xref: /openbmc/linux/drivers/block/drbd/drbd_main.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143 	struct bio *bio;
144 
145 	if (!bioset_initialized(&drbd_md_io_bio_set))
146 		return bio_alloc(gfp_mask, 1);
147 
148 	bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149 	if (!bio)
150 		return NULL;
151 	return bio;
152 }
153 
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156    give tons of false positives. When this is a real functions sparse works.
157  */
158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160 	int io_allowed;
161 
162 	atomic_inc(&device->local_cnt);
163 	io_allowed = (device->state.disk >= mins);
164 	if (!io_allowed) {
165 		if (atomic_dec_and_test(&device->local_cnt))
166 			wake_up(&device->misc_wait);
167 	}
168 	return io_allowed;
169 }
170 
171 #endif
172 
173 /**
174  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175  * @connection:	DRBD connection.
176  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
177  * @set_size:	Expected number of requests before that barrier.
178  *
179  * In case the passed barrier_nr or set_size does not match the oldest
180  * epoch of not yet barrier-acked requests, this function will cause a
181  * termination of the connection.
182  */
183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184 		unsigned int set_size)
185 {
186 	struct drbd_request *r;
187 	struct drbd_request *req = NULL;
188 	int expect_epoch = 0;
189 	int expect_size = 0;
190 
191 	spin_lock_irq(&connection->resource->req_lock);
192 
193 	/* find oldest not yet barrier-acked write request,
194 	 * count writes in its epoch. */
195 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196 		const unsigned s = r->rq_state;
197 		if (!req) {
198 			if (!(s & RQ_WRITE))
199 				continue;
200 			if (!(s & RQ_NET_MASK))
201 				continue;
202 			if (s & RQ_NET_DONE)
203 				continue;
204 			req = r;
205 			expect_epoch = req->epoch;
206 			expect_size ++;
207 		} else {
208 			if (r->epoch != expect_epoch)
209 				break;
210 			if (!(s & RQ_WRITE))
211 				continue;
212 			/* if (s & RQ_DONE): not expected */
213 			/* if (!(s & RQ_NET_MASK)): not expected */
214 			expect_size++;
215 		}
216 	}
217 
218 	/* first some paranoia code */
219 	if (req == NULL) {
220 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221 			 barrier_nr);
222 		goto bail;
223 	}
224 	if (expect_epoch != barrier_nr) {
225 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226 			 barrier_nr, expect_epoch);
227 		goto bail;
228 	}
229 
230 	if (expect_size != set_size) {
231 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232 			 barrier_nr, set_size, expect_size);
233 		goto bail;
234 	}
235 
236 	/* Clean up list of requests processed during current epoch. */
237 	/* this extra list walk restart is paranoia,
238 	 * to catch requests being barrier-acked "unexpectedly".
239 	 * It usually should find the same req again, or some READ preceding it. */
240 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
241 		if (req->epoch == expect_epoch)
242 			break;
243 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
244 		if (req->epoch != expect_epoch)
245 			break;
246 		_req_mod(req, BARRIER_ACKED);
247 	}
248 	spin_unlock_irq(&connection->resource->req_lock);
249 
250 	return;
251 
252 bail:
253 	spin_unlock_irq(&connection->resource->req_lock);
254 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
255 }
256 
257 
258 /**
259  * _tl_restart() - Walks the transfer log, and applies an action to all requests
260  * @connection:	DRBD connection to operate on.
261  * @what:       The action/event to perform with all request objects
262  *
263  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
264  * RESTART_FROZEN_DISK_IO.
265  */
266 /* must hold resource->req_lock */
267 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
268 {
269 	struct drbd_request *req, *r;
270 
271 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
272 		_req_mod(req, what);
273 }
274 
275 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276 {
277 	spin_lock_irq(&connection->resource->req_lock);
278 	_tl_restart(connection, what);
279 	spin_unlock_irq(&connection->resource->req_lock);
280 }
281 
282 /**
283  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
284  * @device:	DRBD device.
285  *
286  * This is called after the connection to the peer was lost. The storage covered
287  * by the requests on the transfer gets marked as our of sync. Called from the
288  * receiver thread and the worker thread.
289  */
290 void tl_clear(struct drbd_connection *connection)
291 {
292 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
293 }
294 
295 /**
296  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
297  * @device:	DRBD device.
298  */
299 void tl_abort_disk_io(struct drbd_device *device)
300 {
301 	struct drbd_connection *connection = first_peer_device(device)->connection;
302 	struct drbd_request *req, *r;
303 
304 	spin_lock_irq(&connection->resource->req_lock);
305 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
306 		if (!(req->rq_state & RQ_LOCAL_PENDING))
307 			continue;
308 		if (req->device != device)
309 			continue;
310 		_req_mod(req, ABORT_DISK_IO);
311 	}
312 	spin_unlock_irq(&connection->resource->req_lock);
313 }
314 
315 static int drbd_thread_setup(void *arg)
316 {
317 	struct drbd_thread *thi = (struct drbd_thread *) arg;
318 	struct drbd_resource *resource = thi->resource;
319 	unsigned long flags;
320 	int retval;
321 
322 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
323 		 thi->name[0],
324 		 resource->name);
325 
326 	allow_kernel_signal(DRBD_SIGKILL);
327 	allow_kernel_signal(SIGXCPU);
328 restart:
329 	retval = thi->function(thi);
330 
331 	spin_lock_irqsave(&thi->t_lock, flags);
332 
333 	/* if the receiver has been "EXITING", the last thing it did
334 	 * was set the conn state to "StandAlone",
335 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
336 	 * and receiver thread will be "started".
337 	 * drbd_thread_start needs to set "RESTARTING" in that case.
338 	 * t_state check and assignment needs to be within the same spinlock,
339 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
340 	 * or thread_start see NONE, and can proceed as normal.
