xref: /openbmc/linux/drivers/block/loop.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/sched.h>
57 #include <linux/fs.h>
58 #include <linux/file.h>
59 #include <linux/stat.h>
60 #include <linux/errno.h>
61 #include <linux/major.h>
62 #include <linux/wait.h>
63 #include <linux/blkdev.h>
64 #include <linux/blkpg.h>
65 #include <linux/init.h>
66 #include <linux/devfs_fs_kernel.h>
67 #include <linux/smp_lock.h>
68 #include <linux/swap.h>
69 #include <linux/slab.h>
70 #include <linux/loop.h>
71 #include <linux/suspend.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 
78 #include <asm/uaccess.h>
79 
80 static int max_loop = 8;
81 static struct loop_device *loop_dev;
82 static struct gendisk **disks;
83 
84 /*
85  * Transfer functions
86  */
87 static int transfer_none(struct loop_device *lo, int cmd,
88 			 struct page *raw_page, unsigned raw_off,
89 			 struct page *loop_page, unsigned loop_off,
90 			 int size, sector_t real_block)
91 {
92 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
93 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
94 
95 	if (cmd == READ)
96 		memcpy(loop_buf, raw_buf, size);
97 	else
98 		memcpy(raw_buf, loop_buf, size);
99 
100 	kunmap_atomic(raw_buf, KM_USER0);
101 	kunmap_atomic(loop_buf, KM_USER1);
102 	cond_resched();
103 	return 0;
104 }
105 
106 static int transfer_xor(struct loop_device *lo, int cmd,
107 			struct page *raw_page, unsigned raw_off,
108 			struct page *loop_page, unsigned loop_off,
109 			int size, sector_t real_block)
110 {
111 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
112 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
113 	char *in, *out, *key;
114 	int i, keysize;
115 
116 	if (cmd == READ) {
117 		in = raw_buf;
118 		out = loop_buf;
119 	} else {
120 		in = loop_buf;
121 		out = raw_buf;
122 	}
123 
124 	key = lo->lo_encrypt_key;
125 	keysize = lo->lo_encrypt_key_size;
126 	for (i = 0; i < size; i++)
127 		*out++ = *in++ ^ key[(i & 511) % keysize];
128 
129 	kunmap_atomic(raw_buf, KM_USER0);
130 	kunmap_atomic(loop_buf, KM_USER1);
131 	cond_resched();
132 	return 0;
133 }
134 
135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
136 {
137 	if (unlikely(info->lo_encrypt_key_size <= 0))
138 		return -EINVAL;
139 	return 0;
140 }
141 
142 static struct loop_func_table none_funcs = {
143 	.number = LO_CRYPT_NONE,
144 	.transfer = transfer_none,
145 };
146 
147 static struct loop_func_table xor_funcs = {
148 	.number = LO_CRYPT_XOR,
149 	.transfer = transfer_xor,
150 	.init = xor_init
151 };
152 
153 /* xfer_funcs[0] is special - its release function is never called */
154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
155 	&none_funcs,
156 	&xor_funcs
157 };
158 
159 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
160 {
161 	loff_t size, offset, loopsize;
162 
163 	/* Compute loopsize in bytes */
164 	size = i_size_read(file->f_mapping->host);
165 	offset = lo->lo_offset;
166 	loopsize = size - offset;
167 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168 		loopsize = lo->lo_sizelimit;
169 
170 	/*
171 	 * Unfortunately, if we want to do I/O on the device,
172 	 * the number of 512-byte sectors has to fit into a sector_t.
173 	 */
174 	return loopsize >> 9;
175 }
176 
177 static int
178 figure_loop_size(struct loop_device *lo)
179 {
180 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
181 	sector_t x = (sector_t)size;
182 
183 	if (unlikely((loff_t)x != size))
184 		return -EFBIG;
185 
186 	set_capacity(disks[lo->lo_number], x);
187 	return 0;
188 }
189 
190 static inline int
191 lo_do_transfer(struct loop_device *lo, int cmd,
192 	       struct page *rpage, unsigned roffs,
193 	       struct page *lpage, unsigned loffs,
194 	       int size, sector_t rblock)
195 {
196 	if (unlikely(!lo->transfer))
197 		return 0;
198 
199 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
200 }
201 
202 /**
203  * do_lo_send_aops - helper for writing data to a loop device
204  *
205  * This is the fast version for backing filesystems which implement the address
206  * space operations prepare_write and commit_write.
