1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * 5 * May be copied or modified under the terms of the GNU General Public 6 * License. See linux/COPYING for more information. 7 * 8 * Packet writing layer for ATAPI and SCSI CD-R, CD-RW, DVD-R, and 9 * DVD-RW devices (aka an exercise in block layer masturbation) 10 * 11 * 12 * TODO: (circa order of when I will fix it) 13 * - Only able to write on CD-RW media right now. 14 * - check host application code on media and set it in write page 15 * - interface for UDF <-> packet to negotiate a new location when a write 16 * fails. 17 * - handle OPC, especially for -RW media 18 * 19 * Theory of operation: 20 * 21 * We use a custom make_request_fn function that forwards reads directly to 22 * the underlying CD device. Write requests are either attached directly to 23 * a live packet_data object, or simply stored sequentially in a list for 24 * later processing by the kcdrwd kernel thread. This driver doesn't use 25 * any elevator functionally as defined by the elevator_s struct, but the 26 * underlying CD device uses a standard elevator. 27 * 28 * This strategy makes it possible to do very late merging of IO requests. 29 * A new bio sent to pkt_make_request can be merged with a live packet_data 30 * object even if the object is in the data gathering state. 31 * 32 *************************************************************************/ 33 34 #define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com" 35 36 #include <linux/pktcdvd.h> 37 #include <linux/config.h> 38 #include <linux/module.h> 39 #include <linux/types.h> 40 #include <linux/kernel.h> 41 #include <linux/kthread.h> 42 #include <linux/errno.h> 43 #include <linux/spinlock.h> 44 #include <linux/file.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/miscdevice.h> 48 #include <linux/suspend.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_ioctl.h> 51 52 #include <asm/uaccess.h> 53 54 #if PACKET_DEBUG 55 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 56 #else 57 #define DPRINTK(fmt, args...) 58 #endif 59 60 #if PACKET_DEBUG > 1 61 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 62 #else 63 #define VPRINTK(fmt, args...) 64 #endif 65 66 #define MAX_SPEED 0xffff 67 68 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 69 70 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 71 static struct proc_dir_entry *pkt_proc; 72 static int pkt_major; 73 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */ 74 static mempool_t *psd_pool; 75 76 77 static void pkt_bio_finished(struct pktcdvd_device *pd) 78 { 79 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 80 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 81 VPRINTK("pktcdvd: queue empty\n"); 82 atomic_set(&pd->iosched.attention, 1); 83 wake_up(&pd->wqueue); 84 } 85 } 86 87 static void pkt_bio_destructor(struct bio *bio) 88 { 89 kfree(bio->bi_io_vec); 90 kfree(bio); 91 } 92 93 static struct bio *pkt_bio_alloc(int nr_iovecs) 94 { 95 struct bio_vec *bvl = NULL; 96 struct bio *bio; 97 98 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 99 if (!bio) 100 goto no_bio; 101 bio_init(bio); 102 103 bvl = kmalloc(nr_iovecs * sizeof(struct bio_vec), GFP_KERNEL); 104 if (!bvl) 105 goto no_bvl; 106 memset(bvl, 0, nr_iovecs * sizeof(struct bio_vec)); 107 108 bio->bi_max_vecs = nr_iovecs; 109 bio->bi_io_vec = bvl; 110 bio->bi_destructor = pkt_bio_destructor; 111 112 return bio; 113 114 no_bvl: 115 kfree(bio); 116 no_bio: 117 return NULL; 118 } 119 120 /* 121 * Allocate a packet_data struct 122 */ 123 static struct packet_data *pkt_alloc_packet_data(void) 124 { 125 int i; 126 struct packet_data *pkt; 127 128 pkt = kmalloc(sizeof(struct packet_data), GFP_KERNEL); 129 if (!pkt) 130 goto no_pkt; 131 memset(pkt, 0, sizeof(struct packet_data)); 132 133 pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE); 134 if (!pkt->w_bio) 135 goto no_bio; 136 137 for (i = 0; i < PAGES_PER_PACKET; i++) { 138 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 139 if (!pkt->pages[i]) 140 goto no_page; 141 } 142 143 spin_lock_init(&pkt->lock); 144 145 for (i = 0; i < PACKET_MAX_SIZE; i++) { 146 struct bio *bio = pkt_bio_alloc(1); 147 if (!bio) 148 goto no_rd_bio; 149 pkt->r_bios[i] = bio; 150 } 151 152 return pkt; 153 154 no_rd_bio: 155 for (i = 0; i < PACKET_MAX_SIZE; i++) { 156 struct bio *bio = pkt->r_bios[i]; 157 if (bio) 158 bio_put(bio); 159 } 160 161 no_page: 162 for (i = 0; i < PAGES_PER_PACKET; i++) 163 if (pkt->pages[i]) 164 __free_page(pkt->pages[i]); 165 bio_put(pkt->w_bio); 166 no_bio: 167 kfree(pkt); 168 no_pkt: 169 return NULL; 170 } 171 172 /* 173 * Free a packet_data struct 174 */ 175 static void pkt_free_packet_data(struct packet_data *pkt) 176 { 177 int i; 178 179 for (i = 0; i < PACKET_MAX_SIZE; i++) { 180 struct bio *bio = pkt->r_bios[i]; 181 if (bio) 182 bio_put(bio); 183 } 184 for (i = 0; i < PAGES_PER_PACKET; i++) 185 __free_page(pkt->pages[i]); 186 bio_put(pkt->w_bio); 187 kfree(pkt); 188 } 189 190 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 191 { 192 struct packet_data *pkt, *next; 193 194 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 195 196 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 197 pkt_free_packet_data(pkt); 198 } 199 } 200 201 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 202 { 203 struct packet_data *pkt; 204 205 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 206 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 207 spin_lock_init(&pd->cdrw.active_list_lock); 208 while (nr_packets > 0) { 209 pkt = pkt_alloc_packet_data(); 210 if (!pkt) { 211 pkt_shrink_pktlist(pd); 212 return 0; 213 } 214 pkt->id = nr_packets; 215 pkt->pd = pd; 216 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 217 nr_packets--; 218 } 219 return 1; 220 } 221 222 static void *pkt_rb_alloc(unsigned int __nocast gfp_mask, void *data) 223 { 224 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask); 225 } 226 227 static void pkt_rb_free(void *ptr, void *data) 228 { 229 kfree(ptr); 230 } 231 232 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 233 { 234 struct rb_node *n = rb_next(&node->rb_node); 235 if (!n) 236 return NULL; 237 return rb_entry(n, struct pkt_rb_node, rb_node); 238 } 239 240 static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 241 { 242 rb_erase(&node->rb_node, &pd->bio_queue); 243 mempool_free(node, pd->rb_pool); 244 pd->bio_queue_size--; 245 BUG_ON(pd->bio_queue_size < 0); 246 } 247 248 /* 249 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 250 */ 251 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 252 { 253 struct rb_node *n = pd->bio_queue.rb_node; 254 struct rb_node *next; 255 struct pkt_rb_node *tmp; 256 257 if (!n) { 258 BUG_ON(pd->bio_queue_size > 0); 259 return NULL; 260 } 261 262 for (;;) { 263 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 264 if (s <= tmp->bio->bi_sector) 265 next = n->rb_left; 266 else 267 next = n->rb_right; 268 if (!next) 269 break; 270 n = next; 271 } 272 273 if (s > tmp->bio->bi_sector) { 274 tmp = pkt_rbtree_next(tmp); 275 if (!tmp) 276 return NULL; 277 } 278 BUG_ON(s > tmp->bio->bi_sector); 279 return tmp; 280 } 281 282 /* 283 * Insert a node into the pd->bio_queue rb tree. 284 */ 285 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 286 { 287 struct rb_node **p = &pd->bio_queue.rb_node; 288 struct rb_node *parent = NULL; 289 sector_t s = node->bio->bi_sector; 290 struct pkt_rb_node *tmp; 291 292 while (*p) { 293 parent = *p; 294 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 295 if (s < tmp->bio->bi_sector) 296 p = &(*p)->rb_left; 297 else 298 p = &(*p)->rb_right; 299 } 300 rb_link_node(&node->rb_node, parent, p); 301 rb_insert_color(&node->rb_node, &pd->bio_queue); 302 pd->bio_queue_size++; 303 } 304 305 /* 306 * Add a bio to a single linked list defined by its head and tail pointers. 307 */ 308 static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 309 { 310 bio->bi_next = NULL; 311 if (*list_tail) { 312 BUG_ON((*list_head) == NULL); 313 (*list_tail)->bi_next = bio; 314 (*list_tail) = bio; 315 } else { 316 BUG_ON((*list_head) != NULL); 317 (*list_head) = bio; 318 (*list_tail) = bio; 319 } 320 } 321 322 /* 323 * Remove and return the first bio from a single linked list defined by its 324 * head and tail pointers. 325 */ 326 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 327 { 328 struct bio *bio; 329 330 if (*list_head == NULL) 331 return NULL; 332 333 bio = *list_head; 334 *list_head = bio->bi_next; 335 if (*list_head == NULL) 336 *list_tail = NULL; 337 338 bio->bi_next = NULL; 339 return bio; 340 } 341 342 /* 343 * Send a packet_command to the underlying block device and 344 * wait for completion. 