1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations prepare_write and/or commit_write are not available on the 44 * backing filesystem. 45 * Anton Altaparmakov, 16 Feb 2005 46 * 47 * Still To Fix: 48 * - Advisory locking is ignored here. 49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 50 * 51 */ 52 53 #include <linux/config.h> 54 #include <linux/module.h> 55 #include <linux/moduleparam.h> 56 #include <linux/sched.h> 57 #include <linux/fs.h> 58 #include <linux/file.h> 59 #include <linux/stat.h> 60 #include <linux/errno.h> 61 #include <linux/major.h> 62 #include <linux/wait.h> 63 #include <linux/blkdev.h> 64 #include <linux/blkpg.h> 65 #include <linux/init.h> 66 #include <linux/devfs_fs_kernel.h> 67 #include <linux/smp_lock.h> 68 #include <linux/swap.h> 69 #include <linux/slab.h> 70 #include <linux/loop.h> 71 #include <linux/suspend.h> 72 #include <linux/writeback.h> 73 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 74 #include <linux/completion.h> 75 #include <linux/highmem.h> 76 #include <linux/gfp.h> 77 78 #include <asm/uaccess.h> 79 80 static int max_loop = 8; 81 static struct loop_device *loop_dev; 82 static struct gendisk **disks; 83 84 /* 85 * Transfer functions 86 */ 87 static int transfer_none(struct loop_device *lo, int cmd, 88 struct page *raw_page, unsigned raw_off, 89 struct page *loop_page, unsigned loop_off, 90 int size, sector_t real_block) 91 { 92 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 93 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 94 95 if (cmd == READ) 96 memcpy(loop_buf, raw_buf, size); 97 else 98 memcpy(raw_buf, loop_buf, size); 99 100 kunmap_atomic(raw_buf, KM_USER0); 101 kunmap_atomic(loop_buf, KM_USER1); 102 cond_resched(); 103 return 0; 104 } 105 106 static int transfer_xor(struct loop_device *lo, int cmd, 107 struct page *raw_page, unsigned raw_off, 108 struct page *loop_page, unsigned loop_off, 109 int size, sector_t real_block) 110 { 111 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 112 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 113 char *in, *out, *key; 114 int i, keysize; 115 116 if (cmd == READ) { 117 in = raw_buf; 118 out = loop_buf; 119 } else { 120 in = loop_buf; 121 out = raw_buf; 122 } 123 124 key = lo->lo_encrypt_key; 125 keysize = lo->lo_encrypt_key_size; 126 for (i = 0; i < size; i++) 127 *out++ = *in++ ^ key[(i & 511) % keysize]; 128 129 kunmap_atomic(raw_buf, KM_USER0); 130 kunmap_atomic(loop_buf, KM_USER1); 131 cond_resched(); 132 return 0; 133 } 134 135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 136 { 137 if (unlikely(info->lo_encrypt_key_size <= 0)) 138 return -EINVAL; 139 return 0; 140 } 141 142 static struct loop_func_table none_funcs = { 143 .number = LO_CRYPT_NONE, 144 .transfer = transfer_none, 145 }; 146 147 static struct loop_func_table xor_funcs = { 148 .number = LO_CRYPT_XOR, 149 .transfer = transfer_xor, 150 .init = xor_init 151 }; 152 153 /* xfer_funcs[0] is special - its release function is never called */ 154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 155 &none_funcs, 156 &xor_funcs 157 }; 158 159 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 160 { 161 loff_t size, offset, loopsize; 162 163 /* Compute loopsize in bytes */ 164 size = i_size_read(file->f_mapping->host); 165 offset = lo->lo_offset; 166 loopsize = size - offset; 167 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 168 loopsize = lo->lo_sizelimit; 169 170 /* 171 * Unfortunately, if we want to do I/O on the device, 172 * the number of 512-byte sectors has to fit into a sector_t. 173 */ 174 return loopsize >> 9; 175 } 176 177 static int 178 figure_loop_size(struct loop_device *lo) 179 { 180 loff_t size = get_loop_size(lo, lo->lo_backing_file); 181 sector_t x = (sector_t)size; 182 183 if (unlikely((loff_t)x != size)) 184 return -EFBIG; 185 186 set_capacity(disks[lo->lo_number], x); 187 return 0; 188 } 189 190 static inline int 191 lo_do_transfer(struct loop_device *lo, int cmd, 192 struct page *rpage, unsigned roffs, 193 struct page *lpage, unsigned loffs, 194 int size, sector_t rblock) 195 { 196 if (unlikely(!lo->transfer)) 197 return 0; 198 199 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 200 } 201 202 /** 203 * do_lo_send_aops - helper for writing data to a loop device 204 * 205 * This is the fast version for backing filesystems which implement the address 206 * space operations prepare_write and commit_write. 