207  */
208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
209 		int bsize, loff_t pos, struct page *page)
210 {
211 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
212 	struct address_space *mapping = file->f_mapping;
213 	struct address_space_operations *aops = mapping->a_ops;
214 	pgoff_t index;
215 	unsigned offset, bv_offs;
216 	int len, ret = 0;
217 
218 	down(&mapping->host->i_sem);
219 	index = pos >> PAGE_CACHE_SHIFT;
220 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 	bv_offs = bvec->bv_offset;
222 	len = bvec->bv_len;
223 	while (len > 0) {
224 		sector_t IV;
225 		unsigned size;
226 		int transfer_result;
227 
228 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
229 		size = PAGE_CACHE_SIZE - offset;
230 		if (size > len)
231 			size = len;
232 		page = grab_cache_page(mapping, index);
233 		if (unlikely(!page))
234 			goto fail;
235 		if (unlikely(aops->prepare_write(file, page, offset,
236 				offset + size)))
237 			goto unlock;
238 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
239 				bvec->bv_page, bv_offs, size, IV);
240 		if (unlikely(transfer_result)) {
241 			char *kaddr;
242 
243 			/*
244 			 * The transfer failed, but we still write the data to
245 			 * keep prepare/commit calls balanced.
246 			 */
247 			printk(KERN_ERR "loop: transfer error block %llu\n",
248 			       (unsigned long long)index);
249 			kaddr = kmap_atomic(page, KM_USER0);
250 			memset(kaddr + offset, 0, size);
251 			kunmap_atomic(kaddr, KM_USER0);
252 		}
253 		flush_dcache_page(page);
254 		if (unlikely(aops->commit_write(file, page, offset,
255 				offset + size)))
256 			goto unlock;
257 		if (unlikely(transfer_result))
258 			goto unlock;
259 		bv_offs += size;
260 		len -= size;
261 		offset = 0;
262 		index++;
263 		pos += size;
264 		unlock_page(page);
265 		page_cache_release(page);
266 	}
267 out:
268 	up(&mapping->host->i_sem);
269 	return ret;
270 unlock:
271 	unlock_page(page);
272 	page_cache_release(page);
273 fail:
274 	ret = -1;
275 	goto out;
276 }
277 
278 /**
279  * __do_lo_send_write - helper for writing data to a loop device
280  *
281  * This helper just factors out common code between do_lo_send_direct_write()
282  * and do_lo_send_write().
283  */
284 static inline int __do_lo_send_write(struct file *file,
285 		u8 __user *buf, const int len, loff_t pos)
286 {
287 	ssize_t bw;
288 	mm_segment_t old_fs = get_fs();
289 
290 	set_fs(get_ds());
291 	bw = file->f_op->write(file, buf, len, &pos);
292 	set_fs(old_fs);
293 	if (likely(bw == len))
294 		return 0;
295 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
296 			(unsigned long long)pos, len);
297 	if (bw >= 0)
298 		bw = -EIO;
299 	return bw;
300 }
301 
302 /**
303  * do_lo_send_direct_write - helper for writing data to a loop device
304  *
305  * This is the fast, non-transforming version for backing filesystems which do
306  * not implement the address space operations prepare_write and commit_write.
307  * It uses the write file operation which should be present on all writeable
308  * filesystems.
309  */
310 static int do_lo_send_direct_write(struct loop_device *lo,
311 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
312 {
313 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
314 			(u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
315 			bvec->bv_len, pos);
316 	kunmap(bvec->bv_page);
317 	cond_resched();
318 	return bw;
319 }
320 
321 /**
322  * do_lo_send_write - helper for writing data to a loop device
323  *
324  * This is the slow, transforming version for filesystems which do not
325  * implement the address space operations prepare_write and commit_write.  It
326  * uses the write file operation which should be present on all writeable
327  * filesystems.
328  *
329  * Using fops->write is slower than using aops->{prepare,commit}_write in the
330  * transforming case because we need to double buffer the data as we cannot do
331  * the transformations in place as we do not have direct access to the
332  * destination pages of the backing file.