341 	 */
342 
343 	if (thi->t_state == RESTARTING) {
344 		drbd_info(resource, "Restarting %s thread\n", thi->name);
345 		thi->t_state = RUNNING;
346 		spin_unlock_irqrestore(&thi->t_lock, flags);
347 		goto restart;
348 	}
349 
350 	thi->task = NULL;
351 	thi->t_state = NONE;
352 	smp_mb();
353 	complete_all(&thi->stop);
354 	spin_unlock_irqrestore(&thi->t_lock, flags);
355 
356 	drbd_info(resource, "Terminating %s\n", current->comm);
357 
358 	/* Release mod reference taken when thread was started */
359 
360 	if (thi->connection)
361 		kref_put(&thi->connection->kref, drbd_destroy_connection);
362 	kref_put(&resource->kref, drbd_destroy_resource);
363 	module_put(THIS_MODULE);
364 	return retval;
365 }
366 
367 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
368 			     int (*func) (struct drbd_thread *), const char *name)
369 {
370 	spin_lock_init(&thi->t_lock);
371 	thi->task    = NULL;
372 	thi->t_state = NONE;
373 	thi->function = func;
374 	thi->resource = resource;
375 	thi->connection = NULL;
376 	thi->name = name;
377 }
378 
379 int drbd_thread_start(struct drbd_thread *thi)
380 {
381 	struct drbd_resource *resource = thi->resource;
382 	struct task_struct *nt;
383 	unsigned long flags;
384 
385 	/* is used from state engine doing drbd_thread_stop_nowait,
386 	 * while holding the req lock irqsave */
387 	spin_lock_irqsave(&thi->t_lock, flags);
388 
389 	switch (thi->t_state) {
390 	case NONE:
391 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
392 			 thi->name, current->comm, current->pid);
393 
394 		/* Get ref on module for thread - this is released when thread exits */
395 		if (!try_module_get(THIS_MODULE)) {
396 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
397 			spin_unlock_irqrestore(&thi->t_lock, flags);
398 			return false;
399 		}
400 
401 		kref_get(&resource->kref);
402 		if (thi->connection)
403 			kref_get(&thi->connection->kref);
404 
405 		init_completion(&thi->stop);
406 		thi->reset_cpu_mask = 1;
407 		thi->t_state = RUNNING;
408 		spin_unlock_irqrestore(&thi->t_lock, flags);
409 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410 
411 		nt = kthread_create(drbd_thread_setup, (void *) thi,
412 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
413 
414 		if (IS_ERR(nt)) {
415 			drbd_err(resource, "Couldn't start thread\n");
416 
417 			if (thi->connection)
418 				kref_put(&thi->connection->kref, drbd_destroy_connection);
419 			kref_put(&resource->kref, drbd_destroy_resource);
420 			module_put(THIS_MODULE);
421 			return false;
422 		}
423 		spin_lock_irqsave(&thi->t_lock, flags);
424 		thi->task = nt;
425 		thi->t_state = RUNNING;
426 		spin_unlock_irqrestore(&thi->t_lock, flags);
427 		wake_up_process(nt);
428 		break;
429 	case EXITING:
430 		thi->t_state = RESTARTING;
431 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
432 				thi->name, current->comm, current->pid);
433 		fallthrough;
434 	case RUNNING:
435 	case RESTARTING:
436 	default:
437 		spin_unlock_irqrestore(&thi->t_lock, flags);
438 		break;
439 	}
440 
441 	return true;
442 }
443 
444 
445 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
446 {
447 	unsigned long flags;
448 
449 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
450 
451 	/* may be called from state engine, holding the req lock irqsave */
452 	spin_lock_irqsave(&thi->t_lock, flags);
453 
454 	if (thi->t_state == NONE) {
455 		spin_unlock_irqrestore(&thi->t_lock, flags);
456 		if (restart)
457 			drbd_thread_start(thi);
458 		return;
459 	}
460 
461 	if (thi->t_state != ns) {
462 		if (thi->task == NULL) {
463 			spin_unlock_irqrestore(&thi->t_lock, flags);
464 			return;
465 		}
466 
467 		thi->t_state = ns;
468 		smp_mb();
469 		init_completion(&thi->stop);
470 		if (thi->task != current)
471 			send_sig(DRBD_SIGKILL, thi->task, 1);
472 	}
473 
474 	spin_unlock_irqrestore(&thi->t_lock, flags);
475 
476 	if (wait)
477 		wait_for_completion(&thi->stop);
478 }
479 
480 int conn_lowest_minor(struct drbd_connection *connection)
481 {
482 	struct drbd_peer_device *peer_device;
483 	int vnr = 0, minor = -1;
484 
485 	rcu_read_lock();
486 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
487 	if (peer_device)
488 		minor = device_to_minor(peer_device->device);
489 	rcu_read_unlock();
490 
491 	return minor;
492 }
493 
494 #ifdef CONFIG_SMP
495 /**
496  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
497  *
498  * Forces all threads of a resource onto the same CPU. This is beneficial for
499  * DRBD's performance. May be overwritten by user's configuration.
500  */
501 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
502 {
503 	unsigned int *resources_per_cpu, min_index = ~0;
504 
505 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
506 				    GFP_KERNEL);
507 	if (resources_per_cpu) {
508 		struct drbd_resource *resource;
509 		unsigned int cpu, min = ~0;
510 
511 		rcu_read_lock();
512 		for_each_resource_rcu(resource, &drbd_resources) {
513 			for_each_cpu(cpu, resource->cpu_mask)
514 				resources_per_cpu[cpu]++;
515 		}
516 		rcu_read_unlock();
517 		for_each_online_cpu(cpu) {
518 			if (resources_per_cpu[cpu] < min) {
519 				min = resources_per_cpu[cpu];
520 				min_index = cpu;
521 			}
522 		}
523 		kfree(resources_per_cpu);
524 	}
525 	if (min_index == ~0) {
526 		cpumask_setall(*cpu_mask);
527 		return;
528 	}
529 	cpumask_set_cpu(min_index, *cpu_mask);
530 }
531 
532 /**
533  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
534  * @device:	DRBD device.
535  * @thi:	drbd_thread object
536  *
537  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
538  * prematurely.
539  */
540 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
541 {
542 	struct drbd_resource *resource = thi->resource;
543 	struct task_struct *p = current;
544 
545 	if (!thi->reset_cpu_mask)
546 		return;
547 	thi->reset_cpu_mask = 0;
548 	set_cpus_allowed_ptr(p, resource->cpu_mask);
549 }
550 #else
551 #define drbd_calc_cpu_mask(A) ({})
552 #endif
553 
554 /**
555  * drbd_header_size  -  size of a packet header
556  *
557  * The header size is a multiple of 8, so any payload following the header is
558  * word aligned on 64-bit architectures.  (The bitmap send and receive code
559  * relies on this.)
560  */
561 unsigned int drbd_header_size(struct drbd_connection *connection)
562 {
563 	if (connection->agreed_pro_version >= 100) {
564 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
565 		return sizeof(struct p_header100);
566 	} else {
567 		BUILD_BUG_ON(sizeof(struct p_header80) !=
568 			     sizeof(struct p_header95));
569 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
570 		return sizeof(struct p_header80);
571 	}
572 }
573 
574 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
575 {
576 	h->magic   = cpu_to_be32(DRBD_MAGIC);
577 	h->command = cpu_to_be16(cmd);
578 	h->length  = cpu_to_be16(size);
579 	return sizeof(struct p_header80);
580 }
581 
582 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
583 {
584 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
585 	h->command = cpu_to_be16(cmd);
586 	h->length = cpu_to_be32(size);
587 	return sizeof(struct p_header95);
588 }
589 
590 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
591 				      int size, int vnr)
592 {
593 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
594 	h->volume = cpu_to_be16(vnr);
595 	h->command = cpu_to_be16(cmd);
596 	h->length = cpu_to_be32(size);
597 	h->pad = 0;
598 	return sizeof(struct p_header100);
599 }
600 
601 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
602 				   void *buffer, enum drbd_packet cmd, int size)
603 {
604 	if (connection->agreed_pro_version >= 100)
605 		return prepare_header100(buffer, cmd, size, vnr);
606 	else if (connection->agreed_pro_version >= 95 &&
607 		 size > DRBD_MAX_SIZE_H80_PACKET)
608 		return prepare_header95(buffer, cmd, size);
609 	else
610 		return prepare_header80(buffer, cmd, size);
611 }
612 
613 static void *__conn_prepare_command(struct drbd_connection *connection,
614 				    struct drbd_socket *sock)
615 {
616 	if (!sock->socket)
617 		return NULL;
618 	return sock->sbuf + drbd_header_size(connection);
619 }
620 
621 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
622 {
623 	void *p;
624 
625 	mutex_lock(&sock->mutex);
626 	p = __conn_prepare_command(connection, sock);
627 	if (!p)
628 		mutex_unlock(&sock->mutex);
629 
630 	return p;
631 }
632 
633 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
634 {
635 	return conn_prepare_command(peer_device->connection, sock);
636 }
637 
638 static int __send_command(struct drbd_connection *connection, int vnr,
639 			  struct drbd_socket *sock, enum drbd_packet cmd,
640 			  unsigned int header_size, void *data,
641 			  unsigned int size)
642 {
643 	int msg_flags;
644 	int err;
645 
646 	/*
647 	 * Called with @data == NULL and the size of the data blocks in @size
648 	 * for commands that send data blocks.  For those commands, omit the
649 	 * MSG_MORE flag: this will increase the likelihood that data blocks
650 	 * which are page aligned on the sender will end up page aligned on the
651 	 * receiver.
