!list_empty(&obj_request->osd_reqs)) {
1494 		osd_req = list_first_entry(&obj_request->osd_reqs,
1495 				    struct ceph_osd_request, r_private_item);
1496 		list_del_init(&osd_req->r_private_item);
1497 		ceph_osdc_put_request(osd_req);
1498 	}
1499 
1500 	switch (obj_request->img_request->data_type) {
1501 	case OBJ_REQUEST_NODATA:
1502 	case OBJ_REQUEST_BIO:
1503 	case OBJ_REQUEST_BVECS:
1504 		break;		/* Nothing to do */
1505 	case OBJ_REQUEST_OWN_BVECS:
1506 		kfree(obj_request->bvec_pos.bvecs);
1507 		break;
1508 	default:
1509 		BUG();
1510 	}
1511 
1512 	kfree(obj_request->img_extents);
1513 	if (obj_request->copyup_bvecs) {
1514 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1515 			if (obj_request->copyup_bvecs[i].bv_page)
1516 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1517 		}
1518 		kfree(obj_request->copyup_bvecs);
1519 	}
1520 
1521 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1522 }
1523 
1524 /* It's OK to call this for a device with no parent */
1525 
1526 static void rbd_spec_put(struct rbd_spec *spec);
1527 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1528 {
1529 	rbd_dev_remove_parent(rbd_dev);
1530 	rbd_spec_put(rbd_dev->parent_spec);
1531 	rbd_dev->parent_spec = NULL;
1532 	rbd_dev->parent_overlap = 0;
1533 }
1534 
1535 /*
1536  * Parent image reference counting is used to determine when an
1537  * image's parent fields can be safely torn down--after there are no
1538  * more in-flight requests to the parent image.  When the last
1539  * reference is dropped, cleaning them up is safe.
1540  */
1541 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1542 {
1543 	int counter;
1544 
1545 	if (!rbd_dev->parent_spec)
1546 		return;
1547 
1548 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1549 	if (counter > 0)
1550 		return;
1551 
1552 	/* Last reference; clean up parent data structures */
1553 
1554 	if (!counter)
1555 		rbd_dev_unparent(rbd_dev);
1556 	else
1557 		rbd_warn(rbd_dev, "parent reference underflow");
1558 }
1559 
1560 /*
1561  * If an image has a non-zero parent overlap, get a reference to its
1562  * parent.
1563  *
1564  * Returns true if the rbd device has a parent with a non-zero
1565  * overlap and a reference for it was successfully taken, or
1566  * false otherwise.
1567  */
1568 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1569 {
1570 	int counter = 0;
1571 
1572 	if (!rbd_dev->parent_spec)
1573 		return false;
1574 
1575 	if (rbd_dev->parent_overlap)
1576 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1577 
1578 	if (counter < 0)
1579 		rbd_warn(rbd_dev, "parent reference overflow");
1580 
1581 	return counter > 0;
1582 }
1583 
1584 static void rbd_img_request_init(struct rbd_img_request *img_request,
1585 				 struct rbd_device *rbd_dev,
1586 				 enum obj_operation_type op_type)
1587 {
1588 	memset(img_request, 0, sizeof(*img_request));
1589 
1590 	img_request->rbd_dev = rbd_dev;
1591 	img_request->op_type = op_type;
1592 
1593 	INIT_LIST_HEAD(&img_request->lock_item);
1594 	INIT_LIST_HEAD(&img_request->object_extents);
1595 	mutex_init(&img_request->state_mutex);
1596 }
1597 
1598 /*
1599  * Only snap_id is captured here, for reads.  For writes, snapshot
1600  * context is captured in rbd_img_object_requests() after exclusive
1601  * lock is ensured to be held.
1602  */
1603 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1604 {
1605 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1606 
1607 	lockdep_assert_held(&rbd_dev->header_rwsem);
1608 
1609 	if (!rbd_img_is_write(img_req))
1610 		img_req->snap_id = rbd_dev->spec->snap_id;
1611 
1612 	if (rbd_dev_parent_get(rbd_dev))
1613 		img_request_layered_set(img_req);
1614 }
1615 
1616 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1617 {
1618 	struct rbd_obj_request *obj_request;
1619 	struct rbd_obj_request *next_obj_request;
1620 
1621 	dout("%s: img %p\n", __func__, img_request);
1622 
1623 	WARN_ON(!list_empty(&img_request->lock_item));
1624 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1625 		rbd_img_obj_request_del(img_request, obj_request);
1626 
1627 	if (img_request_layered_test(img_request))
1628 		rbd_dev_parent_put(img_request->rbd_dev);
1629 
1630 	if (rbd_img_is_write(img_request))
1631 		ceph_put_snap_context(img_request->snapc);
1632 
1633 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1634 		kmem_cache_free(rbd_img_request_cache, img_request);
1635 }
1636 
1637 #define BITS_PER_OBJ	2
1638 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1639 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1640 
1641 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1642 				   u64 *index, u8 *shift)
1643 {
1644 	u32 off;
1645 
1646 	rbd_assert(objno < rbd_dev->object_map_size);
1647 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1648 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1649 }
1650 
1651 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1652 {
1653 	u64 index;
1654 	u8 shift;
1655 
1656 	lockdep_assert_held(&rbd_dev->object_map_lock);
1657 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1658 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1659 }
1660 
1661 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1662 {
1663 	u64 index;
1664 	u8 shift;
1665 	u8 *p;
1666 
1667 	lockdep_assert_held(&rbd_dev->object_map_lock);
1668 	rbd_assert(!(val & ~OBJ_MASK));
1669 
1670 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1671 	p = &rbd_dev->object_map[index];
1672 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1673 }
1674 
1675 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1676 {
1677 	u8 state;
1678 
1679 	spin_lock(&rbd_dev->object_map_lock);
1680 	state = __rbd_object_map_get(rbd_dev, objno);
1681 	spin_unlock(&rbd_dev->object_map_lock);
1682 	return state;
1683 }
1684 
1685 static bool use_object_map(struct rbd_device *rbd_dev)
1686 {
1687 	/*
1688 	 * An image mapped read-only can't use the object map -- it isn't
1689 	 * loaded because the header lock isn't acquired.  Someone else can
1690 	 * write to the image and update the object map behind our back.
1691 	 *
1692 	 * A snapshot can't be written to, so using the object map is always
1693 	 * safe.
1694 	 */
1695 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1696 		return false;
1697 
1698 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1699 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1700 }
1701 
1702 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1703 {
1704 	u8 state;
1705 
1706 	/* fall back to default logic if object map is disabled or invalid */
1707 	if (!use_object_map(rbd_dev))
1708 		return true;
1709 
1710 	state = rbd_object_map_get(rbd_dev, objno);
1711 	return state != OBJECT_NONEXISTENT;
1712 }
1713 
1714 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1715 				struct ceph_object_id *oid)
1716 {
1717 	if (snap_id == CEPH_NOSNAP)
1718 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1719 				rbd_dev->spec->image_id);
1720 	else
1721 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1722 				rbd_dev->spec->image_id, snap_id);
1723 }
1724 
1725 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1726 {
1727 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1728 	CEPH_DEFINE_OID_ONSTACK(oid);
1729 	u8 lock_type;
1730 	char *lock_tag;
1731 	struct ceph_locker *lockers;
1732 	u32 num_lockers;
1733 	bool broke_lock = false;
1734 	int ret;
1735 
1736 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1737 
1738 again:
1739 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1740 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1741 	if (ret != -EBUSY || broke_lock) {
1742 		if (ret == -EEXIST)
1743 			ret = 0; /* already locked by myself */
1744 		if (ret)
1745 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1746 		return ret;
1747 	}
1748 
1749 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1750 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1751 				 &lockers, &num_lockers);
1752 	if (ret) {
1753 		if (ret == -ENOENT)
1754 			goto again;
1755 
1756 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1757 		return ret;
1758 	}
1759 
1760 	kfree(lock_tag);
1761 	if (num_lockers == 0)
1762 		goto again;
1763 
1764 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1765 		 ENTITY_NAME(lockers[0].id.name));
1766 
1767 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1768 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1769 				  &lockers[0].id.name);
1770 	ceph_free_lockers(lockers, num_lockers);
1771 	if (ret) {
1772 		if (ret == -ENOENT)
1773 			goto again;
1774 
1775 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1776 		return ret;
1777 	}
1778 
1779 	broke_lock = true;
1780 	goto again;
1781 }
1782 
1783 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1784 {
1785 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1786 	CEPH_DEFINE_OID_ONSTACK(oid);
1787 	int ret;
1788 
1789 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1790 
1791 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1792 			      "");
1793 	if (ret && ret != -ENOENT)
1794 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1795 }
1796 
1797 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1798 {
1799 	u8 struct_v;
1800 	u32 struct_len;
1801 	u32 header_len;
1802 	void *header_end;
1803 	int ret;
1804 
1805 	ceph_decode_32_safe(p, end, header_len, e_inval);
1806 	header_end = *p + header_len;
1807 
1808 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1809 				  &struct_len);
1810 	if (ret)
1811 		return ret;
1812 
1813 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1814 
1815 	*p = header_end;
1816 	return 0;
1817 
1818 e_inval:
1819 	return -EINVAL;
1820 }
1821 
1822 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1823 {
1824 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1825 	CEPH_DEFINE_OID_ONSTACK(oid);
1826 	struct page **pages;
1827 	void *p, *end;
1828 	size_t reply_len;
1829 	u64 num_objects;
1830 	u64 object_map_bytes;
1831 	u64 object_map_size;
1832 	int num_pages;
1833 	int ret;
1834 
1835 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1836 
1837 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1838 					   rbd_dev->mapping.size);
1839 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1840 					    BITS_PER_BYTE);
1841 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1842 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1843 	if (IS_ERR(pages))
1844 		return PTR_ERR(pages);
1845 
1846 	reply_len = num_pages * PAGE_SIZE;
1847 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1848 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1849 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1850 			     NULL, 0, pages, &reply_len);
1851 	if (ret)
1852 		goto out;
1853 
1854 	p = page_address(pages[0]);
1855 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1856 	ret = decode_object_map_header(&p, end, &object_map_size);
1857 	if (ret)
1858 		goto out;
1859 
1860 	if (object_map_size != num_objects) {
1861 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1862 			 object_map_size, num_objects);
1863 		ret = -EINVAL;
1864 		goto out;
1865 	}
1866 
1867 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1868 		ret = -EINVAL;
1869 		goto out;
1870 	}
1871 
1872 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1873 	if (!rbd_dev->object_map) {
1874 		ret = -ENOMEM;
1875 		goto out;
1876 	}
1877 
1878 	rbd_dev->object_map_size = object_map_size;
1879 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1880 				   offset_in_page(p), object_map_bytes);
1881 
1882 out:
1883 	ceph_release_page_vector(pages, num_pages);
1884 	return ret;
1885 }
1886 
1887 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1888 {
1889 	kvfree(rbd_dev->object_map);
1890 	rbd_dev->object_map = NULL;
1891 	rbd_dev->object_map_size = 0;
1892 }
1893 
1894 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1895 {
1896 	int ret;
1897 
1898 	ret = __rbd_object_map_load(rbd_dev);
1899 	if (ret)
1900 		return ret;
1901 
1902 	ret = rbd_dev_v2_get_flags(rbd_dev);
1903 	if (ret) {
1904 		rbd_object_map_free(rbd_dev);
1905 		return ret;
1906 	}
1907 
1908 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1909 		rbd_warn(rbd_dev, "object map is invalid");
1910 
1911 	return 0;
1912 }
1913 
1914 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1915 {
1916 	int ret;
1917 
1918 	ret = rbd_object_map_lock(rbd_dev);
1919 	if (ret)
1920 		return ret;
1921 
1922 	ret = rbd_object_map_load(rbd_dev);
1923 	if (ret) {
1924 		rbd_object_map_unlock(rbd_dev);
1925 		return ret;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1932 {
1933 	rbd_object_map_free(rbd_dev);
1934 	rbd_object_map_unlock(rbd_dev);
1935 }
1936 
1937 /*
1938  * This function needs snap_id (or more precisely just something to
1939  * distinguish between HEAD and snapshot object maps), new_state and
1940  * current_state that were passed to rbd_object_map_update().
1941  *
1942  * To avoid allocating and stashing a context we piggyback on the OSD
1943  * request.  A HEAD update has two ops (assert_locked).  For new_state
1944  * and current_state we decode our own object_map_update op, encoded in
1945  * rbd_cls_object_map_update().
1946  */
1947 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1948 					struct ceph_osd_request *osd_req)
1949 {
1950 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1951 	struct ceph_osd_data *osd_data;
1952 	u64 objno;
1953 	u8 state, new_state, current_state;
1954 	bool has_current_state;
1955 	void *p;
1956 
1957 	if (osd_req->r_result)
1958 		return osd_req->r_result;
1959 
1960 	/*
1961 	 * Nothing to do for a snapshot object map.
1962 	 */
1963 	if (osd_req->r_num_ops == 1)
1964 		return 0;
1965 
1966 	/*
1967 	 * Update in-memory HEAD object map.
1968 	 */
1969 	rbd_assert(osd_req->r_num_ops == 2);
1970 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1971 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1972 
1973 	p = page_address(osd_data->pages[0]);
1974 	objno = ceph_decode_64(&p);
1975 	rbd_assert(objno == obj_req->ex.oe_objno);
1976 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1977 	new_state = ceph_decode_8(&p);
1978 	has_current_state = ceph_decode_8(&p);
1979 	if (has_current_state)
1980 		current_state = ceph_decode_8(&p);
1981 
1982 	spin_lock(&rbd_dev->object_map_lock);
1983 	state = __rbd_object_map_get(rbd_dev, objno);
1984 	if (!has_current_state || current_state == state ||
1985 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1986 		__rbd_object_map_set(rbd_dev, objno, new_state);
1987 	spin_unlock(&rbd_dev->object_map_lock);
1988 
1989 	return 0;
1990 }
1991 
1992 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1993 {
1994 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1995 	int result;
1996 
1997 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1998 	     osd_req->r_result, obj_req);
1999 
2000 	result = rbd_object_map_update_finish(obj_req, osd_req);
2001 	rbd_obj_handle_request(obj_req, result);
2002 }
2003 
2004 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2005 {
2006 	u8 state = rbd_object_map_get(rbd_dev, objno);
2007 
2008 	if (state == new_state ||
2009 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2010 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2011 		return false;
2012 
2013 	return true;
2014 }
2015 
2016 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2017 				     int which, u64 objno, u8 new_state,
2018 				     const u8 *current_state)
2019 {
2020 	struct page **pages;
2021 	void *p, *start;
2022 	int ret;
2023 
2024 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2025 	if (ret)
2026 		return ret;
2027 
2028 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2029 	if (IS_ERR(pages))
2030 		return PTR_ERR(pages);
2031 
2032 	p = start = page_address(pages[0]);
2033 	ceph_encode_64(&p, objno);
2034 	ceph_encode_64(&p, objno + 1);
2035 	ceph_encode_8(&p, new_state);
2036 	if (current_state) {
2037 		ceph_encode_8(&p, 1);
2038 		ceph_encode_8(&p, *current_state);
2039 	} else {
2040 		ceph_encode_8(&p, 0);
2041 	}
2042 
2043 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2044 					  false, true);
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Return:
2050  *   0 - object map update sent
2051  *   1 - object map update isn't needed
2052  *  <0 - error
2053  */
2054 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2055 				 u8 new_state, const u8 *current_state)
2056 {
2057 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2058 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2059 	struct ceph_osd_request *req;
2060 	int num_ops = 1;
2061 	int which = 0;
2062 	int ret;
2063 
2064 	if (snap_id == CEPH_NOSNAP) {
2065 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2066 			return 1;
2067 
2068 		num_ops++; /* assert_locked */
2069 	}
2070 
2071 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2072 	if (!req)
2073 		return -ENOMEM;
2074 
2075 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2076 	req->r_callback = rbd_object_map_callback;
2077 	req->r_priv = obj_req;
2078 
2079 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2080 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2081 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2082 	ktime_get_real_ts64(&req->r_mtime);
2083 
2084 	if (snap_id == CEPH_NOSNAP) {
2085 		/*
2086 		 * Protect against possible race conditions during lock
2087 		 * ownership transitions.
2088 		 */
2089 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2090 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2091 		if (ret)
2092 			return ret;
2093 	}
2094 
2095 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2096 					new_state, current_state);
2097 	if (ret)
2098 		return ret;
2099 
2100 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2101 	if (ret)
2102 		return ret;
2103 
2104 	ceph_osdc_start_request(osdc, req);
2105 	return 0;
2106 }
2107 
2108 static void prune_extents(struct ceph_file_extent *img_extents,
2109 			  u32 *num_img_extents, u64 overlap)
2110 {
2111 	u32 cnt = *num_img_extents;
2112 
2113 	/* drop extents completely beyond the overlap */
2114 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2115 		cnt--;
2116 
2117 	if (cnt) {
2118 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2119 
2120 		/* trim final overlapping extent */
2121 		if (ex->fe_off + ex->fe_len > overlap)
2122 			ex->fe_len = overlap - ex->fe_off;
2123 	}
2124 
2125 	*num_img_extents = cnt;
2126 }
2127 
2128 /*
2129  * Determine the byte range(s) covered by either just the object extent
2130  * or the entire object in the parent image.
2131  */
2132 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2133 				    bool entire)
2134 {
2135 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2136 	int ret;
2137 
2138 	if (!rbd_dev->parent_overlap)
2139 		return 0;
2140 
2141 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2142 				  entire ? 0 : obj_req->ex.oe_off,
2143 				  entire ? rbd_dev->layout.object_size :
2144 							obj_req->ex.oe_len,
2145 				  &obj_req->img_extents,
2146 				  &obj_req->num_img_extents);
2147 	if (ret)
2148 		return ret;
2149 
2150 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2151 		      rbd_dev->parent_overlap);
2152 	return 0;
2153 }
2154 
2155 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2156 {
2157 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2158 
2159 	switch (obj_req->img_request->data_type) {
2160 	case OBJ_REQUEST_BIO:
2161 		osd_req_op_extent_osd_data_bio(osd_req, which,
2162 					       &obj_req->bio_pos,
2163 					       obj_req->ex.oe_len);
2164 		break;
2165 	case OBJ_REQUEST_BVECS:
2166 	case OBJ_REQUEST_OWN_BVECS:
2167 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2168 							obj_req->ex.oe_len);
2169 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2170 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2171 						    &obj_req->bvec_pos);
2172 		break;
2173 	default:
2174 		BUG();
2175 	}
2176 }
2177 
2178 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2179 {
2180 	struct page **pages;
2181 
2182 	/*
2183 	 * The response data for a STAT call consists of:
2184 	 *     le64 length;
2185 	 *     struct {
2186 	 *         le32 tv_sec;
2187 	 *         le32 tv_nsec;
2188 	 *     } mtime;
2189 	 */
2190 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2191 	if (IS_ERR(pages))
2192 		return PTR_ERR(pages);
2193 
2194 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2195 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2196 				     8 + sizeof(struct ceph_timespec),
2197 				     0, false, true);
2198 	return 0;
2199 }
2200 
2201 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2202 				u32 bytes)
2203 {
2204 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2205 	int ret;
2206 
2207 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2208 	if (ret)
2209 		return ret;
2210 
2211 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2212 					  obj_req->copyup_bvec_count, bytes);
2213 	return 0;
2214 }
2215 
2216 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2217 {
2218 	obj_req->read_state = RBD_OBJ_READ_START;
2219 	return 0;
2220 }
2221 
2222 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2223 				      int which)
2224 {
2225 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2226 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2227 	u16 opcode;
2228 
2229 	if (!use_object_map(rbd_dev) ||
2230 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2231 		osd_req_op_alloc_hint_init(osd_req, which++,
2232 					   rbd_dev->layout.object_size,
2233 					   rbd_dev->layout.object_size,
2234 					   rbd_dev->opts->alloc_hint_flags);
2235 	}
2236 
2237 	if (rbd_obj_is_entire(obj_req))
2238 		opcode = CEPH_OSD_OP_WRITEFULL;
2239 	else
2240 		opcode = CEPH_OSD_OP_WRITE;
2241 
2242 	osd_req_op_extent_init(osd_req, which, opcode,
2243 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2244 	rbd_osd_setup_data(osd_req, which);
2245 }
2246 
2247 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2248 {
2249 	int ret;
2250 
2251 	/* reverse map the entire object onto the parent */
2252 	ret = rbd_obj_calc_img_extents(obj_req, true);
2253 	if (ret)
2254 		return ret;
2255 
2256 	obj_req->write_state = RBD_OBJ_WRITE_START;
2257 	return 0;
2258 }
2259 
2260 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2261 {
2262 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2263 					  CEPH_OSD_OP_ZERO;
2264 }
2265 
2266 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2267 					int which)
2268 {
2269 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2270 
2271 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2272 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2273 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2274 	} else {
2275 		osd_req_op_extent_init(osd_req, which,
2276 				       truncate_or_zero_opcode(obj_req),
2277 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2278 				       0, 0);
2279 	}
2280 }
2281 
2282 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2283 {
2284 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2285 	u64 off, next_off;
2286 	int ret;
2287 
2288 	/*
2289 	 * Align the range to alloc_size boundary and punt on discards
2290 	 * that are too small to free up any space.