333  */
334 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
335 		int bsize, loff_t pos, struct page *page)
336 {
337 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
338 			bvec->bv_offset, bvec->bv_len, pos >> 9);
339 	if (likely(!ret))
340 		return __do_lo_send_write(lo->lo_backing_file,
341 				(u8 __user *)page_address(page), bvec->bv_len,
342 				pos);
343 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
344 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
345 	if (ret > 0)
346 		ret = -EIO;
347 	return ret;
348 }
349 
350 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
351 		loff_t pos)
352 {
353 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
354 			struct page *page);
355 	struct bio_vec *bvec;
356 	struct page *page = NULL;
357 	int i, ret = 0;
358 
359 	do_lo_send = do_lo_send_aops;
360 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
361 		do_lo_send = do_lo_send_direct_write;
362 		if (lo->transfer != transfer_none) {
363 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
364 			if (unlikely(!page))
365 				goto fail;
366 			kmap(page);
367 			do_lo_send = do_lo_send_write;
368 		}
369 	}
370 	bio_for_each_segment(bvec, bio, i) {
371 		ret = do_lo_send(lo, bvec, bsize, pos, page);
372 		if (ret < 0)
373 			break;
374 		pos += bvec->bv_len;
375 	}
376 	if (page) {
377 		kunmap(page);
378 		__free_page(page);
379 	}
380 out:
381 	return ret;
382 fail:
383 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
384 	ret = -ENOMEM;
385 	goto out;
386 }
387 
388 struct lo_read_data {
389 	struct loop_device *lo;
390 	struct page *page;
391 	unsigned offset;
392 	int bsize;
393 };
394 
395 static int
396 lo_read_actor(read_descriptor_t *desc, struct page *page,
397 	      unsigned long offset, unsigned long size)
398 {
399 	unsigned long count = desc->count;
400 	struct lo_read_data *p = desc->arg.data;
401 	struct loop_device *lo = p->lo;
402 	sector_t IV;
403 
404 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
405 
406 	if (size > count)
407 		size = count;
408 
409 	if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
410 		size = 0;
411 		printk(KERN_ERR "loop: transfer error block %ld\n",
412 		       page->index);
413 		desc->error = -EINVAL;
414 	}
415 
416 	flush_dcache_page(p->page);
417 
418 	desc->count = count - size;
419 	desc->written += size;
420 	p->offset += size;
421 	return size;
422 }
423 
424 static int
425 do_lo_receive(struct loop_device *lo,
426 	      struct bio_vec *bvec, int bsize, loff_t pos)
427 {
428 	struct lo_read_data cookie;
429 	struct file *file;
430 	int retval;
431 
432 	cookie.lo = lo;
433 	cookie.page = bvec->bv_page;
434 	cookie.offset = bvec->bv_offset;
435 	cookie.bsize = bsize;
436 	file = lo->lo_backing_file;
437 	retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
438 			lo_read_actor, &cookie);
439 	return (retval < 0)? retval: 0;
440 }
441 
442 static int
443 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
444 {
445 	struct bio_vec *bvec;
446 	int i, ret = 0;
447 
448 	bio_for_each_segment(bvec, bio, i) {
449 		ret = do_lo_receive(lo, bvec, bsize, pos);
450 		if (ret < 0)
451 			break;
452 		pos += bvec->bv_len;
453 	}
454 	return ret;
455 }
456 
457 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
458 {
459 	loff_t pos;
460 	int ret;
461 
462 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
463 	if (bio_rw(bio) == WRITE)
464 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
465 	else
466 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
467 	return ret;
468 }
469 
470 /*
471  * Add bio to back of pending list
472  */
473 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
474 {
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(&lo->lo_lock, flags);
478 	if (lo->lo_biotail) {
479 		lo->lo_biotail->bi_next = bio;
480 		lo->lo_biotail = bio;
481 	} else
482 		lo->lo_bio = lo->lo_biotail = bio;
483 	spin_unlock_irqrestore(&lo->lo_lock, flags);
484 
485 	up(&lo->lo_bh_mutex);
486 }
487 
488 /*
489  * Grab first pending buffer
490  */
491 static struct bio *loop_get_bio(struct loop_device *lo)
492 {
493 	struct bio *bio;
494 
495 	spin_lock_irq(&lo->lo_lock);
496 	if ((bio = lo->lo_bio)) {
497 		if (bio == lo->lo_biotail)
498 			lo->lo_biotail = NULL;
499 		lo->lo_bio = bio->bi_next;
500 		bio->bi_next = NULL;
501 	}
502 	spin_unlock_irq(&lo->lo_lock);
503 
504 	return bio;
505 }
506 
507 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
508 {
509 	struct loop_device *lo = q->queuedata;
510 	int rw = bio_rw(old_bio);
511 
512 	if (!lo)
513 		goto out;
514 
515 	spin_lock_irq(&lo->lo_lock);
516 	if (lo->lo_state != Lo_bound)
517 		goto inactive;
518 	atomic_inc(&lo->lo_pending);
519 	spin_unlock_irq(&lo->lo_lock);
520 
521 	if (rw == WRITE) {
522 		if (lo->lo_flags & LO_FLAGS_READ_ONLY)
523 			goto err;
524 	} else if (rw == READA) {
525 		rw = READ;
526 	} else if (rw != READ) {
527 		printk(KERN_ERR "loop: unknown command (%x)\n", rw);
528 		goto err;
529 	}
530 	loop_add_bio(lo, old_bio);
531 	return 0;
532 err:
533 	if (atomic_dec_and_test(&lo->lo_pending))
534 		up(&lo->lo_bh_mutex);
535 out:
536 	bio_io_error(old_bio, old_bio->bi_size);
537 	return 0;
538 inactive:
539 	spin_unlock_irq(&lo->lo_lock);
540 	goto out;
541 }
542 
543 /*
544  * kick off io on the underlying address space
545  */
546 static void loop_unplug(request_queue_t *q)
547 {
548 	struct loop_device *lo = q->queuedata;
549 
550 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
551 	blk_run_address_space(lo->lo_backing_file->f_mapping);
552 }
553 
554 struct switch_request {
555 	struct file *file;
556 	struct completion wait;
557 };
558 
559 static void do_loop_switch(struct loop_device *, struct switch_request *);
560 
561 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
562 {
563 	int ret;
564 
565 	if (unlikely(!bio->bi_bdev)) {
566 		do_loop_switch(lo, bio->bi_private);
567 		bio_put(bio);
568 	} else {
569 		ret = do_bio_filebacked(lo, bio);
570 		bio_endio(bio, bio->bi_size, ret);
571 	}
572 }
573 
574 /*
575  * worker thread that handles reads/writes to file backed loop devices,
576  * to avoid blocking in our make_request_fn. it also does loop decrypting
577  * on reads for block backed loop, as that is too heavy to do from
578  * b_end_io context where irqs may be disabled.
