xref: /openbmc/linux/drivers/block/rbd.c (revision 09b4aa2815bf9f0f18c26de650db6abaaf751105)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 				     struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 					u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 				u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642 
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645 
646 /*
647  * Return true if nothing else is pending.
648  */
649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 	rbd_assert(pending->num_pending > 0);
652 
653 	if (*result && !pending->result)
654 		pending->result = *result;
655 	if (--pending->num_pending)
656 		return false;
657 
658 	*result = pending->result;
659 	return true;
660 }
661 
662 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663 {
664 	struct rbd_device *rbd_dev = disk->private_data;
665 	bool removing = false;
666 
667 	spin_lock_irq(&rbd_dev->lock);
668 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 		removing = true;
670 	else
671 		rbd_dev->open_count++;
672 	spin_unlock_irq(&rbd_dev->lock);
673 	if (removing)
674 		return -ENOENT;
675 
676 	(void) get_device(&rbd_dev->dev);
677 
678 	return 0;
679 }
680 
681 static void rbd_release(struct gendisk *disk)
682 {
683 	struct rbd_device *rbd_dev = disk->private_data;
684 	unsigned long open_count_before;
685 
686 	spin_lock_irq(&rbd_dev->lock);
687 	open_count_before = rbd_dev->open_count--;
688 	spin_unlock_irq(&rbd_dev->lock);
689 	rbd_assert(open_count_before > 0);
690 
691 	put_device(&rbd_dev->dev);
692 }
693 
694 static const struct block_device_operations rbd_bd_ops = {
695 	.owner			= THIS_MODULE,
696 	.open			= rbd_open,
697 	.release		= rbd_release,
698 };
699 
700 /*
701  * Initialize an rbd client instance.  Success or not, this function
702  * consumes ceph_opts.  Caller holds client_mutex.
703  */
704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706 	struct rbd_client *rbdc;
707 	int ret = -ENOMEM;
708 
709 	dout("%s:\n", __func__);
710 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711 	if (!rbdc)
712 		goto out_opt;
713 
714 	kref_init(&rbdc->kref);
715 	INIT_LIST_HEAD(&rbdc->node);
716 
717 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
718 	if (IS_ERR(rbdc->client))
719 		goto out_rbdc;
720 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721 
722 	ret = ceph_open_session(rbdc->client);
723 	if (ret < 0)
724 		goto out_client;
725 
726 	spin_lock(&rbd_client_list_lock);
727 	list_add_tail(&rbdc->node, &rbd_client_list);
728 	spin_unlock(&rbd_client_list_lock);
729 
730 	dout("%s: rbdc %p\n", __func__, rbdc);
731 
732 	return rbdc;
733 out_client:
734 	ceph_destroy_client(rbdc->client);
735 out_rbdc:
736 	kfree(rbdc);
737 out_opt:
738 	if (ceph_opts)
739 		ceph_destroy_options(ceph_opts);
740 	dout("%s: error %d\n", __func__, ret);
741 
742 	return ERR_PTR(ret);
743 }
744 
745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747 	kref_get(&rbdc->kref);
748 
749 	return rbdc;
750 }
751 
752 /*
753  * Find a ceph client with specific addr and configuration.  If
754  * found, bump its reference count.
755  */
756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *rbdc = NULL, *iter;
759 
760 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761 		return NULL;
762 
763 	spin_lock(&rbd_client_list_lock);
764 	list_for_each_entry(iter, &rbd_client_list, node) {
765 		if (!ceph_compare_options(ceph_opts, iter->client)) {
766 			__rbd_get_client(iter);
767 
768 			rbdc = iter;
769 			break;
770 		}
771 	}
772 	spin_unlock(&rbd_client_list_lock);
773 
774 	return rbdc;
775 }
776 
777 /*
778  * (Per device) rbd map options
779  */
780 enum {
781 	Opt_queue_depth,
782 	Opt_alloc_size,
783 	Opt_lock_timeout,
784 	/* int args above */
785 	Opt_pool_ns,
786 	Opt_compression_hint,
787 	/* string args above */
788 	Opt_read_only,
789 	Opt_read_write,
790 	Opt_lock_on_read,
791 	Opt_exclusive,
792 	Opt_notrim,
793 };
794 
795 enum {
796 	Opt_compression_hint_none,
797 	Opt_compression_hint_compressible,
798 	Opt_compression_hint_incompressible,
799 };
800 
801 static const struct constant_table rbd_param_compression_hint[] = {
802 	{"none",		Opt_compression_hint_none},
803 	{"compressible",	Opt_compression_hint_compressible},
804 	{"incompressible",	Opt_compression_hint_incompressible},
805 	{}
806 };
807 
808 static const struct fs_parameter_spec rbd_parameters[] = {
809 	fsparam_u32	("alloc_size",			Opt_alloc_size),
810 	fsparam_enum	("compression_hint",		Opt_compression_hint,
811 			 rbd_param_compression_hint),
812 	fsparam_flag	("exclusive",			Opt_exclusive),
813 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
814 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
815 	fsparam_flag	("notrim",			Opt_notrim),
816 	fsparam_string	("_pool_ns",			Opt_pool_ns),
817 	fsparam_u32	("queue_depth",			Opt_queue_depth),
818 	fsparam_flag	("read_only",			Opt_read_only),
819 	fsparam_flag	("read_write",			Opt_read_write),
820 	fsparam_flag	("ro",				Opt_read_only),
821 	fsparam_flag	("rw",				Opt_read_write),
822 	{}
823 };
824 
825 struct rbd_options {
826 	int	queue_depth;
827 	int	alloc_size;
828 	unsigned long	lock_timeout;
829 	bool	read_only;
830 	bool	lock_on_read;
831 	bool	exclusive;
832 	bool	trim;
833 
834 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835 };
836 
837 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
838 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
839 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
840 #define RBD_READ_ONLY_DEFAULT	false
841 #define RBD_LOCK_ON_READ_DEFAULT false
842 #define RBD_EXCLUSIVE_DEFAULT	false
843 #define RBD_TRIM_DEFAULT	true
844 
845 struct rbd_parse_opts_ctx {
846 	struct rbd_spec		*spec;
847 	struct ceph_options	*copts;
848 	struct rbd_options	*opts;
849 };
850 
851 static char* obj_op_name(enum obj_operation_type op_type)
852 {
853 	switch (op_type) {
854 	case OBJ_OP_READ:
855 		return "read";
856 	case OBJ_OP_WRITE:
857 		return "write";
858 	case OBJ_OP_DISCARD:
859 		return "discard";
860 	case OBJ_OP_ZEROOUT:
861 		return "zeroout";
862 	default:
863 		return "???";
864 	}
865 }
866 
867 /*
868  * Destroy ceph client
869  *
870  * Caller must hold rbd_client_list_lock.
871  */
872 static void rbd_client_release(struct kref *kref)
873 {
874 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875 
876 	dout("%s: rbdc %p\n", __func__, rbdc);
877 	spin_lock(&rbd_client_list_lock);
878 	list_del(&rbdc->node);
879 	spin_unlock(&rbd_client_list_lock);
880 
881 	ceph_destroy_client(rbdc->client);
882 	kfree(rbdc);
883 }
884 
885 /*
886  * Drop reference to ceph client node. If it's not referenced anymore, release
887  * it.
888  */
889 static void rbd_put_client(struct rbd_client *rbdc)
890 {
891 	if (rbdc)
892 		kref_put(&rbdc->kref, rbd_client_release);
893 }
894 
895 /*
896  * Get a ceph client with specific addr and configuration, if one does
897  * not exist create it.  Either way, ceph_opts is consumed by this
898  * function.
899  */
900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901 {
902 	struct rbd_client *rbdc;
903 	int ret;
904 
905 	mutex_lock(&client_mutex);
906 	rbdc = rbd_client_find(ceph_opts);
907 	if (rbdc) {
908 		ceph_destroy_options(ceph_opts);
909 
910 		/*
911 		 * Using an existing client.  Make sure ->pg_pools is up to
912 		 * date before we look up the pool id in do_rbd_add().
913 		 */
914 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
915 					rbdc->client->options->mount_timeout);
916 		if (ret) {
917 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918 			rbd_put_client(rbdc);
919 			rbdc = ERR_PTR(ret);
920 		}
921 	} else {
922 		rbdc = rbd_client_create(ceph_opts);
923 	}
924 	mutex_unlock(&client_mutex);
925 
926 	return rbdc;
927 }
928 
929 static bool rbd_image_format_valid(u32 image_format)
930 {
931 	return image_format == 1 || image_format == 2;
932 }
933 
934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935 {
936 	size_t size;
937 	u32 snap_count;
938 
939 	/* The header has to start with the magic rbd header text */
940 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941 		return false;
942 
943 	/* The bio layer requires at least sector-sized I/O */
944 
945 	if (ondisk->options.order < SECTOR_SHIFT)
946 		return false;
947 
948 	/* If we use u64 in a few spots we may be able to loosen this */
949 
950 	if (ondisk->options.order > 8 * sizeof (int) - 1)
951 		return false;
952 
953 	/*
954 	 * The size of a snapshot header has to fit in a size_t, and
955 	 * that limits the number of snapshots.
956 	 */
957 	snap_count = le32_to_cpu(ondisk->snap_count);
958 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
959 	if (snap_count > size / sizeof (__le64))
960 		return false;
961 
962 	/*
963 	 * Not only that, but the size of the entire the snapshot
964 	 * header must also be representable in a size_t.
965 	 */
966 	size -= snap_count * sizeof (__le64);
967 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968 		return false;
969 
970 	return true;
971 }
972 
973 /*
974  * returns the size of an object in the image
975  */
976 static u32 rbd_obj_bytes(struct rbd_image_header *header)
977 {
978 	return 1U << header->obj_order;
979 }
980 
981 static void rbd_init_layout(struct rbd_device *rbd_dev)
982 {
983 	if (rbd_dev->header.stripe_unit == 0 ||
984 	    rbd_dev->header.stripe_count == 0) {
985 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986 		rbd_dev->header.stripe_count = 1;
987 	}
988 
989 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995 }
996 
997 static void rbd_image_header_cleanup(struct rbd_image_header *header)
998 {
999 	kfree(header->object_prefix);
1000 	ceph_put_snap_context(header->snapc);
1001 	kfree(header->snap_sizes);
1002 	kfree(header->snap_names);
1003 
1004 	memset(header, 0, sizeof(*header));
1005 }
1006 
1007 /*
1008  * Fill an rbd image header with information from the given format 1
1009  * on-disk header.
1010  */
1011 static int rbd_header_from_disk(struct rbd_image_header *header,
1012 				struct rbd_image_header_ondisk *ondisk,
1013 				bool first_time)
1014 {
1015 	struct ceph_snap_context *snapc;
1016 	char *object_prefix = NULL;
1017 	char *snap_names = NULL;
1018 	u64 *snap_sizes = NULL;
1019 	u32 snap_count;
1020 	int ret = -ENOMEM;
1021 	u32 i;
1022 
1023 	/* Allocate this now to avoid having to handle failure below */
1024 
1025 	if (first_time) {
1026 		object_prefix = kstrndup(ondisk->object_prefix,
1027 					 sizeof(ondisk->object_prefix),
1028 					 GFP_KERNEL);
1029 		if (!object_prefix)
1030 			return -ENOMEM;
1031 	}
1032 
1033 	/* Allocate the snapshot context and fill it in */
1034 
1035 	snap_count = le32_to_cpu(ondisk->snap_count);
1036 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037 	if (!snapc)
1038 		goto out_err;
1039 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040 	if (snap_count) {
1041 		struct rbd_image_snap_ondisk *snaps;
1042 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043 
1044 		/* We'll keep a copy of the snapshot names... */
1045 
1046 		if (snap_names_len > (u64)SIZE_MAX)
1047 			goto out_2big;
1048 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049 		if (!snap_names)
1050 			goto out_err;
1051 
1052 		/* ...as well as the array of their sizes. */
1053 		snap_sizes = kmalloc_array(snap_count,
1054 					   sizeof(*header->snap_sizes),
1055 					   GFP_KERNEL);
1056 		if (!snap_sizes)
1057 			goto out_err;
1058 
1059 		/*
1060 		 * Copy the names, and fill in each snapshot's id
1061 		 * and size.
1062 		 *
1063 		 * Note that rbd_dev_v1_header_info() guarantees the
1064 		 * ondisk buffer we're working with has
1065 		 * snap_names_len bytes beyond the end of the
1066 		 * snapshot id array, this memcpy() is safe.
1067 		 */
1068 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069 		snaps = ondisk->snaps;
1070 		for (i = 0; i < snap_count; i++) {
1071 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073 		}
1074 	}
1075 
1076 	/* We won't fail any more, fill in the header */
1077 
1078 	if (first_time) {
1079 		header->object_prefix = object_prefix;
1080 		header->obj_order = ondisk->options.order;
1081 	}
1082 
1083 	/* The remaining fields always get updated (when we refresh) */
1084 
1085 	header->image_size = le64_to_cpu(ondisk->image_size);
1086 	header->snapc = snapc;
1087 	header->snap_names = snap_names;
1088 	header->snap_sizes = snap_sizes;
1089 
1090 	return 0;
1091 out_2big:
1092 	ret = -EIO;
1093 out_err:
1094 	kfree(snap_sizes);
1095 	kfree(snap_names);
1096 	ceph_put_snap_context(snapc);
1097 	kfree(object_prefix);
1098 
1099 	return ret;
1100 }
1101 
1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103 {
1104 	const char *snap_name;
1105 
1106 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107 
1108 	/* Skip over names until we find the one we are looking for */
1109 
1110 	snap_name = rbd_dev->header.snap_names;
1111 	while (which--)
1112 		snap_name += strlen(snap_name) + 1;
1113 
1114 	return kstrdup(snap_name, GFP_KERNEL);
1115 }
1116 
1117 /*
1118  * Snapshot id comparison function for use with qsort()/bsearch().
1119  * Note that result is for snapshots in *descending* order.
1120  */
1121 static int snapid_compare_reverse(const void *s1, const void *s2)
1122 {
1123 	u64 snap_id1 = *(u64 *)s1;
1124 	u64 snap_id2 = *(u64 *)s2;
1125 
1126 	if (snap_id1 < snap_id2)
1127 		return 1;
1128 	return snap_id1 == snap_id2 ? 0 : -1;
1129 }
1130 
1131 /*
1132  * Search a snapshot context to see if the given snapshot id is
1133  * present.
1134  *
1135  * Returns the position of the snapshot id in the array if it's found,
1136  * or BAD_SNAP_INDEX otherwise.
1137  *
1138  * Note: The snapshot array is in kept sorted (by the osd) in
1139  * reverse order, highest snapshot id first.
1140  */
1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142 {
1143 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144 	u64 *found;
1145 
1146 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147 				sizeof (snap_id), snapid_compare_reverse);
1148 
1149 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 }
1151 
1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 					u64 snap_id)
1154 {
1155 	u32 which;
1156 	const char *snap_name;
1157 
1158 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1159 	if (which == BAD_SNAP_INDEX)
1160 		return ERR_PTR(-ENOENT);
1161 
1162 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 }
1165 
1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167 {
1168 	if (snap_id == CEPH_NOSNAP)
1169 		return RBD_SNAP_HEAD_NAME;
1170 
1171 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172 	if (rbd_dev->image_format == 1)
1173 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174 
1175 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 }
1177 
1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179 				u64 *snap_size)
1180 {
1181 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182 	if (snap_id == CEPH_NOSNAP) {
1183 		*snap_size = rbd_dev->header.image_size;
1184 	} else if (rbd_dev->image_format == 1) {
1185 		u32 which;
1186 
1187 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1188 		if (which == BAD_SNAP_INDEX)
1189 			return -ENOENT;
1190 
1191 		*snap_size = rbd_dev->header.snap_sizes[which];
1192 	} else {
1193 		u64 size = 0;
1194 		int ret;
1195 
1196 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197 		if (ret)
1198 			return ret;
1199 
1200 		*snap_size = size;
1201 	}
1202 	return 0;
1203 }
1204 
1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206 {
1207 	u64 snap_id = rbd_dev->spec->snap_id;
1208 	u64 size = 0;
1209 	int ret;
1210 
1211 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212 	if (ret)
1213 		return ret;
1214 
1215 	rbd_dev->mapping.size = size;
1216 	return 0;
1217 }
1218 
1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220 {
1221 	rbd_dev->mapping.size = 0;
1222 }
1223 
1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225 {
1226 	struct ceph_bio_iter it = *bio_pos;
1227 
1228 	ceph_bio_iter_advance(&it, off);
1229 	ceph_bio_iter_advance_step(&it, bytes, ({
1230 		memzero_bvec(&bv);
1231 	}));
1232 }
1233 
1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235 {
1236 	struct ceph_bvec_iter it = *bvec_pos;
1237 
1238 	ceph_bvec_iter_advance(&it, off);
1239 	ceph_bvec_iter_advance_step(&it, bytes, ({
1240 		memzero_bvec(&bv);
1241 	}));
1242 }
1243 
1244 /*
1245  * Zero a range in @obj_req data buffer defined by a bio (list) or
1246  * (private) bio_vec array.
1247  *
1248  * @off is relative to the start of the data buffer.
1249  */
1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251 			       u32 bytes)
1252 {
1253 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254 
1255 	switch (obj_req->img_request->data_type) {
1256 	case OBJ_REQUEST_BIO:
1257 		zero_bios(&obj_req->bio_pos, off, bytes);
1258 		break;
1259 	case OBJ_REQUEST_BVECS:
1260 	case OBJ_REQUEST_OWN_BVECS:
1261 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262 		break;
1263 	default:
1264 		BUG();
1265 	}
1266 }
1267 
1268 static void rbd_obj_request_destroy(struct kref *kref);
1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270 {
1271 	rbd_assert(obj_request != NULL);
1272 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273 		kref_read(&obj_request->kref));
1274 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 }
1276 
1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278 					struct rbd_obj_request *obj_request)
1279 {
1280 	rbd_assert(obj_request->img_request == NULL);
1281 
1282 	/* Image request now owns object's original reference */
1283 	obj_request->img_request = img_request;
1284 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 }
1286 
1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288 					struct rbd_obj_request *obj_request)
1289 {
1290 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291 	list_del(&obj_request->ex.oe_item);
1292 	rbd_assert(obj_request->img_request == img_request);
1293 	rbd_obj_request_put(obj_request);
1294 }
1295 
1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297 {
1298 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1299 
1300 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1303 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 }
1305 
1306 /*
1307  * The default/initial value for all image request flags is 0.  Each
1308  * is conditionally set to 1 at image request initialization time
1309  * and currently never change thereafter.
1310  */
1311 static void img_request_layered_set(struct rbd_img_request *img_request)
1312 {
1313 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 }
1315 
1316 static bool img_request_layered_test(struct rbd_img_request *img_request)
1317 {
1318 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 }
1320 
1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322 {
1323 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324 
1325 	return !obj_req->ex.oe_off &&
1326 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 }
1328 
1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330 {
1331 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332 
1333 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334 					rbd_dev->layout.object_size;
1335 }
1336 
1337 /*
1338  * Must be called after rbd_obj_calc_img_extents().
1339  */
1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341 {
1342 	rbd_assert(obj_req->img_request->snapc);
1343 
1344 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1346 		     obj_req->ex.oe_objno);
1347 		return;
1348 	}
1349 
1350 	if (!obj_req->num_img_extents) {
1351 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352 		     obj_req->ex.oe_objno);
1353 		return;
1354 	}
1355 
1356 	if (rbd_obj_is_entire(obj_req) &&
1357 	    !obj_req->img_request->snapc->num_snaps) {
1358 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1359 		     obj_req->ex.oe_objno);
1360 		return;
1361 	}
1362 
1363 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364 }
1365 
1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367 {
1368 	return ceph_file_extents_bytes(obj_req->img_extents,
1369 				       obj_req->num_img_extents);
1370 }
1371 
1372 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373 {
1374 	switch (img_req->op_type) {
1375 	case OBJ_OP_READ:
1376 		return false;
1377 	case OBJ_OP_WRITE:
1378 	case OBJ_OP_DISCARD:
1379 	case OBJ_OP_ZEROOUT:
1380 		return true;
1381 	default:
1382 		BUG();
1383 	}
1384 }
1385 
1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387 {
1388 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1389 	int result;
1390 
1391 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392 	     osd_req->r_result, obj_req);
1393 
1394 	/*
1395 	 * Writes aren't allowed to return a data payload.  In some
1396 	 * guarded write cases (e.g. stat + zero on an empty object)
1397 	 * a stat response makes it through, but we don't care.
1398 	 */
1399 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400 		result = 0;
1401 	else
1402 		result = osd_req->r_result;
1403 
1404 	rbd_obj_handle_request(obj_req, result);
1405 }
1406 
1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408 {
1409 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1410 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412 
1413 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414 	osd_req->r_snapid = obj_request->img_request->snap_id;
1415 }
1416 
1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418 {
1419 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1420 
1421 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422 	ktime_get_real_ts64(&osd_req->r_mtime);
1423 	osd_req->r_data_offset = obj_request->ex.oe_off;
1424 }
1425 
1426 static struct ceph_osd_request *
1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428 			  struct ceph_snap_context *snapc, int num_ops)
1429 {
1430 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432 	struct ceph_osd_request *req;
1433 	const char *name_format = rbd_dev->image_format == 1 ?
1434 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435 	int ret;
1436 
1437 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438 	if (!req)
1439 		return ERR_PTR(-ENOMEM);
1440 
1441 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442 	req->r_callback = rbd_osd_req_callback;
1443 	req->r_priv = obj_req;
1444 
1445 	/*
1446 	 * Data objects may be stored in a separate pool, but always in
1447 	 * the same namespace in that pool as the header in its pool.
1448 	 */
1449 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451 
1452 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453 			       rbd_dev->header.object_prefix,
1454 			       obj_req->ex.oe_objno);
1455 	if (ret)
1456 		return ERR_PTR(ret);
1457 
1458 	return req;
1459 }
1460 
1461 static struct ceph_osd_request *
1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463 {
1464 	rbd_assert(obj_req->img_request->snapc);
1465 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466 					 num_ops);
1467 }
1468 
1469 static struct rbd_obj_request *rbd_obj_request_create(void)
1470 {
1471 	struct rbd_obj_request *obj_request;
1472 
1473 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474 	if (!obj_request)
1475 		return NULL;
1476 
1477 	ceph_object_extent_init(&obj_request->ex);
1478 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1479 	mutex_init(&obj_request->state_mutex);
1480 	kref_init(&obj_request->kref);
1481 
1482 	dout("%s %p\n", __func__, obj_request);
1483 	return obj_request;
1484 }
1485 
1486 static void rbd_obj_request_destroy(struct kref *kref)
1487 {
1488 	struct rbd_obj_request *obj_request;
1489 	struct ceph_osd_request *osd_req;
1490 	u32 i;
1491 
1492 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1493 
1494 	dout("%s: obj %p\n", __func__, obj_request);
1495 
1496 	while (!list_empty(&obj_request->osd_reqs)) {
1497 		osd_req = list_first_entry(&obj_request->osd_reqs,
1498 				    struct ceph_osd_request, r_private_item);
1499 		list_del_init(&osd_req->r_private_item);
1500 		ceph_osdc_put_request(osd_req);
1501 	}
1502 
1503 	switch (obj_request->img_request->data_type) {
1504 	case OBJ_REQUEST_NODATA:
1505 	case OBJ_REQUEST_BIO:
1506 	case OBJ_REQUEST_BVECS:
1507 		break;		/* Nothing to do */
1508 	case OBJ_REQUEST_OWN_BVECS:
1509 		kfree(obj_request->bvec_pos.bvecs);
1510 		break;
1511 	default:
1512 		BUG();
1513 	}
1514 
1515 	kfree(obj_request->img_extents);
1516 	if (obj_request->copyup_bvecs) {
1517 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518 			if (obj_request->copyup_bvecs[i].bv_page)
1519 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1520 		}
1521 		kfree(obj_request->copyup_bvecs);
1522 	}
1523 
1524 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1525 }
1526 
1527 /* It's OK to call this for a device with no parent */
1528 
1529 static void rbd_spec_put(struct rbd_spec *spec);
1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531 {
1532 	rbd_dev_remove_parent(rbd_dev);
1533 	rbd_spec_put(rbd_dev->parent_spec);
1534 	rbd_dev->parent_spec = NULL;
1535 	rbd_dev->parent_overlap = 0;
1536 }
1537 
1538 /*
1539  * Parent image reference counting is used to determine when an
1540  * image's parent fields can be safely torn down--after there are no
1541  * more in-flight requests to the parent image.  When the last
1542  * reference is dropped, cleaning them up is safe.