652 	 */
653 	msg_flags = data ? MSG_MORE : 0;
654 
655 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
656 				      header_size + size);
657 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
658 			    msg_flags);
659 	if (data && !err)
660 		err = drbd_send_all(connection, sock->socket, data, size, 0);
661 	/* DRBD protocol "pings" are latency critical.
662 	 * This is supposed to trigger tcp_push_pending_frames() */
663 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
664 		tcp_sock_set_nodelay(sock->socket->sk);
665 
666 	return err;
667 }
668 
669 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670 			       enum drbd_packet cmd, unsigned int header_size,
671 			       void *data, unsigned int size)
672 {
673 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
674 }
675 
676 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 		      enum drbd_packet cmd, unsigned int header_size,
678 		      void *data, unsigned int size)
679 {
680 	int err;
681 
682 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
683 	mutex_unlock(&sock->mutex);
684 	return err;
685 }
686 
687 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
688 		      enum drbd_packet cmd, unsigned int header_size,
689 		      void *data, unsigned int size)
690 {
691 	int err;
692 
693 	err = __send_command(peer_device->connection, peer_device->device->vnr,
694 			     sock, cmd, header_size, data, size);
695 	mutex_unlock(&sock->mutex);
696 	return err;
697 }
698 
699 int drbd_send_ping(struct drbd_connection *connection)
700 {
701 	struct drbd_socket *sock;
702 
703 	sock = &connection->meta;
704 	if (!conn_prepare_command(connection, sock))
705 		return -EIO;
706 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
707 }
708 
709 int drbd_send_ping_ack(struct drbd_connection *connection)
710 {
711 	struct drbd_socket *sock;
712 
713 	sock = &connection->meta;
714 	if (!conn_prepare_command(connection, sock))
715 		return -EIO;
716 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
717 }
718 
719 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
720 {
721 	struct drbd_socket *sock;
722 	struct p_rs_param_95 *p;
723 	int size;
724 	const int apv = peer_device->connection->agreed_pro_version;
725 	enum drbd_packet cmd;
726 	struct net_conf *nc;
727 	struct disk_conf *dc;
728 
729 	sock = &peer_device->connection->data;
730 	p = drbd_prepare_command(peer_device, sock);
731 	if (!p)
732 		return -EIO;
733 
734 	rcu_read_lock();
735 	nc = rcu_dereference(peer_device->connection->net_conf);
736 
737 	size = apv <= 87 ? sizeof(struct p_rs_param)
738 		: apv == 88 ? sizeof(struct p_rs_param)
739 			+ strlen(nc->verify_alg) + 1
740 		: apv <= 94 ? sizeof(struct p_rs_param_89)
741 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
742 
743 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
744 
745 	/* initialize verify_alg and csums_alg */
746 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
747 
748 	if (get_ldev(peer_device->device)) {
749 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
750 		p->resync_rate = cpu_to_be32(dc->resync_rate);
751 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
752 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
753 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
754 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
755 		put_ldev(peer_device->device);
756 	} else {
757 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
758 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
759 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
760 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
761 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
762 	}
763 
764 	if (apv >= 88)
765 		strcpy(p->verify_alg, nc->verify_alg);
766 	if (apv >= 89)
767 		strcpy(p->csums_alg, nc->csums_alg);
768 	rcu_read_unlock();
769 
770 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
771 }
772 
773 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
774 {
775 	struct drbd_socket *sock;
776 	struct p_protocol *p;
777 	struct net_conf *nc;
778 	int size, cf;
779 
780 	sock = &connection->data;
781 	p = __conn_prepare_command(connection, sock);
782 	if (!p)
783 		return -EIO;
784 
785 	rcu_read_lock();
786 	nc = rcu_dereference(connection->net_conf);
787 
788 	if (nc->tentative && connection->agreed_pro_version < 92) {
789 		rcu_read_unlock();
790 		drbd_err(connection, "--dry-run is not supported by peer");
791 		return -EOPNOTSUPP;
792 	}
793 
794 	size = sizeof(*p);
795 	if (connection->agreed_pro_version >= 87)
796 		size += strlen(nc->integrity_alg) + 1;
797 
798 	p->protocol      = cpu_to_be32(nc->wire_protocol);
799 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
800 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
801 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
802 	p->two_primaries = cpu_to_be32(nc->two_primaries);
803 	cf = 0;
804 	if (nc->discard_my_data)
805 		cf |= CF_DISCARD_MY_DATA;
806 	if (nc->tentative)
807 		cf |= CF_DRY_RUN;
808 	p->conn_flags    = cpu_to_be32(cf);
809 
810 	if (connection->agreed_pro_version >= 87)
811 		strcpy(p->integrity_alg, nc->integrity_alg);
812 	rcu_read_unlock();
813 
814 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816 
817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819 	int err;
820 
821 	mutex_lock(&connection->data.mutex);
822 	err = __drbd_send_protocol(connection, P_PROTOCOL);
823 	mutex_unlock(&connection->data.mutex);
824 
825 	return err;
826 }
827 
828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830 	struct drbd_device *device = peer_device->device;
831 	struct drbd_socket *sock;
832 	struct p_uuids *p;
833 	int i;
834 
835 	if (!get_ldev_if_state(device, D_NEGOTIATING))
836 		return 0;
837 
838 	sock = &peer_device->connection->data;
839 	p = drbd_prepare_command(peer_device, sock);
840 	if (!p) {
841 		put_ldev(device);
842 		return -EIO;
843 	}
844 	spin_lock_irq(&device->ldev->md.uuid_lock);
845 	for (i = UI_CURRENT; i < UI_SIZE; i++)
846 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847 	spin_unlock_irq(&device->ldev->md.uuid_lock);
848 
849 	device->comm_bm_set = drbd_bm_total_weight(device);
850 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851 	rcu_read_lock();
852 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853 	rcu_read_unlock();
854 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857 
858 	put_ldev(device);
859 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861 
862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864 	return _drbd_send_uuids(peer_device, 0);
865 }
866 
867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869 	return _drbd_send_uuids(peer_device, 8);
870 }
871 
872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
875 		u64 *uuid = device->ldev->md.uuid;
876 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877 		     text,
878 		     (unsigned long long)uuid[UI_CURRENT],
879 		     (unsigned long long)uuid[UI_BITMAP],
880 		     (unsigned long long)uuid[UI_HISTORY_START],
881 		     (unsigned long long)uuid[UI_HISTORY_END]);
882 		put_ldev(device);
883 	} else {
884 		drbd_info(device, "%s effective data uuid: %016llX\n",
885 				text,
886 				(unsigned long long)device->ed_uuid);
887 	}
888 }
889 
890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	struct drbd_socket *sock;
894 	struct p_rs_uuid *p;
895 	u64 uuid;
896 
897 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898 
899 	uuid = device->ldev->md.uuid[UI_BITMAP];
900 	if (uuid && uuid != UUID_JUST_CREATED)
901 		uuid = uuid + UUID_NEW_BM_OFFSET;
902 	else
903 		get_random_bytes(&uuid, sizeof(u64));
904 	drbd_uuid_set(device, UI_BITMAP, uuid);
905 	drbd_print_uuids(device, "updated sync UUID");
906 	drbd_md_sync(device);
907 
908 	sock = &peer_device->connection->data;
909 	p = drbd_prepare_command(peer_device, sock);
910 	if (p) {
911 		p->uuid = cpu_to_be64(uuid);
912 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913 	}
914 }
915 
916 /* communicated if (agreed_features & DRBD_FF_WSAME) */
917 static void
918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
919 					struct request_queue *q)
920 {
921 	if (q) {
922 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
923 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
924 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
925 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
926 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
927 		p->qlim->discard_enabled = blk_queue_discard(q);
928 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
929 	} else {
930 		q = device->rq_queue;
931 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
932 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
933 		p->qlim->alignment_offset = 0;
934 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
935 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
936 		p->qlim->discard_enabled = 0;
937 		p->qlim->write_same_capable = 0;
938 	}
939 }
940 
941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
942 {
943 	struct drbd_device *device = peer_device->device;
944 	struct drbd_socket *sock;
945 	struct p_sizes *p;
946 	sector_t d_size, u_size;
947 	int q_order_type;
948 	unsigned int max_bio_size;
949 	unsigned int packet_size;
950 
951 	sock = &peer_device->connection->data;
952 	p = drbd_prepare_command(peer_device, sock);
953 	if (!p)
954 		return -EIO;
955 
956 	packet_size = sizeof(*p);
957 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
958 		packet_size += sizeof(p->qlim[0]);
959 
960 	memset(p, 0, packet_size);
961 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
962 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
963 		d_size = drbd_get_max_capacity(device->ldev);
964 		rcu_read_lock();
965 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
966 		rcu_read_unlock();
967 		q_order_type = drbd_queue_order_type(device);
968 		max_bio_size = queue_max_hw_sectors(q) << 9;
969 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
970 		assign_p_sizes_qlim(device, p, q);
971 		put_ldev(device);
972 	} else {
973 		d_size = 0;
974 		u_size = 0;
975 		q_order_type = QUEUE_ORDERED_NONE;
976 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
977 		assign_p_sizes_qlim(device, p, NULL);
978 	}
979 
980 	if (peer_device->connection->agreed_pro_version <= 94)
981 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
982 	else if (peer_device->connection->agreed_pro_version < 100)
983 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
984 
985 	p->d_size = cpu_to_be64(d_size);
986 	p->u_size = cpu_to_be64(u_size);
987 	if (trigger_reply)
988 		p->c_size = 0;
989 	else
990 		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
991 	p->max_bio_size = cpu_to_be32(max_bio_size);
992 	p->queue_order_type = cpu_to_be16(q_order_type);
993 	p->dds_flags = cpu_to_be16(flags);
994 
995 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
996 }
997 
998 /**
999  * drbd_send_current_state() - Sends the drbd state to the peer
1000  * @peer_device:	DRBD peer device.