579  */
580 static int loop_thread(void *data)
581 {
582 	struct loop_device *lo = data;
583 	struct bio *bio;
584 
585 	daemonize("loop%d", lo->lo_number);
586 
587 	/*
588 	 * loop can be used in an encrypted device,
589 	 * hence, it mustn't be stopped at all
590 	 * because it could be indirectly used during suspension
591 	 */
592 	current->flags |= PF_NOFREEZE;
593 
594 	set_user_nice(current, -20);
595 
596 	lo->lo_state = Lo_bound;
597 	atomic_inc(&lo->lo_pending);
598 
599 	/*
600 	 * up sem, we are running
601 	 */
602 	up(&lo->lo_sem);
603 
604 	for (;;) {
605 		down_interruptible(&lo->lo_bh_mutex);
606 		/*
607 		 * could be upped because of tear-down, not because of
608 		 * pending work
609 		 */
610 		if (!atomic_read(&lo->lo_pending))
611 			break;
612 
613 		bio = loop_get_bio(lo);
614 		if (!bio) {
615 			printk("loop: missing bio\n");
616 			continue;
617 		}
618 		loop_handle_bio(lo, bio);
619 
620 		/*
621 		 * upped both for pending work and tear-down, lo_pending
622 		 * will hit zero then
623 		 */
624 		if (atomic_dec_and_test(&lo->lo_pending))
625 			break;
626 	}
627 
628 	up(&lo->lo_sem);
629 	return 0;
630 }
631 
632 /*
633  * loop_switch performs the hard work of switching a backing store.
634  * First it needs to flush existing IO, it does this by sending a magic
635  * BIO down the pipe. The completion of this BIO does the actual switch.
636  */
637 static int loop_switch(struct loop_device *lo, struct file *file)
638 {
639 	struct switch_request w;
640 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
641 	if (!bio)
642 		return -ENOMEM;
643 	init_completion(&w.wait);
644 	w.file = file;
645 	bio->bi_private = &w;
646 	bio->bi_bdev = NULL;
647 	loop_make_request(lo->lo_queue, bio);
648 	wait_for_completion(&w.wait);
649 	return 0;
650 }
651 
652 /*
653  * Do the actual switch; called from the BIO completion routine
654  */
655 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
656 {
657 	struct file *file = p->file;
658 	struct file *old_file = lo->lo_backing_file;
659 	struct address_space *mapping = file->f_mapping;
660 
661 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
662 	lo->lo_backing_file = file;
663 	lo->lo_blocksize = mapping->host->i_blksize;
664 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
665 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
666 	complete(&p->wait);
667 }
668 
669 
670 /*
671  * loop_change_fd switched the backing store of a loopback device to
672  * a new file. This is useful for operating system installers to free up
673  * the original file and in High Availability environments to switch to
674  * an alternative location for the content in case of server meltdown.
675  * This can only work if the loop device is used read-only, and if the
676  * new backing store is the same size and type as the old backing store.