345 */ 346 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 347 { 348 char sense[SCSI_SENSE_BUFFERSIZE]; 349 request_queue_t *q; 350 struct request *rq; 351 DECLARE_COMPLETION(wait); 352 int err = 0; 353 354 q = bdev_get_queue(pd->bdev); 355 356 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ, 357 __GFP_WAIT); 358 rq->errors = 0; 359 rq->rq_disk = pd->bdev->bd_disk; 360 rq->bio = NULL; 361 rq->buffer = NULL; 362 rq->timeout = 60*HZ; 363 rq->data = cgc->buffer; 364 rq->data_len = cgc->buflen; 365 rq->sense = sense; 366 memset(sense, 0, sizeof(sense)); 367 rq->sense_len = 0; 368 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER; 369 if (cgc->quiet) 370 rq->flags |= REQ_QUIET; 371 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 372 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 373 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 374 375 rq->ref_count++; 376 rq->flags |= REQ_NOMERGE; 377 rq->waiting = &wait; 378 rq->end_io = blk_end_sync_rq; 379 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1); 380 generic_unplug_device(q); 381 wait_for_completion(&wait); 382 383 if (rq->errors) 384 err = -EIO; 385 386 blk_put_request(rq); 387 return err; 388 } 389 390 /* 391 * A generic sense dump / resolve mechanism should be implemented across 392 * all ATAPI + SCSI devices. 393 */ 394 static void pkt_dump_sense(struct packet_command *cgc) 395 { 396 static char *info[9] = { "No sense", "Recovered error", "Not ready", 397 "Medium error", "Hardware error", "Illegal request", 398 "Unit attention", "Data protect", "Blank check" }; 399 int i; 400 struct request_sense *sense = cgc->sense; 401 402 printk("pktcdvd:"); 403 for (i = 0; i < CDROM_PACKET_SIZE; i++) 404 printk(" %02x", cgc->cmd[i]); 405 printk(" - "); 406 407 if (sense == NULL) { 408 printk("no sense\n"); 409 return; 410 } 411 412 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 413 414 if (sense->sense_key > 8) { 415 printk(" (INVALID)\n"); 416 return; 417 } 418 419 printk(" (%s)\n", info[sense->sense_key]); 420 } 421 422 /* 423 * flush the drive cache to media 424 */ 425 static int pkt_flush_cache(struct pktcdvd_device *pd) 426 { 427 struct packet_command cgc; 428 429 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 430 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 431 cgc.quiet = 1; 432 433 /* 434 * the IMMED bit -- we default to not setting it, although that 435 * would allow a much faster close, this is safer 436 */ 437 #if 0 438 cgc.cmd[1] = 1 << 1; 439 #endif 440 return pkt_generic_packet(pd, &cgc); 441 } 442 443 /* 444 * speed is given as the normal factor, e.g. 4 for 4x 445 */ 446 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) 447 { 448 struct packet_command cgc; 449 struct request_sense sense; 450 int ret; 451 452 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 453 cgc.sense = &sense; 454 cgc.cmd[0] = GPCMD_SET_SPEED; 455 cgc.cmd[2] = (read_speed >> 8) & 0xff; 456 cgc.cmd[3] = read_speed & 0xff; 457 cgc.cmd[4] = (write_speed >> 8) & 0xff; 458 cgc.cmd[5] = write_speed & 0xff; 459 460 if ((ret = pkt_generic_packet(pd, &cgc))) 461 pkt_dump_sense(&cgc); 462 463 return ret; 464 } 465 466 /* 467 * Queue a bio for processing by the low-level CD device. Must be called 468 * from process context. 469 */ 470 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio, int high_prio_read) 471 { 472 spin_lock(&pd->iosched.lock); 473 if (bio_data_dir(bio) == READ) { 474 pkt_add_list_last(bio, &pd->iosched.read_queue, 475 &pd->iosched.read_queue_tail); 476 if (high_prio_read) 477 pd->iosched.high_prio_read = 1; 478 } else { 479 pkt_add_list_last(bio, &pd->iosched.write_queue, 480 &pd->iosched.write_queue_tail); 481 } 482 spin_unlock(&pd->iosched.lock); 483 484 atomic_set(&pd->iosched.attention, 1); 485 wake_up(&pd->wqueue); 486 } 487 488 /* 489 * Process the queued read/write requests. This function handles special 490 * requirements for CDRW drives: 491 * - A cache flush command must be inserted before a read request if the 492 * previous request was a write. 493 * - Switching between reading and writing is slow, so don't it more often 494 * than necessary. 495 * - Set the read speed according to current usage pattern. When only reading 496 * from the device, it's best to use the highest possible read speed, but 497 * when switching often between reading and writing, it's better to have the 498 * same read and write speeds. 499 * - Reads originating from user space should have higher priority than reads 500 * originating from pkt_gather_data, because some process is usually waiting 501 * on reads of the first kind. 502 */ 503 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 504 { 505 request_queue_t *q; 506 507 if (atomic_read(&pd->iosched.attention) == 0) 508 return; 509 atomic_set(&pd->iosched.attention, 0); 510 511 q = bdev_get_queue(pd->bdev); 512 513 for (;;) { 514 struct bio *bio; 515 int reads_queued, writes_queued, high_prio_read; 516 517 spin_lock(&pd->iosched.lock); 518 reads_queued = (pd->iosched.read_queue != NULL); 519 writes_queued = (pd->iosched.write_queue != NULL); 520 if (!reads_queued) 521 pd->iosched.high_prio_read = 0; 522 high_prio_read = pd->iosched.high_prio_read; 523 spin_unlock(&pd->iosched.lock); 524 525 if (!reads_queued && !writes_queued) 526 break; 527 528 if (pd->iosched.writing) { 529 if (high_prio_read || (!writes_queued && reads_queued)) { 530 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 531 VPRINTK("pktcdvd: write, waiting\n"); 532 break; 533 } 534 pkt_flush_cache(pd); 535 pd->iosched.writing = 0; 536 } 537 } else { 538 if (!reads_queued && writes_queued) { 539 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 540 VPRINTK("pktcdvd: read, waiting\n"); 541 break; 542 } 543 pd->iosched.writing = 1; 544 } 545 } 546 547 spin_lock(&pd->iosched.lock); 548 if (pd->iosched.writing) { 549 bio = pkt_get_list_first(&pd->iosched.write_queue, 550 &pd->iosched.write_queue_tail); 551 } else { 552 bio = pkt_get_list_first(&pd->iosched.read_queue, 553 &pd->iosched.read_queue_tail); 554 } 555 spin_unlock(&pd->iosched.lock); 556 557 if (!bio) 558 continue; 559 560 if (bio_data_dir(bio) == READ) 561 pd->iosched.successive_reads += bio->bi_size >> 10; 562 else 563 pd->iosched.successive_reads = 0; 564 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 565 if (pd->read_speed == pd->write_speed) { 566 pd->read_speed = MAX_SPEED; 567 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 568 } 569 } else { 570 if (pd->read_speed != pd->write_speed) { 571 pd->read_speed = pd->write_speed; 572 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 573 } 574 } 575 576 atomic_inc(&pd->cdrw.pending_bios); 577 generic_make_request(bio); 578 } 579 } 580 581 /* 582 * Special care is needed if the underlying block device has a small 583 * max_phys_segments value. 584 */ 585 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q) 586 { 587 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 588 /* 589 * The cdrom device can handle one segment/frame 590 */ 591 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 592 return 0; 593 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 594 /* 595 * We can handle this case at the expense of some extra memory 596 * copies during write operations 597 */ 598 set_bit(PACKET_MERGE_SEGS, &pd->flags); 599 return 0; 600 } else { 601 printk("pktcdvd: cdrom max_phys_segments too small\n"); 602 return -EIO; 603 } 604 } 605 606 /* 607 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 608 */ 609 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 610 { 611 unsigned int copy_size = CD_FRAMESIZE; 612 613 while (copy_size > 0) { 614 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 615 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 616 src_bvl->bv_offset + offs; 617 void *vto = page_address(dst_page) + dst_offs; 618 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 619 620 BUG_ON(len < 0); 621 memcpy(vto, vfrom, len); 622 kunmap_atomic(vfrom, KM_USER0); 623 624 seg++; 625 offs = 0; 626 dst_offs += len; 627 copy_size -= len; 628 } 629 } 630 631 /* 632 * Copy all data for this packet to pkt->pages[], so that 633 * a) The number of required segments for the write bio is minimized, which 634 * is necessary for some scsi controllers. 635 * b) The data can be used as cache to avoid read requests if we receive a 636 * new write request for the same zone. 637 */ 638 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets) 639 { 640 int f, p, offs; 641 642 /* Copy all data to pkt->pages[] */ 643 p = 0; 644 offs = 0; 645 for (f = 0; f < pkt->frames; f++) { 646 if (pages[f] != pkt->pages[p]) { 647 void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f]; 648 void *vto = page_address(pkt->pages[p]) + offs; 649 memcpy(vto, vfrom, CD_FRAMESIZE); 650 kunmap_atomic(vfrom, KM_USER0); 651 pages[f] = pkt->pages[p]; 652 offsets[f] = offs; 653 } else { 654 BUG_ON(offsets[f] != offs); 655 } 656 offs += CD_FRAMESIZE; 657 if (offs >= PAGE_SIZE) { 658 BUG_ON(offs > PAGE_SIZE); 659 offs = 0; 660 p++; 661 } 662 } 663 } 664 665 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 666 { 667 struct packet_data *pkt = bio->bi_private; 668 struct pktcdvd_device *pd = pkt->pd; 669 BUG_ON(!pd); 670 671 if (bio->bi_size) 672 return 1; 673 674 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 675 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 676 677 if (err) 678 atomic_inc(&pkt->io_errors); 679 if (atomic_dec_and_test(&pkt->io_wait)) { 680 atomic_inc(&pkt->run_sm); 681 wake_up(&pd->wqueue); 682 } 683 pkt_bio_finished(pd); 684 685 return 0; 686 } 687 688 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err) 689 { 690 struct packet_data *pkt = bio->bi_private; 691 struct pktcdvd_device *pd = pkt->pd; 692 BUG_ON(!pd); 693 694 if (bio->bi_size) 695 return 1; 696 697 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 698 699 pd->stats.pkt_ended++; 700 701 pkt_bio_finished(pd); 702 atomic_dec(&pkt->io_wait); 703 atomic_inc(&pkt->run_sm); 704 wake_up(&pd->wqueue); 705 return 0; 706 } 707 708 /* 709 * Schedule reads for the holes in a packet 710 */ 711 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 712 { 713 int frames_read = 0; 714 struct bio *bio; 715 int f; 716 char written[PACKET_MAX_SIZE]; 717 718 BUG_ON(!pkt->orig_bios); 719 720 atomic_set(&pkt->io_wait, 0); 721 atomic_set(&pkt->io_errors, 0); 722 723 if (pkt->cache_valid) { 724 VPRINTK("pkt_gather_data: zone %llx cached\n", 725 (unsigned long long)pkt->sector); 726 goto out_account; 727 } 728 729 /* 730 * Figure out which frames we need to read before we can write. 