1543  */
1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545 {
1546 	int counter;
1547 
1548 	if (!rbd_dev->parent_spec)
1549 		return;
1550 
1551 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552 	if (counter > 0)
1553 		return;
1554 
1555 	/* Last reference; clean up parent data structures */
1556 
1557 	if (!counter)
1558 		rbd_dev_unparent(rbd_dev);
1559 	else
1560 		rbd_warn(rbd_dev, "parent reference underflow");
1561 }
1562 
1563 /*
1564  * If an image has a non-zero parent overlap, get a reference to its
1565  * parent.
1566  *
1567  * Returns true if the rbd device has a parent with a non-zero
1568  * overlap and a reference for it was successfully taken, or
1569  * false otherwise.
1570  */
1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572 {
1573 	int counter = 0;
1574 
1575 	if (!rbd_dev->parent_spec)
1576 		return false;
1577 
1578 	if (rbd_dev->parent_overlap)
1579 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580 
1581 	if (counter < 0)
1582 		rbd_warn(rbd_dev, "parent reference overflow");
1583 
1584 	return counter > 0;
1585 }
1586 
1587 static void rbd_img_request_init(struct rbd_img_request *img_request,
1588 				 struct rbd_device *rbd_dev,
1589 				 enum obj_operation_type op_type)
1590 {
1591 	memset(img_request, 0, sizeof(*img_request));
1592 
1593 	img_request->rbd_dev = rbd_dev;
1594 	img_request->op_type = op_type;
1595 
1596 	INIT_LIST_HEAD(&img_request->lock_item);
1597 	INIT_LIST_HEAD(&img_request->object_extents);
1598 	mutex_init(&img_request->state_mutex);
1599 }
1600 
1601 /*
1602  * Only snap_id is captured here, for reads.  For writes, snapshot
1603  * context is captured in rbd_img_object_requests() after exclusive
1604  * lock is ensured to be held.
1605  */
1606 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607 {
1608 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1609 
1610 	lockdep_assert_held(&rbd_dev->header_rwsem);
1611 
1612 	if (!rbd_img_is_write(img_req))
1613 		img_req->snap_id = rbd_dev->spec->snap_id;
1614 
1615 	if (rbd_dev_parent_get(rbd_dev))
1616 		img_request_layered_set(img_req);
1617 }
1618 
1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620 {
1621 	struct rbd_obj_request *obj_request;
1622 	struct rbd_obj_request *next_obj_request;
1623 
1624 	dout("%s: img %p\n", __func__, img_request);
1625 
1626 	WARN_ON(!list_empty(&img_request->lock_item));
1627 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628 		rbd_img_obj_request_del(img_request, obj_request);
1629 
1630 	if (img_request_layered_test(img_request))
1631 		rbd_dev_parent_put(img_request->rbd_dev);
1632 
1633 	if (rbd_img_is_write(img_request))
1634 		ceph_put_snap_context(img_request->snapc);
1635 
1636 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637 		kmem_cache_free(rbd_img_request_cache, img_request);
1638 }
1639 
1640 #define BITS_PER_OBJ	2
1641 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1642 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1643 
1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645 				   u64 *index, u8 *shift)
1646 {
1647 	u32 off;
1648 
1649 	rbd_assert(objno < rbd_dev->object_map_size);
1650 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652 }
1653 
1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655 {
1656 	u64 index;
1657 	u8 shift;
1658 
1659 	lockdep_assert_held(&rbd_dev->object_map_lock);
1660 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662 }
1663 
1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665 {
1666 	u64 index;
1667 	u8 shift;
1668 	u8 *p;
1669 
1670 	lockdep_assert_held(&rbd_dev->object_map_lock);
1671 	rbd_assert(!(val & ~OBJ_MASK));
1672 
1673 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674 	p = &rbd_dev->object_map[index];
1675 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676 }
1677 
1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679 {
1680 	u8 state;
1681 
1682 	spin_lock(&rbd_dev->object_map_lock);
1683 	state = __rbd_object_map_get(rbd_dev, objno);
1684 	spin_unlock(&rbd_dev->object_map_lock);
1685 	return state;
1686 }
1687 
1688 static bool use_object_map(struct rbd_device *rbd_dev)
1689 {
1690 	/*
1691 	 * An image mapped read-only can't use the object map -- it isn't
1692 	 * loaded because the header lock isn't acquired.  Someone else can
1693 	 * write to the image and update the object map behind our back.
1694 	 *
1695 	 * A snapshot can't be written to, so using the object map is always
1696 	 * safe.
1697 	 */
1698 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699 		return false;
1700 
1701 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703 }
1704 
1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706 {
1707 	u8 state;
1708 
1709 	/* fall back to default logic if object map is disabled or invalid */
1710 	if (!use_object_map(rbd_dev))
1711 		return true;
1712 
1713 	state = rbd_object_map_get(rbd_dev, objno);
1714 	return state != OBJECT_NONEXISTENT;
1715 }
1716 
1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718 				struct ceph_object_id *oid)
1719 {
1720 	if (snap_id == CEPH_NOSNAP)
1721 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722 				rbd_dev->spec->image_id);
1723 	else
1724 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725 				rbd_dev->spec->image_id, snap_id);
1726 }
1727 
1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729 {
1730 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731 	CEPH_DEFINE_OID_ONSTACK(oid);
1732 	u8 lock_type;
1733 	char *lock_tag;
1734 	struct ceph_locker *lockers;
1735 	u32 num_lockers;
1736 	bool broke_lock = false;
1737 	int ret;
1738 
1739 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740 
1741 again:
1742 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744 	if (ret != -EBUSY || broke_lock) {
1745 		if (ret == -EEXIST)
1746 			ret = 0; /* already locked by myself */
1747 		if (ret)
1748 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749 		return ret;
1750 	}
1751 
1752 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1754 				 &lockers, &num_lockers);
1755 	if (ret) {
1756 		if (ret == -ENOENT)
1757 			goto again;
1758 
1759 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760 		return ret;
1761 	}
1762 
1763 	kfree(lock_tag);
1764 	if (num_lockers == 0)
1765 		goto again;
1766 
1767 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768 		 ENTITY_NAME(lockers[0].id.name));
1769 
1770 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1772 				  &lockers[0].id.name);
1773 	ceph_free_lockers(lockers, num_lockers);
1774 	if (ret) {
1775 		if (ret == -ENOENT)
1776 			goto again;
1777 
1778 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779 		return ret;
1780 	}
1781 
1782 	broke_lock = true;
1783 	goto again;
1784 }
1785 
1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787 {
1788 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789 	CEPH_DEFINE_OID_ONSTACK(oid);
1790 	int ret;
1791 
1792 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793 
1794 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795 			      "");
1796 	if (ret && ret != -ENOENT)
1797 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798 }
1799 
1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801 {
1802 	u8 struct_v;
1803 	u32 struct_len;
1804 	u32 header_len;
1805 	void *header_end;
1806 	int ret;
1807 
1808 	ceph_decode_32_safe(p, end, header_len, e_inval);
1809 	header_end = *p + header_len;
1810 
1811 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812 				  &struct_len);
1813 	if (ret)
1814 		return ret;
1815 
1816 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817 
1818 	*p = header_end;
1819 	return 0;
1820 
1821 e_inval:
1822 	return -EINVAL;
1823 }
1824 
1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826 {
1827 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828 	CEPH_DEFINE_OID_ONSTACK(oid);
1829 	struct page **pages;
1830 	void *p, *end;
1831 	size_t reply_len;
1832 	u64 num_objects;
1833 	u64 object_map_bytes;
1834 	u64 object_map_size;
1835 	int num_pages;
1836 	int ret;
1837 
1838 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839 
1840 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841 					   rbd_dev->mapping.size);
1842 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843 					    BITS_PER_BYTE);
1844 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846 	if (IS_ERR(pages))
1847 		return PTR_ERR(pages);
1848 
1849 	reply_len = num_pages * PAGE_SIZE;
1850 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853 			     NULL, 0, pages, &reply_len);
1854 	if (ret)
1855 		goto out;
1856 
1857 	p = page_address(pages[0]);
1858 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1859 	ret = decode_object_map_header(&p, end, &object_map_size);
1860 	if (ret)
1861 		goto out;
1862 
1863 	if (object_map_size != num_objects) {
1864 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865 			 object_map_size, num_objects);
1866 		ret = -EINVAL;
1867 		goto out;
1868 	}
1869 
1870 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1871 		ret = -EINVAL;
1872 		goto out;
1873 	}
1874 
1875 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876 	if (!rbd_dev->object_map) {
1877 		ret = -ENOMEM;
1878 		goto out;
1879 	}
1880 
1881 	rbd_dev->object_map_size = object_map_size;
1882 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883 				   offset_in_page(p), object_map_bytes);
1884 
1885 out:
1886 	ceph_release_page_vector(pages, num_pages);
1887 	return ret;
1888 }
1889 
1890 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891 {
1892 	kvfree(rbd_dev->object_map);
1893 	rbd_dev->object_map = NULL;
1894 	rbd_dev->object_map_size = 0;
1895 }
1896 
1897 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898 {
1899 	int ret;
1900 
1901 	ret = __rbd_object_map_load(rbd_dev);
1902 	if (ret)
1903 		return ret;
1904 
1905 	ret = rbd_dev_v2_get_flags(rbd_dev);
1906 	if (ret) {
1907 		rbd_object_map_free(rbd_dev);
1908 		return ret;
1909 	}
1910 
1911 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912 		rbd_warn(rbd_dev, "object map is invalid");
1913 
1914 	return 0;
1915 }
1916 
1917 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918 {
1919 	int ret;
1920 
1921 	ret = rbd_object_map_lock(rbd_dev);
1922 	if (ret)
1923 		return ret;
1924 
1925 	ret = rbd_object_map_load(rbd_dev);
1926 	if (ret) {
1927 		rbd_object_map_unlock(rbd_dev);
1928 		return ret;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935 {
1936 	rbd_object_map_free(rbd_dev);
1937 	rbd_object_map_unlock(rbd_dev);
1938 }
1939 
1940 /*
1941  * This function needs snap_id (or more precisely just something to
1942  * distinguish between HEAD and snapshot object maps), new_state and
1943  * current_state that were passed to rbd_object_map_update().
1944  *
1945  * To avoid allocating and stashing a context we piggyback on the OSD
1946  * request.  A HEAD update has two ops (assert_locked).  For new_state
1947  * and current_state we decode our own object_map_update op, encoded in
1948  * rbd_cls_object_map_update().
1949  */
1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951 					struct ceph_osd_request *osd_req)
1952 {
1953 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954 	struct ceph_osd_data *osd_data;
1955 	u64 objno;
1956 	u8 state, new_state, current_state;
1957 	bool has_current_state;
1958 	void *p;
1959 
1960 	if (osd_req->r_result)
1961 		return osd_req->r_result;
1962 
1963 	/*
1964 	 * Nothing to do for a snapshot object map.
1965 	 */
1966 	if (osd_req->r_num_ops == 1)
1967 		return 0;
1968 
1969 	/*
1970 	 * Update in-memory HEAD object map.
1971 	 */
1972 	rbd_assert(osd_req->r_num_ops == 2);
1973 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975 
1976 	p = page_address(osd_data->pages[0]);
1977 	objno = ceph_decode_64(&p);
1978 	rbd_assert(objno == obj_req->ex.oe_objno);
1979 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1980 	new_state = ceph_decode_8(&p);
1981 	has_current_state = ceph_decode_8(&p);
1982 	if (has_current_state)
1983 		current_state = ceph_decode_8(&p);
1984 
1985 	spin_lock(&rbd_dev->object_map_lock);
1986 	state = __rbd_object_map_get(rbd_dev, objno);
1987 	if (!has_current_state || current_state == state ||
1988 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989 		__rbd_object_map_set(rbd_dev, objno, new_state);
1990 	spin_unlock(&rbd_dev->object_map_lock);
1991 
1992 	return 0;
1993 }
1994 
1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996 {
1997 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1998 	int result;
1999 
2000 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001 	     osd_req->r_result, obj_req);
2002 
2003 	result = rbd_object_map_update_finish(obj_req, osd_req);
2004 	rbd_obj_handle_request(obj_req, result);
2005 }
2006 
2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008 {
2009 	u8 state = rbd_object_map_get(rbd_dev, objno);
2010 
2011 	if (state == new_state ||
2012 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014 		return false;
2015 
2016 	return true;
2017 }
2018 
2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020 				     int which, u64 objno, u8 new_state,
2021 				     const u8 *current_state)
2022 {
2023 	struct page **pages;
2024 	void *p, *start;
2025 	int ret;
2026 
2027 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028 	if (ret)
2029 		return ret;
2030 
2031 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032 	if (IS_ERR(pages))
2033 		return PTR_ERR(pages);
2034 
2035 	p = start = page_address(pages[0]);
2036 	ceph_encode_64(&p, objno);
2037 	ceph_encode_64(&p, objno + 1);
2038 	ceph_encode_8(&p, new_state);
2039 	if (current_state) {
2040 		ceph_encode_8(&p, 1);
2041 		ceph_encode_8(&p, *current_state);
2042 	} else {
2043 		ceph_encode_8(&p, 0);
2044 	}
2045 
2046 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047 					  false, true);
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Return:
2053  *   0 - object map update sent
2054  *   1 - object map update isn't needed
2055  *  <0 - error
2056  */
2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058 				 u8 new_state, const u8 *current_state)
2059 {
2060 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062 	struct ceph_osd_request *req;
2063 	int num_ops = 1;
2064 	int which = 0;
2065 	int ret;
2066 
2067 	if (snap_id == CEPH_NOSNAP) {
2068 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069 			return 1;
2070 
2071 		num_ops++; /* assert_locked */
2072 	}
2073 
2074 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075 	if (!req)
2076 		return -ENOMEM;
2077 
2078 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079 	req->r_callback = rbd_object_map_callback;
2080 	req->r_priv = obj_req;
2081 
2082 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2085 	ktime_get_real_ts64(&req->r_mtime);
2086 
2087 	if (snap_id == CEPH_NOSNAP) {
2088 		/*
2089 		 * Protect against possible race conditions during lock
2090 		 * ownership transitions.
2091 		 */
2092 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094 		if (ret)
2095 			return ret;
2096 	}
2097 
2098 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099 					new_state, current_state);
2100 	if (ret)
2101 		return ret;
2102 
2103 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104 	if (ret)
2105 		return ret;
2106 
2107 	ceph_osdc_start_request(osdc, req);
2108 	return 0;
2109 }
2110 
2111 static void prune_extents(struct ceph_file_extent *img_extents,
2112 			  u32 *num_img_extents, u64 overlap)
2113 {
2114 	u32 cnt = *num_img_extents;
2115 
2116 	/* drop extents completely beyond the overlap */
2117 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118 		cnt--;
2119 
2120 	if (cnt) {
2121 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122 
2123 		/* trim final overlapping extent */
2124 		if (ex->fe_off + ex->fe_len > overlap)
2125 			ex->fe_len = overlap - ex->fe_off;
2126 	}
2127 
2128 	*num_img_extents = cnt;
2129 }
2130 
2131 /*
2132  * Determine the byte range(s) covered by either just the object extent
2133  * or the entire object in the parent image.
2134  */
2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136 				    bool entire)
2137 {
2138 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139 	int ret;
2140 
2141 	if (!rbd_dev->parent_overlap)
2142 		return 0;
2143 
2144 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145 				  entire ? 0 : obj_req->ex.oe_off,
2146 				  entire ? rbd_dev->layout.object_size :
2147 							obj_req->ex.oe_len,
2148 				  &obj_req->img_extents,
2149 				  &obj_req->num_img_extents);
2150 	if (ret)
2151 		return ret;
2152 
2153 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154 		      rbd_dev->parent_overlap);
2155 	return 0;
2156 }
2157 
2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159 {
2160 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2161 
2162 	switch (obj_req->img_request->data_type) {
2163 	case OBJ_REQUEST_BIO:
2164 		osd_req_op_extent_osd_data_bio(osd_req, which,
2165 					       &obj_req->bio_pos,
2166 					       obj_req->ex.oe_len);
2167 		break;
2168 	case OBJ_REQUEST_BVECS:
2169 	case OBJ_REQUEST_OWN_BVECS:
2170 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171 							obj_req->ex.oe_len);
2172 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174 						    &obj_req->bvec_pos);
2175 		break;
2176 	default:
2177 		BUG();
2178 	}
2179 }
2180 
2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182 {
2183 	struct page **pages;
2184 
2185 	/*
2186 	 * The response data for a STAT call consists of:
2187 	 *     le64 length;
2188 	 *     struct {
2189 	 *         le32 tv_sec;
2190 	 *         le32 tv_nsec;
2191 	 *     } mtime;
2192 	 */
2193 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194 	if (IS_ERR(pages))
2195 		return PTR_ERR(pages);
2196 
2197 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199 				     8 + sizeof(struct ceph_timespec),
2200 				     0, false, true);
2201 	return 0;
2202 }
2203 
2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205 				u32 bytes)
2206 {
2207 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2208 	int ret;
2209 
2210 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211 	if (ret)
2212 		return ret;
2213 
2214 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215 					  obj_req->copyup_bvec_count, bytes);
2216 	return 0;
2217 }
2218 
2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220 {
2221 	obj_req->read_state = RBD_OBJ_READ_START;
2222 	return 0;
2223 }
2224 
2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226 				      int which)
2227 {
2228 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2229 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230 	u16 opcode;
2231 
2232 	if (!use_object_map(rbd_dev) ||
2233 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234 		osd_req_op_alloc_hint_init(osd_req, which++,
2235 					   rbd_dev->layout.object_size,
2236 					   rbd_dev->layout.object_size,
2237 					   rbd_dev->opts->alloc_hint_flags);
2238 	}
2239 
2240 	if (rbd_obj_is_entire(obj_req))
2241 		opcode = CEPH_OSD_OP_WRITEFULL;
2242 	else
2243 		opcode = CEPH_OSD_OP_WRITE;
2244 
2245 	osd_req_op_extent_init(osd_req, which, opcode,
2246 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247 	rbd_osd_setup_data(osd_req, which);
2248 }
2249 
2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251 {
2252 	int ret;
2253 
2254 	/* reverse map the entire object onto the parent */
2255 	ret = rbd_obj_calc_img_extents(obj_req, true);
2256 	if (ret)
2257 		return ret;
2258 
2259 	obj_req->write_state = RBD_OBJ_WRITE_START;
2260 	return 0;
2261 }
2262 
2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264 {
2265 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266 					  CEPH_OSD_OP_ZERO;
2267 }
2268 
2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270 					int which)
2271 {
2272 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2273 
2274 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277 	} else {
2278 		osd_req_op_extent_init(osd_req, which,
2279 				       truncate_or_zero_opcode(obj_req),
2280 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2281 				       0, 0);
2282 	}
2283 }
2284 
2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286 {
2287 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288 	u64 off, next_off;
2289 	int ret;
2290 
2291 	/*
2292 	 * Align the range to alloc_size boundary and punt on discards
2293 	 * that are too small to free up any space.
2294 	 *
2295 	 * alloc_size == object_size && is_tail() is a special case for
2296 	 * filestore with filestore_punch_hole = false, needed to allow
2297 	 * truncate (in addition to delete).
2298 	 */
2299 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300 	    !rbd_obj_is_tail(obj_req)) {
2301 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303 				      rbd_dev->opts->alloc_size);
2304 		if (off >= next_off)
2305 			return 1;
2306 
2307 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309 		     off, next_off - off);
2310 		obj_req->ex.oe_off = off;
2311 		obj_req->ex.oe_len = next_off - off;
2312 	}
2313 
2314 	/* reverse map the entire object onto the parent */
2315 	ret = rbd_obj_calc_img_extents(obj_req, true);
2316 	if (ret)
2317 		return ret;
2318 
2319 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322 
2323 	obj_req->write_state = RBD_OBJ_WRITE_START;
2324 	return 0;
2325 }
2326 
2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328 					int which)
2329 {
2330 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2331 	u16 opcode;
2332 
2333 	if (rbd_obj_is_entire(obj_req)) {
2334 		if (obj_req->num_img_extents) {
2335 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336 				osd_req_op_init(osd_req, which++,
2337 						CEPH_OSD_OP_CREATE, 0);
2338 			opcode = CEPH_OSD_OP_TRUNCATE;
2339 		} else {
2340 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341 			osd_req_op_init(osd_req, which++,
2342 					CEPH_OSD_OP_DELETE, 0);
2343 			opcode = 0;
2344 		}
2345 	} else {
2346 		opcode = truncate_or_zero_opcode(obj_req);
2347 	}
2348 
2349 	if (opcode)
2350 		osd_req_op_extent_init(osd_req, which, opcode,
2351 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 				       0, 0);
2353 }
2354 
2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356 {
2357 	int ret;
2358 
2359 	/* reverse map the entire object onto the parent */
2360 	ret = rbd_obj_calc_img_extents(obj_req, true);
2361 	if (ret)
2362 		return ret;
2363 
2364 	if (!obj_req->num_img_extents) {
2365 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366 		if (rbd_obj_is_entire(obj_req))
2367 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368 	}
2369 
2370 	obj_req->write_state = RBD_OBJ_WRITE_START;
2371 	return 0;
2372 }
2373 
2374 static int count_write_ops(struct rbd_obj_request *obj_req)
2375 {
2376 	struct rbd_img_request *img_req = obj_req->img_request;
2377 
2378 	switch (img_req->op_type) {
2379 	case OBJ_OP_WRITE:
2380 		if (!use_object_map(img_req->rbd_dev) ||
2381 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382 			return 2; /* setallochint + write/writefull */
2383 
2384 		return 1; /* write/writefull */
2385 	case OBJ_OP_DISCARD:
2386 		return 1; /* delete/truncate/zero */
2387 	case OBJ_OP_ZEROOUT:
2388 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390 			return 2; /* create + truncate */
2391 
2392 		return 1; /* delete/truncate/zero */
2393 	default:
2394 		BUG();
2395 	}
2396 }
2397 
2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399 				    int which)
2400 {
2401 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2402 
2403 	switch (obj_req->img_request->op_type) {
2404 	case OBJ_OP_WRITE:
2405 		__rbd_osd_setup_write_ops(osd_req, which);
2406 		break;
2407 	case OBJ_OP_DISCARD:
2408 		__rbd_osd_setup_discard_ops(osd_req, which);
2409 		break;
2410 	case OBJ_OP_ZEROOUT:
2411 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2412 		break;
2413 	default:
2414 		BUG();
2415 	}
2416 }
2417 
2418 /*
2419  * Prune the list of object requests (adjust offset and/or length, drop
2420  * redundant requests).  Prepare object request state machines and image
2421  * request state machine for execution.