2291 	 *
2292 	 * alloc_size == object_size && is_tail() is a special case for
2293 	 * filestore with filestore_punch_hole = false, needed to allow
2294 	 * truncate (in addition to delete).
2295 	 */
2296 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2297 	    !rbd_obj_is_tail(obj_req)) {
2298 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2299 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2300 				      rbd_dev->opts->alloc_size);
2301 		if (off >= next_off)
2302 			return 1;
2303 
2304 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2305 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2306 		     off, next_off - off);
2307 		obj_req->ex.oe_off = off;
2308 		obj_req->ex.oe_len = next_off - off;
2309 	}
2310 
2311 	/* reverse map the entire object onto the parent */
2312 	ret = rbd_obj_calc_img_extents(obj_req, true);
2313 	if (ret)
2314 		return ret;
2315 
2316 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2317 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2318 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2319 
2320 	obj_req->write_state = RBD_OBJ_WRITE_START;
2321 	return 0;
2322 }
2323 
2324 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2325 					int which)
2326 {
2327 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2328 	u16 opcode;
2329 
2330 	if (rbd_obj_is_entire(obj_req)) {
2331 		if (obj_req->num_img_extents) {
2332 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2333 				osd_req_op_init(osd_req, which++,
2334 						CEPH_OSD_OP_CREATE, 0);
2335 			opcode = CEPH_OSD_OP_TRUNCATE;
2336 		} else {
2337 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2338 			osd_req_op_init(osd_req, which++,
2339 					CEPH_OSD_OP_DELETE, 0);
2340 			opcode = 0;
2341 		}
2342 	} else {
2343 		opcode = truncate_or_zero_opcode(obj_req);
2344 	}
2345 
2346 	if (opcode)
2347 		osd_req_op_extent_init(osd_req, which, opcode,
2348 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2349 				       0, 0);
2350 }
2351 
2352 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2353 {
2354 	int ret;
2355 
2356 	/* reverse map the entire object onto the parent */
2357 	ret = rbd_obj_calc_img_extents(obj_req, true);
2358 	if (ret)
2359 		return ret;
2360 
2361 	if (!obj_req->num_img_extents) {
2362 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 		if (rbd_obj_is_entire(obj_req))
2364 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365 	}
2366 
2367 	obj_req->write_state = RBD_OBJ_WRITE_START;
2368 	return 0;
2369 }
2370 
2371 static int count_write_ops(struct rbd_obj_request *obj_req)
2372 {
2373 	struct rbd_img_request *img_req = obj_req->img_request;
2374 
2375 	switch (img_req->op_type) {
2376 	case OBJ_OP_WRITE:
2377 		if (!use_object_map(img_req->rbd_dev) ||
2378 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2379 			return 2; /* setallochint + write/writefull */
2380 
2381 		return 1; /* write/writefull */
2382 	case OBJ_OP_DISCARD:
2383 		return 1; /* delete/truncate/zero */
2384 	case OBJ_OP_ZEROOUT:
2385 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2386 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2387 			return 2; /* create + truncate */
2388 
2389 		return 1; /* delete/truncate/zero */
2390 	default:
2391 		BUG();
2392 	}
2393 }
2394 
2395 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2396 				    int which)
2397 {
2398 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2399 
2400 	switch (obj_req->img_request->op_type) {
2401 	case OBJ_OP_WRITE:
2402 		__rbd_osd_setup_write_ops(osd_req, which);
2403 		break;
2404 	case OBJ_OP_DISCARD:
2405 		__rbd_osd_setup_discard_ops(osd_req, which);
2406 		break;
2407 	case OBJ_OP_ZEROOUT:
2408 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2409 		break;
2410 	default:
2411 		BUG();
2412 	}
2413 }
2414 
2415 /*
2416  * Prune the list of object requests (adjust offset and/or length, drop
2417  * redundant requests).  Prepare object request state machines and image
2418  * request state machine for execution.
2419  */
2420 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2421 {
2422 	struct rbd_obj_request *obj_req, *next_obj_req;
2423 	int ret;
2424 
2425 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2426 		switch (img_req->op_type) {
2427 		case OBJ_OP_READ:
2428 			ret = rbd_obj_init_read(obj_req);
2429 			break;
2430 		case OBJ_OP_WRITE:
2431 			ret = rbd_obj_init_write(obj_req);
2432 			break;
2433 		case OBJ_OP_DISCARD:
2434 			ret = rbd_obj_init_discard(obj_req);
2435 			break;
2436 		case OBJ_OP_ZEROOUT:
2437 			ret = rbd_obj_init_zeroout(obj_req);
2438 			break;
2439 		default:
2440 			BUG();
2441 		}
2442 		if (ret < 0)
2443 			return ret;
2444 		if (ret > 0) {
2445 			rbd_img_obj_request_del(img_req, obj_req);
2446 			continue;
2447 		}
2448 	}
2449 
2450 	img_req->state = RBD_IMG_START;
2451 	return 0;
2452 }
2453 
2454 union rbd_img_fill_iter {
2455 	struct ceph_bio_iter	bio_iter;
2456 	struct ceph_bvec_iter	bvec_iter;
2457 };
2458 
2459 struct rbd_img_fill_ctx {
2460 	enum obj_request_type	pos_type;
2461 	union rbd_img_fill_iter	*pos;
2462 	union rbd_img_fill_iter	iter;
2463 	ceph_object_extent_fn_t	set_pos_fn;
2464 	ceph_object_extent_fn_t	count_fn;
2465 	ceph_object_extent_fn_t	copy_fn;
2466 };
2467 
2468 static struct ceph_object_extent *alloc_object_extent(void *arg)
2469 {
2470 	struct rbd_img_request *img_req = arg;
2471 	struct rbd_obj_request *obj_req;
2472 
2473 	obj_req = rbd_obj_request_create();
2474 	if (!obj_req)
2475 		return NULL;
2476 
2477 	rbd_img_obj_request_add(img_req, obj_req);
2478 	return &obj_req->ex;
2479 }
2480 
2481 /*
2482  * While su != os && sc == 1 is technically not fancy (it's the same
2483  * layout as su == os && sc == 1), we can't use the nocopy path for it
2484  * because ->set_pos_fn() should be called only once per object.
2485  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2486  * treat su != os && sc == 1 as fancy.
2487  */
2488 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2489 {
2490 	return l->stripe_unit != l->object_size;
2491 }
2492 
2493 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2494 				       struct ceph_file_extent *img_extents,
2495 				       u32 num_img_extents,
2496 				       struct rbd_img_fill_ctx *fctx)
2497 {
2498 	u32 i;
2499 	int ret;
2500 
2501 	img_req->data_type = fctx->pos_type;
2502 
2503 	/*
2504 	 * Create object requests and set each object request's starting
2505 	 * position in the provided bio (list) or bio_vec array.
2506 	 */
2507 	fctx->iter = *fctx->pos;
2508 	for (i = 0; i < num_img_extents; i++) {
2509 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2510 					   img_extents[i].fe_off,
2511 					   img_extents[i].fe_len,
2512 					   &img_req->object_extents,
2513 					   alloc_object_extent, img_req,
2514 					   fctx->set_pos_fn, &fctx->iter);
2515 		if (ret)
2516 			return ret;
2517 	}
2518 
2519 	return __rbd_img_fill_request(img_req);
2520 }
2521 
2522 /*
2523  * Map a list of image extents to a list of object extents, create the
2524  * corresponding object requests (normally each to a different object,
2525  * but not always) and add them to @img_req.  For each object request,
2526  * set up its data descriptor to point to the corresponding chunk(s) of
2527  * @fctx->pos data buffer.
2528  *
2529  * Because ceph_file_to_extents() will merge adjacent object extents
2530  * together, each object request's data descriptor may point to multiple
2531  * different chunks of @fctx->pos data buffer.
2532  *
2533  * @fctx->pos data buffer is assumed to be large enough.
2534  */
2535 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2536 				struct ceph_file_extent *img_extents,
2537 				u32 num_img_extents,
2538 				struct rbd_img_fill_ctx *fctx)
2539 {
2540 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2541 	struct rbd_obj_request *obj_req;
2542 	u32 i;
2543 	int ret;
2544 
2545 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2546 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2547 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2548 						   num_img_extents, fctx);
2549 
2550 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2551 
2552 	/*
2553 	 * Create object requests and determine ->bvec_count for each object
2554 	 * request.  Note that ->bvec_count sum over all object requests may
2555 	 * be greater than the number of bio_vecs in the provided bio (list)
2556 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2557 	 * stripe unit boundaries.
2558 	 */
2559 	fctx->iter = *fctx->pos;
2560 	for (i = 0; i < num_img_extents; i++) {
2561 		ret = ceph_file_to_extents(&rbd_dev->layout,
2562 					   img_extents[i].fe_off,
2563 					   img_extents[i].fe_len,
2564 					   &img_req->object_extents,
2565 					   alloc_object_extent, img_req,
2566 					   fctx->count_fn, &fctx->iter);
2567 		if (ret)
2568 			return ret;
2569 	}
2570 
2571 	for_each_obj_request(img_req, obj_req) {
2572 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2573 					      sizeof(*obj_req->bvec_pos.bvecs),
2574 					      GFP_NOIO);
2575 		if (!obj_req->bvec_pos.bvecs)
2576 			return -ENOMEM;
2577 	}
2578 
2579 	/*
2580 	 * Fill in each object request's private bio_vec array, splitting and
2581 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2582 	 */
2583 	fctx->iter = *fctx->pos;
2584 	for (i = 0; i < num_img_extents; i++) {
2585 		ret = ceph_iterate_extents(&rbd_dev->layout,
2586 					   img_extents[i].fe_off,
2587 					   img_extents[i].fe_len,
2588 					   &img_req->object_extents,
2589 					   fctx->copy_fn, &fctx->iter);
2590 		if (ret)
2591 			return ret;
2592 	}
2593 
2594 	return __rbd_img_fill_request(img_req);
2595 }
2596 
2597 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2598 			       u64 off, u64 len)
2599 {
2600 	struct ceph_file_extent ex = { off, len };
2601 	union rbd_img_fill_iter dummy = {};
2602 	struct rbd_img_fill_ctx fctx = {
2603 		.pos_type = OBJ_REQUEST_NODATA,
2604 		.pos = &dummy,
2605 	};
2606 
2607 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2608 }
2609 
2610 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2611 {
2612 	struct rbd_obj_request *obj_req =
2613 	    container_of(ex, struct rbd_obj_request, ex);
2614 	struct ceph_bio_iter *it = arg;
2615 
2616 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2617 	obj_req->bio_pos = *it;
2618 	ceph_bio_iter_advance(it, bytes);
2619 }
2620 
2621 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2622 {
2623 	struct rbd_obj_request *obj_req =
2624 	    container_of(ex, struct rbd_obj_request, ex);
2625 	struct ceph_bio_iter *it = arg;
2626 
2627 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2628 	ceph_bio_iter_advance_step(it, bytes, ({
2629 		obj_req->bvec_count++;
2630 	}));
2631 
2632 }
2633 
2634 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2635 {
2636 	struct rbd_obj_request *obj_req =
2637 	    container_of(ex, struct rbd_obj_request, ex);
2638 	struct ceph_bio_iter *it = arg;
2639 
2640 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2641 	ceph_bio_iter_advance_step(it, bytes, ({
2642 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2643 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2644 	}));
2645 }
2646 
2647 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2648 				   struct ceph_file_extent *img_extents,
2649 				   u32 num_img_extents,
2650 				   struct ceph_bio_iter *bio_pos)
2651 {
2652 	struct rbd_img_fill_ctx fctx = {
2653 		.pos_type = OBJ_REQUEST_BIO,
2654 		.pos = (union rbd_img_fill_iter *)bio_pos,
2655 		.set_pos_fn = set_bio_pos,
2656 		.count_fn = count_bio_bvecs,
2657 		.copy_fn = copy_bio_bvecs,
2658 	};
2659 
2660 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2661 				    &fctx);
2662 }
2663 
2664 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2665 				 u64 off, u64 len, struct bio *bio)
2666 {
2667 	struct ceph_file_extent ex = { off, len };
2668 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2669 
2670 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2671 }
2672 
2673 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2674 {
2675 	struct rbd_obj_request *obj_req =
2676 	    container_of(ex, struct rbd_obj_request, ex);
2677 	struct ceph_bvec_iter *it = arg;
2678 
2679 	obj_req->bvec_pos = *it;
2680 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2681 	ceph_bvec_iter_advance(it, bytes);
2682 }
2683 
2684 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2685 {
2686 	struct rbd_obj_request *obj_req =
2687 	    container_of(ex, struct rbd_obj_request, ex);
2688 	struct ceph_bvec_iter *it = arg;
2689 
2690 	ceph_bvec_iter_advance_step(it, bytes, ({
2691 		obj_req->bvec_count++;
2692 	}));
2693 }
2694 
2695 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2696 {
2697 	struct rbd_obj_request *obj_req =
2698 	    container_of(ex, struct rbd_obj_request, ex);
2699 	struct ceph_bvec_iter *it = arg;
2700 
2701 	ceph_bvec_iter_advance_step(it, bytes, ({
2702 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2703 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2704 	}));
2705 }
2706 
2707 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2708 				     struct ceph_file_extent *img_extents,
2709 				     u32 num_img_extents,
2710 				     struct ceph_bvec_iter *bvec_pos)
2711 {
2712 	struct rbd_img_fill_ctx fctx = {
2713 		.pos_type = OBJ_REQUEST_BVECS,
2714 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2715 		.set_pos_fn = set_bvec_pos,
2716 		.count_fn = count_bvecs,
2717 		.copy_fn = copy_bvecs,
2718 	};
2719 
2720 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2721 				    &fctx);
2722 }
2723 
2724 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2725 				   struct ceph_file_extent *img_extents,
2726 				   u32 num_img_extents,
2727 				   struct bio_vec *bvecs)
2728 {
2729 	struct ceph_bvec_iter it = {
2730 		.bvecs = bvecs,
2731 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2732 							     num_img_extents) },
2733 	};
2734 
2735 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2736 					 &it);
2737 }
2738 
2739 static void rbd_img_handle_request_work(struct work_struct *work)
2740 {
2741 	struct rbd_img_request *img_req =
2742 	    container_of(work, struct rbd_img_request, work);
2743 
2744 	rbd_img_handle_request(img_req, img_req->work_result);
2745 }
2746 
2747 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2748 {
2749 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2750 	img_req->work_result = result;
2751 	queue_work(rbd_wq, &img_req->work);
2752 }
2753 
2754 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2755 {
2756 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2757 
2758 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2759 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2760 		return true;
2761 	}
2762 
2763 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2764 	     obj_req->ex.oe_objno);
2765 	return false;
2766 }
2767 
2768 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2769 {
2770 	struct ceph_osd_request *osd_req;
2771 	int ret;
2772 
2773 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2774 	if (IS_ERR(osd_req))
2775 		return PTR_ERR(osd_req);
2776 
2777 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2778 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2779 	rbd_osd_setup_data(osd_req, 0);
2780 	rbd_osd_format_read(osd_req);
2781 
2782 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2783 	if (ret)
2784 		return ret;
2785 
2786 	rbd_osd_submit(osd_req);
2787 	return 0;
2788 }
2789 
2790 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2791 {
2792 	struct rbd_img_request *img_req = obj_req->img_request;
2793 	struct rbd_device *parent = img_req->rbd_dev->parent;
2794 	struct rbd_img_request *child_img_req;
2795 	int ret;
2796 
2797 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2798 	if (!child_img_req)
2799 		return -ENOMEM;
2800 
2801 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2802 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2803 	child_img_req->obj_request = obj_req;
2804 
2805 	down_read(&parent->header_rwsem);
2806 	rbd_img_capture_header(child_img_req);
2807 	up_read(&parent->header_rwsem);
2808 
2809 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2810 	     obj_req);
2811 
2812 	if (!rbd_img_is_write(img_req)) {
2813 		switch (img_req->data_type) {
2814 		case OBJ_REQUEST_BIO:
2815 			ret = __rbd_img_fill_from_bio(child_img_req,
2816 						      obj_req->img_extents,
2817 						      obj_req->num_img_extents,
2818 						      &obj_req->bio_pos);
2819 			break;
2820 		case OBJ_REQUEST_BVECS:
2821 		case OBJ_REQUEST_OWN_BVECS:
2822 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2823 						      obj_req->img_extents,
2824 						      obj_req->num_img_extents,
2825 						      &obj_req->bvec_pos);
2826 			break;
2827 		default:
2828 			BUG();
2829 		}
2830 	} else {
2831 		ret = rbd_img_fill_from_bvecs(child_img_req,
2832 					      obj_req->img_extents,
2833 					      obj_req->num_img_extents,
2834 					      obj_req->copyup_bvecs);
2835 	}
2836 	if (ret) {
2837 		rbd_img_request_destroy(child_img_req);
2838 		return ret;
2839 	}
2840 
2841 	/* avoid parent chain recursion */
2842 	rbd_img_schedule(child_img_req, 0);
2843 	return 0;
2844 }
2845 
2846 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2847 {
2848 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2849 	int ret;
2850 
2851 again:
2852 	switch (obj_req->read_state) {
2853 	case RBD_OBJ_READ_START:
2854 		rbd_assert(!*result);
2855 
2856 		if (!rbd_obj_may_exist(obj_req)) {
2857 			*result = -ENOENT;
2858 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2859 			goto again;
2860 		}
2861 
2862 		ret = rbd_obj_read_object(obj_req);
2863 		if (ret) {
2864 			*result = ret;
2865 			return true;
2866 		}
2867 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2868 		return false;
2869 	case RBD_OBJ_READ_OBJECT:
2870 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2871 			/* reverse map this object extent onto the parent */
2872 			ret = rbd_obj_calc_img_extents(obj_req, false);
2873 			if (ret) {
2874 				*result = ret;
2875 				return true;
2876 			}
2877 			if (obj_req->num_img_extents) {
2878 				ret = rbd_obj_read_from_parent(obj_req);
2879 				if (ret) {
2880 					*result = ret;
2881 					return true;
2882 				}
2883 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2884 				return false;
2885 			}
2886 		}
2887 
2888 		/*
2889 		 * -ENOENT means a hole in the image -- zero-fill the entire
2890 		 * length of the request.  A short read also implies zero-fill
2891 		 * to the end of the request.
2892 		 */
2893 		if (*result == -ENOENT) {
2894 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2895 			*result = 0;
2896 		} else if (*result >= 0) {
2897 			if (*result < obj_req->ex.oe_len)
2898 				rbd_obj_zero_range(obj_req, *result,
2899 						obj_req->ex.oe_len - *result);
2900 			else
2901 				rbd_assert(*result == obj_req->ex.oe_len);
2902 			*result = 0;
2903 		}
2904 		return true;
2905 	case RBD_OBJ_READ_PARENT:
2906 		/*
2907 		 * The parent image is read only up to the overlap -- zero-fill
2908 		 * from the overlap to the end of the request.