731 */ 732 memset(written, 0, sizeof(written)); 733 spin_lock(&pkt->lock); 734 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 735 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 736 int num_frames = bio->bi_size / CD_FRAMESIZE; 737 BUG_ON(first_frame < 0); 738 BUG_ON(first_frame + num_frames > pkt->frames); 739 for (f = first_frame; f < first_frame + num_frames; f++) 740 written[f] = 1; 741 } 742 spin_unlock(&pkt->lock); 743 744 /* 745 * Schedule reads for missing parts of the packet. 746 */ 747 for (f = 0; f < pkt->frames; f++) { 748 int p, offset; 749 if (written[f]) 750 continue; 751 bio = pkt->r_bios[f]; 752 bio_init(bio); 753 bio->bi_max_vecs = 1; 754 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 755 bio->bi_bdev = pd->bdev; 756 bio->bi_end_io = pkt_end_io_read; 757 bio->bi_private = pkt; 758 759 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 760 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 761 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 762 f, pkt->pages[p], offset); 763 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 764 BUG(); 765 766 atomic_inc(&pkt->io_wait); 767 bio->bi_rw = READ; 768 pkt_queue_bio(pd, bio, 0); 769 frames_read++; 770 } 771 772 out_account: 773 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 774 frames_read, (unsigned long long)pkt->sector); 775 pd->stats.pkt_started++; 776 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 777 pd->stats.secs_w += pd->settings.size; 778 } 779 780 /* 781 * Find a packet matching zone, or the least recently used packet if 782 * there is no match. 783 */ 784 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 785 { 786 struct packet_data *pkt; 787 788 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 789 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 790 list_del_init(&pkt->list); 791 if (pkt->sector != zone) 792 pkt->cache_valid = 0; 793 break; 794 } 795 } 796 return pkt; 797 } 798 799 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 800 { 801 if (pkt->cache_valid) { 802 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 803 } else { 804 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 805 } 806 } 807 808 /* 809 * recover a failed write, query for relocation if possible 810 * 811 * returns 1 if recovery is possible, or 0 if not 812 * 813 */ 814 static int pkt_start_recovery(struct packet_data *pkt) 815 { 816 /* 817 * FIXME. We need help from the file system to implement 818 * recovery handling. 819 */ 820 return 0; 821 #if 0 822 struct request *rq = pkt->rq; 823 struct pktcdvd_device *pd = rq->rq_disk->private_data; 824 struct block_device *pkt_bdev; 825 struct super_block *sb = NULL; 826 unsigned long old_block, new_block; 827 sector_t new_sector; 828 829 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 830 if (pkt_bdev) { 831 sb = get_super(pkt_bdev); 832 bdput(pkt_bdev); 833 } 834 835 if (!sb) 836 return 0; 837 838 if (!sb->s_op || !sb->s_op->relocate_blocks) 839 goto out; 840 841 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 842 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 843 goto out; 844 845 new_sector = new_block * (CD_FRAMESIZE >> 9); 846 pkt->sector = new_sector; 847 848 pkt->bio->bi_sector = new_sector; 849 pkt->bio->bi_next = NULL; 850 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 851 pkt->bio->bi_idx = 0; 852 853 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 854 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 855 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 856 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 857 BUG_ON(pkt->bio->bi_private != pkt); 858 859 drop_super(sb); 860 return 1; 861 862 out: 863 drop_super(sb); 864 return 0; 865 #endif 866 } 867 868 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 869 { 870 #if PACKET_DEBUG > 1 871 static const char *state_name[] = { 872 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 873 }; 874 enum packet_data_state old_state = pkt->state; 875 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 876 state_name[old_state], state_name[state]); 877 #endif 878 pkt->state = state; 879 } 880 881 /* 882 * Scan the work queue to see if we can start a new packet. 883 * returns non-zero if any work was done. 884 */ 885 static int pkt_handle_queue(struct pktcdvd_device *pd) 886 { 887 struct packet_data *pkt, *p; 888 struct bio *bio = NULL; 889 sector_t zone = 0; /* Suppress gcc warning */ 890 struct pkt_rb_node *node, *first_node; 891 struct rb_node *n; 892 893 VPRINTK("handle_queue\n"); 894 895 atomic_set(&pd->scan_queue, 0); 896 897 if (list_empty(&pd->cdrw.pkt_free_list)) { 898 VPRINTK("handle_queue: no pkt\n"); 899 return 0; 900 } 901 902 /* 903 * Try to find a zone we are not already working on. 904 */ 905 spin_lock(&pd->lock); 906 first_node = pkt_rbtree_find(pd, pd->current_sector); 907 if (!first_node) { 908 n = rb_first(&pd->bio_queue); 909 if (n) 910 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 911 } 912 node = first_node; 913 while (node) { 914 bio = node->bio; 915 zone = ZONE(bio->bi_sector, pd); 916 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 917 if (p->sector == zone) 918 goto try_next_bio; 919 } 920 break; 921 try_next_bio: 922 node = pkt_rbtree_next(node); 923 if (!node) { 924 n = rb_first(&pd->bio_queue); 925 if (n) 926 node = rb_entry(n, struct pkt_rb_node, rb_node); 927 } 928 if (node == first_node) 929 node = NULL; 930 } 931 spin_unlock(&pd->lock); 932 if (!bio) { 933 VPRINTK("handle_queue: no bio\n"); 934 return 0; 935 } 936 937 pkt = pkt_get_packet_data(pd, zone); 938 BUG_ON(!pkt); 939 940 pd->current_sector = zone + pd->settings.size; 941 pkt->sector = zone; 942 pkt->frames = pd->settings.size >> 2; 943 BUG_ON(pkt->frames > PACKET_MAX_SIZE); 944 pkt->write_size = 0; 945 946 /* 947 * Scan work queue for bios in the same zone and link them 948 * to this packet. 949 */ 950 spin_lock(&pd->lock); 951 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 952 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 953 bio = node->bio; 954 VPRINTK("pkt_handle_queue: found zone=%llx\n", 955 (unsigned long long)ZONE(bio->bi_sector, pd)); 956 if (ZONE(bio->bi_sector, pd) != zone) 957 break; 958 pkt_rbtree_erase(pd, node); 959 spin_lock(&pkt->lock); 960 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 961 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 962 spin_unlock(&pkt->lock); 963 } 964 spin_unlock(&pd->lock); 965 966 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 967 pkt_set_state(pkt, PACKET_WAITING_STATE); 968 atomic_set(&pkt->run_sm, 1); 969 970 spin_lock(&pd->cdrw.active_list_lock); 971 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 972 spin_unlock(&pd->cdrw.active_list_lock); 973 974 return 1; 975 } 976 977 /* 978 * Assemble a bio to write one packet and queue the bio for processing 979 * by the underlying block device. 