2422  */
2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424 {
2425 	struct rbd_obj_request *obj_req, *next_obj_req;
2426 	int ret;
2427 
2428 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429 		switch (img_req->op_type) {
2430 		case OBJ_OP_READ:
2431 			ret = rbd_obj_init_read(obj_req);
2432 			break;
2433 		case OBJ_OP_WRITE:
2434 			ret = rbd_obj_init_write(obj_req);
2435 			break;
2436 		case OBJ_OP_DISCARD:
2437 			ret = rbd_obj_init_discard(obj_req);
2438 			break;
2439 		case OBJ_OP_ZEROOUT:
2440 			ret = rbd_obj_init_zeroout(obj_req);
2441 			break;
2442 		default:
2443 			BUG();
2444 		}
2445 		if (ret < 0)
2446 			return ret;
2447 		if (ret > 0) {
2448 			rbd_img_obj_request_del(img_req, obj_req);
2449 			continue;
2450 		}
2451 	}
2452 
2453 	img_req->state = RBD_IMG_START;
2454 	return 0;
2455 }
2456 
2457 union rbd_img_fill_iter {
2458 	struct ceph_bio_iter	bio_iter;
2459 	struct ceph_bvec_iter	bvec_iter;
2460 };
2461 
2462 struct rbd_img_fill_ctx {
2463 	enum obj_request_type	pos_type;
2464 	union rbd_img_fill_iter	*pos;
2465 	union rbd_img_fill_iter	iter;
2466 	ceph_object_extent_fn_t	set_pos_fn;
2467 	ceph_object_extent_fn_t	count_fn;
2468 	ceph_object_extent_fn_t	copy_fn;
2469 };
2470 
2471 static struct ceph_object_extent *alloc_object_extent(void *arg)
2472 {
2473 	struct rbd_img_request *img_req = arg;
2474 	struct rbd_obj_request *obj_req;
2475 
2476 	obj_req = rbd_obj_request_create();
2477 	if (!obj_req)
2478 		return NULL;
2479 
2480 	rbd_img_obj_request_add(img_req, obj_req);
2481 	return &obj_req->ex;
2482 }
2483 
2484 /*
2485  * While su != os && sc == 1 is technically not fancy (it's the same
2486  * layout as su == os && sc == 1), we can't use the nocopy path for it
2487  * because ->set_pos_fn() should be called only once per object.
2488  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489  * treat su != os && sc == 1 as fancy.
2490  */
2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492 {
2493 	return l->stripe_unit != l->object_size;
2494 }
2495 
2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497 				       struct ceph_file_extent *img_extents,
2498 				       u32 num_img_extents,
2499 				       struct rbd_img_fill_ctx *fctx)
2500 {
2501 	u32 i;
2502 	int ret;
2503 
2504 	img_req->data_type = fctx->pos_type;
2505 
2506 	/*
2507 	 * Create object requests and set each object request's starting
2508 	 * position in the provided bio (list) or bio_vec array.
2509 	 */
2510 	fctx->iter = *fctx->pos;
2511 	for (i = 0; i < num_img_extents; i++) {
2512 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513 					   img_extents[i].fe_off,
2514 					   img_extents[i].fe_len,
2515 					   &img_req->object_extents,
2516 					   alloc_object_extent, img_req,
2517 					   fctx->set_pos_fn, &fctx->iter);
2518 		if (ret)
2519 			return ret;
2520 	}
2521 
2522 	return __rbd_img_fill_request(img_req);
2523 }
2524 
2525 /*
2526  * Map a list of image extents to a list of object extents, create the
2527  * corresponding object requests (normally each to a different object,
2528  * but not always) and add them to @img_req.  For each object request,
2529  * set up its data descriptor to point to the corresponding chunk(s) of
2530  * @fctx->pos data buffer.
2531  *
2532  * Because ceph_file_to_extents() will merge adjacent object extents
2533  * together, each object request's data descriptor may point to multiple
2534  * different chunks of @fctx->pos data buffer.
2535  *
2536  * @fctx->pos data buffer is assumed to be large enough.
2537  */
2538 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539 				struct ceph_file_extent *img_extents,
2540 				u32 num_img_extents,
2541 				struct rbd_img_fill_ctx *fctx)
2542 {
2543 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2544 	struct rbd_obj_request *obj_req;
2545 	u32 i;
2546 	int ret;
2547 
2548 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2550 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2551 						   num_img_extents, fctx);
2552 
2553 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554 
2555 	/*
2556 	 * Create object requests and determine ->bvec_count for each object
2557 	 * request.  Note that ->bvec_count sum over all object requests may
2558 	 * be greater than the number of bio_vecs in the provided bio (list)
2559 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2560 	 * stripe unit boundaries.
2561 	 */
2562 	fctx->iter = *fctx->pos;
2563 	for (i = 0; i < num_img_extents; i++) {
2564 		ret = ceph_file_to_extents(&rbd_dev->layout,
2565 					   img_extents[i].fe_off,
2566 					   img_extents[i].fe_len,
2567 					   &img_req->object_extents,
2568 					   alloc_object_extent, img_req,
2569 					   fctx->count_fn, &fctx->iter);
2570 		if (ret)
2571 			return ret;
2572 	}
2573 
2574 	for_each_obj_request(img_req, obj_req) {
2575 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576 					      sizeof(*obj_req->bvec_pos.bvecs),
2577 					      GFP_NOIO);
2578 		if (!obj_req->bvec_pos.bvecs)
2579 			return -ENOMEM;
2580 	}
2581 
2582 	/*
2583 	 * Fill in each object request's private bio_vec array, splitting and
2584 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585 	 */
2586 	fctx->iter = *fctx->pos;
2587 	for (i = 0; i < num_img_extents; i++) {
2588 		ret = ceph_iterate_extents(&rbd_dev->layout,
2589 					   img_extents[i].fe_off,
2590 					   img_extents[i].fe_len,
2591 					   &img_req->object_extents,
2592 					   fctx->copy_fn, &fctx->iter);
2593 		if (ret)
2594 			return ret;
2595 	}
2596 
2597 	return __rbd_img_fill_request(img_req);
2598 }
2599 
2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601 			       u64 off, u64 len)
2602 {
2603 	struct ceph_file_extent ex = { off, len };
2604 	union rbd_img_fill_iter dummy = {};
2605 	struct rbd_img_fill_ctx fctx = {
2606 		.pos_type = OBJ_REQUEST_NODATA,
2607 		.pos = &dummy,
2608 	};
2609 
2610 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611 }
2612 
2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614 {
2615 	struct rbd_obj_request *obj_req =
2616 	    container_of(ex, struct rbd_obj_request, ex);
2617 	struct ceph_bio_iter *it = arg;
2618 
2619 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620 	obj_req->bio_pos = *it;
2621 	ceph_bio_iter_advance(it, bytes);
2622 }
2623 
2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625 {
2626 	struct rbd_obj_request *obj_req =
2627 	    container_of(ex, struct rbd_obj_request, ex);
2628 	struct ceph_bio_iter *it = arg;
2629 
2630 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631 	ceph_bio_iter_advance_step(it, bytes, ({
2632 		obj_req->bvec_count++;
2633 	}));
2634 
2635 }
2636 
2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639 	struct rbd_obj_request *obj_req =
2640 	    container_of(ex, struct rbd_obj_request, ex);
2641 	struct ceph_bio_iter *it = arg;
2642 
2643 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 	ceph_bio_iter_advance_step(it, bytes, ({
2645 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647 	}));
2648 }
2649 
2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651 				   struct ceph_file_extent *img_extents,
2652 				   u32 num_img_extents,
2653 				   struct ceph_bio_iter *bio_pos)
2654 {
2655 	struct rbd_img_fill_ctx fctx = {
2656 		.pos_type = OBJ_REQUEST_BIO,
2657 		.pos = (union rbd_img_fill_iter *)bio_pos,
2658 		.set_pos_fn = set_bio_pos,
2659 		.count_fn = count_bio_bvecs,
2660 		.copy_fn = copy_bio_bvecs,
2661 	};
2662 
2663 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664 				    &fctx);
2665 }
2666 
2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668 				 u64 off, u64 len, struct bio *bio)
2669 {
2670 	struct ceph_file_extent ex = { off, len };
2671 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672 
2673 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674 }
2675 
2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678 	struct rbd_obj_request *obj_req =
2679 	    container_of(ex, struct rbd_obj_request, ex);
2680 	struct ceph_bvec_iter *it = arg;
2681 
2682 	obj_req->bvec_pos = *it;
2683 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684 	ceph_bvec_iter_advance(it, bytes);
2685 }
2686 
2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689 	struct rbd_obj_request *obj_req =
2690 	    container_of(ex, struct rbd_obj_request, ex);
2691 	struct ceph_bvec_iter *it = arg;
2692 
2693 	ceph_bvec_iter_advance_step(it, bytes, ({
2694 		obj_req->bvec_count++;
2695 	}));
2696 }
2697 
2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700 	struct rbd_obj_request *obj_req =
2701 	    container_of(ex, struct rbd_obj_request, ex);
2702 	struct ceph_bvec_iter *it = arg;
2703 
2704 	ceph_bvec_iter_advance_step(it, bytes, ({
2705 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707 	}));
2708 }
2709 
2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711 				     struct ceph_file_extent *img_extents,
2712 				     u32 num_img_extents,
2713 				     struct ceph_bvec_iter *bvec_pos)
2714 {
2715 	struct rbd_img_fill_ctx fctx = {
2716 		.pos_type = OBJ_REQUEST_BVECS,
2717 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2718 		.set_pos_fn = set_bvec_pos,
2719 		.count_fn = count_bvecs,
2720 		.copy_fn = copy_bvecs,
2721 	};
2722 
2723 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724 				    &fctx);
2725 }
2726 
2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728 				   struct ceph_file_extent *img_extents,
2729 				   u32 num_img_extents,
2730 				   struct bio_vec *bvecs)
2731 {
2732 	struct ceph_bvec_iter it = {
2733 		.bvecs = bvecs,
2734 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735 							     num_img_extents) },
2736 	};
2737 
2738 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739 					 &it);
2740 }
2741 
2742 static void rbd_img_handle_request_work(struct work_struct *work)
2743 {
2744 	struct rbd_img_request *img_req =
2745 	    container_of(work, struct rbd_img_request, work);
2746 
2747 	rbd_img_handle_request(img_req, img_req->work_result);
2748 }
2749 
2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751 {
2752 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753 	img_req->work_result = result;
2754 	queue_work(rbd_wq, &img_req->work);
2755 }
2756 
2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758 {
2759 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760 
2761 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763 		return true;
2764 	}
2765 
2766 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767 	     obj_req->ex.oe_objno);
2768 	return false;
2769 }
2770 
2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772 {
2773 	struct ceph_osd_request *osd_req;
2774 	int ret;
2775 
2776 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777 	if (IS_ERR(osd_req))
2778 		return PTR_ERR(osd_req);
2779 
2780 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782 	rbd_osd_setup_data(osd_req, 0);
2783 	rbd_osd_format_read(osd_req);
2784 
2785 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786 	if (ret)
2787 		return ret;
2788 
2789 	rbd_osd_submit(osd_req);
2790 	return 0;
2791 }
2792 
2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794 {
2795 	struct rbd_img_request *img_req = obj_req->img_request;
2796 	struct rbd_device *parent = img_req->rbd_dev->parent;
2797 	struct rbd_img_request *child_img_req;
2798 	int ret;
2799 
2800 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801 	if (!child_img_req)
2802 		return -ENOMEM;
2803 
2804 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806 	child_img_req->obj_request = obj_req;
2807 
2808 	down_read(&parent->header_rwsem);
2809 	rbd_img_capture_header(child_img_req);
2810 	up_read(&parent->header_rwsem);
2811 
2812 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813 	     obj_req);
2814 
2815 	if (!rbd_img_is_write(img_req)) {
2816 		switch (img_req->data_type) {
2817 		case OBJ_REQUEST_BIO:
2818 			ret = __rbd_img_fill_from_bio(child_img_req,
2819 						      obj_req->img_extents,
2820 						      obj_req->num_img_extents,
2821 						      &obj_req->bio_pos);
2822 			break;
2823 		case OBJ_REQUEST_BVECS:
2824 		case OBJ_REQUEST_OWN_BVECS:
2825 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2826 						      obj_req->img_extents,
2827 						      obj_req->num_img_extents,
2828 						      &obj_req->bvec_pos);
2829 			break;
2830 		default:
2831 			BUG();
2832 		}
2833 	} else {
2834 		ret = rbd_img_fill_from_bvecs(child_img_req,
2835 					      obj_req->img_extents,
2836 					      obj_req->num_img_extents,
2837 					      obj_req->copyup_bvecs);
2838 	}
2839 	if (ret) {
2840 		rbd_img_request_destroy(child_img_req);
2841 		return ret;
2842 	}
2843 
2844 	/* avoid parent chain recursion */
2845 	rbd_img_schedule(child_img_req, 0);
2846 	return 0;
2847 }
2848 
2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850 {
2851 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852 	int ret;
2853 
2854 again:
2855 	switch (obj_req->read_state) {
2856 	case RBD_OBJ_READ_START:
2857 		rbd_assert(!*result);
2858 
2859 		if (!rbd_obj_may_exist(obj_req)) {
2860 			*result = -ENOENT;
2861 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862 			goto again;
2863 		}
2864 
2865 		ret = rbd_obj_read_object(obj_req);
2866 		if (ret) {
2867 			*result = ret;
2868 			return true;
2869 		}
2870 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871 		return false;
2872 	case RBD_OBJ_READ_OBJECT:
2873 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874 			/* reverse map this object extent onto the parent */
2875 			ret = rbd_obj_calc_img_extents(obj_req, false);
2876 			if (ret) {
2877 				*result = ret;
2878 				return true;
2879 			}
2880 			if (obj_req->num_img_extents) {
2881 				ret = rbd_obj_read_from_parent(obj_req);
2882 				if (ret) {
2883 					*result = ret;
2884 					return true;
2885 				}
2886 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2887 				return false;
2888 			}
2889 		}
2890 
2891 		/*
2892 		 * -ENOENT means a hole in the image -- zero-fill the entire
2893 		 * length of the request.  A short read also implies zero-fill
2894 		 * to the end of the request.
2895 		 */
2896 		if (*result == -ENOENT) {
2897 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898 			*result = 0;
2899 		} else if (*result >= 0) {
2900 			if (*result < obj_req->ex.oe_len)
2901 				rbd_obj_zero_range(obj_req, *result,
2902 						obj_req->ex.oe_len - *result);
2903 			else
2904 				rbd_assert(*result == obj_req->ex.oe_len);
2905 			*result = 0;
2906 		}
2907 		return true;
2908 	case RBD_OBJ_READ_PARENT:
2909 		/*
2910 		 * The parent image is read only up to the overlap -- zero-fill
2911 		 * from the overlap to the end of the request.
2912 		 */
2913 		if (!*result) {
2914 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915 
2916 			if (obj_overlap < obj_req->ex.oe_len)
2917 				rbd_obj_zero_range(obj_req, obj_overlap,
2918 					    obj_req->ex.oe_len - obj_overlap);
2919 		}
2920 		return true;
2921 	default:
2922 		BUG();
2923 	}
2924 }
2925 
2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927 {
2928 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929 
2930 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932 
2933 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936 		return true;
2937 	}
2938 
2939 	return false;
2940 }
2941 
2942 /*
2943  * Return:
2944  *   0 - object map update sent
2945  *   1 - object map update isn't needed
2946  *  <0 - error
2947  */
2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949 {
2950 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951 	u8 new_state;
2952 
2953 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954 		return 1;
2955 
2956 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957 		new_state = OBJECT_PENDING;
2958 	else
2959 		new_state = OBJECT_EXISTS;
2960 
2961 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962 }
2963 
2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965 {
2966 	struct ceph_osd_request *osd_req;
2967 	int num_ops = count_write_ops(obj_req);
2968 	int which = 0;
2969 	int ret;
2970 
2971 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972 		num_ops++; /* stat */
2973 
2974 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975 	if (IS_ERR(osd_req))
2976 		return PTR_ERR(osd_req);
2977 
2978 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979 		ret = rbd_osd_setup_stat(osd_req, which++);
2980 		if (ret)
2981 			return ret;
2982 	}
2983 
2984 	rbd_osd_setup_write_ops(osd_req, which);
2985 	rbd_osd_format_write(osd_req);
2986 
2987 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988 	if (ret)
2989 		return ret;
2990 
2991 	rbd_osd_submit(osd_req);
2992 	return 0;
2993 }
2994 
2995 /*
2996  * copyup_bvecs pages are never highmem pages
2997  */
2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999 {
3000 	struct ceph_bvec_iter it = {
3001 		.bvecs = bvecs,
3002 		.iter = { .bi_size = bytes },
3003 	};
3004 
3005 	ceph_bvec_iter_advance_step(&it, bytes, ({
3006 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007 			return false;
3008 	}));
3009 	return true;
3010 }
3011 
3012 #define MODS_ONLY	U32_MAX
3013 
3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015 				      u32 bytes)
3016 {
3017 	struct ceph_osd_request *osd_req;
3018 	int ret;
3019 
3020 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022 
3023 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024 	if (IS_ERR(osd_req))
3025 		return PTR_ERR(osd_req);
3026 
3027 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028 	if (ret)
3029 		return ret;
3030 
3031 	rbd_osd_format_write(osd_req);
3032 
3033 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034 	if (ret)
3035 		return ret;
3036 
3037 	rbd_osd_submit(osd_req);
3038 	return 0;
3039 }
3040 
3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042 					u32 bytes)
3043 {
3044 	struct ceph_osd_request *osd_req;
3045 	int num_ops = count_write_ops(obj_req);
3046 	int which = 0;
3047 	int ret;
3048 
3049 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050 
3051 	if (bytes != MODS_ONLY)
3052 		num_ops++; /* copyup */
3053 
3054 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055 	if (IS_ERR(osd_req))
3056 		return PTR_ERR(osd_req);
3057 
3058 	if (bytes != MODS_ONLY) {
3059 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060 		if (ret)
3061 			return ret;
3062 	}
3063 
3064 	rbd_osd_setup_write_ops(osd_req, which);
3065 	rbd_osd_format_write(osd_req);
3066 
3067 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068 	if (ret)
3069 		return ret;
3070 
3071 	rbd_osd_submit(osd_req);
3072 	return 0;
3073 }
3074 
3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076 {
3077 	u32 i;
3078 
3079 	rbd_assert(!obj_req->copyup_bvecs);
3080 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082 					sizeof(*obj_req->copyup_bvecs),
3083 					GFP_NOIO);
3084 	if (!obj_req->copyup_bvecs)
3085 		return -ENOMEM;
3086 
3087 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089 		struct page *page = alloc_page(GFP_NOIO);
3090 
3091 		if (!page)
3092 			return -ENOMEM;
3093 
3094 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095 		obj_overlap -= len;
3096 	}
3097 
3098 	rbd_assert(!obj_overlap);
3099 	return 0;
3100 }
3101 
3102 /*
3103  * The target object doesn't exist.  Read the data for the entire
3104  * target object up to the overlap point (if any) from the parent,
3105  * so we can use it for a copyup.
3106  */
3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108 {
3109 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110 	int ret;
3111 
3112 	rbd_assert(obj_req->num_img_extents);
3113 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114 		      rbd_dev->parent_overlap);
3115 	if (!obj_req->num_img_extents) {
3116 		/*
3117 		 * The overlap has become 0 (most likely because the
3118 		 * image has been flattened).  Re-submit the original write
3119 		 * request -- pass MODS_ONLY since the copyup isn't needed
3120 		 * anymore.
3121 		 */
3122 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123 	}
3124 
3125 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126 	if (ret)
3127 		return ret;
3128 
3129 	return rbd_obj_read_from_parent(obj_req);
3130 }
3131 
3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133 {
3134 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136 	u8 new_state;
3137 	u32 i;
3138 	int ret;
3139 
3140 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141 
3142 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143 		return;
3144 
3145 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146 		return;
3147 
3148 	for (i = 0; i < snapc->num_snaps; i++) {
3149 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150 		    i + 1 < snapc->num_snaps)
3151 			new_state = OBJECT_EXISTS_CLEAN;
3152 		else
3153 			new_state = OBJECT_EXISTS;
3154 
3155 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156 					    new_state, NULL);
3157 		if (ret < 0) {
3158 			obj_req->pending.result = ret;
3159 			return;
3160 		}
3161 
3162 		rbd_assert(!ret);
3163 		obj_req->pending.num_pending++;
3164 	}
3165 }
3166 
3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168 {
3169 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170 	int ret;
3171 
3172 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173 
3174 	/*
3175 	 * Only send non-zero copyup data to save some I/O and network
3176 	 * bandwidth -- zero copyup data is equivalent to the object not
3177 	 * existing.
3178 	 */
3179 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180 		bytes = 0;
3181 
3182 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183 		/*
3184 		 * Send a copyup request with an empty snapshot context to
3185 		 * deep-copyup the object through all existing snapshots.
3186 		 * A second request with the current snapshot context will be
3187 		 * sent for the actual modification.
3188 		 */
3189 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190 		if (ret) {
3191 			obj_req->pending.result = ret;
3192 			return;
3193 		}
3194 
3195 		obj_req->pending.num_pending++;
3196 		bytes = MODS_ONLY;
3197 	}
3198 
3199 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200 	if (ret) {
3201 		obj_req->pending.result = ret;
3202 		return;
3203 	}
3204 
3205 	obj_req->pending.num_pending++;
3206 }
3207 
3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209 {
3210 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211 	int ret;
3212 
3213 again:
3214 	switch (obj_req->copyup_state) {
3215 	case RBD_OBJ_COPYUP_START:
3216 		rbd_assert(!*result);
3217 
3218 		ret = rbd_obj_copyup_read_parent(obj_req);
3219 		if (ret) {
3220 			*result = ret;
3221 			return true;
3222 		}
3223 		if (obj_req->num_img_extents)
3224 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225 		else
3226 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227 		return false;
3228 	case RBD_OBJ_COPYUP_READ_PARENT:
3229 		if (*result)
3230 			return true;
3231 
3232 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3233 				  rbd_obj_img_extents_bytes(obj_req))) {
3234 			dout("%s %p detected zeros\n", __func__, obj_req);
3235 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236 		}
3237 
3238 		rbd_obj_copyup_object_maps(obj_req);
3239 		if (!obj_req->pending.num_pending) {
3240 			*result = obj_req->pending.result;
3241 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 			goto again;
3243 		}
3244 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245 		return false;
3246 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 		if (!pending_result_dec(&obj_req->pending, result))
3248 			return false;
3249 		fallthrough;
3250 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251 		if (*result) {
3252 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3253 				 *result);
3254 			return true;
3255 		}
3256 
3257 		rbd_obj_copyup_write_object(obj_req);
3258 		if (!obj_req->pending.num_pending) {
3259 			*result = obj_req->pending.result;
3260 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 			goto again;
3262 		}
3263 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264 		return false;
3265 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 		if (!pending_result_dec(&obj_req->pending, result))
3267 			return false;
3268 		fallthrough;
3269 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270 		return true;
3271 	default:
3272 		BUG();
3273 	}
3274 }
3275 
3276 /*
3277  * Return:
3278  *   0 - object map update sent
3279  *   1 - object map update isn't needed
3280  *  <0 - error
3281  */
3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283 {
3284 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285 	u8 current_state = OBJECT_PENDING;
3286 
3287 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288 		return 1;
3289 
3290 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291 		return 1;
3292 
3293 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294 				     &current_state);
3295 }
3296 
3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298 {
3299 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300 	int ret;
3301 
3302 again:
3303 	switch (obj_req->write_state) {
3304 	case RBD_OBJ_WRITE_START:
3305 		rbd_assert(!*result);
3306 
3307 		rbd_obj_set_copyup_enabled(obj_req);
3308 		if (rbd_obj_write_is_noop(obj_req))
3309 			return true;
3310 
3311 		ret = rbd_obj_write_pre_object_map(obj_req);
3312 		if (ret < 0) {
3313 			*result = ret;
3314 			return true;
3315 		}
3316 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317 		if (ret > 0)
3318 			goto again;
3319 		return false;
3320 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321 		if (*result) {
3322 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3323 				 *result);
3324 			return true;
3325 		}
3326 		ret = rbd_obj_write_object(obj_req);
3327 		if (ret) {
3328 			*result = ret;
3329 			return true;
3330 		}
3331 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332 		return false;
3333 	case RBD_OBJ_WRITE_OBJECT:
3334 		if (*result == -ENOENT) {
3335 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336 				*result = 0;
3337 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339 				goto again;
3340 			}
3341 			/*
3342 			 * On a non-existent object:
3343 			 *   delete - -ENOENT, truncate/zero - 0
3344 			 */
3345 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346 				*result = 0;
3347 		}
3348 		if (*result)
3349 			return true;
3350 
3351 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352 		goto again;
3353 	case __RBD_OBJ_WRITE_COPYUP:
3354 		if (!rbd_obj_advance_copyup(obj_req, result))
3355 			return false;
3356 		fallthrough;
3357 	case RBD_OBJ_WRITE_COPYUP:
3358 		if (*result) {
3359 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360 			return true;
3361 		}
3362 		ret = rbd_obj_write_post_object_map(obj_req);
3363 		if (ret < 0) {
3364 			*result = ret;
3365 			return true;
3366 		}
3367 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368 		if (ret > 0)
3369 			goto again;
3370 		return false;
3371 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372 		if (*result)
3373 			rbd_warn(rbd_dev, "post object map update failed: %d",
3374 				 *result);
3375 		return true;
3376 	default:
3377 		BUG();
3378 	}
3379 }
3380 
3381 /*
3382  * Return true if @obj_req is completed.