1001  */
1002 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1003 {
1004 	struct drbd_socket *sock;
1005 	struct p_state *p;
1006 
1007 	sock = &peer_device->connection->data;
1008 	p = drbd_prepare_command(peer_device, sock);
1009 	if (!p)
1010 		return -EIO;
1011 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1012 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1013 }
1014 
1015 /**
1016  * drbd_send_state() - After a state change, sends the new state to the peer
1017  * @peer_device:      DRBD peer device.
1018  * @state:     the state to send, not necessarily the current state.
1019  *
1020  * Each state change queues an "after_state_ch" work, which will eventually
1021  * send the resulting new state to the peer. If more state changes happen
1022  * between queuing and processing of the after_state_ch work, we still
1023  * want to send each intermediary state in the order it occurred.
1024  */
1025 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1026 {
1027 	struct drbd_socket *sock;
1028 	struct p_state *p;
1029 
1030 	sock = &peer_device->connection->data;
1031 	p = drbd_prepare_command(peer_device, sock);
1032 	if (!p)
1033 		return -EIO;
1034 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1035 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1036 }
1037 
1038 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1039 {
1040 	struct drbd_socket *sock;
1041 	struct p_req_state *p;
1042 
1043 	sock = &peer_device->connection->data;
1044 	p = drbd_prepare_command(peer_device, sock);
1045 	if (!p)
1046 		return -EIO;
1047 	p->mask = cpu_to_be32(mask.i);
1048 	p->val = cpu_to_be32(val.i);
1049 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1050 }
1051 
1052 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1053 {
1054 	enum drbd_packet cmd;
1055 	struct drbd_socket *sock;
1056 	struct p_req_state *p;
1057 
1058 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1059 	sock = &connection->data;
1060 	p = conn_prepare_command(connection, sock);
1061 	if (!p)
1062 		return -EIO;
1063 	p->mask = cpu_to_be32(mask.i);
1064 	p->val = cpu_to_be32(val.i);
1065 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1066 }
1067 
1068 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1069 {
1070 	struct drbd_socket *sock;
1071 	struct p_req_state_reply *p;
1072 
1073 	sock = &peer_device->connection->meta;
1074 	p = drbd_prepare_command(peer_device, sock);
1075 	if (p) {
1076 		p->retcode = cpu_to_be32(retcode);
1077 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1078 	}
1079 }
1080 
1081 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1082 {
1083 	struct drbd_socket *sock;
1084 	struct p_req_state_reply *p;
1085 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1086 
1087 	sock = &connection->meta;
1088 	p = conn_prepare_command(connection, sock);
1089 	if (p) {
1090 		p->retcode = cpu_to_be32(retcode);
1091 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1092 	}
1093 }
1094 
1095 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1096 {
1097 	BUG_ON(code & ~0xf);
1098 	p->encoding = (p->encoding & ~0xf) | code;
1099 }
1100 
1101 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1102 {
1103 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1104 }
1105 
1106 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1107 {
1108 	BUG_ON(n & ~0x7);
1109 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1110 }
1111 
1112 static int fill_bitmap_rle_bits(struct drbd_device *device,
1113 			 struct p_compressed_bm *p,
1114 			 unsigned int size,
1115 			 struct bm_xfer_ctx *c)
1116 {
1117 	struct bitstream bs;
1118 	unsigned long plain_bits;
1119 	unsigned long tmp;
1120 	unsigned long rl;
1121 	unsigned len;
1122 	unsigned toggle;
1123 	int bits, use_rle;
1124 
1125 	/* may we use this feature? */
1126 	rcu_read_lock();
1127 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1128 	rcu_read_unlock();
1129 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1130 		return 0;
1131 
1132 	if (c->bit_offset >= c->bm_bits)
1133 		return 0; /* nothing to do. */
1134 
1135 	/* use at most thus many bytes */
1136 	bitstream_init(&bs, p->code, size, 0);
1137 	memset(p->code, 0, size);
1138 	/* plain bits covered in this code string */
1139 	plain_bits = 0;
1140 
1141 	/* p->encoding & 0x80 stores whether the first run length is set.
1142 	 * bit offset is implicit.
1143 	 * start with toggle == 2 to be able to tell the first iteration */
1144 	toggle = 2;
1145 
1146 	/* see how much plain bits we can stuff into one packet
1147 	 * using RLE and VLI. */
1148 	do {
1149 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1150 				    : _drbd_bm_find_next(device, c->bit_offset);
1151 		if (tmp == -1UL)
1152 			tmp = c->bm_bits;
1153 		rl = tmp - c->bit_offset;
1154 
1155 		if (toggle == 2) { /* first iteration */
1156 			if (rl == 0) {
1157 				/* the first checked bit was set,
1158 				 * store start value, */
1159 				dcbp_set_start(p, 1);
1160 				/* but skip encoding of zero run length */
1161 				toggle = !toggle;
1162 				continue;
1163 			}
1164 			dcbp_set_start(p, 0);
1165 		}
1166 
1167 		/* paranoia: catch zero runlength.
1168 		 * can only happen if bitmap is modified while we scan it. */
1169 		if (rl == 0) {
1170 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1171 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1172 			return -1;
1173 		}
1174 
1175 		bits = vli_encode_bits(&bs, rl);
1176 		if (bits == -ENOBUFS) /* buffer full */
1177 			break;
1178 		if (bits <= 0) {
1179 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1180 			return 0;
1181 		}
1182 
1183 		toggle = !toggle;
1184 		plain_bits += rl;
1185 		c->bit_offset = tmp;
1186 	} while (c->bit_offset < c->bm_bits);
1187 
1188 	len = bs.cur.b - p->code + !!bs.cur.bit;
1189 
1190 	if (plain_bits < (len << 3)) {
1191 		/* incompressible with this method.