2909 		 */
2910 		if (!*result) {
2911 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2912 
2913 			if (obj_overlap < obj_req->ex.oe_len)
2914 				rbd_obj_zero_range(obj_req, obj_overlap,
2915 					    obj_req->ex.oe_len - obj_overlap);
2916 		}
2917 		return true;
2918 	default:
2919 		BUG();
2920 	}
2921 }
2922 
2923 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2924 {
2925 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2926 
2927 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2928 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2929 
2930 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2931 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2932 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2933 		return true;
2934 	}
2935 
2936 	return false;
2937 }
2938 
2939 /*
2940  * Return:
2941  *   0 - object map update sent
2942  *   1 - object map update isn't needed
2943  *  <0 - error
2944  */
2945 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2946 {
2947 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2948 	u8 new_state;
2949 
2950 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2951 		return 1;
2952 
2953 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2954 		new_state = OBJECT_PENDING;
2955 	else
2956 		new_state = OBJECT_EXISTS;
2957 
2958 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2959 }
2960 
2961 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2962 {
2963 	struct ceph_osd_request *osd_req;
2964 	int num_ops = count_write_ops(obj_req);
2965 	int which = 0;
2966 	int ret;
2967 
2968 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2969 		num_ops++; /* stat */
2970 
2971 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2972 	if (IS_ERR(osd_req))
2973 		return PTR_ERR(osd_req);
2974 
2975 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2976 		ret = rbd_osd_setup_stat(osd_req, which++);
2977 		if (ret)
2978 			return ret;
2979 	}
2980 
2981 	rbd_osd_setup_write_ops(osd_req, which);
2982 	rbd_osd_format_write(osd_req);
2983 
2984 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2985 	if (ret)
2986 		return ret;
2987 
2988 	rbd_osd_submit(osd_req);
2989 	return 0;
2990 }
2991 
2992 /*
2993  * copyup_bvecs pages are never highmem pages
2994  */
2995 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2996 {
2997 	struct ceph_bvec_iter it = {
2998 		.bvecs = bvecs,
2999 		.iter = { .bi_size = bytes },
3000 	};
3001 
3002 	ceph_bvec_iter_advance_step(&it, bytes, ({
3003 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3004 			return false;
3005 	}));
3006 	return true;
3007 }
3008 
3009 #define MODS_ONLY	U32_MAX
3010 
3011 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3012 				      u32 bytes)
3013 {
3014 	struct ceph_osd_request *osd_req;
3015 	int ret;
3016 
3017 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3018 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3019 
3020 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3021 	if (IS_ERR(osd_req))
3022 		return PTR_ERR(osd_req);
3023 
3024 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3025 	if (ret)
3026 		return ret;
3027 
3028 	rbd_osd_format_write(osd_req);
3029 
3030 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3031 	if (ret)
3032 		return ret;
3033 
3034 	rbd_osd_submit(osd_req);
3035 	return 0;
3036 }
3037 
3038 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3039 					u32 bytes)
3040 {
3041 	struct ceph_osd_request *osd_req;
3042 	int num_ops = count_write_ops(obj_req);
3043 	int which = 0;
3044 	int ret;
3045 
3046 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3047 
3048 	if (bytes != MODS_ONLY)
3049 		num_ops++; /* copyup */
3050 
3051 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3052 	if (IS_ERR(osd_req))
3053 		return PTR_ERR(osd_req);
3054 
3055 	if (bytes != MODS_ONLY) {
3056 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3057 		if (ret)
3058 			return ret;
3059 	}
3060 
3061 	rbd_osd_setup_write_ops(osd_req, which);
3062 	rbd_osd_format_write(osd_req);
3063 
3064 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3065 	if (ret)
3066 		return ret;
3067 
3068 	rbd_osd_submit(osd_req);
3069 	return 0;
3070 }
3071 
3072 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3073 {
3074 	u32 i;
3075 
3076 	rbd_assert(!obj_req->copyup_bvecs);
3077 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3078 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3079 					sizeof(*obj_req->copyup_bvecs),
3080 					GFP_NOIO);
3081 	if (!obj_req->copyup_bvecs)
3082 		return -ENOMEM;
3083 
3084 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3085 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3086 		struct page *page = alloc_page(GFP_NOIO);
3087 
3088 		if (!page)
3089 			return -ENOMEM;
3090 
3091 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3092 		obj_overlap -= len;
3093 	}
3094 
3095 	rbd_assert(!obj_overlap);
3096 	return 0;
3097 }
3098 
3099 /*
3100  * The target object doesn't exist.  Read the data for the entire
3101  * target object up to the overlap point (if any) from the parent,
3102  * so we can use it for a copyup.
3103  */
3104 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3105 {
3106 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3107 	int ret;
3108 
3109 	rbd_assert(obj_req->num_img_extents);
3110 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3111 		      rbd_dev->parent_overlap);
3112 	if (!obj_req->num_img_extents) {
3113 		/*
3114 		 * The overlap has become 0 (most likely because the
3115 		 * image has been flattened).  Re-submit the original write
3116 		 * request -- pass MODS_ONLY since the copyup isn't needed
3117 		 * anymore.
3118 		 */
3119 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3120 	}
3121 
3122 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3123 	if (ret)
3124 		return ret;
3125 
3126 	return rbd_obj_read_from_parent(obj_req);
3127 }
3128 
3129 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3130 {
3131 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3132 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3133 	u8 new_state;
3134 	u32 i;
3135 	int ret;
3136 
3137 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3138 
3139 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3140 		return;
3141 
3142 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3143 		return;
3144 
3145 	for (i = 0; i < snapc->num_snaps; i++) {
3146 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3147 		    i + 1 < snapc->num_snaps)
3148 			new_state = OBJECT_EXISTS_CLEAN;
3149 		else
3150 			new_state = OBJECT_EXISTS;
3151 
3152 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3153 					    new_state, NULL);
3154 		if (ret < 0) {
3155 			obj_req->pending.result = ret;
3156 			return;
3157 		}
3158 
3159 		rbd_assert(!ret);
3160 		obj_req->pending.num_pending++;
3161 	}
3162 }
3163 
3164 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3165 {
3166 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3167 	int ret;
3168 
3169 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3170 
3171 	/*
3172 	 * Only send non-zero copyup data to save some I/O and network
3173 	 * bandwidth -- zero copyup data is equivalent to the object not
3174 	 * existing.
3175 	 */
3176 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3177 		bytes = 0;
3178 
3179 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3180 		/*
3181 		 * Send a copyup request with an empty snapshot context to
3182 		 * deep-copyup the object through all existing snapshots.
3183 		 * A second request with the current snapshot context will be
3184 		 * sent for the actual modification.
3185 		 */
3186 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3187 		if (ret) {
3188 			obj_req->pending.result = ret;
3189 			return;
3190 		}
3191 
3192 		obj_req->pending.num_pending++;
3193 		bytes = MODS_ONLY;
3194 	}
3195 
3196 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3197 	if (ret) {
3198 		obj_req->pending.result = ret;
3199 		return;
3200 	}
3201 
3202 	obj_req->pending.num_pending++;
3203 }
3204 
3205 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3206 {
3207 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3208 	int ret;
3209 
3210 again:
3211 	switch (obj_req->copyup_state) {
3212 	case RBD_OBJ_COPYUP_START:
3213 		rbd_assert(!*result);
3214 
3215 		ret = rbd_obj_copyup_read_parent(obj_req);
3216 		if (ret) {
3217 			*result = ret;
3218 			return true;
3219 		}
3220 		if (obj_req->num_img_extents)
3221 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3222 		else
3223 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3224 		return false;
3225 	case RBD_OBJ_COPYUP_READ_PARENT:
3226 		if (*result)
3227 			return true;
3228 
3229 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3230 				  rbd_obj_img_extents_bytes(obj_req))) {
3231 			dout("%s %p detected zeros\n", __func__, obj_req);
3232 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3233 		}
3234 
3235 		rbd_obj_copyup_object_maps(obj_req);
3236 		if (!obj_req->pending.num_pending) {
3237 			*result = obj_req->pending.result;
3238 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3239 			goto again;
3240 		}
3241 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 		return false;
3243 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3244 		if (!pending_result_dec(&obj_req->pending, result))
3245 			return false;
3246 		fallthrough;
3247 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3248 		if (*result) {
3249 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3250 				 *result);
3251 			return true;
3252 		}
3253 
3254 		rbd_obj_copyup_write_object(obj_req);
3255 		if (!obj_req->pending.num_pending) {
3256 			*result = obj_req->pending.result;
3257 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3258 			goto again;
3259 		}
3260 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 		return false;
3262 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3263 		if (!pending_result_dec(&obj_req->pending, result))
3264 			return false;
3265 		fallthrough;
3266 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3267 		return true;
3268 	default:
3269 		BUG();
3270 	}
3271 }
3272 
3273 /*
3274  * Return:
3275  *   0 - object map update sent
3276  *   1 - object map update isn't needed
3277  *  <0 - error
3278  */
3279 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3280 {
3281 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3282 	u8 current_state = OBJECT_PENDING;
3283 
3284 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3285 		return 1;
3286 
3287 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3288 		return 1;
3289 
3290 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3291 				     &current_state);
3292 }
3293 
3294 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3295 {
3296 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3297 	int ret;
3298 
3299 again:
3300 	switch (obj_req->write_state) {
3301 	case RBD_OBJ_WRITE_START:
3302 		rbd_assert(!*result);
3303 
3304 		rbd_obj_set_copyup_enabled(obj_req);
3305 		if (rbd_obj_write_is_noop(obj_req))
3306 			return true;
3307 
3308 		ret = rbd_obj_write_pre_object_map(obj_req);
3309 		if (ret < 0) {
3310 			*result = ret;
3311 			return true;
3312 		}
3313 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3314 		if (ret > 0)
3315 			goto again;
3316 		return false;
3317 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3318 		if (*result) {
3319 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3320 				 *result);
3321 			return true;
3322 		}
3323 		ret = rbd_obj_write_object(obj_req);
3324 		if (ret) {
3325 			*result = ret;
3326 			return true;
3327 		}
3328 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3329 		return false;
3330 	case RBD_OBJ_WRITE_OBJECT:
3331 		if (*result == -ENOENT) {
3332 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3333 				*result = 0;
3334 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3335 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3336 				goto again;
3337 			}
3338 			/*
3339 			 * On a non-existent object:
3340 			 *   delete - -ENOENT, truncate/zero - 0
3341 			 */
3342 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3343 				*result = 0;
3344 		}
3345 		if (*result)
3346 			return true;
3347 
3348 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3349 		goto again;
3350 	case __RBD_OBJ_WRITE_COPYUP:
3351 		if (!rbd_obj_advance_copyup(obj_req, result))
3352 			return false;
3353 		fallthrough;
3354 	case RBD_OBJ_WRITE_COPYUP:
3355 		if (*result) {
3356 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3357 			return true;
3358 		}
3359 		ret = rbd_obj_write_post_object_map(obj_req);
3360 		if (ret < 0) {
3361 			*result = ret;
3362 			return true;
3363 		}
3364 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3365 		if (ret > 0)
3366 			goto again;
3367 		return false;
3368 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3369 		if (*result)
3370 			rbd_warn(rbd_dev, "post object map update failed: %d",
3371 				 *result);
3372 		return true;
3373 	default:
3374 		BUG();
3375 	}
3376 }
3377 
3378 /*
3379  * Return true if @obj_req is completed.
3380  */
3381 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3382 				     int *result)
3383 {
3384 	struct rbd_img_request *img_req = obj_req->img_request;
3385 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3386 	bool done;
3387 
3388 	mutex_lock(&obj_req->state_mutex);
3389 	if (!rbd_img_is_write(img_req))
3390 		done = rbd_obj_advance_read(obj_req, result);
3391 	else
3392 		done = rbd_obj_advance_write(obj_req, result);
3393 	mutex_unlock(&obj_req->state_mutex);
3394 
3395 	if (done && *result) {
3396 		rbd_assert(*result < 0);
3397 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3398 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3399 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3400 	}
3401 	return done;
3402 }
3403 
3404 /*
3405  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3406  * recursion.
3407  */
3408 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3409 {
3410 	if (__rbd_obj_handle_request(obj_req, &result))
3411 		rbd_img_handle_request(obj_req->img_request, result);
3412 }
3413 
3414 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3415 {
3416 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3417 
3418 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3419 		return false;
3420 
3421 	if (rbd_is_ro(rbd_dev))
3422 		return false;
3423 
3424 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3425 	if (rbd_dev->opts->lock_on_read ||
3426 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3427 		return true;
3428 
3429 	return rbd_img_is_write(img_req);
3430 }
3431 
3432 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3433 {
3434 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3435 	bool locked;
3436 
3437 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3438 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3439 	spin_lock(&rbd_dev->lock_lists_lock);
3440 	rbd_assert(list_empty(&img_req->lock_item));
3441 	if (!locked)
3442 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3443 	else
3444 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3445 	spin_unlock(&rbd_dev->lock_lists_lock);
3446 	return locked;
3447 }
3448 
3449 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3450 {
3451 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3452 	bool need_wakeup;
3453 
3454 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3455 	spin_lock(&rbd_dev->lock_lists_lock);
3456 	rbd_assert(!list_empty(&img_req->lock_item));
3457 	list_del_init(&img_req->lock_item);
3458 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3459 		       list_empty(&rbd_dev->running_list));
3460 	spin_unlock(&rbd_dev->lock_lists_lock);
3461 	if (need_wakeup)
3462 		complete(&rbd_dev->releasing_wait);
3463 }
3464 
3465 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3466 {
3467 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3468 
3469 	if (!need_exclusive_lock(img_req))
3470 		return 1;
3471 
3472 	if (rbd_lock_add_request(img_req))
3473 		return 1;
3474 
3475 	if (rbd_dev->opts->exclusive) {
3476 		WARN_ON(1); /* lock got released? */
3477 		return -EROFS;
3478 	}
3479 
3480 	/*
3481 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3482 	 * and cancel_delayed_work() in wake_lock_waiters().
3483 	 */
3484 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486 	return 0;
3487 }
3488 
3489 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490 {
3491 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3492 	struct rbd_obj_request *obj_req;
3493 
3494 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495 	rbd_assert(!need_exclusive_lock(img_req) ||
3496 		   __rbd_is_lock_owner(rbd_dev));
3497 
3498 	if (rbd_img_is_write(img_req)) {
3499 		rbd_assert(!img_req->snapc);
3500 		down_read(&rbd_dev->header_rwsem);
3501 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3502 		up_read(&rbd_dev->header_rwsem);
3503 	}
3504 
3505 	for_each_obj_request(img_req, obj_req) {
3506 		int result = 0;
3507 
3508 		if (__rbd_obj_handle_request(obj_req, &result)) {
3509 			if (result) {
3510 				img_req->pending.result = result;
3511 				return;
3512 			}
3513 		} else {
3514 			img_req->pending.num_pending++;
3515 		}
3516 	}
3517 }
3518 
3519 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3520 {
3521 	int ret;
3522 
3523 again:
3524 	switch (img_req->state) {
3525 	case RBD_IMG_START:
3526 		rbd_assert(!*result);
3527 
3528 		ret = rbd_img_exclusive_lock(img_req);
3529 		if (ret < 0) {
3530 			*result = ret;
3531 			return true;
3532 		}
3533 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3534 		if (ret > 0)
3535 			goto again;
3536 		return false;
3537 	case RBD_IMG_EXCLUSIVE_LOCK:
3538 		if (*result)
3539 			return true;
3540 
3541 		rbd_img_object_requests(img_req);
3542 		if (!img_req->pending.num_pending) {
3543 			*result = img_req->pending.result;
3544 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3545 			goto again;
3546 		}
3547 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3548 		return false;
3549 	case __RBD_IMG_OBJECT_REQUESTS:
3550 		if (!pending_result_dec(&img_req->pending, result))
3551 			return false;
3552 		fallthrough;
3553 	case RBD_IMG_OBJECT_REQUESTS:
3554 		return true;
3555 	default:
3556 		BUG();
3557 	}
3558 }
3559 
3560 /*
3561  * Return true if @img_req is completed.
3562  */
3563 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3564 				     int *result)
3565 {
3566 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3567 	bool done;
3568 
3569 	if (need_exclusive_lock(img_req)) {
3570 		down_read(&rbd_dev->lock_rwsem);
3571 		mutex_lock(&img_req->state_mutex);
3572 		done = rbd_img_advance(img_req, result);
3573 		if (done)
3574 			rbd_lock_del_request(img_req);
3575 		mutex_unlock(&img_req->state_mutex);
3576 		up_read(&rbd_dev->lock_rwsem);
3577 	} else {
3578 		mutex_lock(&img_req->state_mutex);
3579 		done = rbd_img_advance(img_req, result);
3580 		mutex_unlock(&img_req->state_mutex);
3581 	}
3582 
3583 	if (done && *result) {
3584 		rbd_assert(*result < 0);
3585 		rbd_warn(rbd_dev, "%s%s result %d",
3586 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3587 		      obj_op_name(img_req->op_type), *result);
3588 	}
3589 	return done;
3590 }
3591 
3592 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3593 {
3594 again:
3595 	if (!__rbd_img_handle_request(img_req, &result))
3596 		return;
3597 
3598 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3599 		struct rbd_obj_request *obj_req = img_req->obj_request;
3600 
3601 		rbd_img_request_destroy(img_req);
3602 		if (__rbd_obj_handle_request(obj_req, &result)) {
3603 			img_req = obj_req->img_request;
3604 			goto again;
3605 		}
3606 	} else {
3607 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3608 
3609 		rbd_img_request_destroy(img_req);
3610 		blk_mq_end_request(rq, errno_to_blk_status(result));
3611 	}
3612 }
3613 
3614 static const struct rbd_client_id rbd_empty_cid;
3615 
3616 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3617 			  const struct rbd_client_id *rhs)
3618 {
3619 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3620 }
3621 
3622 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3623 {
3624 	struct rbd_client_id cid;
3625 
3626 	mutex_lock(&rbd_dev->watch_mutex);
3627 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3628 	cid.handle = rbd_dev->watch_cookie;
3629 	mutex_unlock(&rbd_dev->watch_mutex);
3630 	return cid;
3631 }
3632 
3633 /*
3634  * lock_rwsem must be held for write
3635  */
3636 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3637 			      const struct rbd_client_id *cid)
3638 {
3639 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3640 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3641 	     cid->gid, cid->handle);
3642 	rbd_dev->owner_cid = *cid; /* struct */
3643 }
3644 
3645 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3646 {
3647 	mutex_lock(&rbd_dev->watch_mutex);
3648 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3649 	mutex_unlock(&rbd_dev->watch_mutex);
3650 }
3651 
3652 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3653 {
3654 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3655 
3656 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3657 	strcpy(rbd_dev->lock_cookie, cookie);
3658 	rbd_set_owner_cid(rbd_dev, &cid);
3659 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3660 }
3661 
3662 /*
3663  * lock_rwsem must be held for write
3664  */
3665 static int rbd_lock(struct rbd_device *rbd_dev)
3666 {
3667 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3668 	char cookie[32];
3669 	int ret;
3670 
3671 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3672 		rbd_dev->lock_cookie[0] != '\0');
3673 
3674 	format_lock_cookie(rbd_dev, cookie);
3675 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3677 			    RBD_LOCK_TAG, "", 0);
3678 	if (ret)
3679 		return ret;
3680 
3681 	__rbd_lock(rbd_dev, cookie);
3682 	return 0;
3683 }
3684 
3685 /*
3686  * lock_rwsem must be held for write
3687  */
3688 static void rbd_unlock(struct rbd_device *rbd_dev)
3689 {
3690 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3691 	int ret;
3692 
3693 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3694 		rbd_dev->lock_cookie[0] == '\0');
3695 
3696 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3697 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3698 	if (ret && ret != -ENOENT)
3699 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3700 
3701 	/* treat errors as the image is unlocked */
3702 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3703 	rbd_dev->lock_cookie[0] = '\0';
3704 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3705 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3706 }
3707 
3708 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3709 				enum rbd_notify_op notify_op,
3710 				struct page ***preply_pages,
3711 				size_t *preply_len)
3712 {
3713 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3715 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3716 	int buf_size = sizeof(buf);
3717 	void *p = buf;
3718 
3719 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3720 
3721 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3722 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3723 	ceph_encode_32(&p, notify_op);
3724 	ceph_encode_64(&p, cid.gid);
3725 	ceph_encode_64(&p, cid.handle);
3726 
3727 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3728 				&rbd_dev->header_oloc, buf, buf_size,
3729 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3730 }
3731 
3732 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3733 			       enum rbd_notify_op notify_op)
3734 {
3735 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3736 }
3737 
3738 static void rbd_notify_acquired_lock(struct work_struct *work)
3739 {
3740 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741 						  acquired_lock_work);
3742 
3743 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3744 }
3745 
3746 static void rbd_notify_released_lock(struct work_struct *work)
3747 {
3748 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3749 						  released_lock_work);
3750 
3751 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3752 }
3753 
3754 static int rbd_request_lock(struct rbd_device *rbd_dev)
3755 {
3756 	struct page **reply_pages;
3757 	size_t reply_len;
3758 	bool lock_owner_responded = false;
3759 	int ret;
3760 
3761 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3762 
3763 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3764 				   &reply_pages, &reply_len);
3765 	if (ret && ret != -ETIMEDOUT) {
3766 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3767 		goto out;
3768 	}
3769 
3770 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3771 		void *p = page_address(reply_pages[0]);
3772 		void *const end = p + reply_len;
3773 		u32 n;
3774 
3775 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3776 		while (n--) {
3777 			u8 struct_v;
3778 			u32 len;
3779 
3780 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3781 			p += 8 + 8; /* skip gid and cookie */
3782 
3783 			ceph_decode_32_safe(&p, end, len, e_inval);
3784 			if (!len)
3785 				continue;
3786 
3787 			if (lock_owner_responded) {
3788 				rbd_warn(rbd_dev,
3789 					 "duplicate lock owners detected");
3790 				ret = -EIO;
3791 				goto out;
3792 			}
3793 
3794 			lock_owner_responded = true;
3795 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3796 						  &struct_v, &len);
3797 			if (ret) {
3798 				rbd_warn(rbd_dev,
3799 					 "failed to decode ResponseMessage: %d",
3800 					 ret);
3801 				goto e_inval;
3802 			}
3803 
3804 			ret = ceph_decode_32(&p);
3805 		}
3806 	}
3807 
3808 	if (!lock_owner_responded) {
3809 		rbd_warn(rbd_dev, "no lock owners detected");
3810 		ret = -ETIMEDOUT;
3811 	}
3812 
3813 out:
3814 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3815 	return ret;
3816 
3817 e_inval:
3818 	ret = -EINVAL;
3819 	goto out;
3820 }
3821 
3822 /*
3823  * Either image request state machine(s) or rbd_add_acquire_lock()
3824  * (i.e. "rbd map").