3383  */
3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385 				     int *result)
3386 {
3387 	struct rbd_img_request *img_req = obj_req->img_request;
3388 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3389 	bool done;
3390 
3391 	mutex_lock(&obj_req->state_mutex);
3392 	if (!rbd_img_is_write(img_req))
3393 		done = rbd_obj_advance_read(obj_req, result);
3394 	else
3395 		done = rbd_obj_advance_write(obj_req, result);
3396 	mutex_unlock(&obj_req->state_mutex);
3397 
3398 	if (done && *result) {
3399 		rbd_assert(*result < 0);
3400 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403 	}
3404 	return done;
3405 }
3406 
3407 /*
3408  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409  * recursion.
3410  */
3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412 {
3413 	if (__rbd_obj_handle_request(obj_req, &result))
3414 		rbd_img_handle_request(obj_req->img_request, result);
3415 }
3416 
3417 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418 {
3419 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3420 
3421 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422 		return false;
3423 
3424 	if (rbd_is_ro(rbd_dev))
3425 		return false;
3426 
3427 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428 	if (rbd_dev->opts->lock_on_read ||
3429 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430 		return true;
3431 
3432 	return rbd_img_is_write(img_req);
3433 }
3434 
3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436 {
3437 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3438 	bool locked;
3439 
3440 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3441 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442 	spin_lock(&rbd_dev->lock_lists_lock);
3443 	rbd_assert(list_empty(&img_req->lock_item));
3444 	if (!locked)
3445 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446 	else
3447 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448 	spin_unlock(&rbd_dev->lock_lists_lock);
3449 	return locked;
3450 }
3451 
3452 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453 {
3454 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3455 	bool need_wakeup = false;
3456 
3457 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3458 	spin_lock(&rbd_dev->lock_lists_lock);
3459 	if (!list_empty(&img_req->lock_item)) {
3460 		list_del_init(&img_req->lock_item);
3461 		need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3462 			       list_empty(&rbd_dev->running_list));
3463 	}
3464 	spin_unlock(&rbd_dev->lock_lists_lock);
3465 	if (need_wakeup)
3466 		complete(&rbd_dev->releasing_wait);
3467 }
3468 
3469 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3470 {
3471 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3472 
3473 	if (!need_exclusive_lock(img_req))
3474 		return 1;
3475 
3476 	if (rbd_lock_add_request(img_req))
3477 		return 1;
3478 
3479 	if (rbd_dev->opts->exclusive) {
3480 		WARN_ON(1); /* lock got released? */
3481 		return -EROFS;
3482 	}
3483 
3484 	/*
3485 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3486 	 * and cancel_delayed_work() in wake_lock_waiters().
3487 	 */
3488 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3489 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3490 	return 0;
3491 }
3492 
3493 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3494 {
3495 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3496 	struct rbd_obj_request *obj_req;
3497 
3498 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3499 	rbd_assert(!need_exclusive_lock(img_req) ||
3500 		   __rbd_is_lock_owner(rbd_dev));
3501 
3502 	if (rbd_img_is_write(img_req)) {
3503 		rbd_assert(!img_req->snapc);
3504 		down_read(&rbd_dev->header_rwsem);
3505 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3506 		up_read(&rbd_dev->header_rwsem);
3507 	}
3508 
3509 	for_each_obj_request(img_req, obj_req) {
3510 		int result = 0;
3511 
3512 		if (__rbd_obj_handle_request(obj_req, &result)) {
3513 			if (result) {
3514 				img_req->pending.result = result;
3515 				return;
3516 			}
3517 		} else {
3518 			img_req->pending.num_pending++;
3519 		}
3520 	}
3521 }
3522 
3523 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3524 {
3525 	int ret;
3526 
3527 again:
3528 	switch (img_req->state) {
3529 	case RBD_IMG_START:
3530 		rbd_assert(!*result);
3531 
3532 		ret = rbd_img_exclusive_lock(img_req);
3533 		if (ret < 0) {
3534 			*result = ret;
3535 			return true;
3536 		}
3537 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3538 		if (ret > 0)
3539 			goto again;
3540 		return false;
3541 	case RBD_IMG_EXCLUSIVE_LOCK:
3542 		if (*result)
3543 			return true;
3544 
3545 		rbd_img_object_requests(img_req);
3546 		if (!img_req->pending.num_pending) {
3547 			*result = img_req->pending.result;
3548 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3549 			goto again;
3550 		}
3551 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3552 		return false;
3553 	case __RBD_IMG_OBJECT_REQUESTS:
3554 		if (!pending_result_dec(&img_req->pending, result))
3555 			return false;
3556 		fallthrough;
3557 	case RBD_IMG_OBJECT_REQUESTS:
3558 		return true;
3559 	default:
3560 		BUG();
3561 	}
3562 }
3563 
3564 /*
3565  * Return true if @img_req is completed.
3566  */
3567 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3568 				     int *result)
3569 {
3570 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3571 	bool done;
3572 
3573 	if (need_exclusive_lock(img_req)) {
3574 		down_read(&rbd_dev->lock_rwsem);
3575 		mutex_lock(&img_req->state_mutex);
3576 		done = rbd_img_advance(img_req, result);
3577 		if (done)
3578 			rbd_lock_del_request(img_req);
3579 		mutex_unlock(&img_req->state_mutex);
3580 		up_read(&rbd_dev->lock_rwsem);
3581 	} else {
3582 		mutex_lock(&img_req->state_mutex);
3583 		done = rbd_img_advance(img_req, result);
3584 		mutex_unlock(&img_req->state_mutex);
3585 	}
3586 
3587 	if (done && *result) {
3588 		rbd_assert(*result < 0);
3589 		rbd_warn(rbd_dev, "%s%s result %d",
3590 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3591 		      obj_op_name(img_req->op_type), *result);
3592 	}
3593 	return done;
3594 }
3595 
3596 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3597 {
3598 again:
3599 	if (!__rbd_img_handle_request(img_req, &result))
3600 		return;
3601 
3602 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3603 		struct rbd_obj_request *obj_req = img_req->obj_request;
3604 
3605 		rbd_img_request_destroy(img_req);
3606 		if (__rbd_obj_handle_request(obj_req, &result)) {
3607 			img_req = obj_req->img_request;
3608 			goto again;
3609 		}
3610 	} else {
3611 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3612 
3613 		rbd_img_request_destroy(img_req);
3614 		blk_mq_end_request(rq, errno_to_blk_status(result));
3615 	}
3616 }
3617 
3618 static const struct rbd_client_id rbd_empty_cid;
3619 
3620 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3621 			  const struct rbd_client_id *rhs)
3622 {
3623 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3624 }
3625 
3626 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3627 {
3628 	struct rbd_client_id cid;
3629 
3630 	mutex_lock(&rbd_dev->watch_mutex);
3631 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3632 	cid.handle = rbd_dev->watch_cookie;
3633 	mutex_unlock(&rbd_dev->watch_mutex);
3634 	return cid;
3635 }
3636 
3637 /*
3638  * lock_rwsem must be held for write
3639  */
3640 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3641 			      const struct rbd_client_id *cid)
3642 {
3643 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3644 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3645 	     cid->gid, cid->handle);
3646 	rbd_dev->owner_cid = *cid; /* struct */
3647 }
3648 
3649 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3650 {
3651 	mutex_lock(&rbd_dev->watch_mutex);
3652 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3653 	mutex_unlock(&rbd_dev->watch_mutex);
3654 }
3655 
3656 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3657 {
3658 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3659 
3660 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3661 	strcpy(rbd_dev->lock_cookie, cookie);
3662 	rbd_set_owner_cid(rbd_dev, &cid);
3663 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3664 }
3665 
3666 /*
3667  * lock_rwsem must be held for write
3668  */
3669 static int rbd_lock(struct rbd_device *rbd_dev)
3670 {
3671 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3672 	char cookie[32];
3673 	int ret;
3674 
3675 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3676 		rbd_dev->lock_cookie[0] != '\0');
3677 
3678 	format_lock_cookie(rbd_dev, cookie);
3679 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3680 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3681 			    RBD_LOCK_TAG, "", 0);
3682 	if (ret && ret != -EEXIST)
3683 		return ret;
3684 
3685 	__rbd_lock(rbd_dev, cookie);
3686 	return 0;
3687 }
3688 
3689 /*
3690  * lock_rwsem must be held for write
3691  */
3692 static void rbd_unlock(struct rbd_device *rbd_dev)
3693 {
3694 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3695 	int ret;
3696 
3697 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3698 		rbd_dev->lock_cookie[0] == '\0');
3699 
3700 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3701 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3702 	if (ret && ret != -ENOENT)
3703 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3704 
3705 	/* treat errors as the image is unlocked */
3706 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3707 	rbd_dev->lock_cookie[0] = '\0';
3708 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3709 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3710 }
3711 
3712 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3713 				enum rbd_notify_op notify_op,
3714 				struct page ***preply_pages,
3715 				size_t *preply_len)
3716 {
3717 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3718 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3719 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3720 	int buf_size = sizeof(buf);
3721 	void *p = buf;
3722 
3723 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3724 
3725 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3726 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3727 	ceph_encode_32(&p, notify_op);
3728 	ceph_encode_64(&p, cid.gid);
3729 	ceph_encode_64(&p, cid.handle);
3730 
3731 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3732 				&rbd_dev->header_oloc, buf, buf_size,
3733 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3734 }
3735 
3736 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3737 			       enum rbd_notify_op notify_op)
3738 {
3739 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3740 }
3741 
3742 static void rbd_notify_acquired_lock(struct work_struct *work)
3743 {
3744 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3745 						  acquired_lock_work);
3746 
3747 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3748 }
3749 
3750 static void rbd_notify_released_lock(struct work_struct *work)
3751 {
3752 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3753 						  released_lock_work);
3754 
3755 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3756 }
3757 
3758 static int rbd_request_lock(struct rbd_device *rbd_dev)
3759 {
3760 	struct page **reply_pages;
3761 	size_t reply_len;
3762 	bool lock_owner_responded = false;
3763 	int ret;
3764 
3765 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3766 
3767 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3768 				   &reply_pages, &reply_len);
3769 	if (ret && ret != -ETIMEDOUT) {
3770 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3771 		goto out;
3772 	}
3773 
3774 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3775 		void *p = page_address(reply_pages[0]);
3776 		void *const end = p + reply_len;
3777 		u32 n;
3778 
3779 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3780 		while (n--) {
3781 			u8 struct_v;
3782 			u32 len;
3783 
3784 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3785 			p += 8 + 8; /* skip gid and cookie */
3786 
3787 			ceph_decode_32_safe(&p, end, len, e_inval);
3788 			if (!len)
3789 				continue;
3790 
3791 			if (lock_owner_responded) {
3792 				rbd_warn(rbd_dev,
3793 					 "duplicate lock owners detected");
3794 				ret = -EIO;
3795 				goto out;
3796 			}
3797 
3798 			lock_owner_responded = true;
3799 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3800 						  &struct_v, &len);
3801 			if (ret) {
3802 				rbd_warn(rbd_dev,
3803 					 "failed to decode ResponseMessage: %d",
3804 					 ret);
3805 				goto e_inval;
3806 			}
3807 
3808 			ret = ceph_decode_32(&p);
3809 		}
3810 	}
3811 
3812 	if (!lock_owner_responded) {
3813 		rbd_warn(rbd_dev, "no lock owners detected");
3814 		ret = -ETIMEDOUT;
3815 	}
3816 
3817 out:
3818 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3819 	return ret;
3820 
3821 e_inval:
3822 	ret = -EINVAL;
3823 	goto out;
3824 }
3825 
3826 /*
3827  * Either image request state machine(s) or rbd_add_acquire_lock()
3828  * (i.e. "rbd map").
3829  */
3830 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3831 {
3832 	struct rbd_img_request *img_req;
3833 
3834 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3835 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3836 
3837 	cancel_delayed_work(&rbd_dev->lock_dwork);
3838 	if (!completion_done(&rbd_dev->acquire_wait)) {
3839 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3840 			   list_empty(&rbd_dev->running_list));
3841 		rbd_dev->acquire_err = result;
3842 		complete_all(&rbd_dev->acquire_wait);
3843 		return;
3844 	}
3845 
3846 	while (!list_empty(&rbd_dev->acquiring_list)) {
3847 		img_req = list_first_entry(&rbd_dev->acquiring_list,
3848 					   struct rbd_img_request, lock_item);
3849 		mutex_lock(&img_req->state_mutex);
3850 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3851 		if (!result)
3852 			list_move_tail(&img_req->lock_item,
3853 				       &rbd_dev->running_list);
3854 		else
3855 			list_del_init(&img_req->lock_item);
3856 		rbd_img_schedule(img_req, result);
3857 		mutex_unlock(&img_req->state_mutex);
3858 	}
3859 }
3860 
3861 static bool locker_equal(const struct ceph_locker *lhs,
3862 			 const struct ceph_locker *rhs)
3863 {
3864 	return lhs->id.name.type == rhs->id.name.type &&
3865 	       lhs->id.name.num == rhs->id.name.num &&
3866 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3867 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3868 }
3869 
3870 static void free_locker(struct ceph_locker *locker)
3871 {
3872 	if (locker)
3873 		ceph_free_lockers(locker, 1);
3874 }
3875 
3876 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3877 {
3878 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3879 	struct ceph_locker *lockers;
3880 	u32 num_lockers;
3881 	u8 lock_type;
3882 	char *lock_tag;
3883 	u64 handle;
3884 	int ret;
3885 
3886 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3887 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3888 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3889 	if (ret) {
3890 		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3891 		return ERR_PTR(ret);
3892 	}
3893 
3894 	if (num_lockers == 0) {
3895 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3896 		lockers = NULL;
3897 		goto out;
3898 	}
3899 
3900 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3901 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3902 			 lock_tag);
3903 		goto err_busy;
3904 	}
3905 
3906 	if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3907 		rbd_warn(rbd_dev, "incompatible lock type detected");
3908 		goto err_busy;
3909 	}
3910 
3911 	WARN_ON(num_lockers != 1);
3912 	ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3913 		     &handle);
3914 	if (ret != 1) {
3915 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3916 			 lockers[0].id.cookie);
3917 		goto err_busy;
3918 	}
3919 	if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3920 		rbd_warn(rbd_dev, "locker has a blank address");
3921 		goto err_busy;
3922 	}
3923 
3924 	dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3925 	     __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3926 	     &lockers[0].info.addr.in_addr,
3927 	     le32_to_cpu(lockers[0].info.addr.nonce), handle);
3928 
3929 out:
3930 	kfree(lock_tag);
3931 	return lockers;
3932 
3933 err_busy:
3934 	kfree(lock_tag);
3935 	ceph_free_lockers(lockers, num_lockers);
3936 	return ERR_PTR(-EBUSY);
3937 }
3938 
3939 static int find_watcher(struct rbd_device *rbd_dev,
3940 			const struct ceph_locker *locker)
3941 {
3942 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3943 	struct ceph_watch_item *watchers;
3944 	u32 num_watchers;
3945 	u64 cookie;
3946 	int i;
3947 	int ret;
3948 
3949 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3950 				      &rbd_dev->header_oloc, &watchers,
3951 				      &num_watchers);
3952 	if (ret) {
3953 		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3954 		return ret;
3955 	}
3956 
3957 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3958 	for (i = 0; i < num_watchers; i++) {
3959 		/*
3960 		 * Ignore addr->type while comparing.  This mimics
3961 		 * entity_addr_t::get_legacy_str() + strcmp().
3962 		 */
3963 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3964 					    &locker->info.addr) &&
3965 		    watchers[i].cookie == cookie) {
3966 			struct rbd_client_id cid = {
3967 				.gid = le64_to_cpu(watchers[i].name.num),
3968 				.handle = cookie,
3969 			};
3970 
3971 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3972 			     rbd_dev, cid.gid, cid.handle);
3973 			rbd_set_owner_cid(rbd_dev, &cid);
3974 			ret = 1;
3975 			goto out;
3976 		}
3977 	}
3978 
3979 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3980 	ret = 0;
3981 out:
3982 	kfree(watchers);
3983 	return ret;
3984 }
3985 
3986 /*
3987  * lock_rwsem must be held for write
3988  */
3989 static int rbd_try_lock(struct rbd_device *rbd_dev)
3990 {
3991 	struct ceph_client *client = rbd_dev->rbd_client->client;
3992 	struct ceph_locker *locker, *refreshed_locker;
3993 	int ret;
3994 
3995 	for (;;) {
3996 		locker = refreshed_locker = NULL;
3997 
3998 		ret = rbd_lock(rbd_dev);
3999 		if (!ret)
4000 			goto out;
4001 		if (ret != -EBUSY) {
4002 			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4003 			goto out;
4004 		}
4005 
4006 		/* determine if the current lock holder is still alive */
4007 		locker = get_lock_owner_info(rbd_dev);
4008 		if (IS_ERR(locker)) {
4009 			ret = PTR_ERR(locker);
4010 			locker = NULL;
4011 			goto out;
4012 		}
4013 		if (!locker)
4014 			goto again;
4015 
4016 		ret = find_watcher(rbd_dev, locker);
4017 		if (ret)
4018 			goto out; /* request lock or error */
4019 
4020 		refreshed_locker = get_lock_owner_info(rbd_dev);
4021 		if (IS_ERR(refreshed_locker)) {
4022 			ret = PTR_ERR(refreshed_locker);
4023 			refreshed_locker = NULL;
4024 			goto out;
4025 		}
4026 		if (!refreshed_locker ||
4027 		    !locker_equal(locker, refreshed_locker))
4028 			goto again;
4029 
4030 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4031 			 ENTITY_NAME(locker->id.name));
4032 
4033 		ret = ceph_monc_blocklist_add(&client->monc,
4034 					      &locker->info.addr);
4035 		if (ret) {
4036 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4037 				 ENTITY_NAME(locker->id.name), ret);
4038 			goto out;
4039 		}
4040 
4041 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4042 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4043 					  locker->id.cookie, &locker->id.name);
4044 		if (ret && ret != -ENOENT) {
4045 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4046 				 ret);
4047 			goto out;
4048 		}
4049 
4050 again:
4051 		free_locker(refreshed_locker);
4052 		free_locker(locker);
4053 	}
4054 
4055 out:
4056 	free_locker(refreshed_locker);
4057 	free_locker(locker);
4058 	return ret;
4059 }
4060 
4061 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4062 {
4063 	int ret;
4064 
4065 	ret = rbd_dev_refresh(rbd_dev);
4066 	if (ret)
4067 		return ret;
4068 
4069 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4070 		ret = rbd_object_map_open(rbd_dev);
4071 		if (ret)
4072 			return ret;
4073 	}
4074 
4075 	return 0;
4076 }
4077 
4078 /*
4079  * Return:
4080  *   0 - lock acquired
4081  *   1 - caller should call rbd_request_lock()
4082  *  <0 - error
4083  */
4084 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4085 {
4086 	int ret;
4087 
4088 	down_read(&rbd_dev->lock_rwsem);
4089 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4090 	     rbd_dev->lock_state);
4091 	if (__rbd_is_lock_owner(rbd_dev)) {
4092 		up_read(&rbd_dev->lock_rwsem);
4093 		return 0;
4094 	}
4095 
4096 	up_read(&rbd_dev->lock_rwsem);
4097 	down_write(&rbd_dev->lock_rwsem);
4098 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4099 	     rbd_dev->lock_state);
4100 	if (__rbd_is_lock_owner(rbd_dev)) {
4101 		up_write(&rbd_dev->lock_rwsem);
4102 		return 0;
4103 	}
4104 
4105 	ret = rbd_try_lock(rbd_dev);
4106 	if (ret < 0) {
4107 		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4108 		goto out;
4109 	}
4110 	if (ret > 0) {
4111 		up_write(&rbd_dev->lock_rwsem);
4112 		return ret;
4113 	}
4114 
4115 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4116 	rbd_assert(list_empty(&rbd_dev->running_list));
4117 
4118 	ret = rbd_post_acquire_action(rbd_dev);
4119 	if (ret) {
4120 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4121 		/*
4122 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4123 		 * rbd_lock_add_request() would let the request through,
4124 		 * assuming that e.g. object map is locked and loaded.
4125 		 */
4126 		rbd_unlock(rbd_dev);
4127 	}
4128 
4129 out:
4130 	wake_lock_waiters(rbd_dev, ret);
4131 	up_write(&rbd_dev->lock_rwsem);
4132 	return ret;
4133 }
4134 
4135 static void rbd_acquire_lock(struct work_struct *work)
4136 {
4137 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4138 					    struct rbd_device, lock_dwork);
4139 	int ret;
4140 
4141 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4142 again:
4143 	ret = rbd_try_acquire_lock(rbd_dev);
4144 	if (ret <= 0) {
4145 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4146 		return;
4147 	}
4148 
4149 	ret = rbd_request_lock(rbd_dev);
4150 	if (ret == -ETIMEDOUT) {
4151 		goto again; /* treat this as a dead client */
4152 	} else if (ret == -EROFS) {
4153 		rbd_warn(rbd_dev, "peer will not release lock");
4154 		down_write(&rbd_dev->lock_rwsem);
4155 		wake_lock_waiters(rbd_dev, ret);
4156 		up_write(&rbd_dev->lock_rwsem);
4157 	} else if (ret < 0) {
4158 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4159 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4160 				 RBD_RETRY_DELAY);
4161 	} else {
4162 		/*
4163 		 * lock owner acked, but resend if we don't see them
4164 		 * release the lock
4165 		 */
4166 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4167 		     rbd_dev);
4168 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4169 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4170 	}
4171 }
4172 
4173 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4174 {
4175 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4176 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4177 
4178 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4179 		return false;
4180 
4181 	/*
4182 	 * Ensure that all in-flight IO is flushed.