980 */ 981 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 982 { 983 struct bio *bio; 984 struct page *pages[PACKET_MAX_SIZE]; 985 int offsets[PACKET_MAX_SIZE]; 986 int f; 987 int frames_write; 988 989 for (f = 0; f < pkt->frames; f++) { 990 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 991 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE; 992 } 993 994 /* 995 * Fill-in pages[] and offsets[] with data from orig_bios. 996 */ 997 frames_write = 0; 998 spin_lock(&pkt->lock); 999 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1000 int segment = bio->bi_idx; 1001 int src_offs = 0; 1002 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1003 int num_frames = bio->bi_size / CD_FRAMESIZE; 1004 BUG_ON(first_frame < 0); 1005 BUG_ON(first_frame + num_frames > pkt->frames); 1006 for (f = first_frame; f < first_frame + num_frames; f++) { 1007 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1008 1009 while (src_offs >= src_bvl->bv_len) { 1010 src_offs -= src_bvl->bv_len; 1011 segment++; 1012 BUG_ON(segment >= bio->bi_vcnt); 1013 src_bvl = bio_iovec_idx(bio, segment); 1014 } 1015 1016 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1017 pages[f] = src_bvl->bv_page; 1018 offsets[f] = src_bvl->bv_offset + src_offs; 1019 } else { 1020 pkt_copy_bio_data(bio, segment, src_offs, 1021 pages[f], offsets[f]); 1022 } 1023 src_offs += CD_FRAMESIZE; 1024 frames_write++; 1025 } 1026 } 1027 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1028 spin_unlock(&pkt->lock); 1029 1030 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1031 frames_write, (unsigned long long)pkt->sector); 1032 BUG_ON(frames_write != pkt->write_size); 1033 1034 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1035 pkt_make_local_copy(pkt, pages, offsets); 1036 pkt->cache_valid = 1; 1037 } else { 1038 pkt->cache_valid = 0; 1039 } 1040 1041 /* Start the write request */ 1042 bio_init(pkt->w_bio); 1043 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1044 pkt->w_bio->bi_sector = pkt->sector; 1045 pkt->w_bio->bi_bdev = pd->bdev; 1046 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1047 pkt->w_bio->bi_private = pkt; 1048 for (f = 0; f < pkt->frames; f++) { 1049 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) && 1050 (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) { 1051 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f])) 1052 BUG(); 1053 f++; 1054 } else { 1055 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f])) 1056 BUG(); 1057 } 1058 } 1059 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt); 1060 1061 atomic_set(&pkt->io_wait, 1); 1062 pkt->w_bio->bi_rw = WRITE; 1063 pkt_queue_bio(pd, pkt->w_bio, 0); 1064 } 1065 1066 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1067 { 1068 struct bio *bio, *next; 1069 1070 if (!uptodate) 1071 pkt->cache_valid = 0; 1072 1073 /* Finish all bios corresponding to this packet */ 1074 bio = pkt->orig_bios; 1075 while (bio) { 1076 next = bio->bi_next; 1077 bio->bi_next = NULL; 1078 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO); 1079 bio = next; 1080 } 1081 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1082 } 1083 1084 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1085 { 1086 int uptodate; 1087 1088 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1089 1090 for (;;) { 1091 switch (pkt->state) { 1092 case PACKET_WAITING_STATE: 1093 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1094 return; 1095 1096 pkt->sleep_time = 0; 1097 pkt_gather_data(pd, pkt); 1098 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1099 break; 1100 1101 case PACKET_READ_WAIT_STATE: 1102 if (atomic_read(&pkt->io_wait) > 0) 1103 return; 1104 1105 if (atomic_read(&pkt->io_errors) > 0) { 1106 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1107 } else { 1108 pkt_start_write(pd, pkt); 1109 } 1110 break; 1111 1112 case PACKET_WRITE_WAIT_STATE: 1113 if (atomic_read(&pkt->io_wait) > 0) 1114 return; 1115 1116 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1117 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1118 } else { 1119 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1120 } 1121 break; 1122 1123 case PACKET_RECOVERY_STATE: 1124 if (pkt_start_recovery(pkt)) { 1125 pkt_start_write(pd, pkt); 1126 } else { 1127 VPRINTK("No recovery possible\n"); 1128 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1129 } 1130 break; 1131 1132 case PACKET_FINISHED_STATE: 1133 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1134 pkt_finish_packet(pkt, uptodate); 1135 return; 1136 1137 default: 1138 BUG(); 1139 break; 1140 } 1141 } 1142 } 1143 1144 static void pkt_handle_packets(struct pktcdvd_device *pd) 1145 { 1146 struct packet_data *pkt, *next; 1147 1148 VPRINTK("pkt_handle_packets\n"); 1149 1150 /* 1151 * Run state machine for active packets 1152 */ 1153 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1154 if (atomic_read(&pkt->run_sm) > 0) { 1155 atomic_set(&pkt->run_sm, 0); 1156 pkt_run_state_machine(pd, pkt); 1157 } 1158 } 1159 1160 /* 1161 * Move no longer active packets to the free list 1162 */ 1163 spin_lock(&pd->cdrw.active_list_lock); 1164 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1165 if (pkt->state == PACKET_FINISHED_STATE) { 1166 list_del(&pkt->list); 1167 pkt_put_packet_data(pd, pkt); 1168 pkt_set_state(pkt, PACKET_IDLE_STATE); 1169 atomic_set(&pd->scan_queue, 1); 1170 } 1171 } 1172 spin_unlock(&pd->cdrw.active_list_lock); 1173 } 1174 1175 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1176 { 1177 struct packet_data *pkt; 1178 int i; 1179 1180 for (i = 0; i <= PACKET_NUM_STATES; i++) 1181 states[i] = 0; 1182 1183 spin_lock(&pd->cdrw.active_list_lock); 1184 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1185 states[pkt->state]++; 1186 } 1187 spin_unlock(&pd->cdrw.active_list_lock); 1188 } 1189 1190 /* 1191 * kcdrwd is woken up when writes have been queued for one of our 1192 * registered devices 1193 */ 1194 static int kcdrwd(void *foobar) 1195 { 1196 struct pktcdvd_device *pd = foobar; 1197 struct packet_data *pkt; 1198 long min_sleep_time, residue; 1199 1200 set_user_nice(current, -20); 1201 1202 for (;;) { 1203 DECLARE_WAITQUEUE(wait, current); 1204 1205 /* 1206 * Wait until there is something to do 1207 */ 1208 add_wait_queue(&pd->wqueue, &wait); 1209 for (;;) { 1210 set_current_state(TASK_INTERRUPTIBLE); 1211 1212 /* Check if we need to run pkt_handle_queue */ 1213 if (atomic_read(&pd->scan_queue) > 0) 1214 goto work_to_do; 1215 1216 /* Check if we need to run the state machine for some packet */ 1217 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1218 if (atomic_read(&pkt->run_sm) > 0) 1219 goto work_to_do; 1220 } 1221 1222 /* Check if we need to process the iosched queues */ 1223 if (atomic_read(&pd->iosched.attention) != 0) 1224 goto work_to_do; 1225 1226 /* Otherwise, go to sleep */ 1227 if (PACKET_DEBUG > 1) { 1228 int states[PACKET_NUM_STATES]; 1229 pkt_count_states(pd, states); 1230 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1231 states[0], states[1], states[2], states[3], 1232 states[4], states[5]); 1233 } 1234 1235 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1236 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1237 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1238 min_sleep_time = pkt->sleep_time; 1239 } 1240 1241 generic_unplug_device(bdev_get_queue(pd->bdev)); 1242 1243 VPRINTK("kcdrwd: sleeping\n"); 1244 residue = schedule_timeout(min_sleep_time); 1245 VPRINTK("kcdrwd: wake up\n"); 1246 1247 /* make swsusp happy with our thread */ 1248 if (current->flags & PF_FREEZE) 1249 refrigerator(PF_FREEZE); 1250 1251 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1252 if (!pkt->sleep_time) 1253 continue; 1254 pkt->sleep_time -= min_sleep_time - residue; 1255 if (pkt->sleep_time <= 0) { 1256 pkt->sleep_time = 0; 1257 atomic_inc(&pkt->run_sm); 1258 } 1259 } 1260 1261 if (signal_pending(current)) { 1262 flush_signals(current); 1263 } 1264 if (kthread_should_stop()) 1265 break; 1266 } 1267 work_to_do: 1268 set_current_state(TASK_RUNNING); 1269 remove_wait_queue(&pd->wqueue, &wait); 1270 1271 if (kthread_should_stop()) 1272 break; 1273 1274 /* 1275 * if pkt_handle_queue returns true, we can queue 1276 * another request. 1277 */ 1278 while (pkt_handle_queue(pd)) 1279 ; 1280 1281 /* 1282 * Handle packet state machine 1283 */ 1284 pkt_handle_packets(pd); 1285 1286 /* 1287 * Handle iosched queues 1288 */ 1289 pkt_iosched_process_queue(pd); 1290 } 1291 1292 return 0; 1293 } 1294 1295 static void pkt_print_settings(struct pktcdvd_device *pd) 1296 { 1297 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1298 printk("%u blocks, ", pd->settings.size >> 2); 1299 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1300 } 1301 1302 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1303 { 1304 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1305 1306 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1307 cgc->cmd[2] = page_code | (page_control << 6); 1308 cgc->cmd[7] = cgc->buflen >> 8; 1309 cgc->cmd[8] = cgc->buflen & 0xff; 1310 cgc->data_direction = CGC_DATA_READ; 1311 return pkt_generic_packet(pd, cgc); 1312 } 1313 1314 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1315 { 1316 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1317 memset(cgc->buffer, 0, 2); 1318 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1319 cgc->cmd[1] = 0x10; /* PF */ 1320 cgc->cmd[7] = cgc->buflen >> 8; 1321 cgc->cmd[8] = cgc->buflen & 0xff; 1322 cgc->data_direction = CGC_DATA_WRITE; 1323 return pkt_generic_packet(pd, cgc); 1324 } 1325 1326 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1327 { 1328 struct packet_command cgc; 1329 int ret; 1330 1331 /* set up command and get the disc info */ 1332 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1333 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1334 cgc.cmd[8] = cgc.buflen = 2; 1335 cgc.quiet = 1; 1336 1337 if ((ret = pkt_generic_packet(pd, &cgc))) 1338 return ret; 1339 1340 /* not all drives have the same disc_info length, so requeue 1341 * packet with the length the drive tells us it can supply 1342 */ 1343 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1344 sizeof(di->disc_information_length); 1345 