207 */ 208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 209 int bsize, loff_t pos, struct page *page) 210 { 211 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 212 struct address_space *mapping = file->f_mapping; 213 struct address_space_operations *aops = mapping->a_ops; 214 pgoff_t index; 215 unsigned offset, bv_offs; 216 int len, ret = 0; 217 218 down(&mapping->host->i_sem); 219 index = pos >> PAGE_CACHE_SHIFT; 220 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 221 bv_offs = bvec->bv_offset; 222 len = bvec->bv_len; 223 while (len > 0) { 224 sector_t IV; 225 unsigned size; 226 int transfer_result; 227 228 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 229 size = PAGE_CACHE_SIZE - offset; 230 if (size > len) 231 size = len; 232 page = grab_cache_page(mapping, index); 233 if (unlikely(!page)) 234 goto fail; 235 if (unlikely(aops->prepare_write(file, page, offset, 236 offset + size))) 237 goto unlock; 238 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 239 bvec->bv_page, bv_offs, size, IV); 240 if (unlikely(transfer_result)) { 241 char *kaddr; 242 243 /* 244 * The transfer failed, but we still write the data to 245 * keep prepare/commit calls balanced. 246 */ 247 printk(KERN_ERR "loop: transfer error block %llu\n", 248 (unsigned long long)index); 249 kaddr = kmap_atomic(page, KM_USER0); 250 memset(kaddr + offset, 0, size); 251 kunmap_atomic(kaddr, KM_USER0); 252 } 253 flush_dcache_page(page); 254 if (unlikely(aops->commit_write(file, page, offset, 255 offset + size))) 256 goto unlock; 257 if (unlikely(transfer_result)) 258 goto unlock; 259 bv_offs += size; 260 len -= size; 261 offset = 0; 262 index++; 263 pos += size; 264 unlock_page(page); 265 page_cache_release(page); 266 } 267 out: 268 up(&mapping->host->i_sem); 269 return ret; 270 unlock: 271 unlock_page(page); 272 page_cache_release(page); 273 fail: 274 ret = -1; 275 goto out; 276 } 277 278 /** 279 * __do_lo_send_write - helper for writing data to a loop device 280 * 281 * This helper just factors out common code between do_lo_send_direct_write() 282 * and do_lo_send_write(). 283 */ 284 static inline int __do_lo_send_write(struct file *file, 285 u8 __user *buf, const int len, loff_t pos) 286 { 287 ssize_t bw; 288 mm_segment_t old_fs = get_fs(); 289 290 set_fs(get_ds()); 291 bw = file->f_op->write(file, buf, len, &pos); 292 set_fs(old_fs); 293 if (likely(bw == len)) 294 return 0; 295 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 296 (unsigned long long)pos, len); 297 if (bw >= 0) 298 bw = -EIO; 299 return bw; 300 } 301 302 /** 303 * do_lo_send_direct_write - helper for writing data to a loop device 304 * 305 * This is the fast, non-transforming version for backing filesystems which do 306 * not implement the address space operations prepare_write and commit_write. 307 * It uses the write file operation which should be present on all writeable 308 * filesystems. 309 */ 310 static int do_lo_send_direct_write(struct loop_device *lo, 311 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page) 312 { 313 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 314 (u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset, 315 bvec->bv_len, pos); 316 kunmap(bvec->bv_page); 317 cond_resched(); 318 return bw; 319 } 320 321 /** 322 * do_lo_send_write - helper for writing data to a loop device 323 * 324 * This is the slow, transforming version for filesystems which do not 325 * implement the address space operations prepare_write and commit_write. It 326 * uses the write file operation which should be present on all writeable 327 * filesystems. 328 * 329 * Using fops->write is slower than using aops->{prepare,commit}_write in the 330 * transforming case because we need to double buffer the data as we cannot do 331 * the transformations in place as we do not have direct access to the 332 * destination pages of the backing file. 333 */ 334 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 335 int bsize, loff_t pos, struct page *page) 336 { 337 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 338 bvec->bv_offset, bvec->bv_len, pos >> 9); 339 if (likely(!ret)) 340 return __do_lo_send_write(lo->lo_backing_file, 341 (u8 __user *)page_address(page), bvec->bv_len, 342 pos); 343 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 