4183 	 */
4184 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4185 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4186 	if (list_empty(&rbd_dev->running_list))
4187 		return true;
4188 
4189 	up_write(&rbd_dev->lock_rwsem);
4190 	wait_for_completion(&rbd_dev->releasing_wait);
4191 
4192 	down_write(&rbd_dev->lock_rwsem);
4193 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4194 		return false;
4195 
4196 	rbd_assert(list_empty(&rbd_dev->running_list));
4197 	return true;
4198 }
4199 
4200 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4201 {
4202 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4203 		rbd_object_map_close(rbd_dev);
4204 }
4205 
4206 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4207 {
4208 	rbd_assert(list_empty(&rbd_dev->running_list));
4209 
4210 	rbd_pre_release_action(rbd_dev);
4211 	rbd_unlock(rbd_dev);
4212 }
4213 
4214 /*
4215  * lock_rwsem must be held for write
4216  */
4217 static void rbd_release_lock(struct rbd_device *rbd_dev)
4218 {
4219 	if (!rbd_quiesce_lock(rbd_dev))
4220 		return;
4221 
4222 	__rbd_release_lock(rbd_dev);
4223 
4224 	/*
4225 	 * Give others a chance to grab the lock - we would re-acquire
4226 	 * almost immediately if we got new IO while draining the running
4227 	 * list otherwise.  We need to ack our own notifications, so this
4228 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4229 	 * way of maybe_kick_acquire().
4230 	 */
4231 	cancel_delayed_work(&rbd_dev->lock_dwork);
4232 }
4233 
4234 static void rbd_release_lock_work(struct work_struct *work)
4235 {
4236 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4237 						  unlock_work);
4238 
4239 	down_write(&rbd_dev->lock_rwsem);
4240 	rbd_release_lock(rbd_dev);
4241 	up_write(&rbd_dev->lock_rwsem);
4242 }
4243 
4244 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4245 {
4246 	bool have_requests;
4247 
4248 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4249 	if (__rbd_is_lock_owner(rbd_dev))
4250 		return;
4251 
4252 	spin_lock(&rbd_dev->lock_lists_lock);
4253 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4254 	spin_unlock(&rbd_dev->lock_lists_lock);
4255 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4256 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4257 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4258 	}
4259 }
4260 
4261 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4262 				     void **p)
4263 {
4264 	struct rbd_client_id cid = { 0 };
4265 
4266 	if (struct_v >= 2) {
4267 		cid.gid = ceph_decode_64(p);
4268 		cid.handle = ceph_decode_64(p);
4269 	}
4270 
4271 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4272 	     cid.handle);
4273 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4274 		down_write(&rbd_dev->lock_rwsem);
4275 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4276 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4277 			     __func__, rbd_dev, cid.gid, cid.handle);
4278 		} else {
4279 			rbd_set_owner_cid(rbd_dev, &cid);
4280 		}
4281 		downgrade_write(&rbd_dev->lock_rwsem);
4282 	} else {
4283 		down_read(&rbd_dev->lock_rwsem);
4284 	}
4285 
4286 	maybe_kick_acquire(rbd_dev);
4287 	up_read(&rbd_dev->lock_rwsem);
4288 }
4289 
4290 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4291 				     void **p)
4292 {
4293 	struct rbd_client_id cid = { 0 };
4294 
4295 	if (struct_v >= 2) {
4296 		cid.gid = ceph_decode_64(p);
4297 		cid.handle = ceph_decode_64(p);
4298 	}
4299 
4300 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4301 	     cid.handle);
4302 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4303 		down_write(&rbd_dev->lock_rwsem);
4304 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4305 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4306 			     __func__, rbd_dev, cid.gid, cid.handle,
4307 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4308 		} else {
4309 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4310 		}
4311 		downgrade_write(&rbd_dev->lock_rwsem);
4312 	} else {
4313 		down_read(&rbd_dev->lock_rwsem);
4314 	}
4315 
4316 	maybe_kick_acquire(rbd_dev);
4317 	up_read(&rbd_dev->lock_rwsem);
4318 }
4319 
4320 /*
4321  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4322  * ResponseMessage is needed.
4323  */
4324 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4325 				   void **p)
4326 {
4327 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4328 	struct rbd_client_id cid = { 0 };
4329 	int result = 1;
4330 
4331 	if (struct_v >= 2) {
4332 		cid.gid = ceph_decode_64(p);
4333 		cid.handle = ceph_decode_64(p);
4334 	}
4335 
4336 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4337 	     cid.handle);
4338 	if (rbd_cid_equal(&cid, &my_cid))
4339 		return result;
4340 
4341 	down_read(&rbd_dev->lock_rwsem);
4342 	if (__rbd_is_lock_owner(rbd_dev)) {
4343 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4344 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4345 			goto out_unlock;
4346 
4347 		/*
4348 		 * encode ResponseMessage(0) so the peer can detect
4349 		 * a missing owner
4350 		 */
4351 		result = 0;
4352 
4353 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4354 			if (!rbd_dev->opts->exclusive) {
4355 				dout("%s rbd_dev %p queueing unlock_work\n",
4356 				     __func__, rbd_dev);
4357 				queue_work(rbd_dev->task_wq,
4358 					   &rbd_dev->unlock_work);
4359 			} else {
4360 				/* refuse to release the lock */
4361 				result = -EROFS;
4362 			}
4363 		}
4364 	}
4365 
4366 out_unlock:
4367 	up_read(&rbd_dev->lock_rwsem);
4368 	return result;
4369 }
4370 
4371 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4372 				     u64 notify_id, u64 cookie, s32 *result)
4373 {
4374 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4375 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4376 	int buf_size = sizeof(buf);
4377 	int ret;
4378 
4379 	if (result) {
4380 		void *p = buf;
4381 
4382 		/* encode ResponseMessage */
4383 		ceph_start_encoding(&p, 1, 1,
4384 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4385 		ceph_encode_32(&p, *result);
4386 	} else {
4387 		buf_size = 0;
4388 	}
4389 
4390 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4391 				   &rbd_dev->header_oloc, notify_id, cookie,
4392 				   buf, buf_size);
4393 	if (ret)
4394 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4395 }
4396 
4397 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4398 				   u64 cookie)
4399 {
4400 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4401 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4402 }
4403 
4404 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4405 					  u64 notify_id, u64 cookie, s32 result)
4406 {
4407 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4408 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4409 }
4410 
4411 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4412 			 u64 notifier_id, void *data, size_t data_len)
4413 {
4414 	struct rbd_device *rbd_dev = arg;
4415 	void *p = data;
4416 	void *const end = p + data_len;
4417 	u8 struct_v = 0;
4418 	u32 len;
4419 	u32 notify_op;
4420 	int ret;
4421 
4422 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4423 	     __func__, rbd_dev, cookie, notify_id, data_len);
4424 	if (data_len) {
4425 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4426 					  &struct_v, &len);
4427 		if (ret) {
4428 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4429 				 ret);
4430 			return;
4431 		}
4432 
4433 		notify_op = ceph_decode_32(&p);
4434 	} else {
4435 		/* legacy notification for header updates */
4436 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4437 		len = 0;
4438 	}
4439 
4440 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4441 	switch (notify_op) {
4442 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4443 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4444 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445 		break;
4446 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4447 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4448 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4449 		break;
4450 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4451 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4452 		if (ret <= 0)
4453 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4454 						      cookie, ret);
4455 		else
4456 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4457 		break;
4458 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4459 		ret = rbd_dev_refresh(rbd_dev);
4460 		if (ret)
4461 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4462 
4463 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4464 		break;
4465 	default:
4466 		if (rbd_is_lock_owner(rbd_dev))
4467 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4468 						      cookie, -EOPNOTSUPP);
4469 		else
4470 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4471 		break;
4472 	}
4473 }
4474 
4475 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4476 
4477 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4478 {
4479 	struct rbd_device *rbd_dev = arg;
4480 
4481 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4482 
4483 	down_write(&rbd_dev->lock_rwsem);
4484 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4485 	up_write(&rbd_dev->lock_rwsem);
4486 
4487 	mutex_lock(&rbd_dev->watch_mutex);
4488 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4489 		__rbd_unregister_watch(rbd_dev);
4490 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4491 
4492 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4493 	}
4494 	mutex_unlock(&rbd_dev->watch_mutex);
4495 }
4496 
4497 /*
4498  * watch_mutex must be locked
4499  */
4500 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4501 {
4502 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4503 	struct ceph_osd_linger_request *handle;
4504 
4505 	rbd_assert(!rbd_dev->watch_handle);
4506 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4507 
4508 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4509 				 &rbd_dev->header_oloc, rbd_watch_cb,
4510 				 rbd_watch_errcb, rbd_dev);
4511 	if (IS_ERR(handle))
4512 		return PTR_ERR(handle);
4513 
4514 	rbd_dev->watch_handle = handle;
4515 	return 0;
4516 }
4517 
4518 /*
4519  * watch_mutex must be locked
4520  */
4521 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4522 {
4523 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4524 	int ret;
4525 
4526 	rbd_assert(rbd_dev->watch_handle);
4527 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4528 
4529 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4530 	if (ret)
4531 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4532 
4533 	rbd_dev->watch_handle = NULL;
4534 }
4535 
4536 static int rbd_register_watch(struct rbd_device *rbd_dev)
4537 {
4538 	int ret;
4539 
4540 	mutex_lock(&rbd_dev->watch_mutex);
4541 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4542 	ret = __rbd_register_watch(rbd_dev);
4543 	if (ret)
4544 		goto out;
4545 
4546 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4547 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4548 
4549 out:
4550 	mutex_unlock(&rbd_dev->watch_mutex);
4551 	return ret;
4552 }
4553 
4554 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4555 {
4556 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4557 
4558 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4559 	cancel_work_sync(&rbd_dev->released_lock_work);
4560 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4561 	cancel_work_sync(&rbd_dev->unlock_work);
4562 }
4563 
4564 /*
4565  * header_rwsem must not be held to avoid a deadlock with
4566  * rbd_dev_refresh() when flushing notifies.
4567  */
4568 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4569 {
4570 	cancel_tasks_sync(rbd_dev);
4571 
4572 	mutex_lock(&rbd_dev->watch_mutex);
4573 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4574 		__rbd_unregister_watch(rbd_dev);
4575 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4576 	mutex_unlock(&rbd_dev->watch_mutex);
4577 
4578 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4579 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4580 }
4581 
4582 /*
4583  * lock_rwsem must be held for write
4584  */
4585 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4586 {
4587 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4588 	char cookie[32];
4589 	int ret;
4590 
4591 	if (!rbd_quiesce_lock(rbd_dev))
4592 		return;
4593 
4594 	format_lock_cookie(rbd_dev, cookie);
4595 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4596 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4597 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4598 				  RBD_LOCK_TAG, cookie);
4599 	if (ret) {
4600 		if (ret != -EOPNOTSUPP)
4601 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4602 				 ret);
4603 
4604 		/*
4605 		 * Lock cookie cannot be updated on older OSDs, so do
4606 		 * a manual release and queue an acquire.
4607 		 */
4608 		__rbd_release_lock(rbd_dev);
4609 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4610 	} else {
4611 		__rbd_lock(rbd_dev, cookie);
4612 		wake_lock_waiters(rbd_dev, 0);
4613 	}
4614 }
4615 
4616 static void rbd_reregister_watch(struct work_struct *work)
4617 {
4618 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4619 					    struct rbd_device, watch_dwork);
4620 	int ret;
4621 
4622 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4623 
4624 	mutex_lock(&rbd_dev->watch_mutex);
4625 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4626 		mutex_unlock(&rbd_dev->watch_mutex);
4627 		return;
4628 	}
4629 
4630 	ret = __rbd_register_watch(rbd_dev);
4631 	if (ret) {
4632 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4633 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4634 			queue_delayed_work(rbd_dev->task_wq,
4635 					   &rbd_dev->watch_dwork,
4636 					   RBD_RETRY_DELAY);
4637 			mutex_unlock(&rbd_dev->watch_mutex);
4638 			return;
4639 		}
4640 
4641 		mutex_unlock(&rbd_dev->watch_mutex);
4642 		down_write(&rbd_dev->lock_rwsem);
4643 		wake_lock_waiters(rbd_dev, ret);
4644 		up_write(&rbd_dev->lock_rwsem);
4645 		return;
4646 	}
4647 
4648 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4649 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4650 	mutex_unlock(&rbd_dev->watch_mutex);
4651 
4652 	down_write(&rbd_dev->lock_rwsem);
4653 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4654 		rbd_reacquire_lock(rbd_dev);
4655 	up_write(&rbd_dev->lock_rwsem);
4656 
4657 	ret = rbd_dev_refresh(rbd_dev);
4658 	if (ret)
4659 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4660 }
4661 
4662 /*
4663  * Synchronous osd object method call.  Returns the number of bytes
4664  * returned in the outbound buffer, or a negative error code.
4665  */
4666 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4667 			     struct ceph_object_id *oid,
4668 			     struct ceph_object_locator *oloc,
4669 			     const char *method_name,
4670 			     const void *outbound,
4671 			     size_t outbound_size,
4672 			     void *inbound,
4673 			     size_t inbound_size)
4674 {
4675 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4676 	struct page *req_page = NULL;
4677 	struct page *reply_page;
4678 	int ret;
4679 
4680 	/*
4681 	 * Method calls are ultimately read operations.  The result
4682 	 * should placed into the inbound buffer provided.  They
4683 	 * also supply outbound data--parameters for the object
4684 	 * method.  Currently if this is present it will be a
4685 	 * snapshot id.
4686 	 */
4687 	if (outbound) {
4688 		if (outbound_size > PAGE_SIZE)
4689 			return -E2BIG;
4690 
4691 		req_page = alloc_page(GFP_KERNEL);
4692 		if (!req_page)
4693 			return -ENOMEM;
4694 
4695 		memcpy(page_address(req_page), outbound, outbound_size);
4696 	}
4697 
4698 	reply_page = alloc_page(GFP_KERNEL);
4699 	if (!reply_page) {
4700 		if (req_page)
4701 			__free_page(req_page);
4702 		return -ENOMEM;
4703 	}
4704 
4705 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4706 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4707 			     &reply_page, &inbound_size);
4708 	if (!ret) {
4709 		memcpy(inbound, page_address(reply_page), inbound_size);
4710 		ret = inbound_size;
4711 	}
4712 
4713 	if (req_page)
4714 		__free_page(req_page);
4715 	__free_page(reply_page);
4716 	return ret;
4717 }
4718 
4719 static void rbd_queue_workfn(struct work_struct *work)
4720 {
4721 	struct rbd_img_request *img_request =
4722 	    container_of(work, struct rbd_img_request, work);
4723 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4724 	enum obj_operation_type op_type = img_request->op_type;
4725 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4726 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4727 	u64 length = blk_rq_bytes(rq);
4728 	u64 mapping_size;
4729 	int result;
4730 
4731 	/* Ignore/skip any zero-length requests */
4732 	if (!length) {
4733 		dout("%s: zero-length request\n", __func__);
4734 		result = 0;
4735 		goto err_img_request;
4736 	}
4737 
4738 	blk_mq_start_request(rq);
4739 
4740 	down_read(&rbd_dev->header_rwsem);
4741 	mapping_size = rbd_dev->mapping.size;
4742 	rbd_img_capture_header(img_request);
4743 	up_read(&rbd_dev->header_rwsem);
4744 
4745 	if (offset + length > mapping_size) {
4746 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4747 			 length, mapping_size);
4748 		result = -EIO;
4749 		goto err_img_request;
4750 	}
4751 
4752 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4753 	     img_request, obj_op_name(op_type), offset, length);
4754 
4755 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4756 		result = rbd_img_fill_nodata(img_request, offset, length);
4757 	else
4758 		result = rbd_img_fill_from_bio(img_request, offset, length,
4759 					       rq->bio);
4760 	if (result)
4761 		goto err_img_request;
4762 
4763 	rbd_img_handle_request(img_request, 0);
4764 	return;
4765 
4766 err_img_request:
4767 	rbd_img_request_destroy(img_request);
4768 	if (result)
4769 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4770 			 obj_op_name(op_type), length, offset, result);
4771 	blk_mq_end_request(rq, errno_to_blk_status(result));
4772 }
4773 
4774 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4775 		const struct blk_mq_queue_data *bd)
4776 {
4777 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4778 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4779 	enum obj_operation_type op_type;
4780 
4781 	switch (req_op(bd->rq)) {
4782 	case REQ_OP_DISCARD:
4783 		op_type = OBJ_OP_DISCARD;
4784 		break;
4785 	case REQ_OP_WRITE_ZEROES:
4786 		op_type = OBJ_OP_ZEROOUT;
4787 		break;
4788 	case REQ_OP_WRITE:
4789 		op_type = OBJ_OP_WRITE;
4790 		break;
4791 	case REQ_OP_READ:
4792 		op_type = OBJ_OP_READ;
4793 		break;
4794 	default:
4795 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4796 		return BLK_STS_IOERR;
4797 	}
4798 
4799 	rbd_img_request_init(img_req, rbd_dev, op_type);
4800 
4801 	if (rbd_img_is_write(img_req)) {
4802 		if (rbd_is_ro(rbd_dev)) {
4803 			rbd_warn(rbd_dev, "%s on read-only mapping",
4804 				 obj_op_name(img_req->op_type));
4805 			return BLK_STS_IOERR;
4806 		}
4807 		rbd_assert(!rbd_is_snap(rbd_dev));
4808 	}
4809 
4810 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4811 	queue_work(rbd_wq, &img_req->work);
4812 	return BLK_STS_OK;
4813 }
4814 
4815 static void rbd_free_disk(struct rbd_device *rbd_dev)
4816 {
4817 	put_disk(rbd_dev->disk);
4818 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4819 	rbd_dev->disk = NULL;
4820 }
4821 
4822 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4823 			     struct ceph_object_id *oid,
4824 			     struct ceph_object_locator *oloc,
4825 			     void *buf, int buf_len)
4826 
4827 {
4828 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4829 	struct ceph_osd_request *req;
4830 	struct page **pages;
4831 	int num_pages = calc_pages_for(0, buf_len);
4832 	int ret;
4833 
4834 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4835 	if (!req)
4836 		return -ENOMEM;
4837 
4838 	ceph_oid_copy(&req->r_base_oid, oid);
4839 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4840 	req->r_flags = CEPH_OSD_FLAG_READ;
4841 
4842 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4843 	if (IS_ERR(pages)) {
4844 		ret = PTR_ERR(pages);
4845 		goto out_req;
4846 	}
4847 
4848 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4849 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4850 					 true);
4851 
4852 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4853 	if (ret)
4854 		goto out_req;
4855 
4856 	ceph_osdc_start_request(osdc, req);
4857 	ret = ceph_osdc_wait_request(osdc, req);
4858 	if (ret >= 0)
4859 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4860 
4861 out_req:
4862 	ceph_osdc_put_request(req);
4863 	return ret;
4864 }
4865 
4866 /*
4867  * Read the complete header for the given rbd device.  On successful
4868  * return, the rbd_dev->header field will contain up-to-date
4869  * information about the image.
4870  */
4871 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4872 				  struct rbd_image_header *header,
4873 				  bool first_time)
4874 {
4875 	struct rbd_image_header_ondisk *ondisk = NULL;
4876 	u32 snap_count = 0;
4877 	u64 names_size = 0;
4878 	u32 want_count;
4879 	int ret;
4880 
4881 	/*
4882 	 * The complete header will include an array of its 64-bit
4883 	 * snapshot ids, followed by the names of those snapshots as
4884 	 * a contiguous block of NUL-terminated strings.  Note that
4885 	 * the number of snapshots could change by the time we read
4886 	 * it in, in which case we re-read it.
4887 	 */
4888 	do {
4889 		size_t size;
4890 
4891 		kfree(ondisk);
4892 
4893 		size = sizeof (*ondisk);
4894 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4895 		size += names_size;
4896 		ondisk = kmalloc(size, GFP_KERNEL);
4897 		if (!ondisk)
4898 			return -ENOMEM;
4899 
4900 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4901 					&rbd_dev->header_oloc, ondisk, size);
4902 		if (ret < 0)
4903 			goto out;
4904 		if ((size_t)ret < size) {
4905 			ret = -ENXIO;
4906 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4907 				size, ret);
4908 			goto out;
4909 		}
4910 		if (!rbd_dev_ondisk_valid(ondisk)) {
4911 			ret = -ENXIO;
4912 			rbd_warn(rbd_dev, "invalid header");
4913 			goto out;
4914 		}
4915 
4916 		names_size = le64_to_cpu(ondisk->snap_names_len);
4917 		want_count = snap_count;
4918 		snap_count = le32_to_cpu(ondisk->snap_count);
4919 	} while (snap_count != want_count);
4920 
4921 	ret = rbd_header_from_disk(header, ondisk, first_time);
4922 out:
4923 	kfree(ondisk);
4924 
4925 	return ret;
4926 }
4927 
4928 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4929 {
4930 	sector_t size;
4931 
4932 	/*
4933 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4934 	 * try to update its size.  If REMOVING is set, updating size
4935 	 * is just useless work since the device can't be opened.
4936 	 */
4937 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4938 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4939 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4940 		dout("setting size to %llu sectors", (unsigned long long)size);
4941 		set_capacity_and_notify(rbd_dev->disk, size);
4942 	}
4943 }
4944 
4945 static const struct blk_mq_ops rbd_mq_ops = {
4946 	.queue_rq	= rbd_queue_rq,
4947 };
4948 
4949 static int rbd_init_disk(struct rbd_device *rbd_dev)
4950 {
4951 	struct gendisk *disk;
4952 	struct request_queue *q;
4953 	unsigned int objset_bytes =
4954 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4955 	int err;
4956 
4957 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4958 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4959 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4960 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4961 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4962 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4963 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4964 
4965 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4966 	if (err)
4967 		return err;
4968 
4969 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4970 	if (IS_ERR(disk)) {
4971 		err = PTR_ERR(disk);
4972 		goto out_tag_set;
4973 	}
4974 	q = disk->queue;
4975 
4976 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4977 		 rbd_dev->dev_id);
4978 	disk->major = rbd_dev->major;
4979 	disk->first_minor = rbd_dev->minor;
4980 	if (single_major)
4981 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4982 	else
4983 		disk->minors = RBD_MINORS_PER_MAJOR;
4984 	disk->fops = &rbd_bd_ops;
4985 	disk->private_data = rbd_dev;
4986 
4987 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4988 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4989 
4990 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4991 	q->limits.max_sectors = queue_max_hw_sectors(q);
4992 	blk_queue_max_segments(q, USHRT_MAX);
4993 	blk_queue_max_segment_size(q, UINT_MAX);
4994 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4995 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4996 
4997 	if (rbd_dev->opts->trim) {
4998 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4999 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5000 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5001 	}
5002 
5003 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5004 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5005 
5006 	rbd_dev->disk = disk;
5007 
5008 	return 0;
5009 out_tag_set:
5010 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5011 	return err;
5012 }
5013 
5014 /*
5015   sysfs
5016 */
5017 
5018 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5019 {
5020 	return container_of(dev, struct rbd_device, dev);
5021 }
5022 
5023 static ssize_t rbd_size_show(struct device *dev,
5024 			     struct device_attribute *attr, char *buf)
5025 {
5026 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5027 
5028 	return sprintf(buf, "%llu\n",
5029 		(unsigned long long)rbd_dev->mapping.size);
5030 }
5031 
5032 static ssize_t rbd_features_show(struct device *dev,
5033 			     struct device_attribute *attr, char *buf)
5034 {
5035 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5036 
5037 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5038 }
5039 
5040 static ssize_t rbd_major_show(struct device *dev,
5041 			      struct device_attribute *attr, char *buf)
5042 {
5043 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5044 
5045 	if (rbd_dev->major)
5046 		return sprintf(buf, "%d\n", rbd_dev->major);
5047 
5048 	return sprintf(buf, "(none)\n");
5049 }
5050 
5051 static ssize_t rbd_minor_show(struct device *dev,
5052 			      struct device_attribute *attr, char *buf)
5053 {
5054 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5055 
5056 	return sprintf(buf, "%d\n", rbd_dev->minor);
5057 }
5058 
5059 static ssize_t rbd_client_addr_show(struct device *dev,
5060 				    struct device_attribute *attr, char *buf)
5061 {
5062 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5063 	struct ceph_entity_addr *client_addr =
5064 	    ceph_client_addr(rbd_dev->rbd_client->client);
5065 
5066 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5067 		       le32_to_cpu(client_addr->nonce));
5068 }
5069 
5070 static ssize_t rbd_client_id_show(struct device *dev,
5071 				  struct device_attribute *attr, char *buf)
5072 {
5073 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5074 
5075 	return sprintf(buf, "client%lld\n",
5076 		       ceph_client_gid(rbd_dev->rbd_client->client));
5077 }
5078 
5079 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5080 				     struct device_attribute *attr, char *buf)
5081 {
5082 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5083 
5084 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5085 }
5086 
5087 static ssize_t rbd_config_info_show(struct device *dev,
5088 				    struct device_attribute *attr, char *buf)
5089 {
5090 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5091 
5092 	if (!capable(CAP_SYS_ADMIN))
5093 		return -EPERM;
5094 
5095 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5096 }
5097 
5098 static ssize_t rbd_pool_show(struct device *dev,
5099 			     struct device_attribute *attr, char *buf)
5100 {
5101 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5102 
5103 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5104 }
5105 
5106 static ssize_t rbd_pool_id_show(struct device *dev,
5107 			     struct device_attribute *attr, char *buf)
5108 {
5109 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5110 
5111 	return sprintf(buf, "%llu\n",
5112 			(unsigned long long) rbd_dev->spec->pool_id);
5113 }
5114 
5115 static ssize_t rbd_pool_ns_show(struct device *dev,
5116 				struct device_attribute *attr, char *buf)
5117 {
5118 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5119 
5120 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5121 }
5122 
5123 static ssize_t rbd_name_show(struct device *dev,
5124 			     struct device_attribute *attr, char *buf)
5125 {
5126 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5127 
5128 	if (rbd_dev->spec->image_name)
5129 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5130 
5131 	return sprintf(buf, "(unknown)\n");
5132 }
5133 
5134 static ssize_t rbd_image_id_show(struct device *dev,
5135 			     struct device_attribute *attr, char *buf)
5136 {
5137 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5138 
5139 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5140 }
5141 
5142 /*
5143  * Shows the name of the currently-mapped snapshot (or
5144  * RBD_SNAP_HEAD_NAME for the base image).