3825  */
3826 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3827 {
3828 	struct rbd_img_request *img_req;
3829 
3830 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3831 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3832 
3833 	cancel_delayed_work(&rbd_dev->lock_dwork);
3834 	if (!completion_done(&rbd_dev->acquire_wait)) {
3835 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3836 			   list_empty(&rbd_dev->running_list));
3837 		rbd_dev->acquire_err = result;
3838 		complete_all(&rbd_dev->acquire_wait);
3839 		return;
3840 	}
3841 
3842 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3843 		mutex_lock(&img_req->state_mutex);
3844 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3845 		rbd_img_schedule(img_req, result);
3846 		mutex_unlock(&img_req->state_mutex);
3847 	}
3848 
3849 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3850 }
3851 
3852 static bool locker_equal(const struct ceph_locker *lhs,
3853 			 const struct ceph_locker *rhs)
3854 {
3855 	return lhs->id.name.type == rhs->id.name.type &&
3856 	       lhs->id.name.num == rhs->id.name.num &&
3857 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3858 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3859 }
3860 
3861 static void free_locker(struct ceph_locker *locker)
3862 {
3863 	if (locker)
3864 		ceph_free_lockers(locker, 1);
3865 }
3866 
3867 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3868 {
3869 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3870 	struct ceph_locker *lockers;
3871 	u32 num_lockers;
3872 	u8 lock_type;
3873 	char *lock_tag;
3874 	u64 handle;
3875 	int ret;
3876 
3877 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3878 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3879 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3880 	if (ret) {
3881 		rbd_warn(rbd_dev, "failed to retrieve lockers: %d", ret);
3882 		return ERR_PTR(ret);
3883 	}
3884 
3885 	if (num_lockers == 0) {
3886 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3887 		lockers = NULL;
3888 		goto out;
3889 	}
3890 
3891 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3892 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3893 			 lock_tag);
3894 		goto err_busy;
3895 	}
3896 
3897 	if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3898 		rbd_warn(rbd_dev, "incompatible lock type detected");
3899 		goto err_busy;
3900 	}
3901 
3902 	WARN_ON(num_lockers != 1);
3903 	ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3904 		     &handle);
3905 	if (ret != 1) {
3906 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3907 			 lockers[0].id.cookie);
3908 		goto err_busy;
3909 	}
3910 	if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3911 		rbd_warn(rbd_dev, "locker has a blank address");
3912 		goto err_busy;
3913 	}
3914 
3915 	dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3916 	     __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3917 	     &lockers[0].info.addr.in_addr,
3918 	     le32_to_cpu(lockers[0].info.addr.nonce), handle);
3919 
3920 out:
3921 	kfree(lock_tag);
3922 	return lockers;
3923 
3924 err_busy:
3925 	kfree(lock_tag);
3926 	ceph_free_lockers(lockers, num_lockers);
3927 	return ERR_PTR(-EBUSY);
3928 }
3929 
3930 static int find_watcher(struct rbd_device *rbd_dev,
3931 			const struct ceph_locker *locker)
3932 {
3933 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3934 	struct ceph_watch_item *watchers;
3935 	u32 num_watchers;
3936 	u64 cookie;
3937 	int i;
3938 	int ret;
3939 
3940 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3941 				      &rbd_dev->header_oloc, &watchers,
3942 				      &num_watchers);
3943 	if (ret)
3944 		return ret;
3945 
3946 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3947 	for (i = 0; i < num_watchers; i++) {
3948 		/*
3949 		 * Ignore addr->type while comparing.  This mimics
3950 		 * entity_addr_t::get_legacy_str() + strcmp().
3951 		 */
3952 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3953 					    &locker->info.addr) &&
3954 		    watchers[i].cookie == cookie) {
3955 			struct rbd_client_id cid = {
3956 				.gid = le64_to_cpu(watchers[i].name.num),
3957 				.handle = cookie,
3958 			};
3959 
3960 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3961 			     rbd_dev, cid.gid, cid.handle);
3962 			rbd_set_owner_cid(rbd_dev, &cid);
3963 			ret = 1;
3964 			goto out;
3965 		}
3966 	}
3967 
3968 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3969 	ret = 0;
3970 out:
3971 	kfree(watchers);
3972 	return ret;
3973 }
3974 
3975 /*
3976  * lock_rwsem must be held for write
3977  */
3978 static int rbd_try_lock(struct rbd_device *rbd_dev)
3979 {
3980 	struct ceph_client *client = rbd_dev->rbd_client->client;
3981 	struct ceph_locker *locker, *refreshed_locker;
3982 	int ret;
3983 
3984 	for (;;) {
3985 		locker = refreshed_locker = NULL;
3986 
3987 		ret = rbd_lock(rbd_dev);
3988 		if (ret != -EBUSY)
3989 			goto out;
3990 
3991 		/* determine if the current lock holder is still alive */
3992 		locker = get_lock_owner_info(rbd_dev);
3993 		if (IS_ERR(locker)) {
3994 			ret = PTR_ERR(locker);
3995 			locker = NULL;
3996 			goto out;
3997 		}
3998 		if (!locker)
3999 			goto again;
4000 
4001 		ret = find_watcher(rbd_dev, locker);
4002 		if (ret)
4003 			goto out; /* request lock or error */
4004 
4005 		refreshed_locker = get_lock_owner_info(rbd_dev);
4006 		if (IS_ERR(refreshed_locker)) {
4007 			ret = PTR_ERR(refreshed_locker);
4008 			refreshed_locker = NULL;
4009 			goto out;
4010 		}
4011 		if (!refreshed_locker ||
4012 		    !locker_equal(locker, refreshed_locker))
4013 			goto again;
4014 
4015 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4016 			 ENTITY_NAME(locker->id.name));
4017 
4018 		ret = ceph_monc_blocklist_add(&client->monc,
4019 					      &locker->info.addr);
4020 		if (ret) {
4021 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4022 				 ENTITY_NAME(locker->id.name), ret);
4023 			goto out;
4024 		}
4025 
4026 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4027 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4028 					  locker->id.cookie, &locker->id.name);
4029 		if (ret && ret != -ENOENT) {
4030 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4031 				 ret);
4032 			goto out;
4033 		}
4034 
4035 again:
4036 		free_locker(refreshed_locker);
4037 		free_locker(locker);
4038 	}
4039 
4040 out:
4041 	free_locker(refreshed_locker);
4042 	free_locker(locker);
4043 	return ret;
4044 }
4045 
4046 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4047 {
4048 	int ret;
4049 
4050 	ret = rbd_dev_refresh(rbd_dev);
4051 	if (ret)
4052 		return ret;
4053 
4054 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4055 		ret = rbd_object_map_open(rbd_dev);
4056 		if (ret)
4057 			return ret;
4058 	}
4059 
4060 	return 0;
4061 }
4062 
4063 /*
4064  * Return:
4065  *   0 - lock acquired
4066  *   1 - caller should call rbd_request_lock()
4067  *  <0 - error
4068  */
4069 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4070 {
4071 	int ret;
4072 
4073 	down_read(&rbd_dev->lock_rwsem);
4074 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4075 	     rbd_dev->lock_state);
4076 	if (__rbd_is_lock_owner(rbd_dev)) {
4077 		up_read(&rbd_dev->lock_rwsem);
4078 		return 0;
4079 	}
4080 
4081 	up_read(&rbd_dev->lock_rwsem);
4082 	down_write(&rbd_dev->lock_rwsem);
4083 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4084 	     rbd_dev->lock_state);
4085 	if (__rbd_is_lock_owner(rbd_dev)) {
4086 		up_write(&rbd_dev->lock_rwsem);
4087 		return 0;
4088 	}
4089 
4090 	ret = rbd_try_lock(rbd_dev);
4091 	if (ret < 0) {
4092 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4093 		if (ret == -EBLOCKLISTED)
4094 			goto out;
4095 
4096 		ret = 1; /* request lock anyway */
4097 	}
4098 	if (ret > 0) {
4099 		up_write(&rbd_dev->lock_rwsem);
4100 		return ret;
4101 	}
4102 
4103 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4104 	rbd_assert(list_empty(&rbd_dev->running_list));
4105 
4106 	ret = rbd_post_acquire_action(rbd_dev);
4107 	if (ret) {
4108 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4109 		/*
4110 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4111 		 * rbd_lock_add_request() would let the request through,
4112 		 * assuming that e.g. object map is locked and loaded.
4113 		 */
4114 		rbd_unlock(rbd_dev);
4115 	}
4116 
4117 out:
4118 	wake_lock_waiters(rbd_dev, ret);
4119 	up_write(&rbd_dev->lock_rwsem);
4120 	return ret;
4121 }
4122 
4123 static void rbd_acquire_lock(struct work_struct *work)
4124 {
4125 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4126 					    struct rbd_device, lock_dwork);
4127 	int ret;
4128 
4129 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4130 again:
4131 	ret = rbd_try_acquire_lock(rbd_dev);
4132 	if (ret <= 0) {
4133 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4134 		return;
4135 	}
4136 
4137 	ret = rbd_request_lock(rbd_dev);
4138 	if (ret == -ETIMEDOUT) {
4139 		goto again; /* treat this as a dead client */
4140 	} else if (ret == -EROFS) {
4141 		rbd_warn(rbd_dev, "peer will not release lock");
4142 		down_write(&rbd_dev->lock_rwsem);
4143 		wake_lock_waiters(rbd_dev, ret);
4144 		up_write(&rbd_dev->lock_rwsem);
4145 	} else if (ret < 0) {
4146 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4147 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4148 				 RBD_RETRY_DELAY);
4149 	} else {
4150 		/*
4151 		 * lock owner acked, but resend if we don't see them
4152 		 * release the lock
4153 		 */
4154 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4155 		     rbd_dev);
4156 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4157 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4158 	}
4159 }
4160 
4161 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4162 {
4163 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4164 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4165 
4166 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4167 		return false;
4168 
4169 	/*
4170 	 * Ensure that all in-flight IO is flushed.
4171 	 */
4172 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4173 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4174 	if (list_empty(&rbd_dev->running_list))
4175 		return true;
4176 
4177 	up_write(&rbd_dev->lock_rwsem);
4178 	wait_for_completion(&rbd_dev->releasing_wait);
4179 
4180 	down_write(&rbd_dev->lock_rwsem);
4181 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4182 		return false;
4183 
4184 	rbd_assert(list_empty(&rbd_dev->running_list));
4185 	return true;
4186 }
4187 
4188 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4189 {
4190 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4191 		rbd_object_map_close(rbd_dev);
4192 }
4193 
4194 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4195 {
4196 	rbd_assert(list_empty(&rbd_dev->running_list));
4197 
4198 	rbd_pre_release_action(rbd_dev);
4199 	rbd_unlock(rbd_dev);
4200 }
4201 
4202 /*
4203  * lock_rwsem must be held for write
4204  */
4205 static void rbd_release_lock(struct rbd_device *rbd_dev)
4206 {
4207 	if (!rbd_quiesce_lock(rbd_dev))
4208 		return;
4209 
4210 	__rbd_release_lock(rbd_dev);
4211 
4212 	/*
4213 	 * Give others a chance to grab the lock - we would re-acquire
4214 	 * almost immediately if we got new IO while draining the running
4215 	 * list otherwise.  We need to ack our own notifications, so this
4216 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4217 	 * way of maybe_kick_acquire().
4218 	 */
4219 	cancel_delayed_work(&rbd_dev->lock_dwork);
4220 }
4221 
4222 static void rbd_release_lock_work(struct work_struct *work)
4223 {
4224 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4225 						  unlock_work);
4226 
4227 	down_write(&rbd_dev->lock_rwsem);
4228 	rbd_release_lock(rbd_dev);
4229 	up_write(&rbd_dev->lock_rwsem);
4230 }
4231 
4232 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4233 {
4234 	bool have_requests;
4235 
4236 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4237 	if (__rbd_is_lock_owner(rbd_dev))
4238 		return;
4239 
4240 	spin_lock(&rbd_dev->lock_lists_lock);
4241 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4242 	spin_unlock(&rbd_dev->lock_lists_lock);
4243 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4244 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4245 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4246 	}
4247 }
4248 
4249 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4250 				     void **p)
4251 {
4252 	struct rbd_client_id cid = { 0 };
4253 
4254 	if (struct_v >= 2) {
4255 		cid.gid = ceph_decode_64(p);
4256 		cid.handle = ceph_decode_64(p);
4257 	}
4258 
4259 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4260 	     cid.handle);
4261 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4262 		down_write(&rbd_dev->lock_rwsem);
4263 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4264 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4265 			     __func__, rbd_dev, cid.gid, cid.handle);
4266 		} else {
4267 			rbd_set_owner_cid(rbd_dev, &cid);
4268 		}
4269 		downgrade_write(&rbd_dev->lock_rwsem);
4270 	} else {
4271 		down_read(&rbd_dev->lock_rwsem);
4272 	}
4273 
4274 	maybe_kick_acquire(rbd_dev);
4275 	up_read(&rbd_dev->lock_rwsem);
4276 }
4277 
4278 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4279 				     void **p)
4280 {
4281 	struct rbd_client_id cid = { 0 };
4282 
4283 	if (struct_v >= 2) {
4284 		cid.gid = ceph_decode_64(p);
4285 		cid.handle = ceph_decode_64(p);
4286 	}
4287 
4288 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4289 	     cid.handle);
4290 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4291 		down_write(&rbd_dev->lock_rwsem);
4292 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4293 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4294 			     __func__, rbd_dev, cid.gid, cid.handle,
4295 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4296 		} else {
4297 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4298 		}
4299 		downgrade_write(&rbd_dev->lock_rwsem);
4300 	} else {
4301 		down_read(&rbd_dev->lock_rwsem);
4302 	}
4303 
4304 	maybe_kick_acquire(rbd_dev);
4305 	up_read(&rbd_dev->lock_rwsem);
4306 }
4307 
4308 /*
4309  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4310  * ResponseMessage is needed.
4311  */
4312 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4313 				   void **p)
4314 {
4315 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4316 	struct rbd_client_id cid = { 0 };
4317 	int result = 1;
4318 
4319 	if (struct_v >= 2) {
4320 		cid.gid = ceph_decode_64(p);
4321 		cid.handle = ceph_decode_64(p);
4322 	}
4323 
4324 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4325 	     cid.handle);
4326 	if (rbd_cid_equal(&cid, &my_cid))
4327 		return result;
4328 
4329 	down_read(&rbd_dev->lock_rwsem);
4330 	if (__rbd_is_lock_owner(rbd_dev)) {
4331 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4332 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4333 			goto out_unlock;
4334 
4335 		/*
4336 		 * encode ResponseMessage(0) so the peer can detect
4337 		 * a missing owner
4338 		 */
4339 		result = 0;
4340 
4341 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4342 			if (!rbd_dev->opts->exclusive) {
4343 				dout("%s rbd_dev %p queueing unlock_work\n",
4344 				     __func__, rbd_dev);
4345 				queue_work(rbd_dev->task_wq,
4346 					   &rbd_dev->unlock_work);
4347 			} else {
4348 				/* refuse to release the lock */
4349 				result = -EROFS;
4350 			}
4351 		}
4352 	}
4353 
4354 out_unlock:
4355 	up_read(&rbd_dev->lock_rwsem);
4356 	return result;
4357 }
4358 
4359 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4360 				     u64 notify_id, u64 cookie, s32 *result)
4361 {
4362 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4363 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4364 	int buf_size = sizeof(buf);
4365 	int ret;
4366 
4367 	if (result) {
4368 		void *p = buf;
4369 
4370 		/* encode ResponseMessage */
4371 		ceph_start_encoding(&p, 1, 1,
4372 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4373 		ceph_encode_32(&p, *result);
4374 	} else {
4375 		buf_size = 0;
4376 	}
4377 
4378 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4379 				   &rbd_dev->header_oloc, notify_id, cookie,
4380 				   buf, buf_size);
4381 	if (ret)
4382 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4383 }
4384 
4385 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4386 				   u64 cookie)
4387 {
4388 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4389 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4390 }
4391 
4392 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4393 					  u64 notify_id, u64 cookie, s32 result)
4394 {
4395 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4396 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4397 }
4398 
4399 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4400 			 u64 notifier_id, void *data, size_t data_len)
4401 {
4402 	struct rbd_device *rbd_dev = arg;
4403 	void *p = data;
4404 	void *const end = p + data_len;
4405 	u8 struct_v = 0;
4406 	u32 len;
4407 	u32 notify_op;
4408 	int ret;
4409 
4410 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4411 	     __func__, rbd_dev, cookie, notify_id, data_len);
4412 	if (data_len) {
4413 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4414 					  &struct_v, &len);
4415 		if (ret) {
4416 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4417 				 ret);
4418 			return;
4419 		}
4420 
4421 		notify_op = ceph_decode_32(&p);
4422 	} else {
4423 		/* legacy notification for header updates */
4424 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4425 		len = 0;
4426 	}
4427 
4428 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4429 	switch (notify_op) {
4430 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4431 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4432 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4433 		break;
4434 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4435 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4436 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4437 		break;
4438 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4439 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4440 		if (ret <= 0)
4441 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4442 						      cookie, ret);
4443 		else
4444 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445 		break;
4446 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4447 		ret = rbd_dev_refresh(rbd_dev);
4448 		if (ret)
4449 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4450 
4451 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4452 		break;
4453 	default:
4454 		if (rbd_is_lock_owner(rbd_dev))
4455 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4456 						      cookie, -EOPNOTSUPP);
4457 		else
4458 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4459 		break;
4460 	}
4461 }
4462 
4463 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4464 
4465 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4466 {
4467 	struct rbd_device *rbd_dev = arg;
4468 
4469 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4470 
4471 	down_write(&rbd_dev->lock_rwsem);
4472 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4473 	up_write(&rbd_dev->lock_rwsem);
4474 
4475 	mutex_lock(&rbd_dev->watch_mutex);
4476 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4477 		__rbd_unregister_watch(rbd_dev);
4478 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4479 
4480 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4481 	}
4482 	mutex_unlock(&rbd_dev->watch_mutex);
4483 }
4484 
4485 /*
4486  * watch_mutex must be locked
4487  */
4488 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4489 {
4490 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4491 	struct ceph_osd_linger_request *handle;
4492 
4493 	rbd_assert(!rbd_dev->watch_handle);
4494 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4495 
4496 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4497 				 &rbd_dev->header_oloc, rbd_watch_cb,
4498 				 rbd_watch_errcb, rbd_dev);
4499 	if (IS_ERR(handle))
4500 		return PTR_ERR(handle);
4501 
4502 	rbd_dev->watch_handle = handle;
4503 	return 0;
4504 }
4505 
4506 /*
4507  * watch_mutex must be locked
4508  */
4509 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4510 {
4511 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4512 	int ret;
4513 
4514 	rbd_assert(rbd_dev->watch_handle);
4515 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4516 
4517 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4518 	if (ret)
4519 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4520 
4521 	rbd_dev->watch_handle = NULL;
4522 }
4523 
4524 static int rbd_register_watch(struct rbd_device *rbd_dev)
4525 {
4526 	int ret;
4527 
4528 	mutex_lock(&rbd_dev->watch_mutex);
4529 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4530 	ret = __rbd_register_watch(rbd_dev);
4531 	if (ret)
4532 		goto out;
4533 
4534 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4535 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4536 
4537 out:
4538 	mutex_unlock(&rbd_dev->watch_mutex);
4539 	return ret;
4540 }
4541 
4542 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4543 {
4544 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4545 
4546 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4547 	cancel_work_sync(&rbd_dev->released_lock_work);
4548 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4549 	cancel_work_sync(&rbd_dev->unlock_work);
4550 }
4551 
4552 /*
4553  * header_rwsem must not be held to avoid a deadlock with
4554  * rbd_dev_refresh() when flushing notifies.
4555  */
4556 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4557 {
4558 	cancel_tasks_sync(rbd_dev);
4559 
4560 	mutex_lock(&rbd_dev->watch_mutex);
4561 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4562 		__rbd_unregister_watch(rbd_dev);
4563 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4564 	mutex_unlock(&rbd_dev->watch_mutex);
4565 
4566 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4567 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4568 }
4569 
4570 /*
4571  * lock_rwsem must be held for write
4572  */
4573 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4574 {
4575 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4576 	char cookie[32];
4577 	int ret;
4578 
4579 	if (!rbd_quiesce_lock(rbd_dev))
4580 		return;
4581 
4582 	format_lock_cookie(rbd_dev, cookie);
4583 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4584 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4585 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4586 				  RBD_LOCK_TAG, cookie);
4587 	if (ret) {
4588 		if (ret != -EOPNOTSUPP)
4589 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4590 				 ret);
4591 
4592 		/*
4593 		 * Lock cookie cannot be updated on older OSDs, so do
4594 		 * a manual release and queue an acquire.