344 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 345 if (ret > 0) 346 ret = -EIO; 347 return ret; 348 } 349 350 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, 351 loff_t pos) 352 { 353 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t, 354 struct page *page); 355 struct bio_vec *bvec; 356 struct page *page = NULL; 357 int i, ret = 0; 358 359 do_lo_send = do_lo_send_aops; 360 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 361 do_lo_send = do_lo_send_direct_write; 362 if (lo->transfer != transfer_none) { 363 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 364 if (unlikely(!page)) 365 goto fail; 366 kmap(page); 367 do_lo_send = do_lo_send_write; 368 } 369 } 370 bio_for_each_segment(bvec, bio, i) { 371 ret = do_lo_send(lo, bvec, bsize, pos, page); 372 if (ret < 0) 373 break; 374 pos += bvec->bv_len; 375 } 376 if (page) { 377 kunmap(page); 378 __free_page(page); 379 } 380 out: 381 return ret; 382 fail: 383 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 384 ret = -ENOMEM; 385 goto out; 386 } 387 388 struct lo_read_data { 389 struct loop_device *lo; 390 struct page *page; 391 unsigned offset; 392 int bsize; 393 }; 394 395 static int 396 lo_read_actor(read_descriptor_t *desc, struct page *page, 397 unsigned long offset, unsigned long size) 398 { 399 unsigned long count = desc->count; 400 struct lo_read_data *p = desc->arg.data; 401 struct loop_device *lo = p->lo; 402 sector_t IV; 403 404 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 405 406 if (size > count) 407 size = count; 408 409 if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) { 410 size = 0; 411 printk(KERN_ERR "loop: transfer error block %ld\n", 412 page->index); 413 desc->error = -EINVAL; 414 } 415 416 flush_dcache_page(p->page); 417 418 desc->count = count - size; 419 desc->written += size; 420 p->offset += size; 421 return size; 422 } 423 424 static int 425 do_lo_receive(struct loop_device *lo, 426 struct bio_vec *bvec, int bsize, loff_t pos) 427 { 428 struct lo_read_data cookie; 429 struct file *file; 430 int retval; 431 432 cookie.lo = lo; 433 cookie.page = bvec->bv_page; 434 cookie.offset = bvec->bv_offset; 435 cookie.bsize = bsize; 436 file = lo->lo_backing_file; 437 retval = file->f_op->sendfile(file, &pos, bvec->bv_len, 438 lo_read_actor, &cookie); 439 return (retval < 0)? retval: 0; 440 } 441 442 static int 443 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 444 { 445 struct bio_vec *bvec; 446 int i, ret = 0; 447 448 bio_for_each_segment(bvec, bio, i) { 449 ret = do_lo_receive(lo, bvec, bsize, pos); 450 if (ret < 0) 451 break; 452 pos += bvec->bv_len; 453 } 454 return ret; 455 } 456 457 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 458 { 459 loff_t pos; 460 int ret; 461 462 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 463 if (bio_rw(bio) == WRITE) 464 ret = lo_send(lo, bio, lo->lo_blocksize, pos); 465 else 466 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 467 return ret; 468 } 469 470 /* 471 * Add bio to back of pending list 472 */ 473 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 474 { 475 unsigned long flags; 476 477 spin_lock_irqsave(&lo->lo_lock, flags); 478 if (lo->lo_biotail) { 479 lo->lo_biotail->bi_next = bio; 480 lo->lo_biotail = bio; 481 } else 482 lo->lo_bio = lo->lo_biotail = bio; 483 spin_unlock_irqrestore(&lo->lo_lock, flags); 484 485 up(&lo->lo_bh_mutex); 486 } 487 488 /* 489 * Grab first pending buffer 490 */ 491 static struct bio *loop_get_bio(struct loop_device *lo) 492 { 493 struct bio *bio; 494 495 spin_lock_irq(&lo->lo_lock); 496 if ((bio = lo->lo_bio)) { 497 if (bio == lo->lo_biotail) 498 lo->lo_biotail = NULL; 499 lo->lo_bio = bio->bi_next; 500 bio->bi_next = NULL; 501 } 502 spin_unlock_irq(&lo->lo_lock); 503 504 return bio; 505 } 506 507 static int loop_make_request(request_queue_t *q, struct bio *old_bio) 508 { 509 struct loop_device *lo = q->queuedata; 510 int rw = bio_rw(old_bio); 511 512 if (!lo) 513 goto out; 514 515 spin_lock_irq(&lo->lo_lock); 516 if (lo->lo_state != Lo_bound) 517 goto inactive; 518 atomic_inc(&lo->lo_pending); 519 spin_unlock_irq(&lo->lo_lock); 520 521 if (rw == WRITE) { 522 if (lo->lo_flags & LO_FLAGS_READ_ONLY) 523 goto err; 524 } else if (rw == READA) { 525 rw = READ; 526 } else if (rw != READ) { 527 printk(KERN_ERR "loop: unknown command (%x)\n", rw); 528 goto err; 