1346 if (cgc.buflen > sizeof(disc_information)) 1347 cgc.buflen = sizeof(disc_information); 1348 1349 cgc.cmd[8] = cgc.buflen; 1350 return pkt_generic_packet(pd, &cgc); 1351 } 1352 1353 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1354 { 1355 struct packet_command cgc; 1356 int ret; 1357 1358 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1359 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1360 cgc.cmd[1] = type & 3; 1361 cgc.cmd[4] = (track & 0xff00) >> 8; 1362 cgc.cmd[5] = track & 0xff; 1363 cgc.cmd[8] = 8; 1364 cgc.quiet = 1; 1365 1366 if ((ret = pkt_generic_packet(pd, &cgc))) 1367 return ret; 1368 1369 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1370 sizeof(ti->track_information_length); 1371 1372 if (cgc.buflen > sizeof(track_information)) 1373 cgc.buflen = sizeof(track_information); 1374 1375 cgc.cmd[8] = cgc.buflen; 1376 return pkt_generic_packet(pd, &cgc); 1377 } 1378 1379 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) 1380 { 1381 disc_information di; 1382 track_information ti; 1383 __u32 last_track; 1384 int ret = -1; 1385 1386 if ((ret = pkt_get_disc_info(pd, &di))) 1387 return ret; 1388 1389 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1390 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1391 return ret; 1392 1393 /* if this track is blank, try the previous. */ 1394 if (ti.blank) { 1395 last_track--; 1396 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1397 return ret; 1398 } 1399 1400 /* if last recorded field is valid, return it. */ 1401 if (ti.lra_v) { 1402 *last_written = be32_to_cpu(ti.last_rec_address); 1403 } else { 1404 /* make it up instead */ 1405 *last_written = be32_to_cpu(ti.track_start) + 1406 be32_to_cpu(ti.track_size); 1407 if (ti.free_blocks) 1408 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1409 } 1410 return 0; 1411 } 1412 1413 /* 1414 * write mode select package based on pd->settings 1415 */ 1416 static int pkt_set_write_settings(struct pktcdvd_device *pd) 1417 { 1418 struct packet_command cgc; 1419 struct request_sense sense; 1420 write_param_page *wp; 1421 char buffer[128]; 1422 int ret, size; 1423 1424 /* doesn't apply to DVD+RW or DVD-RAM */ 1425 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1426 return 0; 1427 1428 memset(buffer, 0, sizeof(buffer)); 1429 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1430 cgc.sense = &sense; 1431 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1432 pkt_dump_sense(&cgc); 1433 return ret; 1434 } 1435 1436 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1437 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1438 if (size > sizeof(buffer)) 1439 size = sizeof(buffer); 1440 1441 /* 1442 * now get it all 1443 */ 1444 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1445 cgc.sense = &sense; 1446 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1447 pkt_dump_sense(&cgc); 1448 return ret; 1449 } 1450 1451 /* 1452 * write page is offset header + block descriptor length 1453 */ 1454 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1455 1456 wp->fp = pd->settings.fp; 1457 wp->track_mode = pd->settings.track_mode; 1458 wp->write_type = pd->settings.write_type; 1459 wp->data_block_type = pd->settings.block_mode; 1460 1461 wp->multi_session = 0; 1462 1463 #ifdef PACKET_USE_LS 1464 wp->link_size = 7; 1465 wp->ls_v = 1; 1466 #endif 1467 1468 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1469 wp->session_format = 0; 1470 wp->subhdr2 = 0x20; 1471 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1472 wp->session_format = 0x20; 1473 wp->subhdr2 = 8; 1474 #if 0 1475 wp->mcn[0] = 0x80; 1476 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1477 #endif 1478 } else { 1479 /* 1480 * paranoia 1481 */ 1482 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type); 1483 return 1; 1484 } 1485 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1486 1487 cgc.buflen = cgc.cmd[8] = size; 1488 if ((ret = pkt_mode_select(pd, &cgc))) { 1489 pkt_dump_sense(&cgc); 1490 return ret; 1491 } 1492 1493 pkt_print_settings(pd); 1494 return 0; 1495 } 1496 1497 /* 1498 * 0 -- we can write to this track, 1 -- we can't 1499 */ 1500 static int pkt_good_track(track_information *ti) 1501 { 1502 /* 1503 * only good for CD-RW at the moment, not DVD-RW 1504 */ 1505 1506 /* 1507 * FIXME: only for FP 1508 */ 1509 if (ti->fp == 0) 1510 return 0; 1511 1512 /* 1513 * "good" settings as per Mt Fuji. 1514 */ 1515 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1) 1516 return 0; 1517 1518 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1) 1519 return 0; 1520 1521 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1) 1522 return 0; 1523 1524 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1525 return 1; 1526 } 1527 1528 /* 1529 * 0 -- we can write to this disc, 1 -- we can't 1530 */ 1531 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di) 1532 { 1533 switch (pd->mmc3_profile) { 1534 case 0x0a: /* CD-RW */ 1535 case 0xffff: /* MMC3 not supported */ 1536 break; 1537 case 0x1a: /* DVD+RW */ 1538 case 0x13: /* DVD-RW */ 1539 case 0x12: /* DVD-RAM */ 1540 return 0; 1541 default: 1542 printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile); 1543 return 1; 1544 } 1545 1546 /* 1547 * for disc type 0xff we should probably reserve a new track. 1548 * but i'm not sure, should we leave this to user apps? probably. 1549 */ 1550 if (di->disc_type == 0xff) { 1551 printk("pktcdvd: Unknown disc. No track?\n"); 1552 return 1; 1553 } 1554 1555 if (di->disc_type != 0x20 && di->disc_type != 0) { 1556 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type); 1557 return 1; 1558 } 1559 1560 if (di->erasable == 0) { 1561 printk("pktcdvd: Disc not erasable\n"); 1562 return 1; 1563 } 1564 1565 if (di->border_status == PACKET_SESSION_RESERVED) { 1566 printk("pktcdvd: Can't write to last track (reserved)\n"); 1567 return 1; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int pkt_probe_settings(struct pktcdvd_device *pd) 1574 { 1575 struct packet_command cgc; 1576 unsigned char buf[12]; 1577 disc_information di; 1578 track_information ti; 1579 int ret, track; 1580 1581 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1582 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1583 cgc.cmd[8] = 8; 1584 ret = pkt_generic_packet(pd, &cgc); 1585 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1586 1587 memset(&di, 0, sizeof(disc_information)); 1588 memset(&ti, 0, sizeof(track_information)); 1589 1590 if ((ret = pkt_get_disc_info(pd, &di))) { 1591 printk("failed get_disc\n"); 1592 return ret; 1593 } 1594 1595 if (pkt_good_disc(pd, &di)) 1596 return -ENXIO; 1597 1598 switch (pd->mmc3_profile) { 1599 case 0x1a: /* DVD+RW */ 1600 printk("pktcdvd: inserted media is DVD+RW\n"); 1601 break; 1602 case 0x13: /* DVD-RW */ 1603 printk("pktcdvd: inserted media is DVD-RW\n"); 1604 break; 1605 case 0x12: /* DVD-RAM */ 1606 printk("pktcdvd: inserted media is DVD-RAM\n"); 1607 break; 1608 default: 1609 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : ""); 1610 break; 1611 } 1612 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1613 1614 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1615 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1616 printk("pktcdvd: failed get_track\n"); 1617 return ret; 1618 } 1619 1620 if (pkt_good_track(&ti)) { 1621 printk("pktcdvd: can't write to this track\n"); 1622 return -ENXIO; 1623 } 1624 1625 /* 1626 * we keep packet size in 512 byte units, makes it easier to 1627 * deal with request calculations. 1628 */ 1629 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1630 if (pd->settings.size == 0) { 1631 printk("pktcdvd: detected zero packet size!\n"); 1632 pd->settings.size = 128; 1633 } 1634 pd->settings.fp = ti.fp; 1635 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1636 1637 if (ti.nwa_v) { 1638 pd->nwa = be32_to_cpu(ti.next_writable); 1639 set_bit(PACKET_NWA_VALID, &pd->flags); 1640 } 1641 1642 /* 1643 * in theory we could use lra on -RW media as well and just zero 1644 * blocks that haven't been written yet, but in practice that 1645 * is just a no-go. we'll use that for -R, naturally. 