4595 		 */
4596 		__rbd_release_lock(rbd_dev);
4597 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4598 	} else {
4599 		__rbd_lock(rbd_dev, cookie);
4600 		wake_lock_waiters(rbd_dev, 0);
4601 	}
4602 }
4603 
4604 static void rbd_reregister_watch(struct work_struct *work)
4605 {
4606 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4607 					    struct rbd_device, watch_dwork);
4608 	int ret;
4609 
4610 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4611 
4612 	mutex_lock(&rbd_dev->watch_mutex);
4613 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4614 		mutex_unlock(&rbd_dev->watch_mutex);
4615 		return;
4616 	}
4617 
4618 	ret = __rbd_register_watch(rbd_dev);
4619 	if (ret) {
4620 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4621 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4622 			queue_delayed_work(rbd_dev->task_wq,
4623 					   &rbd_dev->watch_dwork,
4624 					   RBD_RETRY_DELAY);
4625 			mutex_unlock(&rbd_dev->watch_mutex);
4626 			return;
4627 		}
4628 
4629 		mutex_unlock(&rbd_dev->watch_mutex);
4630 		down_write(&rbd_dev->lock_rwsem);
4631 		wake_lock_waiters(rbd_dev, ret);
4632 		up_write(&rbd_dev->lock_rwsem);
4633 		return;
4634 	}
4635 
4636 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4637 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4638 	mutex_unlock(&rbd_dev->watch_mutex);
4639 
4640 	down_write(&rbd_dev->lock_rwsem);
4641 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4642 		rbd_reacquire_lock(rbd_dev);
4643 	up_write(&rbd_dev->lock_rwsem);
4644 
4645 	ret = rbd_dev_refresh(rbd_dev);
4646 	if (ret)
4647 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4648 }
4649 
4650 /*
4651  * Synchronous osd object method call.  Returns the number of bytes
4652  * returned in the outbound buffer, or a negative error code.
4653  */
4654 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4655 			     struct ceph_object_id *oid,
4656 			     struct ceph_object_locator *oloc,
4657 			     const char *method_name,
4658 			     const void *outbound,
4659 			     size_t outbound_size,
4660 			     void *inbound,
4661 			     size_t inbound_size)
4662 {
4663 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4664 	struct page *req_page = NULL;
4665 	struct page *reply_page;
4666 	int ret;
4667 
4668 	/*
4669 	 * Method calls are ultimately read operations.  The result
4670 	 * should placed into the inbound buffer provided.  They
4671 	 * also supply outbound data--parameters for the object
4672 	 * method.  Currently if this is present it will be a
4673 	 * snapshot id.
4674 	 */
4675 	if (outbound) {
4676 		if (outbound_size > PAGE_SIZE)
4677 			return -E2BIG;
4678 
4679 		req_page = alloc_page(GFP_KERNEL);
4680 		if (!req_page)
4681 			return -ENOMEM;
4682 
4683 		memcpy(page_address(req_page), outbound, outbound_size);
4684 	}
4685 
4686 	reply_page = alloc_page(GFP_KERNEL);
4687 	if (!reply_page) {
4688 		if (req_page)
4689 			__free_page(req_page);
4690 		return -ENOMEM;
4691 	}
4692 
4693 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4694 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4695 			     &reply_page, &inbound_size);
4696 	if (!ret) {
4697 		memcpy(inbound, page_address(reply_page), inbound_size);
4698 		ret = inbound_size;
4699 	}
4700 
4701 	if (req_page)
4702 		__free_page(req_page);
4703 	__free_page(reply_page);
4704 	return ret;
4705 }
4706 
4707 static void rbd_queue_workfn(struct work_struct *work)
4708 {
4709 	struct rbd_img_request *img_request =
4710 	    container_of(work, struct rbd_img_request, work);
4711 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4712 	enum obj_operation_type op_type = img_request->op_type;
4713 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4714 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4715 	u64 length = blk_rq_bytes(rq);
4716 	u64 mapping_size;
4717 	int result;
4718 
4719 	/* Ignore/skip any zero-length requests */
4720 	if (!length) {
4721 		dout("%s: zero-length request\n", __func__);
4722 		result = 0;
4723 		goto err_img_request;
4724 	}
4725 
4726 	blk_mq_start_request(rq);
4727 
4728 	down_read(&rbd_dev->header_rwsem);
4729 	mapping_size = rbd_dev->mapping.size;
4730 	rbd_img_capture_header(img_request);
4731 	up_read(&rbd_dev->header_rwsem);
4732 
4733 	if (offset + length > mapping_size) {
4734 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4735 			 length, mapping_size);
4736 		result = -EIO;
4737 		goto err_img_request;
4738 	}
4739 
4740 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4741 	     img_request, obj_op_name(op_type), offset, length);
4742 
4743 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4744 		result = rbd_img_fill_nodata(img_request, offset, length);
4745 	else
4746 		result = rbd_img_fill_from_bio(img_request, offset, length,
4747 					       rq->bio);
4748 	if (result)
4749 		goto err_img_request;
4750 
4751 	rbd_img_handle_request(img_request, 0);
4752 	return;
4753 
4754 err_img_request:
4755 	rbd_img_request_destroy(img_request);
4756 	if (result)
4757 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4758 			 obj_op_name(op_type), length, offset, result);
4759 	blk_mq_end_request(rq, errno_to_blk_status(result));
4760 }
4761 
4762 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4763 		const struct blk_mq_queue_data *bd)
4764 {
4765 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4766 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4767 	enum obj_operation_type op_type;
4768 
4769 	switch (req_op(bd->rq)) {
4770 	case REQ_OP_DISCARD:
4771 		op_type = OBJ_OP_DISCARD;
4772 		break;
4773 	case REQ_OP_WRITE_ZEROES:
4774 		op_type = OBJ_OP_ZEROOUT;
4775 		break;
4776 	case REQ_OP_WRITE:
4777 		op_type = OBJ_OP_WRITE;
4778 		break;
4779 	case REQ_OP_READ:
4780 		op_type = OBJ_OP_READ;
4781 		break;
4782 	default:
4783 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4784 		return BLK_STS_IOERR;
4785 	}
4786 
4787 	rbd_img_request_init(img_req, rbd_dev, op_type);
4788 
4789 	if (rbd_img_is_write(img_req)) {
4790 		if (rbd_is_ro(rbd_dev)) {
4791 			rbd_warn(rbd_dev, "%s on read-only mapping",
4792 				 obj_op_name(img_req->op_type));
4793 			return BLK_STS_IOERR;
4794 		}
4795 		rbd_assert(!rbd_is_snap(rbd_dev));
4796 	}
4797 
4798 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4799 	queue_work(rbd_wq, &img_req->work);
4800 	return BLK_STS_OK;
4801 }
4802 
4803 static void rbd_free_disk(struct rbd_device *rbd_dev)
4804 {
4805 	put_disk(rbd_dev->disk);
4806 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4807 	rbd_dev->disk = NULL;
4808 }
4809 
4810 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4811 			     struct ceph_object_id *oid,
4812 			     struct ceph_object_locator *oloc,
4813 			     void *buf, int buf_len)
4814 
4815 {
4816 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4817 	struct ceph_osd_request *req;
4818 	struct page **pages;
4819 	int num_pages = calc_pages_for(0, buf_len);
4820 	int ret;
4821 
4822 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4823 	if (!req)
4824 		return -ENOMEM;
4825 
4826 	ceph_oid_copy(&req->r_base_oid, oid);
4827 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4828 	req->r_flags = CEPH_OSD_FLAG_READ;
4829 
4830 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4831 	if (IS_ERR(pages)) {
4832 		ret = PTR_ERR(pages);
4833 		goto out_req;
4834 	}
4835 
4836 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4837 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4838 					 true);
4839 
4840 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4841 	if (ret)
4842 		goto out_req;
4843 
4844 	ceph_osdc_start_request(osdc, req);
4845 	ret = ceph_osdc_wait_request(osdc, req);
4846 	if (ret >= 0)
4847 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4848 
4849 out_req:
4850 	ceph_osdc_put_request(req);
4851 	return ret;
4852 }
4853 
4854 /*
4855  * Read the complete header for the given rbd device.  On successful
4856  * return, the rbd_dev->header field will contain up-to-date
4857  * information about the image.
4858  */
4859 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4860 {
4861 	struct rbd_image_header_ondisk *ondisk = NULL;
4862 	u32 snap_count = 0;
4863 	u64 names_size = 0;
4864 	u32 want_count;
4865 	int ret;
4866 
4867 	/*
4868 	 * The complete header will include an array of its 64-bit
4869 	 * snapshot ids, followed by the names of those snapshots as
4870 	 * a contiguous block of NUL-terminated strings.  Note that
4871 	 * the number of snapshots could change by the time we read
4872 	 * it in, in which case we re-read it.
4873 	 */
4874 	do {
4875 		size_t size;
4876 
4877 		kfree(ondisk);
4878 
4879 		size = sizeof (*ondisk);
4880 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4881 		size += names_size;
4882 		ondisk = kmalloc(size, GFP_KERNEL);
4883 		if (!ondisk)
4884 			return -ENOMEM;
4885 
4886 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4887 					&rbd_dev->header_oloc, ondisk, size);
4888 		if (ret < 0)
4889 			goto out;
4890 		if ((size_t)ret < size) {
4891 			ret = -ENXIO;
4892 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4893 				size, ret);
4894 			goto out;
4895 		}
4896 		if (!rbd_dev_ondisk_valid(ondisk)) {
4897 			ret = -ENXIO;
4898 			rbd_warn(rbd_dev, "invalid header");
4899 			goto out;
4900 		}
4901 
4902 		names_size = le64_to_cpu(ondisk->snap_names_len);
4903 		want_count = snap_count;
4904 		snap_count = le32_to_cpu(ondisk->snap_count);
4905 	} while (snap_count != want_count);
4906 
4907 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4908 out:
4909 	kfree(ondisk);
4910 
4911 	return ret;
4912 }
4913 
4914 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4915 {
4916 	sector_t size;
4917 
4918 	/*
4919 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4920 	 * try to update its size.  If REMOVING is set, updating size
4921 	 * is just useless work since the device can't be opened.
4922 	 */
4923 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4924 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4925 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4926 		dout("setting size to %llu sectors", (unsigned long long)size);
4927 		set_capacity_and_notify(rbd_dev->disk, size);
4928 	}
4929 }
4930 
4931 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4932 {
4933 	u64 mapping_size;
4934 	int ret;
4935 
4936 	down_write(&rbd_dev->header_rwsem);
4937 	mapping_size = rbd_dev->mapping.size;
4938 
4939 	ret = rbd_dev_header_info(rbd_dev);
4940 	if (ret)
4941 		goto out;
4942 
4943 	/*
4944 	 * If there is a parent, see if it has disappeared due to the
4945 	 * mapped image getting flattened.
4946 	 */
4947 	if (rbd_dev->parent) {
4948 		ret = rbd_dev_v2_parent_info(rbd_dev);
4949 		if (ret)
4950 			goto out;
4951 	}
4952 
4953 	rbd_assert(!rbd_is_snap(rbd_dev));
4954 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4955 
4956 out:
4957 	up_write(&rbd_dev->header_rwsem);
4958 	if (!ret && mapping_size != rbd_dev->mapping.size)
4959 		rbd_dev_update_size(rbd_dev);
4960 
4961 	return ret;
4962 }
4963 
4964 static const struct blk_mq_ops rbd_mq_ops = {
4965 	.queue_rq	= rbd_queue_rq,
4966 };
4967 
4968 static int rbd_init_disk(struct rbd_device *rbd_dev)
4969 {
4970 	struct gendisk *disk;
4971 	struct request_queue *q;
4972 	unsigned int objset_bytes =
4973 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4974 	int err;
4975 
4976 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4977 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4978 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4979 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4980 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4981 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4982 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4983 
4984 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4985 	if (err)
4986 		return err;
4987 
4988 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4989 	if (IS_ERR(disk)) {
4990 		err = PTR_ERR(disk);
4991 		goto out_tag_set;
4992 	}
4993 	q = disk->queue;
4994 
4995 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4996 		 rbd_dev->dev_id);
4997 	disk->major = rbd_dev->major;
4998 	disk->first_minor = rbd_dev->minor;
4999 	if (single_major)
5000 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
5001 	else
5002 		disk->minors = RBD_MINORS_PER_MAJOR;
5003 	disk->fops = &rbd_bd_ops;
5004 	disk->private_data = rbd_dev;
5005 
5006 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5007 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5008 
5009 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5010 	q->limits.max_sectors = queue_max_hw_sectors(q);
5011 	blk_queue_max_segments(q, USHRT_MAX);
5012 	blk_queue_max_segment_size(q, UINT_MAX);
5013 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5014 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5015 
5016 	if (rbd_dev->opts->trim) {
5017 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5018 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5019 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5020 	}
5021 
5022 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5023 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5024 
5025 	rbd_dev->disk = disk;
5026 
5027 	return 0;
5028 out_tag_set:
5029 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5030 	return err;
5031 }
5032 
5033 /*
5034   sysfs
5035 */
5036 
5037 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5038 {
5039 	return container_of(dev, struct rbd_device, dev);
5040 }
5041 
5042 static ssize_t rbd_size_show(struct device *dev,
5043 			     struct device_attribute *attr, char *buf)
5044 {
5045 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046 
5047 	return sprintf(buf, "%llu\n",
5048 		(unsigned long long)rbd_dev->mapping.size);
5049 }
5050 
5051 static ssize_t rbd_features_show(struct device *dev,
5052 			     struct device_attribute *attr, char *buf)
5053 {
5054 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5055 
5056 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5057 }
5058 
5059 static ssize_t rbd_major_show(struct device *dev,
5060 			      struct device_attribute *attr, char *buf)
5061 {
5062 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5063 
5064 	if (rbd_dev->major)
5065 		return sprintf(buf, "%d\n", rbd_dev->major);
5066 
5067 	return sprintf(buf, "(none)\n");
5068 }
5069 
5070 static ssize_t rbd_minor_show(struct device *dev,
5071 			      struct device_attribute *attr, char *buf)
5072 {
5073 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5074 
5075 	return sprintf(buf, "%d\n", rbd_dev->minor);
5076 }
5077 
5078 static ssize_t rbd_client_addr_show(struct device *dev,
5079 				    struct device_attribute *attr, char *buf)
5080 {
5081 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5082 	struct ceph_entity_addr *client_addr =
5083 	    ceph_client_addr(rbd_dev->rbd_client->client);
5084 
5085 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5086 		       le32_to_cpu(client_addr->nonce));
5087 }
5088 
5089 static ssize_t rbd_client_id_show(struct device *dev,
5090 				  struct device_attribute *attr, char *buf)
5091 {
5092 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093 
5094 	return sprintf(buf, "client%lld\n",
5095 		       ceph_client_gid(rbd_dev->rbd_client->client));
5096 }
5097 
5098 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5099 				     struct device_attribute *attr, char *buf)
5100 {
5101 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5102 
5103 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5104 }
5105 
5106 static ssize_t rbd_config_info_show(struct device *dev,
5107 				    struct device_attribute *attr, char *buf)
5108 {
5109 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5110 
5111 	if (!capable(CAP_SYS_ADMIN))
5112 		return -EPERM;
5113 
5114 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5115 }
5116 
5117 static ssize_t rbd_pool_show(struct device *dev,
5118 			     struct device_attribute *attr, char *buf)
5119 {
5120 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121 
5122 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5123 }
5124 
5125 static ssize_t rbd_pool_id_show(struct device *dev,
5126 			     struct device_attribute *attr, char *buf)
5127 {
5128 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5129 
5130 	return sprintf(buf, "%llu\n",
5131 			(unsigned long long) rbd_dev->spec->pool_id);
5132 }
5133 
5134 static ssize_t rbd_pool_ns_show(struct device *dev,
5135 				struct device_attribute *attr, char *buf)
5136 {
5137 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5138 
5139 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5140 }
5141 
5142 static ssize_t rbd_name_show(struct device *dev,
5143 			     struct device_attribute *attr, char *buf)
5144 {
5145 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5146 
5147 	if (rbd_dev->spec->image_name)
5148 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5149 
5150 	return sprintf(buf, "(unknown)\n");
5151 }
5152 
5153 static ssize_t rbd_image_id_show(struct device *dev,
5154 			     struct device_attribute *attr, char *buf)
5155 {
5156 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5157 
5158 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5159 }
5160 
5161 /*
5162  * Shows the name of the currently-mapped snapshot (or
5163  * RBD_SNAP_HEAD_NAME for the base image).
5164  */
5165 static ssize_t rbd_snap_show(struct device *dev,
5166 			     struct device_attribute *attr,
5167 			     char *buf)
5168 {
5169 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5170 
5171 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5172 }
5173 
5174 static ssize_t rbd_snap_id_show(struct device *dev,
5175 				struct device_attribute *attr, char *buf)
5176 {
5177 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5178 
5179 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5180 }
5181 
5182 /*
5183  * For a v2 image, shows the chain of parent images, separated by empty
5184  * lines.  For v1 images or if there is no parent, shows "(no parent
5185  * image)".
5186  */
5187 static ssize_t rbd_parent_show(struct device *dev,
5188 			       struct device_attribute *attr,
5189 			       char *buf)
5190 {
5191 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5192 	ssize_t count = 0;
5193 
5194 	if (!rbd_dev->parent)
5195 		return sprintf(buf, "(no parent image)\n");
5196 
5197 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5198 		struct rbd_spec *spec = rbd_dev->parent_spec;
5199 
5200 		count += sprintf(&buf[count], "%s"
5201 			    "pool_id %llu\npool_name %s\n"
5202 			    "pool_ns %s\n"
5203 			    "image_id %s\nimage_name %s\n"
5204 			    "snap_id %llu\nsnap_name %s\n"
5205 			    "overlap %llu\n",
5206 			    !count ? "" : "\n", /* first? */
5207 			    spec->pool_id, spec->pool_name,
5208 			    spec->pool_ns ?: "",
5209 			    spec->image_id, spec->image_name ?: "(unknown)",
5210 			    spec->snap_id, spec->snap_name,
5211 			    rbd_dev->parent_overlap);
5212 	}
5213 
5214 	return count;
5215 }
5216 
5217 static ssize_t rbd_image_refresh(struct device *dev,
5218 				 struct device_attribute *attr,
5219 				 const char *buf,
5220 				 size_t size)
5221 {
5222 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5223 	int ret;
5224 
5225 	if (!capable(CAP_SYS_ADMIN))
5226 		return -EPERM;
5227 
5228 	ret = rbd_dev_refresh(rbd_dev);
5229 	if (ret)
5230 		return ret;
5231 
5232 	return size;
5233 }
5234 
5235 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5236 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5237 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5238 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5239 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5240 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5241 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5242 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5243 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5244 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5245 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5246 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5247 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5248 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5249 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5250 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5251 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5252 
5253 static struct attribute *rbd_attrs[] = {
5254 	&dev_attr_size.attr,
5255 	&dev_attr_features.attr,
5256 	&dev_attr_major.attr,
5257 	&dev_attr_minor.attr,
5258 	&dev_attr_client_addr.attr,
5259 	&dev_attr_client_id.attr,
5260 	&dev_attr_cluster_fsid.attr,
5261 	&dev_attr_config_info.attr,
5262 	&dev_attr_pool.attr,
5263 	&dev_attr_pool_id.attr,
5264 	&dev_attr_pool_ns.attr,
5265 	&dev_attr_name.attr,
5266 	&dev_attr_image_id.attr,
5267 	&dev_attr_current_snap.attr,
5268 	&dev_attr_snap_id.attr,
5269 	&dev_attr_parent.attr,
5270 	&dev_attr_refresh.attr,
5271 	NULL
5272 };
5273 
5274 static struct attribute_group rbd_attr_group = {
5275 	.attrs = rbd_attrs,
5276 };
5277 
5278 static const struct attribute_group *rbd_attr_groups[] = {
5279 	&rbd_attr_group,
5280 	NULL
5281 };
5282 
5283 static void rbd_dev_release(struct device *dev);
5284 
5285 static const struct device_type rbd_device_type = {
5286 	.name		= "rbd",
5287 	.groups		= rbd_attr_groups,
5288 	.release	= rbd_dev_release,
5289 };
5290 
5291 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5292 {
5293 	kref_get(&spec->kref);
5294 
5295 	return spec;
5296 }
5297 
5298 static void rbd_spec_free(struct kref *kref);
5299 static void rbd_spec_put(struct rbd_spec *spec)
5300 {
5301 	if (spec)
5302 		kref_put(&spec->kref, rbd_spec_free);
5303 }
5304 
5305 static struct rbd_spec *rbd_spec_alloc(void)
5306 {
5307 	struct rbd_spec *spec;
5308 
5309 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5310 	if (!spec)
5311 		return NULL;
5312 
5313 	spec->pool_id = CEPH_NOPOOL;
5314 	spec->snap_id = CEPH_NOSNAP;
5315 	kref_init(&spec->kref);
5316 
5317 	return spec;
5318 }
5319 
5320 static void rbd_spec_free(struct kref *kref)
5321 {
5322 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5323 
5324 	kfree(spec->pool_name);
5325 	kfree(spec->pool_ns);
5326 	kfree(spec->image_id);
5327 	kfree(spec->image_name);
5328 	kfree(spec->snap_name);
5329 	kfree(spec);
5330 }
5331 
5332 static void rbd_dev_free(struct rbd_device *rbd_dev)
5333 {
5334 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5335 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5336 
5337 	ceph_oid_destroy(&rbd_dev->header_oid);
5338 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5339 	kfree(rbd_dev->config_info);
5340 
5341 	rbd_put_client(rbd_dev->rbd_client);
5342 	rbd_spec_put(rbd_dev->spec);
5343 	kfree(rbd_dev->opts);
5344 	kfree(rbd_dev);
5345 }
5346 
5347 static void rbd_dev_release(struct device *dev)
5348 {
5349 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5350 	bool need_put = !!rbd_dev->opts;
5351 
5352 	if (need_put) {
5353 		destroy_workqueue(rbd_dev->task_wq);
5354 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5355 	}
5356 
5357 	rbd_dev_free(rbd_dev);
5358 
5359 	/*
5360 	 * This is racy, but way better than putting module outside of
5361 	 * the release callback.  The race window is pretty small, so
5362 	 * doing something similar to dm (dm-builtin.c) is overkill.