1192 		 * we need to rewind both word and bit position. */
1193 		c->bit_offset -= plain_bits;
1194 		bm_xfer_ctx_bit_to_word_offset(c);
1195 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1196 		return 0;
1197 	}
1198 
1199 	/* RLE + VLI was able to compress it just fine.
1200 	 * update c->word_offset. */
1201 	bm_xfer_ctx_bit_to_word_offset(c);
1202 
1203 	/* store pad_bits */
1204 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1205 
1206 	return len;
1207 }
1208 
1209 /**
1210  * send_bitmap_rle_or_plain
1211  *
1212  * Return 0 when done, 1 when another iteration is needed, and a negative error
1213  * code upon failure.
1214  */
1215 static int
1216 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1217 {
1218 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1219 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1220 	struct p_compressed_bm *p = sock->sbuf + header_size;
1221 	int len, err;
1222 
1223 	len = fill_bitmap_rle_bits(device, p,
1224 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1225 	if (len < 0)
1226 		return -EIO;
1227 
1228 	if (len) {
1229 		dcbp_set_code(p, RLE_VLI_Bits);
1230 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1231 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1232 				     NULL, 0);
1233 		c->packets[0]++;
1234 		c->bytes[0] += header_size + sizeof(*p) + len;
1235 
1236 		if (c->bit_offset >= c->bm_bits)
1237 			len = 0; /* DONE */
1238 	} else {
1239 		/* was not compressible.
1240 		 * send a buffer full of plain text bits instead. */
1241 		unsigned int data_size;
1242 		unsigned long num_words;
1243 		unsigned long *p = sock->sbuf + header_size;
1244 
1245 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1246 		num_words = min_t(size_t, data_size / sizeof(*p),
1247 				  c->bm_words - c->word_offset);
1248 		len = num_words * sizeof(*p);
1249 		if (len)
1250 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1251 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1252 		c->word_offset += num_words;
1253 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1254 
1255 		c->packets[1]++;
1256 		c->bytes[1] += header_size + len;
1257 
1258 		if (c->bit_offset > c->bm_bits)
1259 			c->bit_offset = c->bm_bits;
1260 	}
1261 	if (!err) {
1262 		if (len == 0) {
1263 			INFO_bm_xfer_stats(device, "send", c);
1264 			return 0;
1265 		} else
1266 			return 1;
1267 	}
1268 	return -EIO;
1269 }
1270 
1271 /* See the comment at receive_bitmap() */
1272 static int _drbd_send_bitmap(struct drbd_device *device)
1273 {
1274 	struct bm_xfer_ctx c;
1275 	int err;
1276 
1277 	if (!expect(device->bitmap))
1278 		return false;
1279 
1280 	if (get_ldev(device)) {
1281 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1282 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1283 			drbd_bm_set_all(device);
1284 			if (drbd_bm_write(device)) {
1285 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1286 				 * but otherwise process as per normal - need to tell other
1287 				 * side that a full resync is required! */
1288 				drbd_err(device, "Failed to write bitmap to disk!\n");
1289 			} else {
1290 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1291 				drbd_md_sync(device);
1292 			}
1293 		}
1294 		put_ldev(device);
1295 	}
1296 
1297 	c = (struct bm_xfer_ctx) {
1298 		.bm_bits = drbd_bm_bits(device),
1299 		.bm_words = drbd_bm_words(device),
1300 	};
1301 
1302 	do {
1303 		err = send_bitmap_rle_or_plain(device, &c);
1304 	} while (err > 0);
1305 
1306 	return err == 0;
1307 }
1308 
1309 int drbd_send_bitmap(struct drbd_device *device)
1310 {
1311 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1312 	int err = -1;
1313 
1314 	mutex_lock(&sock->mutex);
1315 	if (sock->socket)
1316 		err = !_drbd_send_bitmap(device);
1317 	mutex_unlock(&sock->mutex);
1318 	return err;
1319 }
1320 
1321 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1322 {
1323 	struct drbd_socket *sock;
1324 	struct p_barrier_ack *p;
1325 
1326 	if (connection->cstate < C_WF_REPORT_PARAMS)
1327 		return;
1328 
1329 	sock = &connection->meta;
1330 	p = conn_prepare_command(connection, sock);
1331 	if (!p)
1332 		return;
1333 	p->barrier = barrier_nr;
1334 	p->set_size = cpu_to_be32(set_size);
1335 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1336 }
1337 
1338 /**
1339  * _drbd_send_ack() - Sends an ack packet
1340  * @device:	DRBD device.
1341  * @cmd:	Packet command code.
1342  * @sector:	sector, needs to be in big endian byte order
1343  * @blksize:	size in byte, needs to be in big endian byte order
1344  * @block_id:	Id, big endian byte order
1345  */
1346 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1347 			  u64 sector, u32 blksize, u64 block_id)
1348 {
1349 	struct drbd_socket *sock;
1350 	struct p_block_ack *p;
1351 
1352 	if (peer_device->device->state.conn < C_CONNECTED)
1353 		return -EIO;
1354 
1355 	sock = &peer_device->connection->meta;
1356 	p = drbd_prepare_command(peer_device, sock);
1357 	if (!p)
1358 		return -EIO;
1359 	p->sector = sector;
1360 	p->block_id = block_id;
1361 	p->blksize = blksize;
1362 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1363 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1364 }
1365 
1366 /* dp->sector and dp->block_id already/still in network byte order,
1367  * data_size is payload size according to dp->head,
1368  * and may need to be corrected for digest size. */
1369 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1370 		      struct p_data *dp, int data_size)
1371 {
1372 	if (peer_device->connection->peer_integrity_tfm)
1373 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1374 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1375 		       dp->block_id);
1376 }
1377 
1378 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1379 		      struct p_block_req *rp)
1380 {
1381 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1382 }
1383 
1384 /**
1385  * drbd_send_ack() - Sends an ack packet
1386  * @device:	DRBD device
1387  * @cmd:	packet command code
1388  * @peer_req:	peer request
1389  */
1390 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1391 		  struct drbd_peer_request *peer_req)
1392 {
1393 	return _drbd_send_ack(peer_device, cmd,
1394 			      cpu_to_be64(peer_req->i.sector),
1395 			      cpu_to_be32(peer_req->i.size),
1396 			      peer_req->block_id);
1397 }
1398 
1399 /* This function misuses the block_id field to signal if the blocks
1400  * are is sync or not. */
1401 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1402 		     sector_t sector, int blksize, u64 block_id)
1403 {
1404 	return _drbd_send_ack(peer_device, cmd,
1405 			      cpu_to_be64(sector),
1406 			      cpu_to_be32(blksize),
1407 			      cpu_to_be64(block_id));
1408 }
1409 
1410 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1411 			     struct drbd_peer_request *peer_req)
1412 {
1413 	struct drbd_socket *sock;
1414 	struct p_block_desc *p;
1415 
1416 	sock = &peer_device->connection->data;
1417 	p = drbd_prepare_command(peer_device, sock);
1418 	if (!p)
1419 		return -EIO;
1420 	p->sector = cpu_to_be64(peer_req->i.sector);
1421 	p->blksize = cpu_to_be32(peer_req->i.size);
1422 	p->pad = 0;
1423 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1424 }
1425 
1426 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1427 		       sector_t sector, int size, u64 block_id)
1428 {
1429 	struct drbd_socket *sock;
1430 	struct p_block_req *p;
1431 
1432 	sock = &peer_device->connection->data;
1433 	p = drbd_prepare_command(peer_device, sock);
1434 	if (!p)
1435 		return -EIO;
1436 	p->sector = cpu_to_be64(sector);
1437 	p->block_id = block_id;
1438 	p->blksize = cpu_to_be32(size);
1439 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1440 }
1441 
1442 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1443 			    void *digest, int digest_size, enum drbd_packet cmd)
1444 {
1445 	struct drbd_socket *sock;
1446 	struct p_block_req *p;
1447 
1448 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1449 