5145  */
5146 static ssize_t rbd_snap_show(struct device *dev,
5147 			     struct device_attribute *attr,
5148 			     char *buf)
5149 {
5150 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5151 
5152 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5153 }
5154 
5155 static ssize_t rbd_snap_id_show(struct device *dev,
5156 				struct device_attribute *attr, char *buf)
5157 {
5158 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5159 
5160 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5161 }
5162 
5163 /*
5164  * For a v2 image, shows the chain of parent images, separated by empty
5165  * lines.  For v1 images or if there is no parent, shows "(no parent
5166  * image)".
5167  */
5168 static ssize_t rbd_parent_show(struct device *dev,
5169 			       struct device_attribute *attr,
5170 			       char *buf)
5171 {
5172 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5173 	ssize_t count = 0;
5174 
5175 	if (!rbd_dev->parent)
5176 		return sprintf(buf, "(no parent image)\n");
5177 
5178 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5179 		struct rbd_spec *spec = rbd_dev->parent_spec;
5180 
5181 		count += sprintf(&buf[count], "%s"
5182 			    "pool_id %llu\npool_name %s\n"
5183 			    "pool_ns %s\n"
5184 			    "image_id %s\nimage_name %s\n"
5185 			    "snap_id %llu\nsnap_name %s\n"
5186 			    "overlap %llu\n",
5187 			    !count ? "" : "\n", /* first? */
5188 			    spec->pool_id, spec->pool_name,
5189 			    spec->pool_ns ?: "",
5190 			    spec->image_id, spec->image_name ?: "(unknown)",
5191 			    spec->snap_id, spec->snap_name,
5192 			    rbd_dev->parent_overlap);
5193 	}
5194 
5195 	return count;
5196 }
5197 
5198 static ssize_t rbd_image_refresh(struct device *dev,
5199 				 struct device_attribute *attr,
5200 				 const char *buf,
5201 				 size_t size)
5202 {
5203 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5204 	int ret;
5205 
5206 	if (!capable(CAP_SYS_ADMIN))
5207 		return -EPERM;
5208 
5209 	ret = rbd_dev_refresh(rbd_dev);
5210 	if (ret)
5211 		return ret;
5212 
5213 	return size;
5214 }
5215 
5216 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5217 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5218 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5219 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5220 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5221 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5222 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5223 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5224 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5225 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5226 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5227 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5228 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5229 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5230 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5231 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5232 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5233 
5234 static struct attribute *rbd_attrs[] = {
5235 	&dev_attr_size.attr,
5236 	&dev_attr_features.attr,
5237 	&dev_attr_major.attr,
5238 	&dev_attr_minor.attr,
5239 	&dev_attr_client_addr.attr,
5240 	&dev_attr_client_id.attr,
5241 	&dev_attr_cluster_fsid.attr,
5242 	&dev_attr_config_info.attr,
5243 	&dev_attr_pool.attr,
5244 	&dev_attr_pool_id.attr,
5245 	&dev_attr_pool_ns.attr,
5246 	&dev_attr_name.attr,
5247 	&dev_attr_image_id.attr,
5248 	&dev_attr_current_snap.attr,
5249 	&dev_attr_snap_id.attr,
5250 	&dev_attr_parent.attr,
5251 	&dev_attr_refresh.attr,
5252 	NULL
5253 };
5254 
5255 static struct attribute_group rbd_attr_group = {
5256 	.attrs = rbd_attrs,
5257 };
5258 
5259 static const struct attribute_group *rbd_attr_groups[] = {
5260 	&rbd_attr_group,
5261 	NULL
5262 };
5263 
5264 static void rbd_dev_release(struct device *dev);
5265 
5266 static const struct device_type rbd_device_type = {
5267 	.name		= "rbd",
5268 	.groups		= rbd_attr_groups,
5269 	.release	= rbd_dev_release,
5270 };
5271 
5272 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5273 {
5274 	kref_get(&spec->kref);
5275 
5276 	return spec;
5277 }
5278 
5279 static void rbd_spec_free(struct kref *kref);
5280 static void rbd_spec_put(struct rbd_spec *spec)
5281 {
5282 	if (spec)
5283 		kref_put(&spec->kref, rbd_spec_free);
5284 }
5285 
5286 static struct rbd_spec *rbd_spec_alloc(void)
5287 {
5288 	struct rbd_spec *spec;
5289 
5290 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5291 	if (!spec)
5292 		return NULL;
5293 
5294 	spec->pool_id = CEPH_NOPOOL;
5295 	spec->snap_id = CEPH_NOSNAP;
5296 	kref_init(&spec->kref);
5297 
5298 	return spec;
5299 }
5300 
5301 static void rbd_spec_free(struct kref *kref)
5302 {
5303 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5304 
5305 	kfree(spec->pool_name);
5306 	kfree(spec->pool_ns);
5307 	kfree(spec->image_id);
5308 	kfree(spec->image_name);
5309 	kfree(spec->snap_name);
5310 	kfree(spec);
5311 }
5312 
5313 static void rbd_dev_free(struct rbd_device *rbd_dev)
5314 {
5315 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5316 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5317 
5318 	ceph_oid_destroy(&rbd_dev->header_oid);
5319 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5320 	kfree(rbd_dev->config_info);
5321 
5322 	rbd_put_client(rbd_dev->rbd_client);
5323 	rbd_spec_put(rbd_dev->spec);
5324 	kfree(rbd_dev->opts);
5325 	kfree(rbd_dev);
5326 }
5327 
5328 static void rbd_dev_release(struct device *dev)
5329 {
5330 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5331 	bool need_put = !!rbd_dev->opts;
5332 
5333 	if (need_put) {
5334 		destroy_workqueue(rbd_dev->task_wq);
5335 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5336 	}
5337 
5338 	rbd_dev_free(rbd_dev);
5339 
5340 	/*
5341 	 * This is racy, but way better than putting module outside of
5342 	 * the release callback.  The race window is pretty small, so
5343 	 * doing something similar to dm (dm-builtin.c) is overkill.
5344 	 */
5345 	if (need_put)
5346 		module_put(THIS_MODULE);
5347 }
5348 
5349 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5350 {
5351 	struct rbd_device *rbd_dev;
5352 
5353 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5354 	if (!rbd_dev)
5355 		return NULL;
5356 
5357 	spin_lock_init(&rbd_dev->lock);
5358 	INIT_LIST_HEAD(&rbd_dev->node);
5359 	init_rwsem(&rbd_dev->header_rwsem);
5360 
5361 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5362 	ceph_oid_init(&rbd_dev->header_oid);
5363 	rbd_dev->header_oloc.pool = spec->pool_id;
5364 	if (spec->pool_ns) {
5365 		WARN_ON(!*spec->pool_ns);
5366 		rbd_dev->header_oloc.pool_ns =
5367 		    ceph_find_or_create_string(spec->pool_ns,
5368 					       strlen(spec->pool_ns));
5369 	}
5370 
5371 	mutex_init(&rbd_dev->watch_mutex);
5372 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5373 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5374 
5375 	init_rwsem(&rbd_dev->lock_rwsem);
5376 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5377 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5378 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5379 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5380 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5381 	spin_lock_init(&rbd_dev->lock_lists_lock);
5382 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5383 	INIT_LIST_HEAD(&rbd_dev->running_list);
5384 	init_completion(&rbd_dev->acquire_wait);
5385 	init_completion(&rbd_dev->releasing_wait);
5386 
5387 	spin_lock_init(&rbd_dev->object_map_lock);
5388 
5389 	rbd_dev->dev.bus = &rbd_bus_type;
5390 	rbd_dev->dev.type = &rbd_device_type;
5391 	rbd_dev->dev.parent = &rbd_root_dev;
5392 	device_initialize(&rbd_dev->dev);
5393 
5394 	return rbd_dev;
5395 }
5396 
5397 /*
5398  * Create a mapping rbd_dev.
5399  */
5400 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5401 					 struct rbd_spec *spec,
5402 					 struct rbd_options *opts)
5403 {
5404 	struct rbd_device *rbd_dev;
5405 
5406 	rbd_dev = __rbd_dev_create(spec);
5407 	if (!rbd_dev)
5408 		return NULL;
5409 
5410 	/* get an id and fill in device name */
5411 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5412 					 minor_to_rbd_dev_id(1 << MINORBITS),
5413 					 GFP_KERNEL);
5414 	if (rbd_dev->dev_id < 0)
5415 		goto fail_rbd_dev;
5416 
5417 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5418 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5419 						   rbd_dev->name);
5420 	if (!rbd_dev->task_wq)
5421 		goto fail_dev_id;
5422 
5423 	/* we have a ref from do_rbd_add() */
5424 	__module_get(THIS_MODULE);
5425 
5426 	rbd_dev->rbd_client = rbdc;
5427 	rbd_dev->spec = spec;
5428 	rbd_dev->opts = opts;
5429 
5430 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5431 	return rbd_dev;
5432 
5433 fail_dev_id:
5434 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5435 fail_rbd_dev:
5436 	rbd_dev_free(rbd_dev);
5437 	return NULL;
5438 }
5439 
5440 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5441 {
5442 	if (rbd_dev)
5443 		put_device(&rbd_dev->dev);
5444 }
5445 
5446 /*
5447  * Get the size and object order for an image snapshot, or if
5448  * snap_id is CEPH_NOSNAP, gets this information for the base
5449  * image.
5450  */
5451 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5452 				u8 *order, u64 *snap_size)
5453 {
5454 	__le64 snapid = cpu_to_le64(snap_id);
5455 	int ret;
5456 	struct {
5457 		u8 order;
5458 		__le64 size;
5459 	} __attribute__ ((packed)) size_buf = { 0 };
5460 
5461 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5462 				  &rbd_dev->header_oloc, "get_size",
5463 				  &snapid, sizeof(snapid),
5464 				  &size_buf, sizeof(size_buf));
5465 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5466 	if (ret < 0)
5467 		return ret;
5468 	if (ret < sizeof (size_buf))
5469 		return -ERANGE;
5470 
5471 	if (order) {
5472 		*order = size_buf.order;
5473 		dout("  order %u", (unsigned int)*order);
5474 	}
5475 	*snap_size = le64_to_cpu(size_buf.size);
5476 
5477 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5478 		(unsigned long long)snap_id,
5479 		(unsigned long long)*snap_size);
5480 
5481 	return 0;
5482 }
5483 
5484 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5485 				    char **pobject_prefix)
5486 {
5487 	size_t size;
5488 	void *reply_buf;
5489 	char *object_prefix;
5490 	int ret;
5491 	void *p;
5492 
5493 	/* Response will be an encoded string, which includes a length */
5494 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5495 	reply_buf = kzalloc(size, GFP_KERNEL);
5496 	if (!reply_buf)
5497 		return -ENOMEM;
5498 
5499 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5500 				  &rbd_dev->header_oloc, "get_object_prefix",
5501 				  NULL, 0, reply_buf, size);
5502 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5503 	if (ret < 0)
5504 		goto out;
5505 
5506 	p = reply_buf;
5507 	object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5508 						    GFP_NOIO);
5509 	if (IS_ERR(object_prefix)) {
5510 		ret = PTR_ERR(object_prefix);
5511 		goto out;
5512 	}
5513 	ret = 0;
5514 
5515 	*pobject_prefix = object_prefix;
5516 	dout("  object_prefix = %s\n", object_prefix);
5517 out:
5518 	kfree(reply_buf);
5519 
5520 	return ret;
5521 }
5522 
5523 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5524 				     bool read_only, u64 *snap_features)
5525 {
5526 	struct {
5527 		__le64 snap_id;
5528 		u8 read_only;
5529 	} features_in;
5530 	struct {
5531 		__le64 features;
5532 		__le64 incompat;
5533 	} __attribute__ ((packed)) features_buf = { 0 };
5534 	u64 unsup;
5535 	int ret;
5536 
5537 	features_in.snap_id = cpu_to_le64(snap_id);
5538 	features_in.read_only = read_only;
5539 
5540 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5541 				  &rbd_dev->header_oloc, "get_features",
5542 				  &features_in, sizeof(features_in),
5543 				  &features_buf, sizeof(features_buf));
5544 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5545 	if (ret < 0)
5546 		return ret;
5547 	if (ret < sizeof (features_buf))
5548 		return -ERANGE;
5549 
5550 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5551 	if (unsup) {
5552 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5553 			 unsup);
5554 		return -ENXIO;
5555 	}
5556 
5557 	*snap_features = le64_to_cpu(features_buf.features);
5558 
5559 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5560 		(unsigned long long)snap_id,
5561 		(unsigned long long)*snap_features,
5562 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5563 
5564 	return 0;
5565 }
5566 
5567 /*
5568  * These are generic image flags, but since they are used only for
5569  * object map, store them in rbd_dev->object_map_flags.
5570  *
5571  * For the same reason, this function is called only on object map
5572  * (re)load and not on header refresh.
5573  */
5574 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5575 {
5576 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5577 	__le64 flags;
5578 	int ret;
5579 
5580 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5581 				  &rbd_dev->header_oloc, "get_flags",
5582 				  &snapid, sizeof(snapid),
5583 				  &flags, sizeof(flags));
5584 	if (ret < 0)
5585 		return ret;
5586 	if (ret < sizeof(flags))
5587 		return -EBADMSG;
5588 
5589 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5590 	return 0;
5591 }
5592 
5593 struct parent_image_info {
5594 	u64		pool_id;
5595 	const char	*pool_ns;
5596 	const char	*image_id;
5597 	u64		snap_id;
5598 
5599 	bool		has_overlap;
5600 	u64		overlap;
5601 };
5602 
5603 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5604 {
5605 	kfree(pii->pool_ns);
5606 	kfree(pii->image_id);
5607 
5608 	memset(pii, 0, sizeof(*pii));
5609 }
5610 
5611 /*
5612  * The caller is responsible for @pii.
5613  */
5614 static int decode_parent_image_spec(void **p, void *end,
5615 				    struct parent_image_info *pii)
5616 {
5617 	u8 struct_v;
5618 	u32 struct_len;
5619 	int ret;
5620 
5621 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5622 				  &struct_v, &struct_len);
5623 	if (ret)
5624 		return ret;
5625 
5626 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5627 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5628 	if (IS_ERR(pii->pool_ns)) {
5629 		ret = PTR_ERR(pii->pool_ns);
5630 		pii->pool_ns = NULL;
5631 		return ret;
5632 	}
5633 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5634 	if (IS_ERR(pii->image_id)) {
5635 		ret = PTR_ERR(pii->image_id);
5636 		pii->image_id = NULL;
5637 		return ret;
5638 	}
5639 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5640 	return 0;
5641 
5642 e_inval:
5643 	return -EINVAL;
5644 }
5645 
5646 static int __get_parent_info(struct rbd_device *rbd_dev,
5647 			     struct page *req_page,
5648 			     struct page *reply_page,
5649 			     struct parent_image_info *pii)
5650 {
5651 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5652 	size_t reply_len = PAGE_SIZE;
5653 	void *p, *end;
5654 	int ret;
5655 
5656 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5657 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5658 			     req_page, sizeof(u64), &reply_page, &reply_len);
5659 	if (ret)
5660 		return ret == -EOPNOTSUPP ? 1 : ret;
5661 
5662 	p = page_address(reply_page);
5663 	end = p + reply_len;
5664 	ret = decode_parent_image_spec(&p, end, pii);
5665 	if (ret)
5666 		return ret;
5667 
5668 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5669 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5670 			     req_page, sizeof(u64), &reply_page, &reply_len);
5671 	if (ret)
5672 		return ret;
5673 
5674 	p = page_address(reply_page);
5675 	end = p + reply_len;
5676 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5677 	if (pii->has_overlap)
5678 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5679 
5680 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5681 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5682 	     pii->has_overlap, pii->overlap);
5683 	return 0;
5684 
5685 e_inval:
5686 	return -EINVAL;
5687 }
5688 
5689 /*
5690  * The caller is responsible for @pii.
5691  */
5692 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5693 				    struct page *req_page,
5694 				    struct page *reply_page,
5695 				    struct parent_image_info *pii)
5696 {
5697 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5698 	size_t reply_len = PAGE_SIZE;
5699 	void *p, *end;
5700 	int ret;
5701 
5702 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5703 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5704 			     req_page, sizeof(u64), &reply_page, &reply_len);
5705 	if (ret)
5706 		return ret;
5707 
5708 	p = page_address(reply_page);
5709 	end = p + reply_len;
5710 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5711 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5712 	if (IS_ERR(pii->image_id)) {
5713 		ret = PTR_ERR(pii->image_id);
5714 		pii->image_id = NULL;
5715 		return ret;
5716 	}
5717 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5718 	pii->has_overlap = true;
5719 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5720 
5721 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5722 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5723 	     pii->has_overlap, pii->overlap);
5724 	return 0;
5725 
5726 e_inval:
5727 	return -EINVAL;
5728 }
5729 
5730 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5731 				  struct parent_image_info *pii)
5732 {
5733 	struct page *req_page, *reply_page;
5734 	void *p;
5735 	int ret;
5736 
5737 	req_page = alloc_page(GFP_KERNEL);
5738 	if (!req_page)
5739 		return -ENOMEM;
5740 
5741 	reply_page = alloc_page(GFP_KERNEL);
5742 	if (!reply_page) {
5743 		__free_page(req_page);
5744 		return -ENOMEM;
5745 	}
5746 
5747 	p = page_address(req_page);
5748 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5749 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5750 	if (ret > 0)
5751 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5752 					       pii);
5753 
5754 	__free_page(req_page);
5755 	__free_page(reply_page);
5756 	return ret;
5757 }
5758 
5759 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5760 {
5761 	struct rbd_spec *parent_spec;
5762 	struct parent_image_info pii = { 0 };
5763 	int ret;
5764 
5765 	parent_spec = rbd_spec_alloc();
5766 	if (!parent_spec)
5767 		return -ENOMEM;
5768 
5769 	ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5770 	if (ret)
5771 		goto out_err;
5772 
5773 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5774 		goto out;	/* No parent?  No problem. */
5775 
5776 	/* The ceph file layout needs to fit pool id in 32 bits */
5777 
5778 	ret = -EIO;
5779 	if (pii.pool_id > (u64)U32_MAX) {
5780 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5781 			(unsigned long long)pii.pool_id, U32_MAX);
5782 		goto out_err;
5783 	}
5784 
5785 	/*
5786 	 * The parent won't change except when the clone is flattened,
5787 	 * so we only need to record the parent image spec once.
5788 	 */
5789 	parent_spec->pool_id = pii.pool_id;
5790 	if (pii.pool_ns && *pii.pool_ns) {
5791 		parent_spec->pool_ns = pii.pool_ns;
5792 		pii.pool_ns = NULL;
5793 	}
5794 	parent_spec->image_id = pii.image_id;
5795 	pii.image_id = NULL;
5796 	parent_spec->snap_id = pii.snap_id;
5797 
5798 	rbd_assert(!rbd_dev->parent_spec);
5799 	rbd_dev->parent_spec = parent_spec;
5800 	parent_spec = NULL;	/* rbd_dev now owns this */
5801 
5802 	/*
5803 	 * Record the parent overlap.  If it's zero, issue a warning as
5804 	 * we will proceed as if there is no parent.