529 } 530 loop_add_bio(lo, old_bio); 531 return 0; 532 err: 533 if (atomic_dec_and_test(&lo->lo_pending)) 534 up(&lo->lo_bh_mutex); 535 out: 536 bio_io_error(old_bio, old_bio->bi_size); 537 return 0; 538 inactive: 539 spin_unlock_irq(&lo->lo_lock); 540 goto out; 541 } 542 543 /* 544 * kick off io on the underlying address space 545 */ 546 static void loop_unplug(request_queue_t *q) 547 { 548 struct loop_device *lo = q->queuedata; 549 550 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 551 blk_run_address_space(lo->lo_backing_file->f_mapping); 552 } 553 554 struct switch_request { 555 struct file *file; 556 struct completion wait; 557 }; 558 559 static void do_loop_switch(struct loop_device *, struct switch_request *); 560 561 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 562 { 563 int ret; 564 565 if (unlikely(!bio->bi_bdev)) { 566 do_loop_switch(lo, bio->bi_private); 567 bio_put(bio); 568 } else { 569 ret = do_bio_filebacked(lo, bio); 570 bio_endio(bio, bio->bi_size, ret); 571 } 572 } 573 574 /* 575 * worker thread that handles reads/writes to file backed loop devices, 576 * to avoid blocking in our make_request_fn. it also does loop decrypting 577 * on reads for block backed loop, as that is too heavy to do from 578 * b_end_io context where irqs may be disabled. 579 */ 580 static int loop_thread(void *data) 581 { 582 struct loop_device *lo = data; 583 struct bio *bio; 584 585 daemonize("loop%d", lo->lo_number); 586 587 /* 588 * loop can be used in an encrypted device, 589 * hence, it mustn't be stopped at all 590 * because it could be indirectly used during suspension 591 */ 592 current->flags |= PF_NOFREEZE; 593 594 set_user_nice(current, -20); 595 596 lo->lo_state = Lo_bound; 597 atomic_inc(&lo->lo_pending); 598 599 /* 600 * up sem, we are running 601 */ 602 up(&lo->lo_sem); 603 604 for (;;) { 605 down_interruptible(&lo->lo_bh_mutex); 606 /* 607 * could be upped because of tear-down, not because of 608 * pending work 609 */ 610 if (!atomic_read(&lo->lo_pending)) 611 break; 612 613 bio = loop_get_bio(lo); 614 if (!bio) { 615 printk("loop: missing bio\n"); 616 continue; 617 } 618 loop_handle_bio(lo, bio); 619 620 /* 621 * upped both for pending work and tear-down, lo_pending 622 * will hit zero then 623 */ 624 if (atomic_dec_and_test(&lo->lo_pending)) 625 break; 626 } 627 628 up(&lo->lo_sem); 629 return 0; 630 } 631 632 /* 633 * loop_switch performs the hard work of switching a backing store. 634 * First it needs to flush existing IO, it does this by sending a magic 635 * BIO down the pipe. The completion of this BIO does the actual switch. 636 */ 637 static int loop_switch(struct loop_device *lo, struct file *file) 638 { 639 struct switch_request w; 640 struct bio *bio = bio_alloc(GFP_KERNEL, 1); 641 if (!bio) 642 return -ENOMEM; 643 init_completion(&w.wait); 644 w.file = file; 645 bio->bi_private = &w; 646 bio->bi_bdev = NULL; 647 loop_make_request(lo->lo_queue, bio); 648 wait_for_completion(&w.wait); 649 return 0; 650 } 651 652 /* 653 * Do the actual switch; called from the BIO completion routine 654 */ 655 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 656 { 657 struct file *file = p->file; 658 struct file *old_file = lo->lo_backing_file; 659 struct address_space *mapping = file->f_mapping; 660 661 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 662 lo->lo_backing_file = file; 663 lo->lo_blocksize = mapping->host->i_blksize; 664 lo->old_gfp_mask = mapping_gfp_mask(mapping); 665 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 666 complete(&p->wait); 667 } 668 669 670 /* 671 * loop_change_fd switched the backing store of a loopback device to 672 * a new file. This is useful for operating system installers to free up 673 * the original file and in High Availability environments to switch to 674 * an alternative location for the content in case of server meltdown. 675 * This can only work if the loop device is used read-only, and if the 676 * new backing store is the same size and type as the old backing store. 