677  */
678 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
679 		       struct block_device *bdev, unsigned int arg)
680 {
681 	struct file	*file, *old_file;
682 	struct inode	*inode;
683 	int		error;
684 
685 	error = -ENXIO;
686 	if (lo->lo_state != Lo_bound)
687 		goto out;
688 
689 	/* the loop device has to be read-only */
690 	error = -EINVAL;
691 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
692 		goto out;
693 
694 	error = -EBADF;
695 	file = fget(arg);
696 	if (!file)
697 		goto out;
698 
699 	inode = file->f_mapping->host;
700 	old_file = lo->lo_backing_file;
701 
702 	error = -EINVAL;
703 
704 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
705 		goto out_putf;
706 
707 	/* new backing store needs to support loop (eg sendfile) */
708 	if (!inode->i_fop->sendfile)
709 		goto out_putf;
710 
711 	/* size of the new backing store needs to be the same */
712 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
713 		goto out_putf;
714 
715 	/* and ... switch */
716 	error = loop_switch(lo, file);
717 	if (error)
718 		goto out_putf;
719 
720 	fput(old_file);
721 	return 0;
722 
723  out_putf:
724 	fput(file);
725  out:
726 	return error;
727 }
728 
729 static inline int is_loop_device(struct file *file)
730 {
731 	struct inode *i = file->f_mapping->host;
732 
733 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
734 }
735 
736 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
737 		       struct block_device *bdev, unsigned int arg)
738 {
739 	struct file	*file, *f;
740 	struct inode	*inode;
741 	struct address_space *mapping;
742 	unsigned lo_blocksize;
743 	int		lo_flags = 0;
744 	int		error;
745 	loff_t		size;
746 
747 	/* This is safe, since we have a reference from open(). */
748 	__module_get(THIS_MODULE);
749 
750 	error = -EBADF;
751 	file = fget(arg);
752 	if (!file)
753 		goto out;
754 
755 	error = -EBUSY;
756 	if (lo->lo_state != Lo_unbound)
757 		goto out_putf;
758 
759 	/* Avoid recursion */
760 	f = file;
761 	while (is_loop_device(f)) {
762 		struct loop_device *l;
763 
764 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
765 			goto out_putf;
766 
767 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
768 		if (l->lo_state == Lo_unbound) {
769 			error = -EINVAL;
770 			goto out_putf;
771 		}
772 		f = l->lo_backing_file;
773 	}
774 
775 	mapping = file->f_mapping;
776 	inode = mapping->host;
777 
778 	if (!(file->f_mode & FMODE_WRITE))
779 		lo_flags |= LO_FLAGS_READ_ONLY;
780 
781 	error = -EINVAL;
782 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
783 		struct address_space_operations *aops = mapping->a_ops;
784 		/*
785 		 * If we can't read - sorry. If we only can't write - well,
786 		 * it's going to be read-only.
787 		 */
788 		if (!file->f_op->sendfile)
789 			goto out_putf;
790 		if (aops->prepare_write && aops->commit_write)
791 			lo_flags |= LO_FLAGS_USE_AOPS;
792 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
793 			lo_flags |= LO_FLAGS_READ_ONLY;
794 
795 		lo_blocksize = inode->i_blksize;
796 		error = 0;
797 	} else {
798 		goto out_putf;
799 	}
800 
801 	size = get_loop_size(lo, file);
802 
803 	if ((loff_t)(sector_t)size != size) {
804 		error = -EFBIG;
805 		goto out_putf;
806 	}
807 
808 	if (!(lo_file->f_mode & FMODE_WRITE))
809 		lo_flags |= LO_FLAGS_READ_ONLY;
810 
811 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
812 
813 	lo->lo_blocksize = lo_blocksize;
814 	lo->lo_device = bdev;
815 	lo->lo_flags = lo_flags;
816 	lo->lo_backing_file = file;
817 	lo->transfer = NULL;
818 	lo->ioctl = NULL;
819 	lo->lo_sizelimit = 0;
820 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
821 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
822 
823 	lo->lo_bio = lo->lo_biotail = NULL;
824 
825 	/*
826 	 * set queue make_request_fn, and add limits based on lower level
827 	 * device
828 	 */
829 	blk_queue_make_request(lo->lo_queue, loop_make_request);
830 	lo->lo_queue->queuedata = lo;
831 	lo->lo_queue->unplug_fn = loop_unplug;
832 
833 	set_capacity(disks[lo->lo_number], size);
834 	bd_set_size(bdev, size << 9);
835 
836 	set_blocksize(bdev, lo_blocksize);
837 
838 	kernel_thread(loop_thread, lo, CLONE_KERNEL);
839 	down(&lo->lo_sem);
840 	return 0;
841 
842  out_putf:
843 	fput(file);
844  out:
845 	/* This is safe: open() is still holding a reference. */
846 	module_put(THIS_MODULE);
847 	return error;
848 }
849 
850 static int
851 loop_release_xfer(struct loop_device *lo)
852 {
853 	int err = 0;
854 	struct loop_func_table *xfer = lo->lo_encryption;
855 
856 	if (xfer) {
857 		if (xfer->release)
858 			err = xfer->release(lo);
859 		lo->transfer = NULL;
860 		lo->lo_encryption = NULL;
861 		module_put(xfer->owner);
862 	}
863 	return err;
864 }
865 
866 static int
867 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
868 	       const struct loop_info64 *i)