5805 	 */
5806 	if (!pii.overlap)
5807 		rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5808 	rbd_dev->parent_overlap = pii.overlap;
5809 
5810 out:
5811 	ret = 0;
5812 out_err:
5813 	rbd_parent_info_cleanup(&pii);
5814 	rbd_spec_put(parent_spec);
5815 	return ret;
5816 }
5817 
5818 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5819 				    u64 *stripe_unit, u64 *stripe_count)
5820 {
5821 	struct {
5822 		__le64 stripe_unit;
5823 		__le64 stripe_count;
5824 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5825 	size_t size = sizeof (striping_info_buf);
5826 	int ret;
5827 
5828 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5829 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5830 				NULL, 0, &striping_info_buf, size);
5831 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5832 	if (ret < 0)
5833 		return ret;
5834 	if (ret < size)
5835 		return -ERANGE;
5836 
5837 	*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5838 	*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5839 	dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5840 	     *stripe_count);
5841 
5842 	return 0;
5843 }
5844 
5845 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5846 {
5847 	__le64 data_pool_buf;
5848 	int ret;
5849 
5850 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5851 				  &rbd_dev->header_oloc, "get_data_pool",
5852 				  NULL, 0, &data_pool_buf,
5853 				  sizeof(data_pool_buf));
5854 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5855 	if (ret < 0)
5856 		return ret;
5857 	if (ret < sizeof(data_pool_buf))
5858 		return -EBADMSG;
5859 
5860 	*data_pool_id = le64_to_cpu(data_pool_buf);
5861 	dout("  data_pool_id = %lld\n", *data_pool_id);
5862 	WARN_ON(*data_pool_id == CEPH_NOPOOL);
5863 
5864 	return 0;
5865 }
5866 
5867 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5868 {
5869 	CEPH_DEFINE_OID_ONSTACK(oid);
5870 	size_t image_id_size;
5871 	char *image_id;
5872 	void *p;
5873 	void *end;
5874 	size_t size;
5875 	void *reply_buf = NULL;
5876 	size_t len = 0;
5877 	char *image_name = NULL;
5878 	int ret;
5879 
5880 	rbd_assert(!rbd_dev->spec->image_name);
5881 
5882 	len = strlen(rbd_dev->spec->image_id);
5883 	image_id_size = sizeof (__le32) + len;
5884 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5885 	if (!image_id)
5886 		return NULL;
5887 
5888 	p = image_id;
5889 	end = image_id + image_id_size;
5890 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5891 
5892 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5893 	reply_buf = kmalloc(size, GFP_KERNEL);
5894 	if (!reply_buf)
5895 		goto out;
5896 
5897 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5898 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5899 				  "dir_get_name", image_id, image_id_size,
5900 				  reply_buf, size);
5901 	if (ret < 0)
5902 		goto out;
5903 	p = reply_buf;
5904 	end = reply_buf + ret;
5905 
5906 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5907 	if (IS_ERR(image_name))
5908 		image_name = NULL;
5909 	else
5910 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5911 out:
5912 	kfree(reply_buf);
5913 	kfree(image_id);
5914 
5915 	return image_name;
5916 }
5917 
5918 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5919 {
5920 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5921 	const char *snap_name;
5922 	u32 which = 0;
5923 
5924 	/* Skip over names until we find the one we are looking for */
5925 
5926 	snap_name = rbd_dev->header.snap_names;
5927 	while (which < snapc->num_snaps) {
5928 		if (!strcmp(name, snap_name))
5929 			return snapc->snaps[which];
5930 		snap_name += strlen(snap_name) + 1;
5931 		which++;
5932 	}
5933 	return CEPH_NOSNAP;
5934 }
5935 
5936 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5937 {
5938 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5939 	u32 which;
5940 	bool found = false;
5941 	u64 snap_id;
5942 
5943 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5944 		const char *snap_name;
5945 
5946 		snap_id = snapc->snaps[which];
5947 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5948 		if (IS_ERR(snap_name)) {
5949 			/* ignore no-longer existing snapshots */
5950 			if (PTR_ERR(snap_name) == -ENOENT)
5951 				continue;
5952 			else
5953 				break;
5954 		}
5955 		found = !strcmp(name, snap_name);
5956 		kfree(snap_name);
5957 	}
5958 	return found ? snap_id : CEPH_NOSNAP;
5959 }
5960 
5961 /*
5962  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5963  * no snapshot by that name is found, or if an error occurs.
5964  */
5965 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5966 {
5967 	if (rbd_dev->image_format == 1)
5968 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5969 
5970 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5971 }
5972 
5973 /*
5974  * An image being mapped will have everything but the snap id.
5975  */
5976 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5977 {
5978 	struct rbd_spec *spec = rbd_dev->spec;
5979 
5980 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5981 	rbd_assert(spec->image_id && spec->image_name);
5982 	rbd_assert(spec->snap_name);
5983 
5984 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5985 		u64 snap_id;
5986 
5987 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5988 		if (snap_id == CEPH_NOSNAP)
5989 			return -ENOENT;
5990 
5991 		spec->snap_id = snap_id;
5992 	} else {
5993 		spec->snap_id = CEPH_NOSNAP;
5994 	}
5995 
5996 	return 0;
5997 }
5998 
5999 /*
6000  * A parent image will have all ids but none of the names.
6001  *
6002  * All names in an rbd spec are dynamically allocated.  It's OK if we
6003  * can't figure out the name for an image id.
6004  */
6005 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6006 {
6007 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6008 	struct rbd_spec *spec = rbd_dev->spec;
6009 	const char *pool_name;
6010 	const char *image_name;
6011 	const char *snap_name;
6012 	int ret;
6013 
6014 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6015 	rbd_assert(spec->image_id);
6016 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6017 
6018 	/* Get the pool name; we have to make our own copy of this */
6019 
6020 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6021 	if (!pool_name) {
6022 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6023 		return -EIO;
6024 	}
6025 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6026 	if (!pool_name)
6027 		return -ENOMEM;
6028 
6029 	/* Fetch the image name; tolerate failure here */
6030 
6031 	image_name = rbd_dev_image_name(rbd_dev);
6032 	if (!image_name)
6033 		rbd_warn(rbd_dev, "unable to get image name");
6034 
6035 	/* Fetch the snapshot name */
6036 
6037 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6038 	if (IS_ERR(snap_name)) {
6039 		ret = PTR_ERR(snap_name);
6040 		goto out_err;
6041 	}
6042 
6043 	spec->pool_name = pool_name;
6044 	spec->image_name = image_name;
6045 	spec->snap_name = snap_name;
6046 
6047 	return 0;
6048 
6049 out_err:
6050 	kfree(image_name);
6051 	kfree(pool_name);
6052 	return ret;
6053 }
6054 
6055 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6056 				   struct ceph_snap_context **psnapc)
6057 {
6058 	size_t size;
6059 	int ret;
6060 	void *reply_buf;
6061 	void *p;
6062 	void *end;
6063 	u64 seq;
6064 	u32 snap_count;
6065 	struct ceph_snap_context *snapc;
6066 	u32 i;
6067 
6068 	/*
6069 	 * We'll need room for the seq value (maximum snapshot id),
6070 	 * snapshot count, and array of that many snapshot ids.
6071 	 * For now we have a fixed upper limit on the number we're
6072 	 * prepared to receive.
6073 	 */
6074 	size = sizeof (__le64) + sizeof (__le32) +
6075 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6076 	reply_buf = kzalloc(size, GFP_KERNEL);
6077 	if (!reply_buf)
6078 		return -ENOMEM;
6079 
6080 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6081 				  &rbd_dev->header_oloc, "get_snapcontext",
6082 				  NULL, 0, reply_buf, size);
6083 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6084 	if (ret < 0)
6085 		goto out;
6086 
6087 	p = reply_buf;
6088 	end = reply_buf + ret;
6089 	ret = -ERANGE;
6090 	ceph_decode_64_safe(&p, end, seq, out);
6091 	ceph_decode_32_safe(&p, end, snap_count, out);
6092 
6093 	/*
6094 	 * Make sure the reported number of snapshot ids wouldn't go
6095 	 * beyond the end of our buffer.  But before checking that,
6096 	 * make sure the computed size of the snapshot context we
6097 	 * allocate is representable in a size_t.
6098 	 */
6099 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6100 				 / sizeof (u64)) {
6101 		ret = -EINVAL;
6102 		goto out;
6103 	}
6104 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6105 		goto out;
6106 	ret = 0;
6107 
6108 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6109 	if (!snapc) {
6110 		ret = -ENOMEM;
6111 		goto out;
6112 	}
6113 	snapc->seq = seq;
6114 	for (i = 0; i < snap_count; i++)
6115 		snapc->snaps[i] = ceph_decode_64(&p);
6116 
6117 	*psnapc = snapc;
6118 	dout("  snap context seq = %llu, snap_count = %u\n",
6119 		(unsigned long long)seq, (unsigned int)snap_count);
6120 out:
6121 	kfree(reply_buf);
6122 
6123 	return ret;
6124 }
6125 
6126 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6127 					u64 snap_id)
6128 {
6129 	size_t size;
6130 	void *reply_buf;
6131 	__le64 snapid;
6132 	int ret;
6133 	void *p;
6134 	void *end;
6135 	char *snap_name;
6136 
6137 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6138 	reply_buf = kmalloc(size, GFP_KERNEL);
6139 	if (!reply_buf)
6140 		return ERR_PTR(-ENOMEM);
6141 
6142 	snapid = cpu_to_le64(snap_id);
6143 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6144 				  &rbd_dev->header_oloc, "get_snapshot_name",
6145 				  &snapid, sizeof(snapid), reply_buf, size);
6146 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6147 	if (ret < 0) {
6148 		snap_name = ERR_PTR(ret);
6149 		goto out;
6150 	}
6151 
6152 	p = reply_buf;
6153 	end = reply_buf + ret;
6154 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6155 	if (IS_ERR(snap_name))
6156 		goto out;
6157 
6158 	dout("  snap_id 0x%016llx snap_name = %s\n",
6159 		(unsigned long long)snap_id, snap_name);
6160 out:
6161 	kfree(reply_buf);
6162 
6163 	return snap_name;
6164 }
6165 
6166 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6167 				  struct rbd_image_header *header,
6168 				  bool first_time)
6169 {
6170 	int ret;
6171 
6172 	ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6173 				    first_time ? &header->obj_order : NULL,
6174 				    &header->image_size);
6175 	if (ret)
6176 		return ret;
6177 
6178 	if (first_time) {
6179 		ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6180 		if (ret)
6181 			return ret;
6182 	}
6183 
6184 	ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6185 	if (ret)
6186 		return ret;
6187 
6188 	return 0;
6189 }
6190 
6191 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6192 			       struct rbd_image_header *header,
6193 			       bool first_time)
6194 {
6195 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6196 	rbd_assert(!header->object_prefix && !header->snapc);
6197 
6198 	if (rbd_dev->image_format == 1)
6199 		return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6200 
6201 	return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6202 }
6203 
6204 /*
6205  * Skips over white space at *buf, and updates *buf to point to the
6206  * first found non-space character (if any). Returns the length of
6207  * the token (string of non-white space characters) found.  Note
6208  * that *buf must be terminated with '\0'.
6209  */
6210 static inline size_t next_token(const char **buf)
6211 {
6212         /*
6213         * These are the characters that produce nonzero for
6214         * isspace() in the "C" and "POSIX" locales.
6215         */
6216 	static const char spaces[] = " \f\n\r\t\v";
6217 
6218         *buf += strspn(*buf, spaces);	/* Find start of token */
6219 
6220 	return strcspn(*buf, spaces);   /* Return token length */
6221 }
6222 
6223 /*
6224  * Finds the next token in *buf, dynamically allocates a buffer big
6225  * enough to hold a copy of it, and copies the token into the new
6226  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6227  * that a duplicate buffer is created even for a zero-length token.
6228  *
6229  * Returns a pointer to the newly-allocated duplicate, or a null
6230  * pointer if memory for the duplicate was not available.  If
6231  * the lenp argument is a non-null pointer, the length of the token
6232  * (not including the '\0') is returned in *lenp.
6233  *
6234  * If successful, the *buf pointer will be updated to point beyond
6235  * the end of the found token.
6236  *
6237  * Note: uses GFP_KERNEL for allocation.
6238  */
6239 static inline char *dup_token(const char **buf, size_t *lenp)
6240 {
6241 	char *dup;
6242 	size_t len;
6243 
6244 	len = next_token(buf);
6245 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6246 	if (!dup)
6247 		return NULL;
6248 	*(dup + len) = '\0';
6249 	*buf += len;
6250 
6251 	if (lenp)
6252 		*lenp = len;
6253 
6254 	return dup;
6255 }
6256 
6257 static int rbd_parse_param(struct fs_parameter *param,
6258 			    struct rbd_parse_opts_ctx *pctx)
6259 {
6260 	struct rbd_options *opt = pctx->opts;
6261 	struct fs_parse_result result;
6262 	struct p_log log = {.prefix = "rbd"};
6263 	int token, ret;
6264 
6265 	ret = ceph_parse_param(param, pctx->copts, NULL);
6266 	if (ret != -ENOPARAM)
6267 		return ret;
6268 
6269 	token = __fs_parse(&log, rbd_parameters, param, &result);
6270 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6271 	if (token < 0) {
6272 		if (token == -ENOPARAM)
6273 			return inval_plog(&log, "Unknown parameter '%s'",
6274 					  param->key);
6275 		return token;
6276 	}
6277 
6278 	switch (token) {
6279 	case Opt_queue_depth:
6280 		if (result.uint_32 < 1)
6281 			goto out_of_range;
6282 		opt->queue_depth = result.uint_32;
6283 		break;
6284 	case Opt_alloc_size:
6285 		if (result.uint_32 < SECTOR_SIZE)
6286 			goto out_of_range;
6287 		if (!is_power_of_2(result.uint_32))
6288 			return inval_plog(&log, "alloc_size must be a power of 2");
6289 		opt->alloc_size = result.uint_32;
6290 		break;
6291 	case Opt_lock_timeout:
6292 		/* 0 is "wait forever" (i.e. infinite timeout) */
6293 		if (result.uint_32 > INT_MAX / 1000)
6294 			goto out_of_range;
6295 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6296 		break;
6297 	case Opt_pool_ns:
6298 		kfree(pctx->spec->pool_ns);
6299 		pctx->spec->pool_ns = param->string;
6300 		param->string = NULL;
6301 		break;
6302 	case Opt_compression_hint:
6303 		switch (result.uint_32) {
6304 		case Opt_compression_hint_none:
6305 			opt->alloc_hint_flags &=
6306 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6307 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6308 			break;
6309 		case Opt_compression_hint_compressible:
6310 			opt->alloc_hint_flags |=
6311 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6312 			opt->alloc_hint_flags &=
6313 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6314 			break;
6315 		case Opt_compression_hint_incompressible:
6316 			opt->alloc_hint_flags |=
6317 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6318 			opt->alloc_hint_flags &=
6319 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6320 			break;
6321 		default:
6322 			BUG();
6323 		}
6324 		break;
6325 	case Opt_read_only:
6326 		opt->read_only = true;
6327 		break;
6328 	case Opt_read_write:
6329 		opt->read_only = false;
6330 		break;
6331 	case Opt_lock_on_read:
6332 		opt->lock_on_read = true;
6333 		break;
6334 	case Opt_exclusive:
6335 		opt->exclusive = true;
6336 		break;
6337 	case Opt_notrim:
6338 		opt->trim = false;
6339 		break;
6340 	default:
6341 		BUG();
6342 	}
6343 
6344 	return 0;
6345 
6346 out_of_range:
6347 	return inval_plog(&log, "%s out of range", param->key);
6348 }
6349 
6350 /*
6351  * This duplicates most of generic_parse_monolithic(), untying it from
6352  * fs_context and skipping standard superblock and security options.
6353  */
6354 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6355 {
6356 	char *key;
6357 	int ret = 0;
6358 
6359 	dout("%s '%s'\n", __func__, options);
6360 	while ((key = strsep(&options, ",")) != NULL) {
6361 		if (*key) {
6362 			struct fs_parameter param = {
6363 				.key	= key,
6364 				.type	= fs_value_is_flag,
6365 			};
6366 			char *value = strchr(key, '=');
6367 			size_t v_len = 0;
6368 
6369 			if (value) {
6370 				if (value == key)
6371 					continue;
6372 				*value++ = 0;
6373 				v_len = strlen(value);
6374 				param.string = kmemdup_nul(value, v_len,
6375 							   GFP_KERNEL);
6376 				if (!param.string)
6377 					return -ENOMEM;
6378 				param.type = fs_value_is_string;
6379 			}
6380 			param.size = v_len;
6381 
6382 			ret = rbd_parse_param(&param, pctx);
6383 			kfree(param.string);
6384 			if (ret)
6385 				break;
6386 		}
6387 	}
6388 
6389 	return ret;
6390 }
6391 
6392 /*
6393  * Parse the options provided for an "rbd add" (i.e., rbd image
6394  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6395  * and the data written is passed here via a NUL-terminated buffer.
6396  * Returns 0 if successful or an error code otherwise.
6397  *
6398  * The information extracted from these options is recorded in
6399  * the other parameters which return dynamically-allocated
6400  * structures:
6401  *  ceph_opts
6402  *      The address of a pointer that will refer to a ceph options
6403  *      structure.  Caller must release the returned pointer using
6404  *      ceph_destroy_options() when it is no longer needed.
6405  *  rbd_opts
6406  *	Address of an rbd options pointer.  Fully initialized by
6407  *	this function; caller must release with kfree().
6408  *  spec
6409  *	Address of an rbd image specification pointer.  Fully
6410  *	initialized by this function based on parsed options.
6411  *	Caller must release with rbd_spec_put().
6412  *
6413  * The options passed take this form:
6414  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6415  * where:
6416  *  <mon_addrs>
6417  *      A comma-separated list of one or more monitor addresses.
6418  *      A monitor address is an ip address, optionally followed
6419  *      by a port number (separated by a colon).
6420  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6421  *  <options>
6422  *      A comma-separated list of ceph and/or rbd options.
6423  *  <pool_name>
6424  *      The name of the rados pool containing the rbd image.
6425  *  <image_name>
6426  *      The name of the image in that pool to map.
6427  *  <snap_id>
6428  *      An optional snapshot id.  If provided, the mapping will
6429  *      present data from the image at the time that snapshot was
6430  *      created.  The image head is used if no snapshot id is
6431  *      provided.  Snapshot mappings are always read-only.
6432  */
6433 static int rbd_add_parse_args(const char *buf,
6434 				struct ceph_options **ceph_opts,
6435 				struct rbd_options **opts,
6436 				struct rbd_spec **rbd_spec)
6437 {
6438 	size_t len;
6439 	char *options;
6440 	const char *mon_addrs;
6441 	char *snap_name;
6442 	size_t mon_addrs_size;
6443 	struct rbd_parse_opts_ctx pctx = { 0 };
6444 	int ret;
6445 
6446 	/* The first four tokens are required */
6447 
6448 	len = next_token(&buf);
6449 	if (!len) {
6450 		rbd_warn(NULL, "no monitor address(es) provided");
6451 		return -EINVAL;
6452 	}
6453 	mon_addrs = buf;
6454 	mon_addrs_size = len;
6455 	buf += len;
6456 
6457 	ret = -EINVAL;
6458 	options = dup_token(&buf, NULL);
6459 	if (!options)
6460 		return -ENOMEM;
6461 	if (!*options) {
6462 		rbd_warn(NULL, "no options provided");
6463 		goto out_err;
6464 	}
6465 
6466 	pctx.spec = rbd_spec_alloc();
6467 	if (!pctx.spec)
6468 		goto out_mem;
6469 
6470 	pctx.spec->pool_name = dup_token(&buf, NULL);
6471 	if (!pctx.spec->pool_name)
6472 		goto out_mem;
6473 	if (!*pctx.spec->pool_name) {
6474 		rbd_warn(NULL, "no pool name provided");
6475 		goto out_err;
6476 	}
6477 
6478 	pctx.spec->image_name = dup_token(&buf, NULL);
6479 	if (!pctx.spec->image_name)
6480 		goto out_mem;
6481 	if (!*pctx.spec->image_name) {
6482 		rbd_warn(NULL, "no image name provided");
6483 		goto out_err;
6484 	}
6485 
6486 	/*
6487 	 * Snapshot name is optional; default is to use "-"
6488 	 * (indicating the head/no snapshot).
6489 	 */
6490 	len = next_token(&buf);
6491 	if (!len) {
6492 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6493 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6494 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6495 		ret = -ENAMETOOLONG;
6496 		goto out_err;
6497 	}
6498 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6499 	if (!snap_name)
6500 		goto out_mem;
6501 	*(snap_name + len) = '\0';
6502 	pctx.spec->snap_name = snap_name;
6503 
6504 	pctx.copts = ceph_alloc_options();
6505 	if (!pctx.copts)
6506 		goto out_mem;
6507 
6508 	/* Initialize all rbd options to the defaults */
6509 
6510 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6511 	if (!pctx.opts)
6512 		goto out_mem;
6513 
6514 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6515 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6516 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6517 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6518 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6519 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6520 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6521 
6522 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6523 				 ',');
6524 	if (ret)
6525 		goto out_err;
6526 
6527 	ret = rbd_parse_options(options, &pctx);
6528 	if (ret)
6529 		goto out_err;
6530 
6531 	*ceph_opts = pctx.copts;
6532 	*opts = pctx.opts;
6533 	*rbd_spec = pctx.spec;
6534 	kfree(options);
6535 	return 0;
6536 
6537 out_mem:
6538 	ret = -ENOMEM;
6539 out_err:
6540 	kfree(pctx.opts);
6541 	ceph_destroy_options(pctx.copts);
6542 	rbd_spec_put(pctx.spec);
6543 	kfree(options);
6544 	return ret;
6545 }
6546 
6547 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6548 {
6549 	down_write(&rbd_dev->lock_rwsem);
6550 	if (__rbd_is_lock_owner(rbd_dev))
6551 		__rbd_release_lock(rbd_dev);
6552 	up_write(&rbd_dev->lock_rwsem);
6553 }
6554 
6555 /*
6556  * If the wait is interrupted, an error is returned even if the lock
6557  * was successfully acquired.  rbd_dev_image_unlock() will release it
6558  * if needed.
6559  */
6560 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6561 {
6562 	long ret;
6563 
6564 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6565 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6566 			return 0;
6567 
6568 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6569 		return -EINVAL;
6570 	}
6571 
6572 	if (rbd_is_ro(rbd_dev))
6573 		return 0;
6574 
6575 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6576 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6577 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6578 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6579 	if (ret > 0) {
6580 		ret = rbd_dev->acquire_err;
6581 	} else {
6582 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6583 		if (!ret)
6584 			ret = -ETIMEDOUT;
6585 
6586 		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6587 	}
6588 	if (ret)
6589 		return ret;
6590 
6591 	/*
6592 	 * The lock may have been released by now, unless automatic lock
6593 	 * transitions are disabled.
6594 	 */
6595 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6596 	return 0;
6597 }
6598 
6599 /*
6600  * An rbd format 2 image has a unique identifier, distinct from the
6601  * name given to it by the user.  Internally, that identifier is
6602  * what's used to specify the names of objects related to the image.
6603  *
6604  * A special "rbd id" object is used to map an rbd image name to its
6605  * id.  If that object doesn't exist, then there is no v2 rbd image
6606  * with the supplied name.
6607  *
6608  * This function will record the given rbd_dev's image_id field if
6609  * it can be determined, and in that case will return 0.  If any
6610  * errors occur a negative errno will be returned and the rbd_dev's
6611  * image_id field will be unchanged (and should be NULL).
6612  */
6613 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6614 {
6615 	int ret;
6616 	size_t size;
6617 	CEPH_DEFINE_OID_ONSTACK(oid);
6618 	void *response;
6619 	char *image_id;
6620 
6621 	/*
6622 	 * When probing a parent image, the image id is already
6623 	 * known (and the image name likely is not).  There's no
6624 	 * need to fetch the image id again in this case.  We
6625 	 * do still need to set the image format though.
6626 	 */
6627 	if (rbd_dev->spec->image_id) {
6628 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6629 
6630 		return 0;
6631 	}
6632 
6633 	/*
6634 	 * First, see if the format 2 image id file exists, and if
6635 	 * so, get the image's persistent id from it.
6636 	 */
6637 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6638 			       rbd_dev->spec->image_name);
6639 	if (ret)
6640 		return ret;
6641 
6642 	dout("rbd id object name is %s\n", oid.name);
6643 
6644 	/* Response will be an encoded string, which includes a length */
6645 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6646 	response = kzalloc(size, GFP_NOIO);
6647 	if (!response) {
6648 		ret = -ENOMEM;
6649 		goto out;
6650 	}
6651 
6652 	/* If it doesn't exist we'll assume it's a format 1 image */
6653 
6654 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6655 				  "get_id", NULL, 0,
6656 				  response, size);
6657 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6658 	if (ret == -ENOENT) {
6659 		image_id = kstrdup("", GFP_KERNEL);
6660 		ret = image_id ? 0 : -ENOMEM;
6661 		if (!ret)
6662 			rbd_dev->image_format = 1;
6663 	} else if (ret >= 0) {
6664 		void *p = response;
6665 
6666 		image_id = ceph_extract_encoded_string(&p, p + ret,
6667 						NULL, GFP_NOIO);
6668 		ret = PTR_ERR_OR_ZERO(image_id);
6669 		if (!ret)
6670 			rbd_dev->image_format = 2;
6671 	}
6672 
6673 	if (!ret) {
6674 		rbd_dev->spec->image_id = image_id;
6675 		dout("image_id is %s\n", image_id);
6676 	}
6677 out:
6678 	kfree(response);
6679 	ceph_oid_destroy(&oid);
6680 	return ret;
6681 }
6682 
6683 /*
6684  * Undo whatever state changes are made by v1 or v2 header info
6685  * call.