5363 	 */
5364 	if (need_put)
5365 		module_put(THIS_MODULE);
5366 }
5367 
5368 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5369 {
5370 	struct rbd_device *rbd_dev;
5371 
5372 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5373 	if (!rbd_dev)
5374 		return NULL;
5375 
5376 	spin_lock_init(&rbd_dev->lock);
5377 	INIT_LIST_HEAD(&rbd_dev->node);
5378 	init_rwsem(&rbd_dev->header_rwsem);
5379 
5380 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5381 	ceph_oid_init(&rbd_dev->header_oid);
5382 	rbd_dev->header_oloc.pool = spec->pool_id;
5383 	if (spec->pool_ns) {
5384 		WARN_ON(!*spec->pool_ns);
5385 		rbd_dev->header_oloc.pool_ns =
5386 		    ceph_find_or_create_string(spec->pool_ns,
5387 					       strlen(spec->pool_ns));
5388 	}
5389 
5390 	mutex_init(&rbd_dev->watch_mutex);
5391 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5392 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5393 
5394 	init_rwsem(&rbd_dev->lock_rwsem);
5395 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5396 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5397 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5398 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5399 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5400 	spin_lock_init(&rbd_dev->lock_lists_lock);
5401 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5402 	INIT_LIST_HEAD(&rbd_dev->running_list);
5403 	init_completion(&rbd_dev->acquire_wait);
5404 	init_completion(&rbd_dev->releasing_wait);
5405 
5406 	spin_lock_init(&rbd_dev->object_map_lock);
5407 
5408 	rbd_dev->dev.bus = &rbd_bus_type;
5409 	rbd_dev->dev.type = &rbd_device_type;
5410 	rbd_dev->dev.parent = &rbd_root_dev;
5411 	device_initialize(&rbd_dev->dev);
5412 
5413 	return rbd_dev;
5414 }
5415 
5416 /*
5417  * Create a mapping rbd_dev.
5418  */
5419 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5420 					 struct rbd_spec *spec,
5421 					 struct rbd_options *opts)
5422 {
5423 	struct rbd_device *rbd_dev;
5424 
5425 	rbd_dev = __rbd_dev_create(spec);
5426 	if (!rbd_dev)
5427 		return NULL;
5428 
5429 	/* get an id and fill in device name */
5430 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5431 					 minor_to_rbd_dev_id(1 << MINORBITS),
5432 					 GFP_KERNEL);
5433 	if (rbd_dev->dev_id < 0)
5434 		goto fail_rbd_dev;
5435 
5436 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5437 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5438 						   rbd_dev->name);
5439 	if (!rbd_dev->task_wq)
5440 		goto fail_dev_id;
5441 
5442 	/* we have a ref from do_rbd_add() */
5443 	__module_get(THIS_MODULE);
5444 
5445 	rbd_dev->rbd_client = rbdc;
5446 	rbd_dev->spec = spec;
5447 	rbd_dev->opts = opts;
5448 
5449 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5450 	return rbd_dev;
5451 
5452 fail_dev_id:
5453 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5454 fail_rbd_dev:
5455 	rbd_dev_free(rbd_dev);
5456 	return NULL;
5457 }
5458 
5459 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5460 {
5461 	if (rbd_dev)
5462 		put_device(&rbd_dev->dev);
5463 }
5464 
5465 /*
5466  * Get the size and object order for an image snapshot, or if
5467  * snap_id is CEPH_NOSNAP, gets this information for the base
5468  * image.
5469  */
5470 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5471 				u8 *order, u64 *snap_size)
5472 {
5473 	__le64 snapid = cpu_to_le64(snap_id);
5474 	int ret;
5475 	struct {
5476 		u8 order;
5477 		__le64 size;
5478 	} __attribute__ ((packed)) size_buf = { 0 };
5479 
5480 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5481 				  &rbd_dev->header_oloc, "get_size",
5482 				  &snapid, sizeof(snapid),
5483 				  &size_buf, sizeof(size_buf));
5484 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5485 	if (ret < 0)
5486 		return ret;
5487 	if (ret < sizeof (size_buf))
5488 		return -ERANGE;
5489 
5490 	if (order) {
5491 		*order = size_buf.order;
5492 		dout("  order %u", (unsigned int)*order);
5493 	}
5494 	*snap_size = le64_to_cpu(size_buf.size);
5495 
5496 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5497 		(unsigned long long)snap_id,
5498 		(unsigned long long)*snap_size);
5499 
5500 	return 0;
5501 }
5502 
5503 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5504 {
5505 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5506 					&rbd_dev->header.obj_order,
5507 					&rbd_dev->header.image_size);
5508 }
5509 
5510 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5511 {
5512 	size_t size;
5513 	void *reply_buf;
5514 	int ret;
5515 	void *p;
5516 
5517 	/* Response will be an encoded string, which includes a length */
5518 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5519 	reply_buf = kzalloc(size, GFP_KERNEL);
5520 	if (!reply_buf)
5521 		return -ENOMEM;
5522 
5523 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5524 				  &rbd_dev->header_oloc, "get_object_prefix",
5525 				  NULL, 0, reply_buf, size);
5526 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5527 	if (ret < 0)
5528 		goto out;
5529 
5530 	p = reply_buf;
5531 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5532 						p + ret, NULL, GFP_NOIO);
5533 	ret = 0;
5534 
5535 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5536 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5537 		rbd_dev->header.object_prefix = NULL;
5538 	} else {
5539 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5540 	}
5541 out:
5542 	kfree(reply_buf);
5543 
5544 	return ret;
5545 }
5546 
5547 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5548 				     bool read_only, u64 *snap_features)
5549 {
5550 	struct {
5551 		__le64 snap_id;
5552 		u8 read_only;
5553 	} features_in;
5554 	struct {
5555 		__le64 features;
5556 		__le64 incompat;
5557 	} __attribute__ ((packed)) features_buf = { 0 };
5558 	u64 unsup;
5559 	int ret;
5560 
5561 	features_in.snap_id = cpu_to_le64(snap_id);
5562 	features_in.read_only = read_only;
5563 
5564 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5565 				  &rbd_dev->header_oloc, "get_features",
5566 				  &features_in, sizeof(features_in),
5567 				  &features_buf, sizeof(features_buf));
5568 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5569 	if (ret < 0)
5570 		return ret;
5571 	if (ret < sizeof (features_buf))
5572 		return -ERANGE;
5573 
5574 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5575 	if (unsup) {
5576 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5577 			 unsup);
5578 		return -ENXIO;
5579 	}
5580 
5581 	*snap_features = le64_to_cpu(features_buf.features);
5582 
5583 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5584 		(unsigned long long)snap_id,
5585 		(unsigned long long)*snap_features,
5586 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5587 
5588 	return 0;
5589 }
5590 
5591 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5592 {
5593 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5594 					 rbd_is_ro(rbd_dev),
5595 					 &rbd_dev->header.features);
5596 }
5597 
5598 /*
5599  * These are generic image flags, but since they are used only for
5600  * object map, store them in rbd_dev->object_map_flags.
5601  *
5602  * For the same reason, this function is called only on object map
5603  * (re)load and not on header refresh.
5604  */
5605 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5606 {
5607 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5608 	__le64 flags;
5609 	int ret;
5610 
5611 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5612 				  &rbd_dev->header_oloc, "get_flags",
5613 				  &snapid, sizeof(snapid),
5614 				  &flags, sizeof(flags));
5615 	if (ret < 0)
5616 		return ret;
5617 	if (ret < sizeof(flags))
5618 		return -EBADMSG;
5619 
5620 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5621 	return 0;
5622 }
5623 
5624 struct parent_image_info {
5625 	u64		pool_id;
5626 	const char	*pool_ns;
5627 	const char	*image_id;
5628 	u64		snap_id;
5629 
5630 	bool		has_overlap;
5631 	u64		overlap;
5632 };
5633 
5634 /*
5635  * The caller is responsible for @pii.
5636  */
5637 static int decode_parent_image_spec(void **p, void *end,
5638 				    struct parent_image_info *pii)
5639 {
5640 	u8 struct_v;
5641 	u32 struct_len;
5642 	int ret;
5643 
5644 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5645 				  &struct_v, &struct_len);
5646 	if (ret)
5647 		return ret;
5648 
5649 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5650 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5651 	if (IS_ERR(pii->pool_ns)) {
5652 		ret = PTR_ERR(pii->pool_ns);
5653 		pii->pool_ns = NULL;
5654 		return ret;
5655 	}
5656 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5657 	if (IS_ERR(pii->image_id)) {
5658 		ret = PTR_ERR(pii->image_id);
5659 		pii->image_id = NULL;
5660 		return ret;
5661 	}
5662 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5663 	return 0;
5664 
5665 e_inval:
5666 	return -EINVAL;
5667 }
5668 
5669 static int __get_parent_info(struct rbd_device *rbd_dev,
5670 			     struct page *req_page,
5671 			     struct page *reply_page,
5672 			     struct parent_image_info *pii)
5673 {
5674 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5675 	size_t reply_len = PAGE_SIZE;
5676 	void *p, *end;
5677 	int ret;
5678 
5679 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5680 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5681 			     req_page, sizeof(u64), &reply_page, &reply_len);
5682 	if (ret)
5683 		return ret == -EOPNOTSUPP ? 1 : ret;
5684 
5685 	p = page_address(reply_page);
5686 	end = p + reply_len;
5687 	ret = decode_parent_image_spec(&p, end, pii);
5688 	if (ret)
5689 		return ret;
5690 
5691 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5692 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5693 			     req_page, sizeof(u64), &reply_page, &reply_len);
5694 	if (ret)
5695 		return ret;
5696 
5697 	p = page_address(reply_page);
5698 	end = p + reply_len;
5699 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5700 	if (pii->has_overlap)
5701 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5702 
5703 	return 0;
5704 
5705 e_inval:
5706 	return -EINVAL;
5707 }
5708 
5709 /*
5710  * The caller is responsible for @pii.
5711  */
5712 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5713 				    struct page *req_page,
5714 				    struct page *reply_page,
5715 				    struct parent_image_info *pii)
5716 {
5717 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5718 	size_t reply_len = PAGE_SIZE;
5719 	void *p, *end;
5720 	int ret;
5721 
5722 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5723 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5724 			     req_page, sizeof(u64), &reply_page, &reply_len);
5725 	if (ret)
5726 		return ret;
5727 
5728 	p = page_address(reply_page);
5729 	end = p + reply_len;
5730 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5731 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5732 	if (IS_ERR(pii->image_id)) {
5733 		ret = PTR_ERR(pii->image_id);
5734 		pii->image_id = NULL;
5735 		return ret;
5736 	}
5737 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5738 	pii->has_overlap = true;
5739 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5740 
5741 	return 0;
5742 
5743 e_inval:
5744 	return -EINVAL;
5745 }
5746 
5747 static int get_parent_info(struct rbd_device *rbd_dev,
5748 			   struct parent_image_info *pii)
5749 {
5750 	struct page *req_page, *reply_page;
5751 	void *p;
5752 	int ret;
5753 
5754 	req_page = alloc_page(GFP_KERNEL);
5755 	if (!req_page)
5756 		return -ENOMEM;
5757 
5758 	reply_page = alloc_page(GFP_KERNEL);
5759 	if (!reply_page) {
5760 		__free_page(req_page);
5761 		return -ENOMEM;
5762 	}
5763 
5764 	p = page_address(req_page);
5765 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5766 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5767 	if (ret > 0)
5768 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5769 					       pii);
5770 
5771 	__free_page(req_page);
5772 	__free_page(reply_page);
5773 	return ret;
5774 }
5775 
5776 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5777 {
5778 	struct rbd_spec *parent_spec;
5779 	struct parent_image_info pii = { 0 };
5780 	int ret;
5781 
5782 	parent_spec = rbd_spec_alloc();
5783 	if (!parent_spec)
5784 		return -ENOMEM;
5785 
5786 	ret = get_parent_info(rbd_dev, &pii);
5787 	if (ret)
5788 		goto out_err;
5789 
5790 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5791 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5792 	     pii.has_overlap, pii.overlap);
5793 
5794 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5795 		/*
5796 		 * Either the parent never existed, or we have
5797 		 * record of it but the image got flattened so it no
5798 		 * longer has a parent.  When the parent of a
5799 		 * layered image disappears we immediately set the
5800 		 * overlap to 0.  The effect of this is that all new
5801 		 * requests will be treated as if the image had no
5802 		 * parent.
5803 		 *
5804 		 * If !pii.has_overlap, the parent image spec is not
5805 		 * applicable.  It's there to avoid duplication in each
5806 		 * snapshot record.
5807 		 */
5808 		if (rbd_dev->parent_overlap) {
5809 			rbd_dev->parent_overlap = 0;
5810 			rbd_dev_parent_put(rbd_dev);
5811 			pr_info("%s: clone image has been flattened\n",
5812 				rbd_dev->disk->disk_name);
5813 		}
5814 
5815 		goto out;	/* No parent?  No problem. */
5816 	}
5817 
5818 	/* The ceph file layout needs to fit pool id in 32 bits */
5819 
5820 	ret = -EIO;
5821 	if (pii.pool_id > (u64)U32_MAX) {
5822 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5823 			(unsigned long long)pii.pool_id, U32_MAX);
5824 		goto out_err;
5825 	}
5826 
5827 	/*
5828 	 * The parent won't change (except when the clone is
5829 	 * flattened, already handled that).  So we only need to
5830 	 * record the parent spec we have not already done so.
5831 	 */
5832 	if (!rbd_dev->parent_spec) {
5833 		parent_spec->pool_id = pii.pool_id;
5834 		if (pii.pool_ns && *pii.pool_ns) {
5835 			parent_spec->pool_ns = pii.pool_ns;
5836 			pii.pool_ns = NULL;
5837 		}
5838 		parent_spec->image_id = pii.image_id;
5839 		pii.image_id = NULL;
5840 		parent_spec->snap_id = pii.snap_id;
5841 
5842 		rbd_dev->parent_spec = parent_spec;
5843 		parent_spec = NULL;	/* rbd_dev now owns this */
5844 	}
5845 
5846 	/*
5847 	 * We always update the parent overlap.  If it's zero we issue
5848 	 * a warning, as we will proceed as if there was no parent.
5849 	 */
5850 	if (!pii.overlap) {
5851 		if (parent_spec) {
5852 			/* refresh, careful to warn just once */
5853 			if (rbd_dev->parent_overlap)
5854 				rbd_warn(rbd_dev,
5855 				    "clone now standalone (overlap became 0)");
5856 		} else {
5857 			/* initial probe */
5858 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5859 		}
5860 	}
5861 	rbd_dev->parent_overlap = pii.overlap;
5862 
5863 out:
5864 	ret = 0;
5865 out_err:
5866 	kfree(pii.pool_ns);
5867 	kfree(pii.image_id);
5868 	rbd_spec_put(parent_spec);
5869 	return ret;
5870 }
5871 
5872 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5873 {
5874 	struct {
5875 		__le64 stripe_unit;
5876 		__le64 stripe_count;
5877 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5878 	size_t size = sizeof (striping_info_buf);
5879 	void *p;
5880 	int ret;
5881 
5882 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5883 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5884 				NULL, 0, &striping_info_buf, size);
5885 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5886 	if (ret < 0)
5887 		return ret;
5888 	if (ret < size)
5889 		return -ERANGE;
5890 
5891 	p = &striping_info_buf;
5892 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5893 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5894 	return 0;
5895 }
5896 
5897 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5898 {
5899 	__le64 data_pool_id;
5900 	int ret;
5901 
5902 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5903 				  &rbd_dev->header_oloc, "get_data_pool",
5904 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5905 	if (ret < 0)
5906 		return ret;
5907 	if (ret < sizeof(data_pool_id))
5908 		return -EBADMSG;
5909 
5910 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5911 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5912 	return 0;
5913 }
5914 
5915 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5916 {
5917 	CEPH_DEFINE_OID_ONSTACK(oid);
5918 	size_t image_id_size;
5919 	char *image_id;
5920 	void *p;
5921 	void *end;
5922 	size_t size;
5923 	void *reply_buf = NULL;
5924 	size_t len = 0;
5925 	char *image_name = NULL;
5926 	int ret;
5927 
5928 	rbd_assert(!rbd_dev->spec->image_name);
5929 
5930 	len = strlen(rbd_dev->spec->image_id);
5931 	image_id_size = sizeof (__le32) + len;
5932 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5933 	if (!image_id)
5934 		return NULL;
5935 
5936 	p = image_id;
5937 	end = image_id + image_id_size;
5938 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5939 
5940 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5941 	reply_buf = kmalloc(size, GFP_KERNEL);
5942 	if (!reply_buf)
5943 		goto out;
5944 
5945 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5946 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5947 				  "dir_get_name", image_id, image_id_size,
5948 				  reply_buf, size);
5949 	if (ret < 0)
5950 		goto out;
5951 	p = reply_buf;
5952 	end = reply_buf + ret;
5953 
5954 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5955 	if (IS_ERR(image_name))
5956 		image_name = NULL;
5957 	else
5958 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5959 out:
5960 	kfree(reply_buf);
5961 	kfree(image_id);
5962 
5963 	return image_name;
5964 }
5965 
5966 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5967 {
5968 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5969 	const char *snap_name;
5970 	u32 which = 0;
5971 
5972 	/* Skip over names until we find the one we are looking for */
5973 
5974 	snap_name = rbd_dev->header.snap_names;
5975 	while (which < snapc->num_snaps) {
5976 		if (!strcmp(name, snap_name))
5977 			return snapc->snaps[which];
5978 		snap_name += strlen(snap_name) + 1;
5979 		which++;
5980 	}
5981 	return CEPH_NOSNAP;
5982 }
5983 
5984 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5985 {
5986 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5987 	u32 which;
5988 	bool found = false;
5989 	u64 snap_id;
5990 
5991 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5992 		const char *snap_name;
5993 
5994 		snap_id = snapc->snaps[which];
5995 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5996 		if (IS_ERR(snap_name)) {
5997 			/* ignore no-longer existing snapshots */
5998 			if (PTR_ERR(snap_name) == -ENOENT)
5999 				continue;
6000 			else
6001 				break;
6002 		}
6003 		found = !strcmp(name, snap_name);
6004 		kfree(snap_name);
6005 	}
6006 	return found ? snap_id : CEPH_NOSNAP;
6007 }
6008 
6009 /*
6010  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6011  * no snapshot by that name is found, or if an error occurs.
6012  */
6013 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6014 {
6015 	if (rbd_dev->image_format == 1)
6016 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6017 
6018 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6019 }
6020 
6021 /*
6022  * An image being mapped will have everything but the snap id.
6023  */
6024 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6025 {
6026 	struct rbd_spec *spec = rbd_dev->spec;
6027 
6028 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6029 	rbd_assert(spec->image_id && spec->image_name);
6030 	rbd_assert(spec->snap_name);
6031 
6032 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6033 		u64 snap_id;
6034 
6035 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6036 		if (snap_id == CEPH_NOSNAP)
6037 			return -ENOENT;
6038 
6039 		spec->snap_id = snap_id;
6040 	} else {
6041 		spec->snap_id = CEPH_NOSNAP;
6042 	}
6043 
6044 	return 0;
6045 }
6046 
6047 /*
6048  * A parent image will have all ids but none of the names.