677 */ 678 static int loop_change_fd(struct loop_device *lo, struct file *lo_file, 679 struct block_device *bdev, unsigned int arg) 680 { 681 struct file *file, *old_file; 682 struct inode *inode; 683 int error; 684 685 error = -ENXIO; 686 if (lo->lo_state != Lo_bound) 687 goto out; 688 689 /* the loop device has to be read-only */ 690 error = -EINVAL; 691 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 692 goto out; 693 694 error = -EBADF; 695 file = fget(arg); 696 if (!file) 697 goto out; 698 699 inode = file->f_mapping->host; 700 old_file = lo->lo_backing_file; 701 702 error = -EINVAL; 703 704 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 705 goto out_putf; 706 707 /* new backing store needs to support loop (eg sendfile) */ 708 if (!inode->i_fop->sendfile) 709 goto out_putf; 710 711 /* size of the new backing store needs to be the same */ 712 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 713 goto out_putf; 714 715 /* and ... switch */ 716 error = loop_switch(lo, file); 717 if (error) 718 goto out_putf; 719 720 fput(old_file); 721 return 0; 722 723 out_putf: 724 fput(file); 725 out: 726 return error; 727 } 728 729 static inline int is_loop_device(struct file *file) 730 { 731 struct inode *i = file->f_mapping->host; 732 733 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 734 } 735 736 static int loop_set_fd(struct loop_device *lo, struct file *lo_file, 737 struct block_device *bdev, unsigned int arg) 738 { 739 struct file *file, *f; 740 struct inode *inode; 741 struct address_space *mapping; 742 unsigned lo_blocksize; 743 int lo_flags = 0; 744 int error; 745 loff_t size; 746 747 /* This is safe, since we have a reference from open(). */ 748 __module_get(THIS_MODULE); 749 750 error = -EBADF; 751 file = fget(arg); 752 if (!file) 753 goto out; 754 755 error = -EBUSY; 756 if (lo->lo_state != Lo_unbound) 757 goto out_putf; 758 759 /* Avoid recursion */ 760 f = file; 761 while (is_loop_device(f)) { 762 struct loop_device *l; 763 764 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev) 765 goto out_putf; 766 767 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 768 if (l->lo_state == Lo_unbound) { 769 error = -EINVAL; 770 goto out_putf; 771 } 772 f = l->lo_backing_file; 773 } 774 775 mapping = file->f_mapping; 776 inode = mapping->host; 777 778 if (!(file->f_mode & FMODE_WRITE)) 779 lo_flags |= LO_FLAGS_READ_ONLY; 780 781 error = -EINVAL; 782 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 783 struct address_space_operations *aops = mapping->a_ops; 784 /* 785 * If we can't read - sorry. If we only can't write - well, 786 * it's going to be read-only. 787 */ 788 if (!file->f_op->sendfile) 789 goto out_putf; 790 if (aops->prepare_write && aops->commit_write) 791 lo_flags |= LO_FLAGS_USE_AOPS; 792 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 793 lo_flags |= LO_FLAGS_READ_ONLY; 794 795 lo_blocksize = inode->i_blksize; 796 error = 0; 797 } else { 798 goto out_putf; 799 } 800 801 size = get_loop_size(lo, file); 802 803 if ((loff_t)(sector_t)size != size) { 804 error = -EFBIG; 805 goto out_putf; 806 } 807 808 if (!(lo_file->f_mode & FMODE_WRITE)) 809 lo_flags |= LO_FLAGS_READ_ONLY; 810 811 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 812 813 lo->lo_blocksize = lo_blocksize; 814 lo->lo_device = bdev; 815 lo->lo_flags = lo_flags; 816 lo->lo_backing_file = file; 817 lo->transfer = NULL; 818 lo->ioctl = NULL; 819 lo->lo_sizelimit = 0; 820 lo->old_gfp_mask = mapping_gfp_mask(mapping); 821 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 822 823 lo->lo_bio = lo->lo_biotail = NULL; 824 825 /* 826 * set queue make_request_fn, and add limits based on lower level 827 * device 828 */ 829 blk_queue_make_request(lo->lo_queue, loop_make_request); 830 lo->lo_queue->queuedata = lo; 831 lo->lo_queue->unplug_fn = loop_unplug; 832 833 set_capacity(disks[lo->lo_number], size); 834 bd_set_size(bdev, size << 9); 835 836 set_blocksize(bdev, lo_blocksize); 837 838 kernel_thread(loop_thread, lo, CLONE_KERNEL); 839 down(&lo->lo_sem); 840 return 0; 841 842 out_putf: 843 fput(file); 844 out: 845 /* This is safe: open() is still holding a reference. */ 846 module_put(THIS_MODULE); 847 return error; 848 } 849 850 static int 851 loop_release_xfer(struct loop_device *lo) 852 { 853 int err = 0; 854 struct loop_func_table *xfer = lo->lo_encryption; 855 856 if (xfer) { 857 if (xfer->release) 858 err = xfer->release(lo); 859 lo->transfer = NULL; 860 lo->lo_encryption = NULL; 861 module_put(xfer->owner); 862 } 863 return err; 864 } 865 866 static int 867 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 868 const struct loop_info64 *i) 869 { 870 int err = 0; 871 872 if (xfer) { 873 struct