869 {
870 	int err = 0;
871 
872 	if (xfer) {
873 		struct module *owner = xfer->owner;
874 
875 		if (!try_module_get(owner))
876 			return -EINVAL;
877 		if (xfer->init)
878 			err = xfer->init(lo, i);
879 		if (err)
880 			module_put(owner);
881 		else
882 			lo->lo_encryption = xfer;
883 	}
884 	return err;
885 }
886 
887 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
888 {
889 	struct file *filp = lo->lo_backing_file;
890 	int gfp = lo->old_gfp_mask;
891 
892 	if (lo->lo_state != Lo_bound)
893 		return -ENXIO;
894 
895 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
896 		return -EBUSY;
897 
898 	if (filp == NULL)
899 		return -EINVAL;
900 
901 	spin_lock_irq(&lo->lo_lock);
902 	lo->lo_state = Lo_rundown;
903 	if (atomic_dec_and_test(&lo->lo_pending))
904 		up(&lo->lo_bh_mutex);
905 	spin_unlock_irq(&lo->lo_lock);
906 
907 	down(&lo->lo_sem);
908 
909 	lo->lo_backing_file = NULL;
910 
911 	loop_release_xfer(lo);
912 	lo->transfer = NULL;
913 	lo->ioctl = NULL;
914 	lo->lo_device = NULL;
915 	lo->lo_encryption = NULL;
916 	lo->lo_offset = 0;
917 	lo->lo_sizelimit = 0;
918 	lo->lo_encrypt_key_size = 0;
919 	lo->lo_flags = 0;
920 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
921 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
922 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
923 	invalidate_bdev(bdev, 0);
924 	set_capacity(disks[lo->lo_number], 0);
925 	bd_set_size(bdev, 0);
926 	mapping_set_gfp_mask(filp->f_mapping, gfp);
927 	lo->lo_state = Lo_unbound;
928 	fput(filp);
929 	/* This is safe: open() is still holding a reference. */
930 	module_put(THIS_MODULE);
931 	return 0;
932 }
933 
934 static int
935 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
936 {
937 	int err;
938 	struct loop_func_table *xfer;
939 
940 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
941 	    !capable(CAP_SYS_ADMIN))
942 		return -EPERM;
943 	if (lo->lo_state != Lo_bound)
944 		return -ENXIO;
945 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
946 		return -EINVAL;
947 
948 	err = loop_release_xfer(lo);
949 	if (err)
950 		return err;
951 
952 	if (info->lo_encrypt_type) {
953 		unsigned int type = info->lo_encrypt_type;
954 
955 		if (type >= MAX_LO_CRYPT)
956 			return -EINVAL;
957 		xfer = xfer_funcs[type];
958 		if (xfer == NULL)
959 			return -EINVAL;
960 	} else
961 		xfer = NULL;
962 
963 	err = loop_init_xfer(lo, xfer, info);
964 	if (err)
965 		return err;
966 
967 	if (lo->lo_offset != info->lo_offset ||
968 	    lo->lo_sizelimit != info->lo_sizelimit) {
969 		lo->lo_offset = info->lo_offset;
970 		lo->lo_sizelimit = info->lo_sizelimit;
971 		if (figure_loop_size(lo))
972 			return -EFBIG;
973 	}
974 
975 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
976 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
977 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
978 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
979 
980 	if (!xfer)
981 		xfer = &none_funcs;
982 	lo->transfer = xfer->transfer;
983 	lo->ioctl = xfer->ioctl;
984 
985 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
986 	lo->lo_init[0] = info->lo_init[0];
987 	lo->lo_init[1] = info->lo_init[1];
988 	if (info->lo_encrypt_key_size) {
989 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
990 		       info->lo_encrypt_key_size);
991 		lo->lo_key_owner = current->uid;
992 	}
993 
994 	return 0;
995 }
996 
997 static int
998 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
999 {
1000 	struct file *file = lo->lo_backing_file;
1001 	struct kstat stat;
1002 	int error;
1003 
1004 	if (lo->lo_state != Lo_bound)
1005 		return -ENXIO;
1006 	error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
1007 	if (error)
1008 		return error;
1009 	memset(info, 0, sizeof(*info));
1010 	info->lo_number = lo->lo_number;
1011 	info->lo_device = huge_encode_dev(stat.dev);
1012 	info->lo_inode = stat.ino;
1013 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1014 	info->lo_offset = lo->lo_offset;
1015 	info->lo_sizelimit = lo->lo_sizelimit;
1016 	info->lo_flags = lo->lo_flags;
1017 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1018 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1019 	info->lo_encrypt_type =
1020 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1021 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1022 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1023 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1024 		       lo->lo_encrypt_key_size);
1025 	}
1026 	return 0;
1027 }
1028 
1029 static void
1030 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1031 {
1032 	memset(info64, 0, sizeof(*info64));
1033 	info64->lo_number = info->lo_number;
1034 	info64->lo_device = info->lo_device;
1035 	info64->lo_inode = info->lo_inode;
1036 	info64->lo_rdevice = info->lo_rdevice;
1037 	info64->lo_offset = info->lo_offset;