1646 */ 1647 if (ti.lra_v) { 1648 pd->lra = be32_to_cpu(ti.last_rec_address); 1649 set_bit(PACKET_LRA_VALID, &pd->flags); 1650 } else { 1651 pd->lra = 0xffffffff; 1652 set_bit(PACKET_LRA_VALID, &pd->flags); 1653 } 1654 1655 /* 1656 * fine for now 1657 */ 1658 pd->settings.link_loss = 7; 1659 pd->settings.write_type = 0; /* packet */ 1660 pd->settings.track_mode = ti.track_mode; 1661 1662 /* 1663 * mode1 or mode2 disc 1664 */ 1665 switch (ti.data_mode) { 1666 case PACKET_MODE1: 1667 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1668 break; 1669 case PACKET_MODE2: 1670 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1671 break; 1672 default: 1673 printk("pktcdvd: unknown data mode\n"); 1674 return 1; 1675 } 1676 return 0; 1677 } 1678 1679 /* 1680 * enable/disable write caching on drive 1681 */ 1682 static int pkt_write_caching(struct pktcdvd_device *pd, int set) 1683 { 1684 struct packet_command cgc; 1685 struct request_sense sense; 1686 unsigned char buf[64]; 1687 int ret; 1688 1689 memset(buf, 0, sizeof(buf)); 1690 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1691 cgc.sense = &sense; 1692 cgc.buflen = pd->mode_offset + 12; 1693 1694 /* 1695 * caching mode page might not be there, so quiet this command 1696 */ 1697 cgc.quiet = 1; 1698 1699 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1700 return ret; 1701 1702 buf[pd->mode_offset + 10] |= (!!set << 2); 1703 1704 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1705 ret = pkt_mode_select(pd, &cgc); 1706 if (ret) { 1707 printk("pktcdvd: write caching control failed\n"); 1708 pkt_dump_sense(&cgc); 1709 } else if (!ret && set) 1710 printk("pktcdvd: enabled write caching on %s\n", pd->name); 1711 return ret; 1712 } 1713 1714 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1715 { 1716 struct packet_command cgc; 1717 1718 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1719 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1720 cgc.cmd[4] = lockflag ? 1 : 0; 1721 return pkt_generic_packet(pd, &cgc); 1722 } 1723 1724 /* 1725 * Returns drive maximum write speed 1726 */ 1727 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) 1728 { 1729 struct packet_command cgc; 1730 struct request_sense sense; 1731 unsigned char buf[256+18]; 1732 unsigned char *cap_buf; 1733 int ret, offset; 1734 1735 memset(buf, 0, sizeof(buf)); 1736 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1737 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1738 cgc.sense = &sense; 1739 1740 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1741 if (ret) { 1742 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1743 sizeof(struct mode_page_header); 1744 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1745 if (ret) { 1746 pkt_dump_sense(&cgc); 1747 return ret; 1748 } 1749 } 1750 1751 offset = 20; /* Obsoleted field, used by older drives */ 1752 if (cap_buf[1] >= 28) 1753 offset = 28; /* Current write speed selected */ 1754 if (cap_buf[1] >= 30) { 1755 /* If the drive reports at least one "Logical Unit Write 1756 * Speed Performance Descriptor Block", use the information 1757 * in the first block. (contains the highest speed) 1758 */ 1759 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1760 if (num_spdb > 0) 1761 offset = 34; 1762 } 1763 1764 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1765 return 0; 1766 } 1767 1768 /* These tables from cdrecord - I don't have orange book */ 1769 /* standard speed CD-RW (1-4x) */ 1770 static char clv_to_speed[16] = { 1771 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1772 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1773 }; 1774 /* high speed CD-RW (-10x) */ 1775 static char hs_clv_to_speed[16] = { 1776 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1777 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1778 }; 1779 /* ultra high speed CD-RW */ 1780 static char us_clv_to_speed[16] = { 1781 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1782 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 1783 }; 1784 1785 /* 1786 * reads the maximum media speed from ATIP 1787 */ 1788 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) 1789 { 1790 struct packet_command cgc; 1791 struct request_sense sense; 1792 unsigned char buf[64]; 1793 unsigned int size, st, sp; 1794 int ret; 1795 1796 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 1797 cgc.sense = &sense; 1798 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1799 cgc.cmd[1] = 2; 1800 cgc.cmd[2] = 4; /* READ ATIP */ 1801 cgc.cmd[8] = 2; 1802 ret = pkt_generic_packet(pd, &cgc); 1803 if (ret) { 1804 pkt_dump_sense(&cgc); 1805 return ret; 1806 } 1807 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 1808 if (size > sizeof(buf)) 1809 size = sizeof(buf); 1810 1811 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 1812 cgc.sense = &sense; 1813 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1814 cgc.cmd[1] = 2; 1815 cgc.cmd[2] = 4; 1816 cgc.cmd[8] = size; 1817 ret = pkt_generic_packet(pd, &cgc); 1818 if (ret) { 1819 pkt_dump_sense(&cgc); 1820 return ret; 1821 } 1822 1823 if (!buf[6] & 0x40) { 1824 printk("pktcdvd: Disc type is not CD-RW\n"); 1825 return 1; 1826 } 1827 if (!buf[6] & 0x4) { 1828 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n"); 1829 return 1; 1830 } 1831 1832 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 1833 1834 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 1835 1836 /* Info from cdrecord */ 1837 switch (st) { 1838 case 0: /* standard speed */ 1839 *speed = clv_to_speed[sp]; 1840 break; 1841 case 1: /* high speed */ 1842 *speed = hs_clv_to_speed[sp]; 1843 break; 1844 case 2: /* ultra high speed */ 1845 *speed = us_clv_to_speed[sp]; 1846 break; 1847 default: 1848 printk("pktcdvd: Unknown disc sub-type %d\n",st); 1849 return 1; 1850 } 1851 if (*speed) { 1852 printk("pktcdvd: Max. media speed: %d\n",*speed); 1853 return 0; 1854 } else { 1855 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st); 1856 return 1; 1857 } 1858 } 1859 1860 static int pkt_perform_opc(struct pktcdvd_device *pd) 1861 { 1862 struct packet_command cgc; 1863 struct request_sense sense; 1864 int ret; 1865 1866 VPRINTK("pktcdvd: Performing OPC\n"); 1867 1868 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1869 cgc.sense = &sense; 1870 cgc.timeout = 60*HZ; 1871 cgc.cmd[0] = GPCMD_SEND_OPC; 1872 cgc.cmd[1] = 1; 1873 if ((ret = pkt_generic_packet(pd, &cgc))) 1874 pkt_dump_sense(&cgc); 1875 return ret; 1876 } 1877 1878 static int pkt_open_write(struct pktcdvd_device *pd) 1879 { 1880 int ret; 1881 unsigned int write_speed, media_write_speed, read_speed; 1882 1883 if ((ret = pkt_probe_settings(pd))) { 1884 DPRINTK("pktcdvd: %s failed probe\n", pd->name); 1885 return -EIO; 1886 } 1887 1888 if ((ret = pkt_set_write_settings(pd))) { 1889 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name); 1890 return -EIO; 1891 } 1892 1893 pkt_write_caching(pd, USE_WCACHING); 1894 1895 if ((ret = pkt_get_max_speed(pd, &write_speed))) 1896 write_speed = 16 * 177; 1897 switch (pd->mmc3_profile) { 1898 case 0x13: /* DVD-RW */ 1899 case 0x1a: /* DVD+RW */ 1900 case 0x12: /* DVD-RAM */ 1901 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed); 1902 break; 1903 default: 1904 if ((ret = pkt_media_speed(pd, &media_write_speed))) 1905 media_write_speed = 16; 1906 write_speed = min(write_speed, media_write_speed * 177); 1907 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176); 1908 break; 1909 } 1910 read_speed = write_speed; 1911 1912 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 1913 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name); 1914 return -EIO; 1915 } 1916 pd->write_speed = write_speed; 1917 pd->read_speed = read_speed; 1918 1919 if ((ret = pkt_perform_opc(pd))) { 1920 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name); 1921 } 1922 1923 return 0; 1924 } 1925 1926 /* 1927 * called at open time. 1928 */ 1929 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 1930 { 1931 int ret; 1932 long lba; 1933 request_queue_t *q; 1934 1935 /* 1936 * We need to re-open the cdrom device without O_NONBLOCK to be able 1937 * to read/write from/to it. It is already opened in O_NONBLOCK mode 1938 * so bdget() can't fail. 1939 */ 1940 bdget(pd->bdev->bd_dev); 1941 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 1942 goto out; 1943 1944 if ((ret = pkt_get_last_written(pd, &lba))) { 1945 printk("pktcdvd: pkt_get_last_written failed\n"); 1946 goto out_putdev; 1947 } 1948 1949 set_capacity(pd->disk, lba << 2); 1950 set_capacity(pd->bdev->bd_disk, lba << 2); 1951 bd_set_size(pd->bdev, (loff_t)lba << 11); 1952 1953 q = bdev_get_queue(pd->bdev); 1954 if (write) { 1955 if ((ret = pkt_open_write(pd))) 1956 goto out_putdev; 1957 /* 1958 * Some CDRW drives can not handle writes larger than one packet, 1959 * even if the size is a multiple of the packet size. 1960 */ 1961 spin_lock_irq(q->queue_lock); 1962 blk_queue_max_sectors(q, pd->settings.size); 1963 spin_unlock_irq(q->queue_lock); 1964 set_bit(PACKET_WRITABLE, &pd->flags); 1965 } else { 1966 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 1967 clear_bit(PACKET_WRITABLE, &pd->flags); 1968 } 1969 1970 if ((ret = pkt_set_segment_merging(pd, q))) 1971 goto out_putdev; 1972 1973 if (write) 1974 printk("pktcdvd: %lukB available on disc\n", lba << 1); 1975 1976 return 0; 1977 1978 out_putdev: 1979 blkdev_put(pd->bdev); 1980 out: 1981 return ret; 1982 } 1983 1984 /* 1985 * called when the device is closed. makes sure that the device flushes 1986 * the internal cache before we close. 