6049  *
6050  * All names in an rbd spec are dynamically allocated.  It's OK if we
6051  * can't figure out the name for an image id.
6052  */
6053 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6054 {
6055 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6056 	struct rbd_spec *spec = rbd_dev->spec;
6057 	const char *pool_name;
6058 	const char *image_name;
6059 	const char *snap_name;
6060 	int ret;
6061 
6062 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6063 	rbd_assert(spec->image_id);
6064 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6065 
6066 	/* Get the pool name; we have to make our own copy of this */
6067 
6068 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6069 	if (!pool_name) {
6070 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6071 		return -EIO;
6072 	}
6073 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6074 	if (!pool_name)
6075 		return -ENOMEM;
6076 
6077 	/* Fetch the image name; tolerate failure here */
6078 
6079 	image_name = rbd_dev_image_name(rbd_dev);
6080 	if (!image_name)
6081 		rbd_warn(rbd_dev, "unable to get image name");
6082 
6083 	/* Fetch the snapshot name */
6084 
6085 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6086 	if (IS_ERR(snap_name)) {
6087 		ret = PTR_ERR(snap_name);
6088 		goto out_err;
6089 	}
6090 
6091 	spec->pool_name = pool_name;
6092 	spec->image_name = image_name;
6093 	spec->snap_name = snap_name;
6094 
6095 	return 0;
6096 
6097 out_err:
6098 	kfree(image_name);
6099 	kfree(pool_name);
6100 	return ret;
6101 }
6102 
6103 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6104 {
6105 	size_t size;
6106 	int ret;
6107 	void *reply_buf;
6108 	void *p;
6109 	void *end;
6110 	u64 seq;
6111 	u32 snap_count;
6112 	struct ceph_snap_context *snapc;
6113 	u32 i;
6114 
6115 	/*
6116 	 * We'll need room for the seq value (maximum snapshot id),
6117 	 * snapshot count, and array of that many snapshot ids.
6118 	 * For now we have a fixed upper limit on the number we're
6119 	 * prepared to receive.
6120 	 */
6121 	size = sizeof (__le64) + sizeof (__le32) +
6122 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6123 	reply_buf = kzalloc(size, GFP_KERNEL);
6124 	if (!reply_buf)
6125 		return -ENOMEM;
6126 
6127 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6128 				  &rbd_dev->header_oloc, "get_snapcontext",
6129 				  NULL, 0, reply_buf, size);
6130 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6131 	if (ret < 0)
6132 		goto out;
6133 
6134 	p = reply_buf;
6135 	end = reply_buf + ret;
6136 	ret = -ERANGE;
6137 	ceph_decode_64_safe(&p, end, seq, out);
6138 	ceph_decode_32_safe(&p, end, snap_count, out);
6139 
6140 	/*
6141 	 * Make sure the reported number of snapshot ids wouldn't go
6142 	 * beyond the end of our buffer.  But before checking that,
6143 	 * make sure the computed size of the snapshot context we
6144 	 * allocate is representable in a size_t.
6145 	 */
6146 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6147 				 / sizeof (u64)) {
6148 		ret = -EINVAL;
6149 		goto out;
6150 	}
6151 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6152 		goto out;
6153 	ret = 0;
6154 
6155 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6156 	if (!snapc) {
6157 		ret = -ENOMEM;
6158 		goto out;
6159 	}
6160 	snapc->seq = seq;
6161 	for (i = 0; i < snap_count; i++)
6162 		snapc->snaps[i] = ceph_decode_64(&p);
6163 
6164 	ceph_put_snap_context(rbd_dev->header.snapc);
6165 	rbd_dev->header.snapc = snapc;
6166 
6167 	dout("  snap context seq = %llu, snap_count = %u\n",
6168 		(unsigned long long)seq, (unsigned int)snap_count);
6169 out:
6170 	kfree(reply_buf);
6171 
6172 	return ret;
6173 }
6174 
6175 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6176 					u64 snap_id)
6177 {
6178 	size_t size;
6179 	void *reply_buf;
6180 	__le64 snapid;
6181 	int ret;
6182 	void *p;
6183 	void *end;
6184 	char *snap_name;
6185 
6186 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6187 	reply_buf = kmalloc(size, GFP_KERNEL);
6188 	if (!reply_buf)
6189 		return ERR_PTR(-ENOMEM);
6190 
6191 	snapid = cpu_to_le64(snap_id);
6192 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6193 				  &rbd_dev->header_oloc, "get_snapshot_name",
6194 				  &snapid, sizeof(snapid), reply_buf, size);
6195 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6196 	if (ret < 0) {
6197 		snap_name = ERR_PTR(ret);
6198 		goto out;
6199 	}
6200 
6201 	p = reply_buf;
6202 	end = reply_buf + ret;
6203 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6204 	if (IS_ERR(snap_name))
6205 		goto out;
6206 
6207 	dout("  snap_id 0x%016llx snap_name = %s\n",
6208 		(unsigned long long)snap_id, snap_name);
6209 out:
6210 	kfree(reply_buf);
6211 
6212 	return snap_name;
6213 }
6214 
6215 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6216 {
6217 	bool first_time = rbd_dev->header.object_prefix == NULL;
6218 	int ret;
6219 
6220 	ret = rbd_dev_v2_image_size(rbd_dev);
6221 	if (ret)
6222 		return ret;
6223 
6224 	if (first_time) {
6225 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6226 		if (ret)
6227 			return ret;
6228 	}
6229 
6230 	ret = rbd_dev_v2_snap_context(rbd_dev);
6231 	if (ret && first_time) {
6232 		kfree(rbd_dev->header.object_prefix);
6233 		rbd_dev->header.object_prefix = NULL;
6234 	}
6235 
6236 	return ret;
6237 }
6238 
6239 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6240 {
6241 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6242 
6243 	if (rbd_dev->image_format == 1)
6244 		return rbd_dev_v1_header_info(rbd_dev);
6245 
6246 	return rbd_dev_v2_header_info(rbd_dev);
6247 }
6248 
6249 /*
6250  * Skips over white space at *buf, and updates *buf to point to the
6251  * first found non-space character (if any). Returns the length of
6252  * the token (string of non-white space characters) found.  Note
6253  * that *buf must be terminated with '\0'.
6254  */
6255 static inline size_t next_token(const char **buf)
6256 {
6257         /*
6258         * These are the characters that produce nonzero for
6259         * isspace() in the "C" and "POSIX" locales.
6260         */
6261 	static const char spaces[] = " \f\n\r\t\v";
6262 
6263         *buf += strspn(*buf, spaces);	/* Find start of token */
6264 
6265 	return strcspn(*buf, spaces);   /* Return token length */
6266 }
6267 
6268 /*
6269  * Finds the next token in *buf, dynamically allocates a buffer big
6270  * enough to hold a copy of it, and copies the token into the new
6271  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6272  * that a duplicate buffer is created even for a zero-length token.
6273  *
6274  * Returns a pointer to the newly-allocated duplicate, or a null
6275  * pointer if memory for the duplicate was not available.  If
6276  * the lenp argument is a non-null pointer, the length of the token
6277  * (not including the '\0') is returned in *lenp.
6278  *
6279  * If successful, the *buf pointer will be updated to point beyond
6280  * the end of the found token.
6281  *
6282  * Note: uses GFP_KERNEL for allocation.
6283  */
6284 static inline char *dup_token(const char **buf, size_t *lenp)
6285 {
6286 	char *dup;
6287 	size_t len;
6288 
6289 	len = next_token(buf);
6290 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6291 	if (!dup)
6292 		return NULL;
6293 	*(dup + len) = '\0';
6294 	*buf += len;
6295 
6296 	if (lenp)
6297 		*lenp = len;
6298 
6299 	return dup;
6300 }
6301 
6302 static int rbd_parse_param(struct fs_parameter *param,
6303 			    struct rbd_parse_opts_ctx *pctx)
6304 {
6305 	struct rbd_options *opt = pctx->opts;
6306 	struct fs_parse_result result;
6307 	struct p_log log = {.prefix = "rbd"};
6308 	int token, ret;
6309 
6310 	ret = ceph_parse_param(param, pctx->copts, NULL);
6311 	if (ret != -ENOPARAM)
6312 		return ret;
6313 
6314 	token = __fs_parse(&log, rbd_parameters, param, &result);
6315 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6316 	if (token < 0) {
6317 		if (token == -ENOPARAM)
6318 			return inval_plog(&log, "Unknown parameter '%s'",
6319 					  param->key);
6320 		return token;
6321 	}
6322 
6323 	switch (token) {
6324 	case Opt_queue_depth:
6325 		if (result.uint_32 < 1)
6326 			goto out_of_range;
6327 		opt->queue_depth = result.uint_32;
6328 		break;
6329 	case Opt_alloc_size:
6330 		if (result.uint_32 < SECTOR_SIZE)
6331 			goto out_of_range;
6332 		if (!is_power_of_2(result.uint_32))
6333 			return inval_plog(&log, "alloc_size must be a power of 2");
6334 		opt->alloc_size = result.uint_32;
6335 		break;
6336 	case Opt_lock_timeout:
6337 		/* 0 is "wait forever" (i.e. infinite timeout) */
6338 		if (result.uint_32 > INT_MAX / 1000)
6339 			goto out_of_range;
6340 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6341 		break;
6342 	case Opt_pool_ns:
6343 		kfree(pctx->spec->pool_ns);
6344 		pctx->spec->pool_ns = param->string;
6345 		param->string = NULL;
6346 		break;
6347 	case Opt_compression_hint:
6348 		switch (result.uint_32) {
6349 		case Opt_compression_hint_none:
6350 			opt->alloc_hint_flags &=
6351 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6352 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6353 			break;
6354 		case Opt_compression_hint_compressible:
6355 			opt->alloc_hint_flags |=
6356 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6357 			opt->alloc_hint_flags &=
6358 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6359 			break;
6360 		case Opt_compression_hint_incompressible:
6361 			opt->alloc_hint_flags |=
6362 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6363 			opt->alloc_hint_flags &=
6364 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6365 			break;
6366 		default:
6367 			BUG();
6368 		}
6369 		break;
6370 	case Opt_read_only:
6371 		opt->read_only = true;
6372 		break;
6373 	case Opt_read_write:
6374 		opt->read_only = false;
6375 		break;
6376 	case Opt_lock_on_read:
6377 		opt->lock_on_read = true;
6378 		break;
6379 	case Opt_exclusive:
6380 		opt->exclusive = true;
6381 		break;
6382 	case Opt_notrim:
6383 		opt->trim = false;
6384 		break;
6385 	default:
6386 		BUG();
6387 	}
6388 
6389 	return 0;
6390 
6391 out_of_range:
6392 	return inval_plog(&log, "%s out of range", param->key);
6393 }
6394 
6395 /*
6396  * This duplicates most of generic_parse_monolithic(), untying it from
6397  * fs_context and skipping standard superblock and security options.
6398  */
6399 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6400 {
6401 	char *key;
6402 	int ret = 0;
6403 
6404 	dout("%s '%s'\n", __func__, options);
6405 	while ((key = strsep(&options, ",")) != NULL) {
6406 		if (*key) {
6407 			struct fs_parameter param = {
6408 				.key	= key,
6409 				.type	= fs_value_is_flag,
6410 			};
6411 			char *value = strchr(key, '=');
6412 			size_t v_len = 0;
6413 
6414 			if (value) {
6415 				if (value == key)
6416 					continue;
6417 				*value++ = 0;
6418 				v_len = strlen(value);
6419 				param.string = kmemdup_nul(value, v_len,
6420 							   GFP_KERNEL);
6421 				if (!param.string)
6422 					return -ENOMEM;
6423 				param.type = fs_value_is_string;
6424 			}
6425 			param.size = v_len;
6426 
6427 			ret = rbd_parse_param(&param, pctx);
6428 			kfree(param.string);
6429 			if (ret)
6430 				break;
6431 		}
6432 	}
6433 
6434 	return ret;
6435 }
6436 
6437 /*
6438  * Parse the options provided for an "rbd add" (i.e., rbd image
6439  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6440  * and the data written is passed here via a NUL-terminated buffer.
6441  * Returns 0 if successful or an error code otherwise.
6442  *
6443  * The information extracted from these options is recorded in
6444  * the other parameters which return dynamically-allocated
6445  * structures:
6446  *  ceph_opts
6447  *      The address of a pointer that will refer to a ceph options
6448  *      structure.  Caller must release the returned pointer using
6449  *      ceph_destroy_options() when it is no longer needed.
6450  *  rbd_opts
6451  *	Address of an rbd options pointer.  Fully initialized by
6452  *	this function; caller must release with kfree().
6453  *  spec
6454  *	Address of an rbd image specification pointer.  Fully
6455  *	initialized by this function based on parsed options.
6456  *	Caller must release with rbd_spec_put().
6457  *
6458  * The options passed take this form:
6459  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6460  * where:
6461  *  <mon_addrs>
6462  *      A comma-separated list of one or more monitor addresses.
6463  *      A monitor address is an ip address, optionally followed
6464  *      by a port number (separated by a colon).
6465  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6466  *  <options>
6467  *      A comma-separated list of ceph and/or rbd options.
6468  *  <pool_name>
6469  *      The name of the rados pool containing the rbd image.
6470  *  <image_name>
6471  *      The name of the image in that pool to map.
6472  *  <snap_id>
6473  *      An optional snapshot id.  If provided, the mapping will
6474  *      present data from the image at the time that snapshot was
6475  *      created.  The image head is used if no snapshot id is
6476  *      provided.  Snapshot mappings are always read-only.
6477  */
6478 static int rbd_add_parse_args(const char *buf,
6479 				struct ceph_options **ceph_opts,
6480 				struct rbd_options **opts,
6481 				struct rbd_spec **rbd_spec)
6482 {
6483 	size_t len;
6484 	char *options;
6485 	const char *mon_addrs;
6486 	char *snap_name;
6487 	size_t mon_addrs_size;
6488 	struct rbd_parse_opts_ctx pctx = { 0 };
6489 	int ret;
6490 
6491 	/* The first four tokens are required */
6492 
6493 	len = next_token(&buf);
6494 	if (!len) {
6495 		rbd_warn(NULL, "no monitor address(es) provided");
6496 		return -EINVAL;
6497 	}
6498 	mon_addrs = buf;
6499 	mon_addrs_size = len;
6500 	buf += len;
6501 
6502 	ret = -EINVAL;
6503 	options = dup_token(&buf, NULL);
6504 	if (!options)
6505 		return -ENOMEM;
6506 	if (!*options) {
6507 		rbd_warn(NULL, "no options provided");
6508 		goto out_err;
6509 	}
6510 
6511 	pctx.spec = rbd_spec_alloc();
6512 	if (!pctx.spec)
6513 		goto out_mem;
6514 
6515 	pctx.spec->pool_name = dup_token(&buf, NULL);
6516 	if (!pctx.spec->pool_name)
6517 		goto out_mem;
6518 	if (!*pctx.spec->pool_name) {
6519 		rbd_warn(NULL, "no pool name provided");
6520 		goto out_err;
6521 	}
6522 
6523 	pctx.spec->image_name = dup_token(&buf, NULL);
6524 	if (!pctx.spec->image_name)
6525 		goto out_mem;
6526 	if (!*pctx.spec->image_name) {
6527 		rbd_warn(NULL, "no image name provided");
6528 		goto out_err;
6529 	}
6530 
6531 	/*
6532 	 * Snapshot name is optional; default is to use "-"
6533 	 * (indicating the head/no snapshot).
6534 	 */
6535 	len = next_token(&buf);
6536 	if (!len) {
6537 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6538 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6539 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6540 		ret = -ENAMETOOLONG;
6541 		goto out_err;
6542 	}
6543 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6544 	if (!snap_name)
6545 		goto out_mem;
6546 	*(snap_name + len) = '\0';
6547 	pctx.spec->snap_name = snap_name;
6548 
6549 	pctx.copts = ceph_alloc_options();
6550 	if (!pctx.copts)
6551 		goto out_mem;
6552 
6553 	/* Initialize all rbd options to the defaults */
6554 
6555 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6556 	if (!pctx.opts)
6557 		goto out_mem;
6558 
6559 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6560 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6561 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6562 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6563 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6564 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6565 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6566 
6567 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6568 				 ',');
6569 	if (ret)
6570 		goto out_err;
6571 
6572 	ret = rbd_parse_options(options, &pctx);
6573 	if (ret)
6574 		goto out_err;
6575 
6576 	*ceph_opts = pctx.copts;
6577 	*opts = pctx.opts;
6578 	*rbd_spec = pctx.spec;
6579 	kfree(options);
6580 	return 0;
6581 
6582 out_mem:
6583 	ret = -ENOMEM;
6584 out_err:
6585 	kfree(pctx.opts);
6586 	ceph_destroy_options(pctx.copts);
6587 	rbd_spec_put(pctx.spec);
6588 	kfree(options);
6589 	return ret;
6590 }
6591 
6592 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6593 {
6594 	down_write(&rbd_dev->lock_rwsem);
6595 	if (__rbd_is_lock_owner(rbd_dev))
6596 		__rbd_release_lock(rbd_dev);
6597 	up_write(&rbd_dev->lock_rwsem);
6598 }
6599 
6600 /*
6601  * If the wait is interrupted, an error is returned even if the lock
6602  * was successfully acquired.  rbd_dev_image_unlock() will release it
6603  * if needed.
6604  */
6605 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6606 {
6607 	long ret;
6608 
6609 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6610 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6611 			return 0;
6612 
6613 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6614 		return -EINVAL;
6615 	}
6616 
6617 	if (rbd_is_ro(rbd_dev))
6618 		return 0;
6619 
6620 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6621 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6622 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6623 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6624 	if (ret > 0) {
6625 		ret = rbd_dev->acquire_err;
6626 	} else {
6627 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6628 		if (!ret)
6629 			ret = -ETIMEDOUT;
6630 	}
6631 
6632 	if (ret) {
6633 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6634 		return ret;
6635 	}
6636 
6637 	/*
6638 	 * The lock may have been released by now, unless automatic lock
6639 	 * transitions are disabled.
6640 	 */
6641 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6642 	return 0;
6643 }
6644 
6645 /*
6646  * An rbd format 2 image has a unique identifier, distinct from the
6647  * name given to it by the user.  Internally, that identifier is
6648  * what's used to specify the names of objects related to the image.
6649  *
6650  * A special "rbd id" object is used to map an rbd image name to its
6651  * id.  If that object doesn't exist, then there is no v2 rbd image
6652  * with the supplied name.
6653  *
6654  * This function will record the given rbd_dev's image_id field if
6655  * it can be determined, and in that case will return 0.  If any
6656  * errors occur a negative errno will be returned and the rbd_dev's
6657  * image_id field will be unchanged (and should be NULL).
6658  */
6659 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6660 {
6661 	int ret;
6662 	size_t size;
6663 	CEPH_DEFINE_OID_ONSTACK(oid);
6664 	void *response;
6665 	char *image_id;
6666 
6667 	/*
6668 	 * When probing a parent image, the image id is already
6669 	 * known (and the image name likely is not).  There's no
6670 	 * need to fetch the image id again in this case.  We
6671 	 * do still need to set the image format though.
6672 	 */
6673 	if (rbd_dev->spec->image_id) {
6674 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6675 
6676 		return 0;
6677 	}
6678 
6679 	/*
6680 	 * First, see if the format 2 image id file exists, and if
6681 	 * so, get the image's persistent id from it.
6682 	 */
6683 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6684 			       rbd_dev->spec->image_name);
6685 	if (ret)
6686 		return ret;
6687 
6688 	dout("rbd id object name is %s\n", oid.name);
6689 
6690 	/* Response will be an encoded string, which includes a length */
6691 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6692 	response = kzalloc(size, GFP_NOIO);
6693 	if (!response) {
6694 		ret = -ENOMEM;
6695 		goto out;
6696 	}
6697 
6698 	/* If it doesn't exist we'll assume it's a format 1 image */
6699 
6700 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6701 				  "get_id", NULL, 0,
6702 				  response, size);
6703 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6704 	if (ret == -ENOENT) {
6705 		image_id = kstrdup("", GFP_KERNEL);
6706 		ret = image_id ? 0 : -ENOMEM;
6707 		if (!ret)
6708 			rbd_dev->image_format = 1;
6709 	} else if (ret >= 0) {
6710 		void *p = response;
6711 
6712 		image_id = ceph_extract_encoded_string(&p, p + ret,
6713 						NULL, GFP_NOIO);
6714 		ret = PTR_ERR_OR_ZERO(image_id);
6715 		if (!ret)
6716 			rbd_dev->image_format = 2;
6717 	}
6718 
6719 	if (!ret) {
6720 		rbd_dev->spec->image_id = image_id;
6721 		dout("image_id is %s\n", image_id);
6722 	}
6723 out:
6724 	kfree(response);
6725 	ceph_oid_destroy(&oid);
6726 	return ret;
6727 }
6728 
6729 /*
6730  * Undo whatever state changes are made by v1 or v2 header info
6731  * call.