module *owner = xfer->owner; 874 875 if (!try_module_get(owner)) 876 return -EINVAL; 877 if (xfer->init) 878 err = xfer->init(lo, i); 879 if (err) 880 module_put(owner); 881 else 882 lo->lo_encryption = xfer; 883 } 884 return err; 885 } 886 887 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 888 { 889 struct file *filp = lo->lo_backing_file; 890 int gfp = lo->old_gfp_mask; 891 892 if (lo->lo_state != Lo_bound) 893 return -ENXIO; 894 895 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 896 return -EBUSY; 897 898 if (filp == NULL) 899 return -EINVAL; 900 901 spin_lock_irq(&lo->lo_lock); 902 lo->lo_state = Lo_rundown; 903 if (atomic_dec_and_test(&lo->lo_pending)) 904 up(&lo->lo_bh_mutex); 905 spin_unlock_irq(&lo->lo_lock); 906 907 down(&lo->lo_sem); 908 909 lo->lo_backing_file = NULL; 910 911 loop_release_xfer(lo); 912 lo->transfer = NULL; 913 lo->ioctl = NULL; 914 lo->lo_device = NULL; 915 lo->lo_encryption = NULL; 916 lo->lo_offset = 0; 917 lo->lo_sizelimit = 0; 918 lo->lo_encrypt_key_size = 0; 919 lo->lo_flags = 0; 920 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 921 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 922 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 923 invalidate_bdev(bdev, 0); 924 set_capacity(disks[lo->lo_number], 0); 925 bd_set_size(bdev, 0); 926 mapping_set_gfp_mask(filp->f_mapping, gfp); 927 lo->lo_state = Lo_unbound; 928 fput(filp); 929 /* This is safe: open() is still holding a reference. */ 930 module_put(THIS_MODULE); 931 return 0; 932 } 933 934 static int 935 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 936 { 937 int err; 938 struct loop_func_table *xfer; 939 940 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && 941 !capable(CAP_SYS_ADMIN)) 942 return -EPERM; 943 if (lo->lo_state != Lo_bound) 944 return -ENXIO; 945 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 946 return -EINVAL; 947 948 err = loop_release_xfer(lo); 949 if (err) 950 return err; 951 952 if (info->lo_encrypt_type) { 953 unsigned int type = info->lo_encrypt_type; 954 955 if (type >= MAX_LO_CRYPT) 956 return -EINVAL; 957 xfer = xfer_funcs[type]; 958 if (xfer == NULL) 959 return -EINVAL; 960 } else 961 xfer = NULL; 962 963 err = loop_init_xfer(lo, xfer, info); 964 if (err) 965 return err; 966 967 if (lo->lo_offset != info->lo_offset || 968 lo->lo_sizelimit != info->lo_sizelimit) { 969 lo->lo_offset = info->lo_offset; 970 lo->lo_sizelimit = info->lo_sizelimit; 971 if (figure_loop_size(lo)) 972 return -EFBIG; 973 } 974 975 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 976 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 977 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 978 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 979 980 if (!xfer) 981 xfer = &none_funcs; 982 lo->transfer = xfer->transfer; 983 lo->ioctl = xfer->ioctl; 984 985 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 986 lo->lo_init[0] = info->lo_init[0]; 987 lo->lo_init[1] = info->lo_init[1]; 988 if (info->lo_encrypt_key_size) { 989 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 990 info->lo_encrypt_key_size); 991 lo->lo_key_owner = current->uid; 992 } 993 994 return 0; 995 } 996 997 static int 998 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 999 { 1000 struct file *file = lo->lo_backing_file; 1001 struct kstat stat; 1002 int error; 1003 1004 if (lo->lo_state != Lo_bound) 1005 return -ENXIO; 1006 error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat); 1007 if (error) 1008 return error; 1009 memset(info, 0, sizeof(*info)); 1010 info->lo_number = lo->lo_number; 1011 info->lo_device = huge_encode_dev(stat.dev); 1012 info->lo_inode = stat.ino; 1013 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1014 info->lo_offset = lo->lo_offset; 1015 info->lo_sizelimit = lo->lo_sizelimit; 1016 info->lo_flags = lo->lo_flags; 1017 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1018 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1019 info->lo_encrypt_type = 1020 lo->lo_encryption ? lo->lo_encryption->number : 0; 1021 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1022 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1023 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1024 lo->lo_encrypt_key_size); 1025 } 1026 return 0; 1027 } 1028 1029 static void 1030 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1031 { 1032 memset(info64, 0, sizeof(*info64)); 1033 info64->lo_number = info->lo_number; 1034 info64->lo_device = info->lo_device; 1035 info64->lo_inode = info->lo_inode; 1036 info64->lo_rdevice = info->lo_rdevice; 1037 info64->lo_offset = info->lo_offset; 1038 info64->lo_sizelimit = 0; 1039 info64->lo_encrypt_type = info->lo_encrypt_type; 1040 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1041 info64->lo_flags = info->lo_flags; 1042 info64->lo_init[0] = info->lo_init[0]; 1043 info64->lo_init[1] = info->lo_init[1]; 1044 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1045 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1046 else 1047 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1048 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1049 } 1050 1051 static int 1052 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1053 { 1054 memset(info, 0, sizeof(*info)); 1055 info->lo_number = info64->lo_number; 1056 info->lo_device = info64->lo_device; 1057 info->lo_inode = info64->lo_inode; 1058 info->lo_rdevice = info64->lo_rdevice; 1059 info->lo_offset = info64->lo_offset; 1060 info->lo_encrypt_type = info64->lo_encrypt_type; 1061 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1062 info->lo_flags = info64->lo_flags; 1063 info->lo_init[0] = info64->lo_init[0]; 1064 info->lo_init[1] = info64->lo_init[1]; 1065 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1066 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1067 else 1068 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1069 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1070 1071 /* error in case values were truncated */ 1072 if (info->lo_device != info64->lo_device || 1073 info->lo_rdevice != info64->lo_rdevice || 1074 info->lo_inode != info64->lo_inode || 1075 info->lo_offset != info64->lo_offset) 1076 return -EOVERFLOW; 1077 1078 return 0; 1079 } 1080 1081 static int 1082 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1083 { 1084 struct loop_info info; 1085 struct loop_info64 info64; 1086 1087 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1088 return -EFAULT; 1089 loop_info64_from_old(&info, &info64); 1090 return loop_set_status(lo, &info64); 1091 } 1092 1093 static int 1094 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1095 { 1096 struct loop_info64 info64; 1097 1098 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1099 return -EFAULT; 1100 return loop_set_status(lo, &info64); 1101 } 1102 1103 static int 1104 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1105 struct loop_info info; 1106 struct loop_info64 info64; 1107 int err = 0; 1108 1109 if (!arg) 1110 err = -EINVAL; 1111 if (!err) 1112 err = loop_get_status(lo, &info64); 1113 if (!err) 1114 err = loop_info64_to_old(&info64, &info); 1115 if (!err && copy_to_user(arg, &info, sizeof(info))) 1116 err = -EFAULT; 1117 1118 return err; 1119 } 1120 1121 static int 1122 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1123 struct loop_info64 info64; 1124 int err = 0; 1125 1126 if (!arg) 1127 err = -EINVAL; 1128 if (!err) 1129 err = loop_get_status(lo, &info64); 1130 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1131 err = -EFAULT; 1132 1133 return err; 1134 } 1135 1136 static int lo_ioctl(struct inode * inode, struct file * file, 1137 unsigned int cmd, unsigned long arg) 1138 { 1139 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1140 int err; 1141 1142 down(&lo->lo_ctl_mutex); 1143 switch (cmd) { 1144 case LOOP_SET_FD: 1145 err = loop_set_fd(lo, file, inode->i_bdev, arg); 1146 break; 1147 case LOOP_CHANGE_FD: 1148 err = loop_change_fd(lo, file, inode->i_bdev, arg); 1149 break; 1150 case LOOP_CLR_FD: 1151 err = loop_clr_fd(lo, inode->i_bdev); 1152 break; 1153 case LOOP_SET_STATUS: 1154 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1155 break; 1156 case LOOP_GET_STATUS: 1157 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1158 break; 1159 case LOOP_SET_STATUS64: 1160 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1161 break; 1162 case LOOP_GET_STATUS64: 1163 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1164 break; 1165 default: 1166 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1167 } 1168 up(&lo->lo_ctl_mutex); 1169 return err; 1170 } 1171 1172 static int lo_open(struct inode *inode, struct file *file) 1173 { 1174 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1175 1176 down(&lo->lo_ctl_mutex); 1177 lo->lo_refcnt++; 1178 up(&lo->lo_ctl_mutex); 1179 1180 return 0; 1181 } 1182 1183 static int lo_release(struct inode *inode, struct file *file) 1184 { 1185 struct loop_device *lo = inode->i_bdev->bd_disk->private_data; 1186 1187 down(&lo->lo_ctl_mutex); 1188 --lo->lo_refcnt; 1189 up(&lo->lo_ctl_mutex); 1190 1191 return 0; 1192 } 1193 1194 static struct block_device_operations lo_fops = { 1195 .owner = THIS_MODULE, 1196 .open = lo_open, 1197 .release = lo_release, 1198 .ioctl = lo_ioctl, 1199 }; 1200 1201 /* 1202 * And now the modules code and kernel interface. 