1987 */ 1988 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 1989 { 1990 if (flush && pkt_flush_cache(pd)) 1991 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name); 1992 1993 pkt_lock_door(pd, 0); 1994 1995 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 1996 blkdev_put(pd->bdev); 1997 } 1998 1999 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2000 { 2001 if (dev_minor >= MAX_WRITERS) 2002 return NULL; 2003 return pkt_devs[dev_minor]; 2004 } 2005 2006 static int pkt_open(struct inode *inode, struct file *file) 2007 { 2008 struct pktcdvd_device *pd = NULL; 2009 int ret; 2010 2011 VPRINTK("pktcdvd: entering open\n"); 2012 2013 down(&ctl_mutex); 2014 pd = pkt_find_dev_from_minor(iminor(inode)); 2015 if (!pd) { 2016 ret = -ENODEV; 2017 goto out; 2018 } 2019 BUG_ON(pd->refcnt < 0); 2020 2021 pd->refcnt++; 2022 if (pd->refcnt == 1) { 2023 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) { 2024 ret = -EIO; 2025 goto out_dec; 2026 } 2027 /* 2028 * needed here as well, since ext2 (among others) may change 2029 * the blocksize at mount time 2030 */ 2031 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2032 } 2033 2034 up(&ctl_mutex); 2035 return 0; 2036 2037 out_dec: 2038 pd->refcnt--; 2039 out: 2040 VPRINTK("pktcdvd: failed open (%d)\n", ret); 2041 up(&ctl_mutex); 2042 return ret; 2043 } 2044 2045 static int pkt_close(struct inode *inode, struct file *file) 2046 { 2047 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2048 int ret = 0; 2049 2050 down(&ctl_mutex); 2051 pd->refcnt--; 2052 BUG_ON(pd->refcnt < 0); 2053 if (pd->refcnt == 0) { 2054 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2055 pkt_release_dev(pd, flush); 2056 } 2057 up(&ctl_mutex); 2058 return ret; 2059 } 2060 2061 2062 static void *psd_pool_alloc(unsigned int __nocast gfp_mask, void *data) 2063 { 2064 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask); 2065 } 2066 2067 static void psd_pool_free(void *ptr, void *data) 2068 { 2069 kfree(ptr); 2070 } 2071 2072 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err) 2073 { 2074 struct packet_stacked_data *psd = bio->bi_private; 2075 struct pktcdvd_device *pd = psd->pd; 2076 2077 if (bio->bi_size) 2078 return 1; 2079 2080 bio_put(bio); 2081 bio_endio(psd->bio, psd->bio->bi_size, err); 2082 mempool_free(psd, psd_pool); 2083 pkt_bio_finished(pd); 2084 return 0; 2085 } 2086 2087 static int pkt_make_request(request_queue_t *q, struct bio *bio) 2088 { 2089 struct pktcdvd_device *pd; 2090 char b[BDEVNAME_SIZE]; 2091 sector_t zone; 2092 struct packet_data *pkt; 2093 int was_empty, blocked_bio; 2094 struct pkt_rb_node *node; 2095 2096 pd = q->queuedata; 2097 if (!pd) { 2098 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2099 goto end_io; 2100 } 2101 2102 /* 2103 * Clone READ bios so we can have our own bi_end_io callback. 2104 */ 2105 if (bio_data_dir(bio) == READ) { 2106 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2107 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2108 2109 psd->pd = pd; 2110 psd->bio = bio; 2111 cloned_bio->bi_bdev = pd->bdev; 2112 cloned_bio->bi_private = psd; 2113 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2114 pd->stats.secs_r += bio->bi_size >> 9; 2115 pkt_queue_bio(pd, cloned_bio, 1); 2116 return 0; 2117 } 2118 2119 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2120 printk("pktcdvd: WRITE for ro device %s (%llu)\n", 2121 pd->name, (unsigned long long)bio->bi_sector); 2122 goto end_io; 2123 } 2124 2125 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2126 printk("pktcdvd: wrong bio size\n"); 2127 goto end_io; 2128 } 2129 2130 blk_queue_bounce(q, &bio); 2131 2132 zone = ZONE(bio->bi_sector, pd); 2133 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2134 (unsigned long long)bio->bi_sector, 2135 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2136 2137 /* Check if we have to split the bio */ 2138 { 2139 struct bio_pair *bp; 2140 sector_t last_zone; 2141 int first_sectors; 2142 2143 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2144 if (last_zone != zone) { 2145 BUG_ON(last_zone != zone + pd->settings.size); 2146 first_sectors = last_zone - bio->bi_sector; 2147 bp = bio_split(bio, bio_split_pool, first_sectors); 2148 BUG_ON(!bp); 2149 pkt_make_request(q, &bp->bio1); 2150 pkt_make_request(q, &bp->bio2); 2151 bio_pair_release(bp); 2152 return 0; 2153 } 2154 } 2155 2156 /* 2157 * If we find a matching packet in state WAITING or READ_WAIT, we can 2158 * just append this bio to that packet. 2159 */ 2160 spin_lock(&pd->cdrw.active_list_lock); 2161 blocked_bio = 0; 2162 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2163 if (pkt->sector == zone) { 2164 spin_lock(&pkt->lock); 2165 if ((pkt->state == PACKET_WAITING_STATE) || 2166 (pkt->state == PACKET_READ_WAIT_STATE)) { 2167 pkt_add_list_last(bio, &pkt->orig_bios, 2168 &pkt->orig_bios_tail); 2169 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2170 if ((pkt->write_size >= pkt->frames) && 2171 (pkt->state == PACKET_WAITING_STATE)) { 2172 atomic_inc(&pkt->run_sm); 2173 wake_up(&pd->wqueue); 2174 } 2175 spin_unlock(&pkt->lock); 2176 spin_unlock(&pd->cdrw.active_list_lock); 2177 return 0; 2178 } else { 2179 blocked_bio = 1; 2180 } 2181 spin_unlock(&pkt->lock); 2182 } 2183 } 2184 spin_unlock(&pd->cdrw.active_list_lock); 2185 2186 /* 2187 * No matching packet found. Store the bio in the work queue. 2188 */ 2189 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2190 BUG_ON(!node); 2191 node->bio = bio; 2192 spin_lock(&pd->lock); 2193 BUG_ON(pd->bio_queue_size < 0); 2194 was_empty = (pd->bio_queue_size == 0); 2195 pkt_rbtree_insert(pd, node); 2196 spin_unlock(&pd->lock); 2197 2198 /* 2199 * Wake up the worker thread. 2200 */ 2201 atomic_set(&pd->scan_queue, 1); 2202 if (was_empty) { 2203 /* This wake_up is required for correct operation */ 2204 wake_up(&pd->wqueue); 2205 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2206 /* 2207 * This wake up is not required for correct operation, 2208 * but improves performance in some cases. 2209 */ 2210 wake_up(&pd->wqueue); 2211 } 2212 return 0; 2213 end_io: 2214 bio_io_error(bio, bio->bi_size); 2215 return 0; 2216 } 2217 2218 2219 2220 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec) 2221 { 2222 struct pktcdvd_device *pd = q->queuedata; 2223 sector_t zone = ZONE(bio->bi_sector, pd); 2224 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2225 int remaining = (pd->settings.size << 9) - used; 2226 int remaining2; 2227 2228 /* 2229 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2230 * boundary, pkt_make_request() will split the bio. 2231 */ 2232 remaining2 = PAGE_SIZE - bio->bi_size; 2233 remaining = max(remaining, remaining2); 2234 2235 BUG_ON(remaining < 0); 2236 return remaining; 2237 } 2238 2239 static void pkt_init_queue(struct pktcdvd_device *pd) 2240 { 2241 request_queue_t *q = pd->disk->queue; 2242 2243 blk_queue_make_request(q, pkt_make_request); 2244 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2245 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2246 blk_queue_merge_bvec(q, pkt_merge_bvec); 2247 q->queuedata = pd; 2248 } 2249 2250 static int pkt_seq_show(struct seq_file *m, void *p) 2251 { 2252 struct pktcdvd_device *pd = m->private; 2253 char *msg; 2254 char bdev_buf[BDEVNAME_SIZE]; 2255 int states[PACKET_NUM_STATES]; 2256 2257 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2258 bdevname(pd->bdev, bdev_buf)); 2259 2260 seq_printf(m, "\nSettings:\n"); 2261 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2262 2263 if (pd->settings.write_type == 0) 2264 msg = "Packet"; 2265 else 2266 msg = "Unknown"; 2267 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2268 2269 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2270 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2271 2272 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2273 2274 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2275 msg = "Mode 1"; 2276 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2277 msg = "Mode 2"; 2278 else 2279 msg = "Unknown"; 2280 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2281 2282 seq_printf(m, "\nStatistics:\n"); 2283 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2284 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2285 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2286 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2287 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2288 2289 seq_printf(m, "\nMisc:\n"); 2290 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2291 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2292 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2293 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2294 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2295 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2296 2297 seq_printf(m, "\nQueue state:\n"); 2298 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2299 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2300 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2301 2302 pkt_count_states(pd, states); 2303 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2304 states[0], states[1], states[2], states[3], states[4], states[5]); 2305 2306 return 0; 2307 } 2308 2309 static int pkt_seq_open(struct inode *inode, struct file *file) 2310 { 2311 return single_open(file, pkt_seq_show, PDE(inode)->data); 2312 } 2313 2314 static struct file_operations pkt_proc_fops = { 2315 .open = pkt_seq_open, 2316 .read = seq_read, 2317 .llseek = seq_lseek, 2318 .release = single_release 2319 }; 2320 2321 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2322 { 2323 int i; 2324 int ret = 0; 2325 char b[BDEVNAME_SIZE]; 2326 struct proc_dir_entry *proc; 2327 struct block_device *bdev; 2328 2329 if (pd->pkt_dev == dev) { 2330 printk("pktcdvd: Recursive setup not allowed\n"); 2331 return -EBUSY; 2332 } 2333 for (i = 0; i < MAX_WRITERS; i++) { 2334 struct pktcdvd_device *pd2 = pkt_devs[i]; 2335 if (!pd2) 2336 continue; 2337 if (pd2->bdev->bd_dev == dev) { 2338 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b)); 2339 return -EBUSY; 2340 } 2341 if (pd2->pkt_dev == dev) { 2342 printk("pktcdvd: Can't chain pktcdvd devices\n"); 2343 return -EBUSY; 2344 } 2345 } 2346 2347 bdev = bdget(dev); 2348 if (!bdev) 2349 return -ENOMEM; 2350 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2351 if (ret) 2352 return ret; 2353 2354 /* This is safe, since we have a reference from open(). */ 2355 __module_get(THIS_MODULE); 2356 2357 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2358 printk("pktcdvd: not enough memory for buffers\n"); 2359 ret = -ENOMEM; 2360 goto out_mem; 2361 } 2362 2363 pd->bdev = bdev; 2364 set_blocksize(bdev, CD_FRAMESIZE); 2365 2366 pkt_init_queue(pd); 2367 2368 atomic_set(&pd->cdrw.pending_bios, 0); 2369 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2370 if (IS_ERR(pd->cdrw.thread)) { 2371 printk("pktcdvd: can't start kernel thread\n"); 2372 ret = -ENOMEM; 2373 goto out_thread; 2374 } 2375 2376 proc = create_proc_entry(pd->name, 0, pkt_proc); 2377 if (proc) { 2378 proc->data = pd; 2379 proc->proc_fops = &pkt_proc_fops; 2380 } 2381 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2382 return 0; 2383 2384 out_thread: 2385 pkt_shrink_pktlist(pd); 2386 out_mem: 2387 blkdev_put(bdev); 2388 /* This is safe: open() is still holding a reference. */ 2389 module_put(THIS_MODULE); 2390 return ret; 2391 } 2392 2393 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2394 { 2395 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2396 2397 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2398 BUG_ON(!pd); 2399 2400 switch (cmd) { 2401 /* 2402 * forward selected CDROM ioctls to CD-ROM, for UDF 2403 */ 2404 case CDROMMULTISESSION: 2405 case CDROMREADTOCENTRY: 2406 case CDROM_LAST_WRITTEN: 2407 case CDROM_SEND_PACKET: 2408 case SCSI_IOCTL_SEND_COMMAND: 2409 return ioctl_by_bdev(pd->bdev, cmd, arg); 2410 2411 case CDROMEJECT: 2412 /* 2413 * The door gets locked when the device is opened, so we 2414 * have to unlock it or else the eject command fails. 2415 */ 2416 pkt_lock_door(pd, 0); 2417 return ioctl_by_bdev(pd->bdev, cmd, arg); 2418 2419 default: 2420 printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd); 2421 return -ENOTTY; 2422 } 2423 2424 return 0; 2425 } 2426 2427 static int pkt_media_changed(struct gendisk *disk) 2428 { 2429 struct pktcdvd_device *pd = disk->private_data; 2430 struct gendisk *attached_disk; 2431 2432 if (!pd) 2433 return 0; 2434 if (!pd->bdev) 2435 return 0; 2436 attached_disk = pd->bdev->bd_disk; 2437 if (!attached_disk) 2438 return 0; 2439 return attached_disk->fops->media_changed(attached_disk); 2440 } 2441 2442 static struct block_device_operations pktcdvd_ops = { 2443 .owner = THIS_MODULE, 2444 .open = pkt_open, 2445 .release = pkt_close, 2446 .ioctl = pkt_ioctl, 2447 .media_changed = pkt_media_changed, 2448 }; 2449 2450 /* 2451 * Set up mapping from pktcdvd device to CD-ROM device. 2452 */ 2453 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd) 2454 { 2455 int idx; 2456 int ret = -ENOMEM; 2457 struct pktcdvd_device *pd; 2458 struct gendisk *disk; 2459 dev_t dev = new_decode_dev(ctrl_cmd->dev); 2460 2461 for (idx = 0; idx < MAX_WRITERS; idx++) 2462 if (!pkt_devs[idx]) 2463 break; 2464 if (idx == MAX_WRITERS) { 2465 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS); 2466 return -EBUSY; 2467 } 2468 2469 pd = kmalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2470 if (!pd) 2471 return ret; 2472 memset(pd, 0, sizeof(struct pktcdvd_device)); 2473 2474 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL); 2475 if (!pd->rb_pool) 2476 goto out_mem; 2477 2478 disk = alloc_disk(1); 2479 if (!disk) 2480 goto out_mem; 2481 pd->disk = disk; 2482 2483 spin_lock_init(&pd->lock); 2484 spin_lock_init(&pd->iosched.lock); 2485 sprintf(pd->name, "pktcdvd%d", idx); 2486 init_waitqueue_head(&pd->wqueue); 2487 pd->bio_queue = RB_ROOT; 2488 2489 disk->major = pkt_major; 2490 disk->first_minor = idx; 2491 disk->fops = &pktcdvd_ops; 2492 disk->flags = GENHD_FL_REMOVABLE; 2493 sprintf(disk->disk_name, "pktcdvd%d", idx); 2494 disk->private_data = pd; 2495 disk->queue = blk_alloc_queue(GFP_KERNEL); 2496 if (!disk->queue) 2497 goto out_mem2; 2498 2499 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2500 ret = pkt_new_dev(pd, dev); 2501 if (ret) 2502 goto out_new_dev; 2503 2504 add_disk(disk); 2505 pkt_devs[idx] = pd; 2506 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2507 return 0; 2508 2509 out_new_dev: 2510 blk_put_queue(disk->queue); 2511 out_mem2: 2512 put_disk(disk); 2513 out_mem: 2514 if (pd->rb_pool) 2515 mempool_destroy(pd->rb_pool); 2516 kfree(pd); 2517 return ret; 2518 } 2519 2520 /* 2521 * Tear down mapping from pktcdvd device to CD-ROM device. 2522 */ 2523 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd) 2524 { 2525 struct pktcdvd_device *pd; 2526 int idx; 2527 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev); 2528 2529 for (idx = 0; idx < MAX_WRITERS; idx++) { 2530 pd = pkt_devs[idx]; 2531 if (pd && (pd->pkt_dev == pkt_dev)) 2532 break; 2533 } 2534 if (idx == MAX_WRITERS) { 2535 DPRINTK("pktcdvd: dev not setup\n"); 2536 return -ENXIO; 2537 } 2538 2539 if (pd->refcnt > 0) 2540 return -EBUSY; 2541 2542 if (!IS_ERR(pd->cdrw.thread)) 2543 kthread_stop(pd->cdrw.thread); 2544 2545 blkdev_put(pd->bdev); 2546 2547 pkt_shrink_pktlist(pd); 2548 2549 remove_proc_entry(pd->name, pkt_proc); 2550 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name); 2551 2552 del_gendisk(pd->disk); 2553 blk_put_queue(pd->disk->queue); 2554 put_disk(pd->disk); 2555 2556 pkt_devs[idx] = NULL; 2557 mempool_destroy(pd->rb_pool); 2558 kfree(pd); 2559 2560 /* This is safe: open() is still holding a reference. */ 2561 module_put(THIS_MODULE); 2562 return 0; 2563 } 2564 2565 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2566 { 2567 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2568 if (pd) { 2569 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2570 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2571 } else { 2572 ctrl_cmd->dev = 0; 2573 ctrl_cmd->pkt_dev = 0; 2574 } 2575 ctrl_cmd->num_devices = MAX_WRITERS; 2576 } 2577 2578 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2579 { 2580 void __user *argp = (void __user *)arg; 2581 struct pkt_ctrl_command ctrl_cmd; 2582 int ret = 0; 2583 2584 if (cmd != PACKET_CTRL_CMD) 2585 return -ENOTTY; 2586 2587 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2588 return -EFAULT; 2589 2590 switch (ctrl_cmd.command) { 2591 case PKT_CTRL_CMD_SETUP: 2592 if (!capable(CAP_SYS_ADMIN)) 2593 return -EPERM; 2594 down(&ctl_mutex); 2595 ret = pkt_setup_dev(&ctrl_cmd); 2596 up(&ctl_mutex); 2597 break; 2598 case PKT_CTRL_CMD_TEARDOWN: 2599 if (!capable(CAP_SYS_ADMIN)) 2600 return -EPERM; 2601 down(&ctl_mutex); 2602 ret = pkt_remove_dev(&ctrl_cmd); 2603 up(&ctl_mutex); 2604 break; 2605 case PKT_CTRL_CMD_STATUS: 2606 down(&ctl_mutex); 2607 pkt_get_status(&ctrl_cmd); 2608 up(&ctl_mutex); 2609 break; 2610 default: 2611 return -ENOTTY; 2612 } 2613 2614 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2615 return -EFAULT; 2616 return ret; 2617 } 2618 2619 2620 static struct file_operations pkt_ctl_fops = { 2621 .ioctl = pkt_ctl_ioctl, 2622 .owner = THIS_MODULE, 2623 }; 2624 2625 static struct miscdevice pkt_misc = { 2626 .minor = MISC_DYNAMIC_MINOR, 2627 .name = "pktcdvd", 2628 .devfs_name = "pktcdvd/control", 2629 .fops = &pkt_ctl_fops 2630 }; 2631 2632 static int __init pkt_init(void) 2633 { 2634 int ret; 2635 2636 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL); 2637 if (!psd_pool) 2638 return -ENOMEM; 2639 2640 ret = register_blkdev(pkt_major, "pktcdvd"); 2641 if (ret < 0) { 2642 printk("pktcdvd: Unable to register block device\n"); 2643 goto out2; 2644 } 2645 if (!pkt_major) 2646 pkt_major = ret; 2647 2648 ret = misc_register(&pkt_misc); 2649 if (ret) { 2650 printk("pktcdvd: Unable to register misc device\n"); 2651 goto out; 2652 } 2653 2654 init_MUTEX(&ctl_mutex); 2655 2656 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver); 2657 2658 DPRINTK("pktcdvd: %s\n", VERSION_CODE); 2659 return 0; 2660 2661 out: 2662 unregister_blkdev(pkt_major, "pktcdvd"); 2663 out2: 2664 mempool_destroy(psd_pool); 2665 return ret; 2666 } 2667 2668 static void __exit pkt_exit(void) 2669 { 2670 remove_proc_entry("pktcdvd", proc_root_driver); 2671 misc_deregister(&pkt_misc); 2672 unregister_blkdev(pkt_major, "pktcdvd"); 2673 mempool_destroy(psd_pool); 2674 } 2675 2676 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2677 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2678 MODULE_LICENSE("GPL"); 2679 2680 module_init(pkt_init); 2681 module_exit(pkt_exit); 2682