1038 	info64->lo_sizelimit = 0;
1039 	info64->lo_encrypt_type = info->lo_encrypt_type;
1040 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1041 	info64->lo_flags = info->lo_flags;
1042 	info64->lo_init[0] = info->lo_init[0];
1043 	info64->lo_init[1] = info->lo_init[1];
1044 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1045 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1046 	else
1047 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1048 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1049 }
1050 
1051 static int
1052 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1053 {
1054 	memset(info, 0, sizeof(*info));
1055 	info->lo_number = info64->lo_number;
1056 	info->lo_device = info64->lo_device;
1057 	info->lo_inode = info64->lo_inode;
1058 	info->lo_rdevice = info64->lo_rdevice;
1059 	info->lo_offset = info64->lo_offset;
1060 	info->lo_encrypt_type = info64->lo_encrypt_type;
1061 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1062 	info->lo_flags = info64->lo_flags;
1063 	info->lo_init[0] = info64->lo_init[0];
1064 	info->lo_init[1] = info64->lo_init[1];
1065 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1066 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1067 	else
1068 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1069 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1070 
1071 	/* error in case values were truncated */
1072 	if (info->lo_device != info64->lo_device ||
1073 	    info->lo_rdevice != info64->lo_rdevice ||
1074 	    info->lo_inode != info64->lo_inode ||
1075 	    info->lo_offset != info64->lo_offset)
1076 		return -EOVERFLOW;
1077 
1078 	return 0;
1079 }
1080 
1081 static int
1082 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1083 {
1084 	struct loop_info info;
1085 	struct loop_info64 info64;
1086 
1087 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1088 		return -EFAULT;
1089 	loop_info64_from_old(&info, &info64);
1090 	return loop_set_status(lo, &info64);
1091 }
1092 
1093 static int
1094 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1095 {
1096 	struct loop_info64 info64;
1097 
1098 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1099 		return -EFAULT;
1100 	return loop_set_status(lo, &info64);
1101 }
1102 
1103 static int
1104 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1105 	struct loop_info info;
1106 	struct loop_info64 info64;
1107 	int err = 0;
1108 
1109 	if (!arg)
1110 		err = -EINVAL;
1111 	if (!err)
1112 		err = loop_get_status(lo, &info64);
1113 	if (!err)
1114 		err = loop_info64_to_old(&info64, &info);
1115 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1116 		err = -EFAULT;
1117 
1118 	return err;
1119 }
1120 
1121 static int
1122 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1123 	struct loop_info64 info64;
1124 	int err = 0;
1125 
1126 	if (!arg)
1127 		err = -EINVAL;
1128 	if (!err)
1129 		err = loop_get_status(lo, &info64);
1130 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1131 		err = -EFAULT;
1132 
1133 	return err;
1134 }
1135 
1136 static int lo_ioctl(struct inode * inode, struct file * file,
1137 	unsigned int cmd, unsigned long arg)
1138 {
1139 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1140 	int err;
1141 
1142 	down(&lo->lo_ctl_mutex);
1143 	switch (cmd) {
1144 	case LOOP_SET_FD:
1145 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1146 		break;
1147 	case LOOP_CHANGE_FD:
1148 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1149 		break;
1150 	case LOOP_CLR_FD:
1151 		err = loop_clr_fd(lo, inode->i_bdev);
1152 		break;
1153 	case LOOP_SET_STATUS:
1154 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1155 		break;
1156 	case LOOP_GET_STATUS:
1157 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1158 		break;
1159 	case LOOP_SET_STATUS64:
1160 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1161 		break;
1162 	case LOOP_GET_STATUS64:
1163 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1164 		break;
1165 	default:
1166 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1167 	}
1168 	up(&lo->lo_ctl_mutex);
1169 	return err;
1170 }
1171 
1172 static int lo_open(struct inode *inode, struct file *file)
1173 {
1174 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1175 
1176 	down(&lo->lo_ctl_mutex);
1177 	lo->lo_refcnt++;
1178 	up(&lo->lo_ctl_mutex);
1179 
1180 	return 0;
1181 }
1182 
1183 static int lo_release(struct inode *inode, struct file *file)
1184 {
1185 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1186 
1187 	down(&lo->lo_ctl_mutex);
1188 	--lo->lo_refcnt;
1189 	up(&lo->lo_ctl_mutex);
1190 
1191 	return 0;
1192 }
1193 
1194 static struct block_device_operations lo_fops = {
1195 	.owner =	THIS_MODULE,
1196 	.open =		lo_open,
1197 	.release =	lo_release,
1198 	.ioctl =	lo_ioctl,
1199 };
1200 
1201 /*
1202  * And now the modules code and kernel interface.