6732  */
6733 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6734 {
6735 	struct rbd_image_header	*header;
6736 
6737 	rbd_dev_parent_put(rbd_dev);
6738 	rbd_object_map_free(rbd_dev);
6739 	rbd_dev_mapping_clear(rbd_dev);
6740 
6741 	/* Free dynamic fields from the header, then zero it out */
6742 
6743 	header = &rbd_dev->header;
6744 	ceph_put_snap_context(header->snapc);
6745 	kfree(header->snap_sizes);
6746 	kfree(header->snap_names);
6747 	kfree(header->object_prefix);
6748 	memset(header, 0, sizeof (*header));
6749 }
6750 
6751 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6752 {
6753 	int ret;
6754 
6755 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6756 	if (ret)
6757 		goto out_err;
6758 
6759 	/*
6760 	 * Get the and check features for the image.  Currently the
6761 	 * features are assumed to never change.
6762 	 */
6763 	ret = rbd_dev_v2_features(rbd_dev);
6764 	if (ret)
6765 		goto out_err;
6766 
6767 	/* If the image supports fancy striping, get its parameters */
6768 
6769 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6770 		ret = rbd_dev_v2_striping_info(rbd_dev);
6771 		if (ret < 0)
6772 			goto out_err;
6773 	}
6774 
6775 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6776 		ret = rbd_dev_v2_data_pool(rbd_dev);
6777 		if (ret)
6778 			goto out_err;
6779 	}
6780 
6781 	rbd_init_layout(rbd_dev);
6782 	return 0;
6783 
6784 out_err:
6785 	rbd_dev->header.features = 0;
6786 	kfree(rbd_dev->header.object_prefix);
6787 	rbd_dev->header.object_prefix = NULL;
6788 	return ret;
6789 }
6790 
6791 /*
6792  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6793  * rbd_dev_image_probe() recursion depth, which means it's also the
6794  * length of the already discovered part of the parent chain.
6795  */
6796 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6797 {
6798 	struct rbd_device *parent = NULL;
6799 	int ret;
6800 
6801 	if (!rbd_dev->parent_spec)
6802 		return 0;
6803 
6804 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6805 		pr_info("parent chain is too long (%d)\n", depth);
6806 		ret = -EINVAL;
6807 		goto out_err;
6808 	}
6809 
6810 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6811 	if (!parent) {
6812 		ret = -ENOMEM;
6813 		goto out_err;
6814 	}
6815 
6816 	/*
6817 	 * Images related by parent/child relationships always share
6818 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6819 	 */
6820 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6821 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6822 
6823 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6824 
6825 	ret = rbd_dev_image_probe(parent, depth);
6826 	if (ret < 0)
6827 		goto out_err;
6828 
6829 	rbd_dev->parent = parent;
6830 	atomic_set(&rbd_dev->parent_ref, 1);
6831 	return 0;
6832 
6833 out_err:
6834 	rbd_dev_unparent(rbd_dev);
6835 	rbd_dev_destroy(parent);
6836 	return ret;
6837 }
6838 
6839 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6840 {
6841 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6842 	rbd_free_disk(rbd_dev);
6843 	if (!single_major)
6844 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6845 }
6846 
6847 /*
6848  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6849  * upon return.
6850  */
6851 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6852 {
6853 	int ret;
6854 
6855 	/* Record our major and minor device numbers. */
6856 
6857 	if (!single_major) {
6858 		ret = register_blkdev(0, rbd_dev->name);
6859 		if (ret < 0)
6860 			goto err_out_unlock;
6861 
6862 		rbd_dev->major = ret;
6863 		rbd_dev->minor = 0;
6864 	} else {
6865 		rbd_dev->major = rbd_major;
6866 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6867 	}
6868 
6869 	/* Set up the blkdev mapping. */
6870 
6871 	ret = rbd_init_disk(rbd_dev);
6872 	if (ret)
6873 		goto err_out_blkdev;
6874 
6875 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6876 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6877 
6878 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6879 	if (ret)
6880 		goto err_out_disk;
6881 
6882 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6883 	up_write(&rbd_dev->header_rwsem);
6884 	return 0;
6885 
6886 err_out_disk:
6887 	rbd_free_disk(rbd_dev);
6888 err_out_blkdev:
6889 	if (!single_major)
6890 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6891 err_out_unlock:
6892 	up_write(&rbd_dev->header_rwsem);
6893 	return ret;
6894 }
6895 
6896 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6897 {
6898 	struct rbd_spec *spec = rbd_dev->spec;
6899 	int ret;
6900 
6901 	/* Record the header object name for this rbd image. */
6902 
6903 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6904 	if (rbd_dev->image_format == 1)
6905 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6906 				       spec->image_name, RBD_SUFFIX);
6907 	else
6908 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6909 				       RBD_HEADER_PREFIX, spec->image_id);
6910 
6911 	return ret;
6912 }
6913 
6914 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6915 {
6916 	if (!is_snap) {
6917 		pr_info("image %s/%s%s%s does not exist\n",
6918 			rbd_dev->spec->pool_name,
6919 			rbd_dev->spec->pool_ns ?: "",
6920 			rbd_dev->spec->pool_ns ? "/" : "",
6921 			rbd_dev->spec->image_name);
6922 	} else {
6923 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6924 			rbd_dev->spec->pool_name,
6925 			rbd_dev->spec->pool_ns ?: "",
6926 			rbd_dev->spec->pool_ns ? "/" : "",
6927 			rbd_dev->spec->image_name,
6928 			rbd_dev->spec->snap_name);
6929 	}
6930 }
6931 
6932 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6933 {
6934 	if (!rbd_is_ro(rbd_dev))
6935 		rbd_unregister_watch(rbd_dev);
6936 
6937 	rbd_dev_unprobe(rbd_dev);
6938 	rbd_dev->image_format = 0;
6939 	kfree(rbd_dev->spec->image_id);
6940 	rbd_dev->spec->image_id = NULL;
6941 }
6942 
6943 /*
6944  * Probe for the existence of the header object for the given rbd
6945  * device.  If this image is the one being mapped (i.e., not a
6946  * parent), initiate a watch on its header object before using that
6947  * object to get detailed information about the rbd image.
6948  *
6949  * On success, returns with header_rwsem held for write if called
6950  * with @depth == 0.
6951  */
6952 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6953 {
6954 	bool need_watch = !rbd_is_ro(rbd_dev);
6955 	int ret;
6956 
6957 	/*
6958 	 * Get the id from the image id object.  Unless there's an
6959 	 * error, rbd_dev->spec->image_id will be filled in with
6960 	 * a dynamically-allocated string, and rbd_dev->image_format
6961 	 * will be set to either 1 or 2.
6962 	 */
6963 	ret = rbd_dev_image_id(rbd_dev);
6964 	if (ret)
6965 		return ret;
6966 
6967 	ret = rbd_dev_header_name(rbd_dev);
6968 	if (ret)
6969 		goto err_out_format;
6970 
6971 	if (need_watch) {
6972 		ret = rbd_register_watch(rbd_dev);
6973 		if (ret) {
6974 			if (ret == -ENOENT)
6975 				rbd_print_dne(rbd_dev, false);
6976 			goto err_out_format;
6977 		}
6978 	}
6979 
6980 	if (!depth)
6981 		down_write(&rbd_dev->header_rwsem);
6982 
6983 	ret = rbd_dev_header_info(rbd_dev);
6984 	if (ret) {
6985 		if (ret == -ENOENT && !need_watch)
6986 			rbd_print_dne(rbd_dev, false);
6987 		goto err_out_probe;
6988 	}
6989 
6990 	/*
6991 	 * If this image is the one being mapped, we have pool name and
6992 	 * id, image name and id, and snap name - need to fill snap id.
6993 	 * Otherwise this is a parent image, identified by pool, image
6994 	 * and snap ids - need to fill in names for those ids.
6995 	 */
6996 	if (!depth)
6997 		ret = rbd_spec_fill_snap_id(rbd_dev);
6998 	else
6999 		ret = rbd_spec_fill_names(rbd_dev);
7000 	if (ret) {
7001 		if (ret == -ENOENT)
7002 			rbd_print_dne(rbd_dev, true);
7003 		goto err_out_probe;
7004 	}
7005 
7006 	ret = rbd_dev_mapping_set(rbd_dev);
7007 	if (ret)
7008 		goto err_out_probe;
7009 
7010 	if (rbd_is_snap(rbd_dev) &&
7011 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7012 		ret = rbd_object_map_load(rbd_dev);
7013 		if (ret)
7014 			goto err_out_probe;
7015 	}
7016 
7017 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7018 		ret = rbd_dev_v2_parent_info(rbd_dev);
7019 		if (ret)
7020 			goto err_out_probe;
7021 	}
7022 
7023 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7024 	if (ret)
7025 		goto err_out_probe;
7026 
7027 	dout("discovered format %u image, header name is %s\n",
7028 		rbd_dev->image_format, rbd_dev->header_oid.name);
7029 	return 0;
7030 
7031 err_out_probe:
7032 	if (!depth)
7033 		up_write(&rbd_dev->header_rwsem);
7034 	if (need_watch)
7035 		rbd_unregister_watch(rbd_dev);
7036 	rbd_dev_unprobe(rbd_dev);
7037 err_out_format:
7038 	rbd_dev->image_format = 0;
7039 	kfree(rbd_dev->spec->image_id);
7040 	rbd_dev->spec->image_id = NULL;
7041 	return ret;
7042 }
7043 
7044 static ssize_t do_rbd_add(const char *buf, size_t count)
7045 {
7046 	struct rbd_device *rbd_dev = NULL;
7047 	struct ceph_options *ceph_opts = NULL;
7048 	struct rbd_options *rbd_opts = NULL;
7049 	struct rbd_spec *spec = NULL;
7050 	struct rbd_client *rbdc;
7051 	int rc;
7052 
7053 	if (!capable(CAP_SYS_ADMIN))
7054 		return -EPERM;
7055 
7056 	if (!try_module_get(THIS_MODULE))
7057 		return -ENODEV;
7058 
7059 	/* parse add command */
7060 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7061 	if (rc < 0)
7062 		goto out;
7063 
7064 	rbdc = rbd_get_client(ceph_opts);
7065 	if (IS_ERR(rbdc)) {
7066 		rc = PTR_ERR(rbdc);
7067 		goto err_out_args;
7068 	}
7069 
7070 	/* pick the pool */
7071 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7072 	if (rc < 0) {
7073 		if (rc == -ENOENT)
7074 			pr_info("pool %s does not exist\n", spec->pool_name);
7075 		goto err_out_client;
7076 	}
7077 	spec->pool_id = (u64)rc;
7078 
7079 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7080 	if (!rbd_dev) {
7081 		rc = -ENOMEM;
7082 		goto err_out_client;
7083 	}
7084 	rbdc = NULL;		/* rbd_dev now owns this */
7085 	spec = NULL;		/* rbd_dev now owns this */
7086 	rbd_opts = NULL;	/* rbd_dev now owns this */
7087 
7088 	/* if we are mapping a snapshot it will be a read-only mapping */
7089 	if (rbd_dev->opts->read_only ||
7090 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7091 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7092 
7093 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7094 	if (!rbd_dev->config_info) {
7095 		rc = -ENOMEM;
7096 		goto err_out_rbd_dev;
7097 	}
7098 
7099 	rc = rbd_dev_image_probe(rbd_dev, 0);
7100 	if (rc < 0)
7101 		goto err_out_rbd_dev;
7102 
7103 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7104 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7105 			 rbd_dev->layout.object_size);
7106 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7107 	}
7108 
7109 	rc = rbd_dev_device_setup(rbd_dev);
7110 	if (rc)
7111 		goto err_out_image_probe;
7112 
7113 	rc = rbd_add_acquire_lock(rbd_dev);
7114 	if (rc)
7115 		goto err_out_image_lock;
7116 
7117 	/* Everything's ready.  Announce the disk to the world. */
7118 
7119 	rc = device_add(&rbd_dev->dev);
7120 	if (rc)
7121 		goto err_out_image_lock;
7122 
7123 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7124 	if (rc)
7125 		goto err_out_cleanup_disk;
7126 
7127 	spin_lock(&rbd_dev_list_lock);
7128 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7129 	spin_unlock(&rbd_dev_list_lock);
7130 
7131 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7132 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7133 		rbd_dev->header.features);
7134 	rc = count;
7135 out:
7136 	module_put(THIS_MODULE);
7137 	return rc;
7138 
7139 err_out_cleanup_disk:
7140 	rbd_free_disk(rbd_dev);
7141 err_out_image_lock:
7142 	rbd_dev_image_unlock(rbd_dev);
7143 	rbd_dev_device_release(rbd_dev);
7144 err_out_image_probe:
7145 	rbd_dev_image_release(rbd_dev);
7146 err_out_rbd_dev:
7147 	rbd_dev_destroy(rbd_dev);
7148 err_out_client:
7149 	rbd_put_client(rbdc);
7150 err_out_args:
7151 	rbd_spec_put(spec);
7152 	kfree(rbd_opts);
7153 	goto out;
7154 }
7155 
7156 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7157 {
7158 	if (single_major)
7159 		return -EINVAL;
7160 
7161 	return do_rbd_add(buf, count);
7162 }
7163 
7164 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7165 				      size_t count)
7166 {
7167 	return do_rbd_add(buf, count);
7168 }
7169 
7170 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7171 {
7172 	while (rbd_dev->parent) {
7173 		struct rbd_device *first = rbd_dev;
7174 		struct rbd_device *second = first->parent;
7175 		struct rbd_device *third;
7176 
7177 		/*
7178 		 * Follow to the parent with no grandparent and
7179 		 * remove it.
7180 		 */
7181 		while (second && (third = second->parent)) {
7182 			first = second;
7183 			second = third;
7184 		}
7185 		rbd_assert(second);
7186 		rbd_dev_image_release(second);
7187 		rbd_dev_destroy(second);
7188 		first->parent = NULL;
7189 		first->parent_overlap = 0;
7190 
7191 		rbd_assert(first->parent_spec);
7192 		rbd_spec_put(first->parent_spec);
7193 		first->parent_spec = NULL;
7194 	}
7195 }
7196 
7197 static ssize_t do_rbd_remove(const char *buf, size_t count)
7198 {
7199 	struct rbd_device *rbd_dev = NULL;
7200 	struct list_head *tmp;
7201 	int dev_id;
7202 	char opt_buf[6];
7203 	bool force = false;
7204 	int ret;
7205 
7206 	if (!capable(CAP_SYS_ADMIN))
7207 		return -EPERM;
7208 
7209 	dev_id = -1;
7210 	opt_buf[0] = '\0';
7211 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7212 	if (dev_id < 0) {
7213 		pr_err("dev_id out of range\n");
7214 		return -EINVAL;
7215 	}
7216 	if (opt_buf[0] != '\0') {
7217 		if (!strcmp(opt_buf, "force")) {
7218 			force = true;
7219 		} else {
7220 			pr_err("bad remove option at '%s'\n", opt_buf);
7221 			return -EINVAL;
7222 		}
7223 	}
7224 
7225 	ret = -ENOENT;
7226 	spin_lock(&rbd_dev_list_lock);
7227 	list_for_each(tmp, &rbd_dev_list) {
7228 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7229 		if (rbd_dev->dev_id == dev_id) {
7230 			ret = 0;
7231 			break;
7232 		}
7233 	}
7234 	if (!ret) {
7235 		spin_lock_irq(&rbd_dev->lock);
7236 		if (rbd_dev->open_count && !force)
7237 			ret = -EBUSY;
7238 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7239 					  &rbd_dev->flags))
7240 			ret = -EINPROGRESS;
7241 		spin_unlock_irq(&rbd_dev->lock);
7242 	}
7243 	spin_unlock(&rbd_dev_list_lock);
7244 	if (ret)
7245 		return ret;
7246 
7247 	if (force) {
7248 		/*
7249 		 * Prevent new IO from being queued and wait for existing
7250 		 * IO to complete/fail.
7251 		 */
7252 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7253 		blk_mark_disk_dead(rbd_dev->disk);
7254 	}
7255 
7256 	del_gendisk(rbd_dev->disk);
7257 	spin_lock(&rbd_dev_list_lock);
7258 	list_del_init(&rbd_dev->node);
7259 	spin_unlock(&rbd_dev_list_lock);
7260 	device_del(&rbd_dev->dev);
7261 
7262 	rbd_dev_image_unlock(rbd_dev);
7263 	rbd_dev_device_release(rbd_dev);
7264 	rbd_dev_image_release(rbd_dev);
7265 	rbd_dev_destroy(rbd_dev);
7266 	return count;
7267 }
7268 
7269 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7270 {
7271 	if (single_major)
7272 		return -EINVAL;
7273 
7274 	return do_rbd_remove(buf, count);
7275 }
7276 
7277 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7278 					 size_t count)
7279 {
7280 	return do_rbd_remove(buf, count);
7281 }
7282 
7283 /*
7284  * create control files in sysfs
7285  * /sys/bus/rbd/...
7286  */
7287 static int __init rbd_sysfs_init(void)
7288 {
7289 	int ret;
7290 
7291 	ret = device_register(&rbd_root_dev);
7292 	if (ret < 0) {
7293 		put_device(&rbd_root_dev);
7294 		return ret;
7295 	}
7296 
7297 	ret = bus_register(&rbd_bus_type);
7298 	if (ret < 0)
7299 		device_unregister(&rbd_root_dev);
7300 
7301 	return ret;
7302 }
7303 
7304 static void __exit rbd_sysfs_cleanup(void)
7305 {
7306 	bus_unregister(&rbd_bus_type);
7307 	device_unregister(&rbd_root_dev);
7308 }
7309 
7310 static int __init rbd_slab_init(void)
7311 {
7312 	rbd_assert(!rbd_img_request_cache);
7313 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7314 	if (!rbd_img_request_cache)
7315 		return -ENOMEM;
7316 
7317 	rbd_assert(!rbd_obj_request_cache);
7318 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7319 	if (!rbd_obj_request_cache)
7320 		goto out_err;
7321 
7322 	return 0;
7323 
7324 out_err:
7325 	kmem_cache_destroy(rbd_img_request_cache);
7326 	rbd_img_request_cache = NULL;
7327 	return -ENOMEM;
7328 }
7329 
7330 static void rbd_slab_exit(void)
7331 {
7332 	rbd_assert(rbd_obj_request_cache);
7333 	kmem_cache_destroy(rbd_obj_request_cache);
7334 	rbd_obj_request_cache = NULL;
7335 
7336 	rbd_assert(rbd_img_request_cache);
7337 	kmem_cache_destroy(rbd_img_request_cache);
7338 	rbd_img_request_cache = NULL;
7339 }
7340 
7341 static int __init rbd_init(void)
7342 {
7343 	int rc;
7344 
7345 	if (!libceph_compatible(NULL)) {
7346 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7347 		return -EINVAL;
7348 	}
7349 
7350 	rc = rbd_slab_init();
7351 	if (rc)
7352 		return rc;
7353 
7354 	/*
7355 	 * The number of active work items is limited by the number of
7356 	 * rbd devices * queue depth, so leave @max_active at default.
7357 	 */
7358 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7359 	if (!rbd_wq) {
7360 		rc = -ENOMEM;
7361 		goto err_out_slab;
7362 	}
7363 
7364 	if (single_major) {
7365 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7366 		if (rbd_major < 0) {
7367 			rc = rbd_major;
7368 			goto err_out_wq;
7369 		}
7370 	}
7371 
7372 	rc = rbd_sysfs_init();
7373 	if (rc)
7374 		goto err_out_blkdev;
7375 
7376 	if (single_major)
7377 		pr_info("loaded (major %d)\n", rbd_major);
7378 	else
7379 		pr_info("loaded\n");
7380 
7381 	return 0;
7382 
7383 err_out_blkdev:
7384 	if (single_major)
7385 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7386 err_out_wq:
7387 	destroy_workqueue(rbd_wq);
7388 err_out_slab:
7389 	rbd_slab_exit();
7390 	return rc;
7391 }
7392 
7393 static void __exit rbd_exit(void)
7394 {
7395 	ida_destroy(&rbd_dev_id_ida);
7396 	rbd_sysfs_cleanup();
7397 	if (single_major)
7398 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7399 	destroy_workqueue(rbd_wq);
7400 	rbd_slab_exit();
7401 }
7402 
7403 module_init(rbd_init);
7404 module_exit(rbd_exit);
7405 
7406 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7407 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7408 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7409 /* following authorship retained from original osdblk.c */
7410 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7411 
7412 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7413 MODULE_LICENSE("GPL");
7414