1203 */ 1204 module_param(max_loop, int, 0); 1205 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)"); 1206 MODULE_LICENSE("GPL"); 1207 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1208 1209 int loop_register_transfer(struct loop_func_table *funcs) 1210 { 1211 unsigned int n = funcs->number; 1212 1213 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1214 return -EINVAL; 1215 xfer_funcs[n] = funcs; 1216 return 0; 1217 } 1218 1219 int loop_unregister_transfer(int number) 1220 { 1221 unsigned int n = number; 1222 struct loop_device *lo; 1223 struct loop_func_table *xfer; 1224 1225 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1226 return -EINVAL; 1227 1228 xfer_funcs[n] = NULL; 1229 1230 for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) { 1231 down(&lo->lo_ctl_mutex); 1232 1233 if (lo->lo_encryption == xfer) 1234 loop_release_xfer(lo); 1235 1236 up(&lo->lo_ctl_mutex); 1237 } 1238 1239 return 0; 1240 } 1241 1242 EXPORT_SYMBOL(loop_register_transfer); 1243 EXPORT_SYMBOL(loop_unregister_transfer); 1244 1245 static int __init loop_init(void) 1246 { 1247 int i; 1248 1249 if (max_loop < 1 || max_loop > 256) { 1250 printk(KERN_WARNING "loop: invalid max_loop (must be between" 1251 " 1 and 256), using default (8)\n"); 1252 max_loop = 8; 1253 } 1254 1255 if (register_blkdev(LOOP_MAJOR, "loop")) 1256 return -EIO; 1257 1258 loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL); 1259 if (!loop_dev) 1260 goto out_mem1; 1261 memset(loop_dev, 0, max_loop * sizeof(struct loop_device)); 1262 1263 disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL); 1264 if (!disks) 1265 goto out_mem2; 1266 1267 for (i = 0; i < max_loop; i++) { 1268 disks[i] = alloc_disk(1); 1269 if (!disks[i]) 1270 goto out_mem3; 1271 } 1272 1273 devfs_mk_dir("loop"); 1274 1275 for (i = 0; i < max_loop; i++) { 1276 struct loop_device *lo = &loop_dev[i]; 1277 struct gendisk *disk = disks[i]; 1278 1279 memset(lo, 0, sizeof(*lo)); 1280 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1281 if (!lo->lo_queue) 1282 goto out_mem4; 1283 init_MUTEX(&lo->lo_ctl_mutex); 1284 init_MUTEX_LOCKED(&lo->lo_sem); 1285 init_MUTEX_LOCKED(&lo->lo_bh_mutex); 1286 lo->lo_number = i; 1287 spin_lock_init(&lo->lo_lock); 1288 disk->major = LOOP_MAJOR; 1289 disk->first_minor = i; 1290 disk->fops = &lo_fops; 1291 sprintf(disk->disk_name, "loop%d", i); 1292 sprintf(disk->devfs_name, "loop/%d", i); 1293 disk->private_data = lo; 1294 disk->queue = lo->lo_queue; 1295 } 1296 1297 /* We cannot fail after we call this, so another loop!*/ 1298 for (i = 0; i < max_loop; i++) 1299 add_disk(disks[i]); 1300 printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop); 1301 return 0; 1302 1303 out_mem4: 1304 while (i--) 1305 blk_put_queue(loop_dev[i].lo_queue); 1306 devfs_remove("loop"); 1307 i = max_loop; 1308 out_mem3: 1309 while (i--) 1310 put_disk(disks[i]); 1311 kfree(disks); 1312 out_mem2: 1313 kfree(loop_dev); 1314 out_mem1: 1315 unregister_blkdev(LOOP_MAJOR, "loop"); 1316 printk(KERN_ERR "loop: ran out of memory\n"); 1317 return -ENOMEM; 1318 } 1319 1320 static void loop_exit(void) 1321 { 1322 int i; 1323 1324 for (i = 0; i < max_loop; i++) { 1325 del_gendisk(disks[i]); 1326 blk_put_queue(loop_dev[i].lo_queue); 1327 put_disk(disks[i]); 1328 } 1329 devfs_remove("loop"); 1330 if (unregister_blkdev(LOOP_MAJOR, "loop")) 1331 printk(KERN_WARNING "loop: cannot unregister blkdev\n"); 1332 1333 kfree(disks); 1334 kfree(loop_dev); 1335 } 1336 1337 module_init(loop_init); 1338 module_exit(loop_exit); 1339 1340 #ifndef MODULE 1341 static int __init max_loop_setup(char *str) 1342 { 1343 max_loop = simple_strtol(str, NULL, 0); 1344 return 1; 1345 } 1346 1347 __setup("max_loop=", max_loop_setup); 1348 #endif 1349