1203  */
1204 module_param(max_loop, int, 0);
1205 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
1206 MODULE_LICENSE("GPL");
1207 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1208 
1209 int loop_register_transfer(struct loop_func_table *funcs)
1210 {
1211 	unsigned int n = funcs->number;
1212 
1213 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1214 		return -EINVAL;
1215 	xfer_funcs[n] = funcs;
1216 	return 0;
1217 }
1218 
1219 int loop_unregister_transfer(int number)
1220 {
1221 	unsigned int n = number;
1222 	struct loop_device *lo;
1223 	struct loop_func_table *xfer;
1224 
1225 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1226 		return -EINVAL;
1227 
1228 	xfer_funcs[n] = NULL;
1229 
1230 	for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
1231 		down(&lo->lo_ctl_mutex);
1232 
1233 		if (lo->lo_encryption == xfer)
1234 			loop_release_xfer(lo);
1235 
1236 		up(&lo->lo_ctl_mutex);
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 EXPORT_SYMBOL(loop_register_transfer);
1243 EXPORT_SYMBOL(loop_unregister_transfer);
1244 
1245 static int __init loop_init(void)
1246 {
1247 	int	i;
1248 
1249 	if (max_loop < 1 || max_loop > 256) {
1250 		printk(KERN_WARNING "loop: invalid max_loop (must be between"
1251 				    " 1 and 256), using default (8)\n");
1252 		max_loop = 8;
1253 	}
1254 
1255 	if (register_blkdev(LOOP_MAJOR, "loop"))
1256 		return -EIO;
1257 
1258 	loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
1259 	if (!loop_dev)
1260 		goto out_mem1;
1261 	memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
1262 
1263 	disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
1264 	if (!disks)
1265 		goto out_mem2;
1266 
1267 	for (i = 0; i < max_loop; i++) {
1268 		disks[i] = alloc_disk(1);
1269 		if (!disks[i])
1270 			goto out_mem3;
1271 	}
1272 
1273 	devfs_mk_dir("loop");
1274 
1275 	for (i = 0; i < max_loop; i++) {
1276 		struct loop_device *lo = &loop_dev[i];
1277 		struct gendisk *disk = disks[i];
1278 
1279 		memset(lo, 0, sizeof(*lo));
1280 		lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1281 		if (!lo->lo_queue)
1282 			goto out_mem4;
1283 		init_MUTEX(&lo->lo_ctl_mutex);
1284 		init_MUTEX_LOCKED(&lo->lo_sem);
1285 		init_MUTEX_LOCKED(&lo->lo_bh_mutex);
1286 		lo->lo_number = i;
1287 		spin_lock_init(&lo->lo_lock);
1288 		disk->major = LOOP_MAJOR;
1289 		disk->first_minor = i;
1290 		disk->fops = &lo_fops;
1291 		sprintf(disk->disk_name, "loop%d", i);
1292 		sprintf(disk->devfs_name, "loop/%d", i);
1293 		disk->private_data = lo;
1294 		disk->queue = lo->lo_queue;
1295 	}
1296 
1297 	/* We cannot fail after we call this, so another loop!*/
1298 	for (i = 0; i < max_loop; i++)
1299 		add_disk(disks[i]);
1300 	printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
1301 	return 0;
1302 
1303 out_mem4:
1304 	while (i--)
1305 		blk_put_queue(loop_dev[i].lo_queue);
1306 	devfs_remove("loop");
1307 	i = max_loop;
1308 out_mem3:
1309 	while (i--)
1310 		put_disk(disks[i]);
1311 	kfree(disks);
1312 out_mem2:
1313 	kfree(loop_dev);
1314 out_mem1:
1315 	unregister_blkdev(LOOP_MAJOR, "loop");
1316 	printk(KERN_ERR "loop: ran out of memory\n");
1317 	return -ENOMEM;
1318 }
1319 
1320 static void loop_exit(void)
1321 {
1322 	int i;
1323 
1324 	for (i = 0; i < max_loop; i++) {
1325 		del_gendisk(disks[i]);
1326 		blk_put_queue(loop_dev[i].lo_queue);
1327 		put_disk(disks[i]);
1328 	}
1329 	devfs_remove("loop");
1330 	if (unregister_blkdev(LOOP_MAJOR, "loop"))
1331 		printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1332 
1333 	kfree(disks);
1334 	kfree(loop_dev);
1335 }
1336 
1337 module_init(loop_init);
1338 module_exit(loop_exit);
1339 
1340 #ifndef MODULE
1341 static int __init max_loop_setup(char *str)
1342 {
1343 	max_loop = simple_strtol(str, NULL, 0);
1344 	return 1;
1345 }
1346 
1347 __setup("max_loop=", max_loop_setup);
1348 #endif
1349