1450 	sock = &peer_device->connection->data;
1451 	p = drbd_prepare_command(peer_device, sock);
1452 	if (!p)
1453 		return -EIO;
1454 	p->sector = cpu_to_be64(sector);
1455 	p->block_id = ID_SYNCER /* unused */;
1456 	p->blksize = cpu_to_be32(size);
1457 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1458 }
1459 
1460 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1461 {
1462 	struct drbd_socket *sock;
1463 	struct p_block_req *p;
1464 
1465 	sock = &peer_device->connection->data;
1466 	p = drbd_prepare_command(peer_device, sock);
1467 	if (!p)
1468 		return -EIO;
1469 	p->sector = cpu_to_be64(sector);
1470 	p->block_id = ID_SYNCER /* unused */;
1471 	p->blksize = cpu_to_be32(size);
1472 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1473 }
1474 
1475 /* called on sndtimeo
1476  * returns false if we should retry,
1477  * true if we think connection is dead
1478  */
1479 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1480 {
1481 	int drop_it;
1482 	/* long elapsed = (long)(jiffies - device->last_received); */
1483 
1484 	drop_it =   connection->meta.socket == sock
1485 		|| !connection->ack_receiver.task
1486 		|| get_t_state(&connection->ack_receiver) != RUNNING
1487 		|| connection->cstate < C_WF_REPORT_PARAMS;
1488 
1489 	if (drop_it)
1490 		return true;
1491 
1492 	drop_it = !--connection->ko_count;
1493 	if (!drop_it) {
1494 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1495 			 current->comm, current->pid, connection->ko_count);
1496 		request_ping(connection);
1497 	}
1498 
1499 	return drop_it; /* && (device->state == R_PRIMARY) */;
1500 }
1501 
1502 static void drbd_update_congested(struct drbd_connection *connection)
1503 {
1504 	struct sock *sk = connection->data.socket->sk;
1505 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1506 		set_bit(NET_CONGESTED, &connection->flags);
1507 }
1508 
1509 /* The idea of sendpage seems to be to put some kind of reference
1510  * to the page into the skb, and to hand it over to the NIC. In
1511  * this process get_page() gets called.
1512  *
1513  * As soon as the page was really sent over the network put_page()
1514  * gets called by some part of the network layer. [ NIC driver? ]
1515  *
1516  * [ get_page() / put_page() increment/decrement the count. If count
1517  *   reaches 0 the page will be freed. ]
1518  *
1519  * This works nicely with pages from FSs.
1520  * But this means that in protocol A we might signal IO completion too early!
1521  *
1522  * In order not to corrupt data during a resync we must make sure
1523  * that we do not reuse our own buffer pages (EEs) to early, therefore
1524  * we have the net_ee list.
1525  *
1526  * XFS seems to have problems, still, it submits pages with page_count == 0!
1527  * As a workaround, we disable sendpage on pages
1528  * with page_count == 0 or PageSlab.
1529  */
1530 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1531 			      int offset, size_t size, unsigned msg_flags)
1532 {
1533 	struct socket *socket;
1534 	void *addr;
1535 	int err;
1536 
1537 	socket = peer_device->connection->data.socket;
1538 	addr = kmap(page) + offset;
1539 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1540 	kunmap(page);
1541 	if (!err)
1542 		peer_device->device->send_cnt += size >> 9;
1543 	return err;
1544 }
1545 
1546 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1547 		    int offset, size_t size, unsigned msg_flags)
1548 {
1549 	struct socket *socket = peer_device->connection->data.socket;
1550 	int len = size;
1551 	int err = -EIO;
1552 
1553 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1554 	 * page_count of 0 and/or have PageSlab() set.
1555 	 * we cannot use send_page for those, as that does get_page();
1556 	 * put_page(); and would cause either a VM_BUG directly, or
1557 	 * __page_cache_release a page that would actually still be referenced
1558 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1559 	if (drbd_disable_sendpage || !sendpage_ok(page))
1560 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1561 
1562 	msg_flags |= MSG_NOSIGNAL;
1563 	drbd_update_congested(peer_device->connection);
1564 	do {
1565 		int sent;
1566 
1567 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1568 		if (sent <= 0) {
1569 			if (sent == -EAGAIN) {
1570 				if (we_should_drop_the_connection(peer_device->connection, socket))
1571 					break;
1572 				continue;
1573 			}
1574 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1575 			     __func__, (int)size, len, sent);
1576 			if (sent < 0)
1577 				err = sent;
1578 			break;
1579 		}
1580 		len    -= sent;
1581 		offset += sent;
1582 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1583 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1584 
1585 	if (len == 0) {
1586 		err = 0;
1587 		peer_device->device->send_cnt += size >> 9;
1588 	}
1589 	return err;
1590 }
1591 
1592 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1593 {
1594 	struct bio_vec bvec;
1595 	struct bvec_iter iter;
1596 
1597 	/* hint all but last page with MSG_MORE */
1598 	bio_for_each_segment(bvec, bio, iter) {
1599 		int err;
1600 
1601 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1602 					 bvec.bv_offset, bvec.bv_len,
1603 					 bio_iter_last(bvec, iter)
1604 					 ? 0 : MSG_MORE);
1605 		if (err)
1606 			return err;
1607 		/* REQ_OP_WRITE_SAME has only one segment */
1608 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1609 			break;
1610 	}
1611 	return 0;
1612 }
1613 
1614 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1615 {
1616 	struct bio_vec bvec;
1617 	struct bvec_iter iter;
1618 
1619 	/* hint all but last page with MSG_MORE */
1620 	bio_for_each_segment(bvec, bio, iter) {
1621 		int err;
1622 
1623 		err = _drbd_send_page(peer_device, bvec.bv_page,
1624 				      bvec.bv_offset, bvec.bv_len,
1625 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1626 		if (err)
1627 			return err;
1628 		/* REQ_OP_WRITE_SAME has only one segment */
1629 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1630 			break;
1631 	}
1632 	return 0;
1633 }
1634 
1635 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1636 			    struct drbd_peer_request *peer_req)
1637 {
1638 	struct page *page = peer_req->pages;
1639 	unsigned len = peer_req->i.size;
1640 	int err;
1641 
1642 	/* hint all but last page with MSG_MORE */
1643 	page_chain_for_each(page) {
1644 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1645 
1646 		err = _drbd_send_page(peer_device, page, 0, l,
1647 				      page_chain_next(page) ? MSG_MORE : 0);
1648 		if (err)
1649 			return err;
1650 		len -= l;
1651 	}
1652 	return 0;
1653 }
1654 
1655 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1656 			     struct bio *bio)
1657 {
1658 	if (connection->agreed_pro_version >= 95)
1659 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1660 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1661 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1662 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1663 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1664 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1665 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1666 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1667 			   : DP_DISCARD)
1668 			: 0);
1669 	else
1670 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1671 }
1672 
1673 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1674  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1675  */
1676 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1677 {
1678 	struct drbd_device *device = peer_device->device;
1679 	struct drbd_socket *sock;
1680 	struct p_data *p;
1681 	struct p_wsame *wsame = NULL;
1682 	void *digest_out;
1683 	unsigned int dp_flags = 0;
1684 	int digest_size;
1685 	int err;
1686 
1687 	sock = &peer_device->connection->data;
1688 	p = drbd_prepare_command(peer_device, sock);
1689 	digest_size = peer_device->connection->integrity_tfm ?