6686  */
6687 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6688 {
6689 	rbd_dev_parent_put(rbd_dev);
6690 	rbd_object_map_free(rbd_dev);
6691 	rbd_dev_mapping_clear(rbd_dev);
6692 
6693 	/* Free dynamic fields from the header, then zero it out */
6694 
6695 	rbd_image_header_cleanup(&rbd_dev->header);
6696 }
6697 
6698 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6699 				     struct rbd_image_header *header)
6700 {
6701 	int ret;
6702 
6703 	ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6704 	if (ret)
6705 		return ret;
6706 
6707 	/*
6708 	 * Get the and check features for the image.  Currently the
6709 	 * features are assumed to never change.
6710 	 */
6711 	ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6712 					rbd_is_ro(rbd_dev), &header->features);
6713 	if (ret)
6714 		return ret;
6715 
6716 	/* If the image supports fancy striping, get its parameters */
6717 
6718 	if (header->features & RBD_FEATURE_STRIPINGV2) {
6719 		ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6720 					       &header->stripe_count);
6721 		if (ret)
6722 			return ret;
6723 	}
6724 
6725 	if (header->features & RBD_FEATURE_DATA_POOL) {
6726 		ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6727 		if (ret)
6728 			return ret;
6729 	}
6730 
6731 	return 0;
6732 }
6733 
6734 /*
6735  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6736  * rbd_dev_image_probe() recursion depth, which means it's also the
6737  * length of the already discovered part of the parent chain.
6738  */
6739 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6740 {
6741 	struct rbd_device *parent = NULL;
6742 	int ret;
6743 
6744 	if (!rbd_dev->parent_spec)
6745 		return 0;
6746 
6747 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6748 		pr_info("parent chain is too long (%d)\n", depth);
6749 		ret = -EINVAL;
6750 		goto out_err;
6751 	}
6752 
6753 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6754 	if (!parent) {
6755 		ret = -ENOMEM;
6756 		goto out_err;
6757 	}
6758 
6759 	/*
6760 	 * Images related by parent/child relationships always share
6761 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6762 	 */
6763 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6764 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6765 
6766 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6767 
6768 	ret = rbd_dev_image_probe(parent, depth);
6769 	if (ret < 0)
6770 		goto out_err;
6771 
6772 	rbd_dev->parent = parent;
6773 	atomic_set(&rbd_dev->parent_ref, 1);
6774 	return 0;
6775 
6776 out_err:
6777 	rbd_dev_unparent(rbd_dev);
6778 	rbd_dev_destroy(parent);
6779 	return ret;
6780 }
6781 
6782 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6783 {
6784 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6785 	rbd_free_disk(rbd_dev);
6786 	if (!single_major)
6787 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6788 }
6789 
6790 /*
6791  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6792  * upon return.
6793  */
6794 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6795 {
6796 	int ret;
6797 
6798 	/* Record our major and minor device numbers. */
6799 
6800 	if (!single_major) {
6801 		ret = register_blkdev(0, rbd_dev->name);
6802 		if (ret < 0)
6803 			goto err_out_unlock;
6804 
6805 		rbd_dev->major = ret;
6806 		rbd_dev->minor = 0;
6807 	} else {
6808 		rbd_dev->major = rbd_major;
6809 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6810 	}
6811 
6812 	/* Set up the blkdev mapping. */
6813 
6814 	ret = rbd_init_disk(rbd_dev);
6815 	if (ret)
6816 		goto err_out_blkdev;
6817 
6818 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6819 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6820 
6821 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6822 	if (ret)
6823 		goto err_out_disk;
6824 
6825 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6826 	up_write(&rbd_dev->header_rwsem);
6827 	return 0;
6828 
6829 err_out_disk:
6830 	rbd_free_disk(rbd_dev);
6831 err_out_blkdev:
6832 	if (!single_major)
6833 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6834 err_out_unlock:
6835 	up_write(&rbd_dev->header_rwsem);
6836 	return ret;
6837 }
6838 
6839 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6840 {
6841 	struct rbd_spec *spec = rbd_dev->spec;
6842 	int ret;
6843 
6844 	/* Record the header object name for this rbd image. */
6845 
6846 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6847 	if (rbd_dev->image_format == 1)
6848 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6849 				       spec->image_name, RBD_SUFFIX);
6850 	else
6851 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6852 				       RBD_HEADER_PREFIX, spec->image_id);
6853 
6854 	return ret;
6855 }
6856 
6857 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6858 {
6859 	if (!is_snap) {
6860 		pr_info("image %s/%s%s%s does not exist\n",
6861 			rbd_dev->spec->pool_name,
6862 			rbd_dev->spec->pool_ns ?: "",
6863 			rbd_dev->spec->pool_ns ? "/" : "",
6864 			rbd_dev->spec->image_name);
6865 	} else {
6866 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6867 			rbd_dev->spec->pool_name,
6868 			rbd_dev->spec->pool_ns ?: "",
6869 			rbd_dev->spec->pool_ns ? "/" : "",
6870 			rbd_dev->spec->image_name,
6871 			rbd_dev->spec->snap_name);
6872 	}
6873 }
6874 
6875 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6876 {
6877 	if (!rbd_is_ro(rbd_dev))
6878 		rbd_unregister_watch(rbd_dev);
6879 
6880 	rbd_dev_unprobe(rbd_dev);
6881 	rbd_dev->image_format = 0;
6882 	kfree(rbd_dev->spec->image_id);
6883 	rbd_dev->spec->image_id = NULL;
6884 }
6885 
6886 /*
6887  * Probe for the existence of the header object for the given rbd
6888  * device.  If this image is the one being mapped (i.e., not a
6889  * parent), initiate a watch on its header object before using that
6890  * object to get detailed information about the rbd image.
6891  *
6892  * On success, returns with header_rwsem held for write if called
6893  * with @depth == 0.
6894  */
6895 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6896 {
6897 	bool need_watch = !rbd_is_ro(rbd_dev);
6898 	int ret;
6899 
6900 	/*
6901 	 * Get the id from the image id object.  Unless there's an
6902 	 * error, rbd_dev->spec->image_id will be filled in with
6903 	 * a dynamically-allocated string, and rbd_dev->image_format
6904 	 * will be set to either 1 or 2.
6905 	 */
6906 	ret = rbd_dev_image_id(rbd_dev);
6907 	if (ret)
6908 		return ret;
6909 
6910 	ret = rbd_dev_header_name(rbd_dev);
6911 	if (ret)
6912 		goto err_out_format;
6913 
6914 	if (need_watch) {
6915 		ret = rbd_register_watch(rbd_dev);
6916 		if (ret) {
6917 			if (ret == -ENOENT)
6918 				rbd_print_dne(rbd_dev, false);
6919 			goto err_out_format;
6920 		}
6921 	}
6922 
6923 	if (!depth)
6924 		down_write(&rbd_dev->header_rwsem);
6925 
6926 	ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6927 	if (ret) {
6928 		if (ret == -ENOENT && !need_watch)
6929 			rbd_print_dne(rbd_dev, false);
6930 		goto err_out_probe;
6931 	}
6932 
6933 	rbd_init_layout(rbd_dev);
6934 
6935 	/*
6936 	 * If this image is the one being mapped, we have pool name and
6937 	 * id, image name and id, and snap name - need to fill snap id.
6938 	 * Otherwise this is a parent image, identified by pool, image
6939 	 * and snap ids - need to fill in names for those ids.
6940 	 */
6941 	if (!depth)
6942 		ret = rbd_spec_fill_snap_id(rbd_dev);
6943 	else
6944 		ret = rbd_spec_fill_names(rbd_dev);
6945 	if (ret) {
6946 		if (ret == -ENOENT)
6947 			rbd_print_dne(rbd_dev, true);
6948 		goto err_out_probe;
6949 	}
6950 
6951 	ret = rbd_dev_mapping_set(rbd_dev);
6952 	if (ret)
6953 		goto err_out_probe;
6954 
6955 	if (rbd_is_snap(rbd_dev) &&
6956 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6957 		ret = rbd_object_map_load(rbd_dev);
6958 		if (ret)
6959 			goto err_out_probe;
6960 	}
6961 
6962 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6963 		ret = rbd_dev_setup_parent(rbd_dev);
6964 		if (ret)
6965 			goto err_out_probe;
6966 	}
6967 
6968 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6969 	if (ret)
6970 		goto err_out_probe;
6971 
6972 	dout("discovered format %u image, header name is %s\n",
6973 		rbd_dev->image_format, rbd_dev->header_oid.name);
6974 	return 0;
6975 
6976 err_out_probe:
6977 	if (!depth)
6978 		up_write(&rbd_dev->header_rwsem);
6979 	if (need_watch)
6980 		rbd_unregister_watch(rbd_dev);
6981 	rbd_dev_unprobe(rbd_dev);
6982 err_out_format:
6983 	rbd_dev->image_format = 0;
6984 	kfree(rbd_dev->spec->image_id);
6985 	rbd_dev->spec->image_id = NULL;
6986 	return ret;
6987 }
6988 
6989 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6990 				  struct rbd_image_header *header)
6991 {
6992 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6993 	rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6994 
6995 	if (rbd_dev->header.image_size != header->image_size) {
6996 		rbd_dev->header.image_size = header->image_size;
6997 
6998 		if (!rbd_is_snap(rbd_dev)) {
6999 			rbd_dev->mapping.size = header->image_size;
7000 			rbd_dev_update_size(rbd_dev);
7001 		}
7002 	}
7003 
7004 	ceph_put_snap_context(rbd_dev->header.snapc);
7005 	rbd_dev->header.snapc = header->snapc;
7006 	header->snapc = NULL;
7007 
7008 	if (rbd_dev->image_format == 1) {
7009 		kfree(rbd_dev->header.snap_names);
7010 		rbd_dev->header.snap_names = header->snap_names;
7011 		header->snap_names = NULL;
7012 
7013 		kfree(rbd_dev->header.snap_sizes);
7014 		rbd_dev->header.snap_sizes = header->snap_sizes;
7015 		header->snap_sizes = NULL;
7016 	}
7017 }
7018 
7019 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7020 				  struct parent_image_info *pii)
7021 {
7022 	if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7023 		/*
7024 		 * Either the parent never existed, or we have
7025 		 * record of it but the image got flattened so it no
7026 		 * longer has a parent.  When the parent of a
7027 		 * layered image disappears we immediately set the
7028 		 * overlap to 0.  The effect of this is that all new
7029 		 * requests will be treated as if the image had no
7030 		 * parent.
7031 		 *
7032 		 * If !pii.has_overlap, the parent image spec is not
7033 		 * applicable.  It's there to avoid duplication in each
7034 		 * snapshot record.
7035 		 */
7036 		if (rbd_dev->parent_overlap) {
7037 			rbd_dev->parent_overlap = 0;
7038 			rbd_dev_parent_put(rbd_dev);
7039 			pr_info("%s: clone has been flattened\n",
7040 				rbd_dev->disk->disk_name);
7041 		}
7042 	} else {
7043 		rbd_assert(rbd_dev->parent_spec);
7044 
7045 		/*
7046 		 * Update the parent overlap.  If it became zero, issue
7047 		 * a warning as we will proceed as if there is no parent.
7048 		 */
7049 		if (!pii->overlap && rbd_dev->parent_overlap)
7050 			rbd_warn(rbd_dev,
7051 				 "clone has become standalone (overlap 0)");
7052 		rbd_dev->parent_overlap = pii->overlap;
7053 	}
7054 }
7055 
7056 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7057 {
7058 	struct rbd_image_header	header = { 0 };
7059 	struct parent_image_info pii = { 0 };
7060 	int ret;
7061 
7062 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
7063 
7064 	ret = rbd_dev_header_info(rbd_dev, &header, false);
7065 	if (ret)
7066 		goto out;
7067 
7068 	/*
7069 	 * If there is a parent, see if it has disappeared due to the
7070 	 * mapped image getting flattened.
7071 	 */
7072 	if (rbd_dev->parent) {
7073 		ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7074 		if (ret)
7075 			goto out;
7076 	}
7077 
7078 	down_write(&rbd_dev->header_rwsem);
7079 	rbd_dev_update_header(rbd_dev, &header);
7080 	if (rbd_dev->parent)
7081 		rbd_dev_update_parent(rbd_dev, &pii);
7082 	up_write(&rbd_dev->header_rwsem);
7083 
7084 out:
7085 	rbd_parent_info_cleanup(&pii);
7086 	rbd_image_header_cleanup(&header);
7087 	return ret;
7088 }
7089 
7090 static ssize_t do_rbd_add(const char *buf, size_t count)
7091 {
7092 	struct rbd_device *rbd_dev = NULL;
7093 	struct ceph_options *ceph_opts = NULL;
7094 	struct rbd_options *rbd_opts = NULL;
7095 	struct rbd_spec *spec = NULL;
7096 	struct rbd_client *rbdc;
7097 	int rc;
7098 
7099 	if (!capable(CAP_SYS_ADMIN))
7100 		return -EPERM;
7101 
7102 	if (!try_module_get(THIS_MODULE))
7103 		return -ENODEV;
7104 
7105 	/* parse add command */
7106 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7107 	if (rc < 0)
7108 		goto out;
7109 
7110 	rbdc = rbd_get_client(ceph_opts);
7111 	if (IS_ERR(rbdc)) {
7112 		rc = PTR_ERR(rbdc);
7113 		goto err_out_args;
7114 	}
7115 
7116 	/* pick the pool */
7117 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7118 	if (rc < 0) {
7119 		if (rc == -ENOENT)
7120 			pr_info("pool %s does not exist\n", spec->pool_name);
7121 		goto err_out_client;
7122 	}
7123 	spec->pool_id = (u64)rc;
7124 
7125 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7126 	if (!rbd_dev) {
7127 		rc = -ENOMEM;
7128 		goto err_out_client;
7129 	}
7130 	rbdc = NULL;		/* rbd_dev now owns this */
7131 	spec = NULL;		/* rbd_dev now owns this */
7132 	rbd_opts = NULL;	/* rbd_dev now owns this */
7133 
7134 	/* if we are mapping a snapshot it will be a read-only mapping */
7135 	if (rbd_dev->opts->read_only ||
7136 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7137 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7138 
7139 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7140 	if (!rbd_dev->config_info) {
7141 		rc = -ENOMEM;
7142 		goto err_out_rbd_dev;
7143 	}
7144 
7145 	rc = rbd_dev_image_probe(rbd_dev, 0);
7146 	if (rc < 0)
7147 		goto err_out_rbd_dev;
7148 
7149 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7150 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7151 			 rbd_dev->layout.object_size);
7152 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7153 	}
7154 
7155 	rc = rbd_dev_device_setup(rbd_dev);
7156 	if (rc)
7157 		goto err_out_image_probe;
7158 
7159 	rc = rbd_add_acquire_lock(rbd_dev);
7160 	if (rc)
7161 		goto err_out_image_lock;
7162 
7163 	/* Everything's ready.  Announce the disk to the world. */
7164 
7165 	rc = device_add(&rbd_dev->dev);
7166 	if (rc)
7167 		goto err_out_image_lock;
7168 
7169 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7170 	if (rc)
7171 		goto err_out_cleanup_disk;
7172 
7173 	spin_lock(&rbd_dev_list_lock);
7174 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7175 	spin_unlock(&rbd_dev_list_lock);
7176 
7177 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7178 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7179 		rbd_dev->header.features);
7180 	rc = count;
7181 out:
7182 	module_put(THIS_MODULE);
7183 	return rc;
7184 
7185 err_out_cleanup_disk:
7186 	rbd_free_disk(rbd_dev);
7187 err_out_image_lock:
7188 	rbd_dev_image_unlock(rbd_dev);
7189 	rbd_dev_device_release(rbd_dev);
7190 err_out_image_probe:
7191 	rbd_dev_image_release(rbd_dev);
7192 err_out_rbd_dev:
7193 	rbd_dev_destroy(rbd_dev);
7194 err_out_client:
7195 	rbd_put_client(rbdc);
7196 err_out_args:
7197 	rbd_spec_put(spec);
7198 	kfree(rbd_opts);
7199 	goto out;
7200 }
7201 
7202 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7203 {
7204 	if (single_major)
7205 		return -EINVAL;
7206 
7207 	return do_rbd_add(buf, count);
7208 }
7209 
7210 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7211 				      size_t count)
7212 {
7213 	return do_rbd_add(buf, count);
7214 }
7215 
7216 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7217 {
7218 	while (rbd_dev->parent) {
7219 		struct rbd_device *first = rbd_dev;
7220 		struct rbd_device *second = first->parent;
7221 		struct rbd_device *third;
7222 
7223 		/*
7224 		 * Follow to the parent with no grandparent and
7225 		 * remove it.
7226 		 */
7227 		while (second && (third = second->parent)) {
7228 			first = second;
7229 			second = third;
7230 		}
7231 		rbd_assert(second);
7232 		rbd_dev_image_release(second);
7233 		rbd_dev_destroy(second);
7234 		first->parent = NULL;
7235 		first->parent_overlap = 0;
7236 
7237 		rbd_assert(first->parent_spec);
7238 		rbd_spec_put(first->parent_spec);
7239 		first->parent_spec = NULL;
7240 	}
7241 }
7242 
7243 static ssize_t do_rbd_remove(const char *buf, size_t count)
7244 {
7245 	struct rbd_device *rbd_dev = NULL;
7246 	int dev_id;
7247 	char opt_buf[6];
7248 	bool force = false;
7249 	int ret;
7250 
7251 	if (!capable(CAP_SYS_ADMIN))
7252 		return -EPERM;
7253 
7254 	dev_id = -1;
7255 	opt_buf[0] = '\0';
7256 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7257 	if (dev_id < 0) {
7258 		pr_err("dev_id out of range\n");
7259 		return -EINVAL;
7260 	}
7261 	if (opt_buf[0] != '\0') {
7262 		if (!strcmp(opt_buf, "force")) {
7263 			force = true;
7264 		} else {
7265 			pr_err("bad remove option at '%s'\n", opt_buf);
7266 			return -EINVAL;
7267 		}
7268 	}
7269 
7270 	ret = -ENOENT;
7271 	spin_lock(&rbd_dev_list_lock);
7272 	list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7273 		if (rbd_dev->dev_id == dev_id) {
7274 			ret = 0;
7275 			break;
7276 		}
7277 	}
7278 	if (!ret) {
7279 		spin_lock_irq(&rbd_dev->lock);
7280 		if (rbd_dev->open_count && !force)
7281 			ret = -EBUSY;
7282 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7283 					  &rbd_dev->flags))
7284 			ret = -EINPROGRESS;
7285 		spin_unlock_irq(&rbd_dev->lock);
7286 	}
7287 	spin_unlock(&rbd_dev_list_lock);
7288 	if (ret)
7289 		return ret;
7290 
7291 	if (force) {
7292 		/*
7293 		 * Prevent new IO from being queued and wait for existing
7294 		 * IO to complete/fail.
7295 		 */
7296 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7297 		blk_mark_disk_dead(rbd_dev->disk);
7298 	}
7299 
7300 	del_gendisk(rbd_dev->disk);
7301 	spin_lock(&rbd_dev_list_lock);
7302 	list_del_init(&rbd_dev->node);
7303 	spin_unlock(&rbd_dev_list_lock);
7304 	device_del(&rbd_dev->dev);
7305 
7306 	rbd_dev_image_unlock(rbd_dev);
7307 	rbd_dev_device_release(rbd_dev);
7308 	rbd_dev_image_release(rbd_dev);
7309 	rbd_dev_destroy(rbd_dev);
7310 	return count;
7311 }
7312 
7313 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7314 {
7315 	if (single_major)
7316 		return -EINVAL;
7317 
7318 	return do_rbd_remove(buf, count);
7319 }
7320 
7321 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7322 					 size_t count)
7323 {
7324 	return do_rbd_remove(buf, count);
7325 }
7326 
7327 /*
7328  * create control files in sysfs
7329  * /sys/bus/rbd/...
7330  */
7331 static int __init rbd_sysfs_init(void)
7332 {
7333 	int ret;
7334 
7335 	ret = device_register(&rbd_root_dev);
7336 	if (ret < 0) {
7337 		put_device(&rbd_root_dev);
7338 		return ret;
7339 	}
7340 
7341 	ret = bus_register(&rbd_bus_type);
7342 	if (ret < 0)
7343 		device_unregister(&rbd_root_dev);
7344 
7345 	return ret;
7346 }
7347 
7348 static void __exit rbd_sysfs_cleanup(void)
7349 {
7350 	bus_unregister(&rbd_bus_type);
7351 	device_unregister(&rbd_root_dev);
7352 }
7353 
7354 static int __init rbd_slab_init(void)
7355 {
7356 	rbd_assert(!rbd_img_request_cache);
7357 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7358 	if (!rbd_img_request_cache)
7359 		return -ENOMEM;
7360 
7361 	rbd_assert(!rbd_obj_request_cache);
7362 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7363 	if (!rbd_obj_request_cache)
7364 		goto out_err;
7365 
7366 	return 0;
7367 
7368 out_err:
7369 	kmem_cache_destroy(rbd_img_request_cache);
7370 	rbd_img_request_cache = NULL;
7371 	return -ENOMEM;
7372 }
7373 
7374 static void rbd_slab_exit(void)
7375 {
7376 	rbd_assert(rbd_obj_request_cache);
7377 	kmem_cache_destroy(rbd_obj_request_cache);
7378 	rbd_obj_request_cache = NULL;
7379 
7380 	rbd_assert(rbd_img_request_cache);
7381 	kmem_cache_destroy(rbd_img_request_cache);
7382 	rbd_img_request_cache = NULL;
7383 }
7384 
7385 static int __init rbd_init(void)
7386 {
7387 	int rc;
7388 
7389 	if (!libceph_compatible(NULL)) {
7390 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7391 		return -EINVAL;
7392 	}
7393 
7394 	rc = rbd_slab_init();
7395 	if (rc)
7396 		return rc;
7397 
7398 	/*
7399 	 * The number of active work items is limited by the number of
7400 	 * rbd devices * queue depth, so leave @max_active at default.
7401 	 */
7402 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7403 	if (!rbd_wq) {
7404 		rc = -ENOMEM;
7405 		goto err_out_slab;
7406 	}
7407 
7408 	if (single_major) {
7409 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7410 		if (rbd_major < 0) {
7411 			rc = rbd_major;
7412 			goto err_out_wq;
7413 		}
7414 	}
7415 
7416 	rc = rbd_sysfs_init();
7417 	if (rc)
7418 		goto err_out_blkdev;
7419 
7420 	if (single_major)
7421 		pr_info("loaded (major %d)\n", rbd_major);
7422 	else
7423 		pr_info("loaded\n");
7424 
7425 	return 0;
7426 
7427 err_out_blkdev:
7428 	if (single_major)
7429 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7430 err_out_wq:
7431 	destroy_workqueue(rbd_wq);
7432 err_out_slab:
7433 	rbd_slab_exit();
7434 	return rc;
7435 }
7436 
7437 static void __exit rbd_exit(void)
7438 {
7439 	ida_destroy(&rbd_dev_id_ida);
7440 	rbd_sysfs_cleanup();
7441 	if (single_major)
7442 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7443 	destroy_workqueue(rbd_wq);
7444 	rbd_slab_exit();
7445 }
7446 
7447 module_init(rbd_init);
7448 module_exit(rbd_exit);
7449 
7450 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7451 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7452 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7453 /* following authorship retained from original osdblk.c */
7454 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7455 
7456 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7457 MODULE_LICENSE("GPL");
7458