1690 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1691 
1692 	if (!p)
1693 		return -EIO;
1694 	p->sector = cpu_to_be64(req->i.sector);
1695 	p->block_id = (unsigned long)req;
1696 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1697 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1698 	if (device->state.conn >= C_SYNC_SOURCE &&
1699 	    device->state.conn <= C_PAUSED_SYNC_T)
1700 		dp_flags |= DP_MAY_SET_IN_SYNC;
1701 	if (peer_device->connection->agreed_pro_version >= 100) {
1702 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1703 			dp_flags |= DP_SEND_RECEIVE_ACK;
1704 		/* During resync, request an explicit write ack,
1705 		 * even in protocol != C */
1706 		if (req->rq_state & RQ_EXP_WRITE_ACK
1707 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1708 			dp_flags |= DP_SEND_WRITE_ACK;
1709 	}
1710 	p->dp_flags = cpu_to_be32(dp_flags);
1711 
1712 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1713 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1714 		struct p_trim *t = (struct p_trim*)p;
1715 		t->size = cpu_to_be32(req->i.size);
1716 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1717 		goto out;
1718 	}
1719 	if (dp_flags & DP_WSAME) {
1720 		/* this will only work if DRBD_FF_WSAME is set AND the
1721 		 * handshake agreed that all nodes and backend devices are
1722 		 * WRITE_SAME capable and agree on logical_block_size */
1723 		wsame = (struct p_wsame*)p;
1724 		digest_out = wsame + 1;
1725 		wsame->size = cpu_to_be32(req->i.size);
1726 	} else
1727 		digest_out = p + 1;
1728 
1729 	/* our digest is still only over the payload.
1730 	 * TRIM does not carry any payload. */
1731 	if (digest_size)
1732 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1733 	if (wsame) {
1734 		err =
1735 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1736 				   sizeof(*wsame) + digest_size, NULL,
1737 				   bio_iovec(req->master_bio).bv_len);
1738 	} else
1739 		err =
1740 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1741 				   sizeof(*p) + digest_size, NULL, req->i.size);
1742 	if (!err) {
1743 		/* For protocol A, we have to memcpy the payload into
1744 		 * socket buffers, as we may complete right away
1745 		 * as soon as we handed it over to tcp, at which point the data
1746 		 * pages may become invalid.
1747 		 *
1748 		 * For data-integrity enabled, we copy it as well, so we can be
1749 		 * sure that even if the bio pages may still be modified, it
1750 		 * won't change the data on the wire, thus if the digest checks
1751 		 * out ok after sending on this side, but does not fit on the
1752 		 * receiving side, we sure have detected corruption elsewhere.
1753 		 */
1754 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1755 			err = _drbd_send_bio(peer_device, req->master_bio);
1756 		else
1757 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1758 
1759 		/* double check digest, sometimes buffers have been modified in flight. */
1760 		if (digest_size > 0 && digest_size <= 64) {
1761 			/* 64 byte, 512 bit, is the largest digest size
1762 			 * currently supported in kernel crypto. */
1763 			unsigned char digest[64];
1764 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1765 			if (memcmp(p + 1, digest, digest_size)) {
1766 				drbd_warn(device,
1767 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1768 					(unsigned long long)req->i.sector, req->i.size);
1769 			}
1770 		} /* else if (digest_size > 64) {
1771 		     ... Be noisy about digest too large ...
1772 		} */
1773 	}
1774 out:
1775 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1776 
1777 	return err;
1778 }
1779 
1780 /* answer packet, used to send data back for read requests:
1781  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1782  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1783  */
1784 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1785 		    struct drbd_peer_request *peer_req)
1786 {
1787 	struct drbd_device *device = peer_device->device;
1788 	struct drbd_socket *sock;
1789 	struct p_data *p;
1790 	int err;
1791 	int digest_size;
1792 
1793 	sock = &peer_device->connection->data;
1794 	p = drbd_prepare_command(peer_device, sock);
1795 
1796 	digest_size = peer_device->connection->integrity_tfm ?
1797 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1798 
1799 	if (!p)
1800 		return -EIO;
1801 	p->sector = cpu_to_be64(peer_req->i.sector);
1802 	p->block_id = peer_req->block_id;
1803 	p->seq_num = 0;  /* unused */
1804 	p->dp_flags = 0;
1805 	if (digest_size)
1806 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1807 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1808 	if (!err)
1809 		err = _drbd_send_zc_ee(peer_device, peer_req);
1810 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1811 
1812 	return err;
1813 }
1814 
1815 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1816 {
1817 	struct drbd_socket *sock;
1818 	struct p_block_desc *p;
1819 
1820 	sock = &peer_device->connection->data;
1821 	p = drbd_prepare_command(peer_device, sock);
1822 	if (!p)
1823 		return -EIO;
1824 	p->sector = cpu_to_be64(req->i.sector);
1825 	p->blksize = cpu_to_be32(req->i.size);
1826 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1827 }
1828 
1829 /*
1830   drbd_send distinguishes two cases:
1831 
1832   Packets sent via the data socket "sock"
1833   and packets sent via the meta data socket "msock"
1834 
1835 		    sock                      msock
1836   -----------------+-------------------------+------------------------------
1837   timeout           conf.timeout / 2          conf.timeout / 2
1838   timeout action    send a ping via msock     Abort communication
1839 					      and close all sockets
1840 */
1841 
1842 /*
1843  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1844  */
1845 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1846 	      void *buf, size_t size, unsigned msg_flags)
1847 {
1848 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1849 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1850 	int rv, sent = 0;
1851 
1852 	if (!sock)
1853 		return -EBADR;
1854 
1855 	/* THINK  if (signal_pending) return ... ? */
1856 
1857 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1858 
1859 	if (sock == connection->data.socket) {
1860 		rcu_read_lock();
1861 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1862 		rcu_read_unlock();
1863 		drbd_update_congested(connection);
1864 	}
1865 	do {
1866 		rv = sock_sendmsg(sock, &msg);
1867 		if (rv == -EAGAIN) {
1868 			if (we_should_drop_the_connection(connection, sock))
1869 				break;
1870 			else
1871 				continue;
1872 		}
1873 		if (rv == -EINTR) {
1874 			flush_signals(current);
1875 			rv = 0;
1876 		}
1877 		if (rv < 0)
1878 			break;
1879 		sent += rv;
1880 	} while (sent < size);
1881 
1882 	if (sock == connection->data.socket)
1883 		clear_bit(NET_CONGESTED, &connection->flags);
1884 
1885 	if (rv <= 0) {
1886 		if (rv != -EAGAIN) {
1887 			drbd_err(connection, "%s_sendmsg returned %d\n",
1888 				 sock == connection->meta.socket ? "msock" : "sock",
1889 				 rv);
1890 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1891 		} else
1892 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1893 	}
1894 
1895 	return sent;
1896 }
1897 
1898 /**
1899  * drbd_send_all  -  Send an entire buffer
1900  *
1901  * Returns 0 upon success and a negative error value otherwise.
1902  */
1903 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1904 		  size_t size, unsigned msg_flags)
1905 {
1906 	int err;
1907 
1908 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1909 	if (err < 0)
1910 		return err;
1911 	if (err != size)
1912 		return -EIO;
1913 	return 0;
1914 }
1915 
1916 static int drbd_open(struct block_device *bdev, fmode_t mode)
1917 {
1918 	struct drbd_device *device = bdev->bd_disk->private_data;
1919 	unsigned long flags;
1920 	int rv = 0;
1921 
1922 	mutex_lock(&drbd_main_mutex);
1923 	spin_lock_irqsave(&device->resource->req_lock, flags);
1924 	/* to have a stable device->state.role
1925 	 * and no race with updating open_cnt */
1926 
1927 	if (device->state.role != R_PRIMARY) {
1928 		if (mode & FMODE_WRITE)
1929 			rv = -EROFS;
1930 		else if (!drbd_allow_oos)
1931 			rv = -EMEDIUMTYPE;
1932 	}
1933 
1934 	if (!rv)
1935 		device->open_cnt++;
1936 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1937 	mutex_unlock(&drbd_main_mutex);
1938 
1939 	return rv;
1940 }
1941 
1942 static void drbd_release(struct gendisk *gd, fmode_t mode)
1943 {
1944 	struct drbd_device *device = gd->private_data;
1945 	mutex_lock(&drbd_main_mutex);
1946 	device->open_cnt--;
1947 	mutex_unlock(&drbd_main_mutex);
1948 }
1949 
1950 /* need to hold resource->req_lock */
1951 void drbd_queue_unplug(struct drbd_device *device)
1952 {
1953 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1954 		D_ASSERT(device, device->state.role == R_PRIMARY);
1955 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1956 			drbd_queue_work_if_unqueued(
1957 				&first_peer_device(device)->connection->sender_work,
1958 				&device->unplug_work);
1959 		}
1960 	}
1961 }
1962 
1963 static void drbd_set_defaults(struct drbd_device *device)
1964 {
1965 	/* Beware! The actual layout differs
1966 	 * between big endian and little endian */
1967 	device->state = (union drbd_dev_state) {
1968 		{ .role = R_SECONDARY,
1969 		  .peer = R_UNKNOWN,
1970 		  .conn = C_STANDALONE,
1971 		  .disk = D_DISKLESS,
1972 		  .pdsk = D_UNKNOWN,
1973 		} };
1974 }
1975 
1976 void drbd_init_set_defaults(struct drbd_device *device)
1977 {
1978 	/* the memset(,0,) did most of this.
1979 	 * note: only assignments, no allocation in here */
1980 
1981 	drbd_set_defaults(device);
1982 
1983 	atomic_set(&device->ap_bio_cnt, 0);
1984 	atomic_set(&device->ap_actlog_cnt, 0);
1985 	atomic_set(&device->ap_pending_cnt, 0);
1986 	atomic_set(&device->rs_pending_cnt, 0);
1987 	atomic_set(&device->unacked_cnt, 0);
1988 	atomic_set(&device->local_cnt, 0);
1989 	atomic_set(&device->pp_in_use_by_net, 0);
1990 	atomic_set(&device->rs_sect_in, 0);
1991 	atomic_set(&device->rs_sect_ev, 0);
1992 	atomic_set(&device->ap_in_flight, 0);
1993 	atomic_set(&device->md_io.in_use, 0);
1994 
1995 	mutex_init(&device->own_state_mutex);
1996 	device->state_mutex = &device->own_state_mutex;
1997 
1998 	spin_lock_init(&device->al_lock);
1999 	spin_lock_init(&device->peer_seq_lock);
2000 
2001 	INIT_LIST_HEAD(&device->active_ee);
2002 	INIT_LIST_HEAD(&device->sync_ee);
2003 	INIT_LIST_HEAD(&device->done_ee);
2004 	INIT_LIST_HEAD(&device->read_ee);
2005 	INIT_LIST_HEAD(&device->net_ee);
2006 	INIT_LIST_HEAD(&device->resync_reads);
2007 	INIT_LIST_HEAD(&device->resync_work.list);
2008 	INIT_LIST_HEAD(&device->unplug_work.list);
2009 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
2010 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
2011 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
2012 	INIT_LIST_HEAD(&device->pending_completion[0]);
2013 	INIT_LIST_HEAD(&device->pending_completion[1]);
2014 
2015 	device->resync_work.cb  = w_resync_timer;
2016 	device->unplug_work.cb  = w_send_write_hint;
2017 	device->bm_io_work.w.cb = w_bitmap_io;
2018 
2019 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2020 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2021 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2022 	timer_setup(&device->request_timer, request_timer_fn, 0);
2023 
2024 	init_waitqueue_head(&device->misc_wait);
2025 	init_waitqueue_head(&device->state_wait);
2026 	init_waitqueue_head(&device->ee_wait);
2027 	init_waitqueue_head(&device->al_wait);
2028 	init_waitqueue_head(&device->seq_wait);
2029 
2030 	device->resync_wenr = LC_FREE;
2031 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2032 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2033 }
2034 
2035 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2036 {
2037 	char ppb[10];
2038 
2039 	set_capacity_and_notify(device->vdisk, size);
2040 
2041 	drbd_info(device, "size = %s (%llu KB)\n",
2042 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2043 }
2044 
2045 void drbd_device_cleanup(struct drbd_device *device)
2046 {
2047 	int i;
2048 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2049 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2050 				first_peer_device(device)->connection->receiver.t_state);
2051 
2052 	device->al_writ_cnt  =
2053 	device->bm_writ_cnt  =
2054 	device->read_cnt     =
2055 	device->recv_cnt     =
2056 	device->send_cnt     =
2057 	device->writ_cnt     =
2058 	device->p_size       =
2059 	device->rs_start     =
2060 	device->rs_total     =
2061 	device->rs_failed    = 0;
2062 	device->rs_last_events = 0;
2063 	device->rs_last_sect_ev = 0;
2064 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2065 		device->rs_mark_left[i] = 0;
2066 		device->rs_mark_time[i] = 0;
2067 	}
2068 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2069 
2070 	set_capacity_and_notify(device->vdisk, 0);
2071 	if (device->bitmap) {
2072 		/* maybe never allocated. */
2073 		drbd_bm_resize(device, 0, 1);
2074 		drbd_bm_cleanup(device);
2075 	}
2076 
2077 	drbd_backing_dev_free(device, device->ldev);
2078 	device->ldev = NULL;
2079 
2080 	clear_bit(AL_SUSPENDED, &device->flags);
2081 
2082 	D_ASSERT(device, list_empty(&device->active_ee));
2083 	D_ASSERT(device, list_empty(&device->sync_ee));
2084 	D_ASSERT(device, list_empty(&device->done_ee));
2085 	D_ASSERT(device, list_empty(&device->read_ee));
2086 	D_ASSERT(device, list_empty(&device->net_ee));
2087 	D_ASSERT(device, list_empty(&device->resync_reads));
2088 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2089 	D_ASSERT(device, list_empty(&device->resync_work.list));
2090 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2091 
2092 	drbd_set_defaults(device);
2093 }
2094 
2095 
2096 static void drbd_destroy_mempools(void)
2097 {
2098 	struct page *page;
2099 
2100 	while (drbd_pp_pool) {
2101 		page = drbd_pp_pool;
2102 		drbd_pp_pool = (struct page *)page_private(page);
2103 		__free_page(page);
2104 		drbd_pp_vacant--;
2105 	}
2106 
2107 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2108 
2109 	bioset_exit(&drbd_io_bio_set);
2110 	bioset_exit(&drbd_md_io_bio_set);
2111 	mempool_exit(&drbd_md_io_page_pool);
2112 	mempool_exit(&drbd_ee_mempool);
2113 	mempool_exit(&drbd_request_mempool);
2114 	kmem_cache_destroy(drbd_ee_cache);
2115 	kmem_cache_destroy(drbd_request_cache);
2116 	kmem_cache_destroy(drbd_bm_ext_cache);
2117 	kmem_cache_destroy(drbd_al_ext_cache);
2118 
2119 	drbd_ee_cache        = NULL;
2120 	drbd_request_cache   = NULL;
2121 	drbd_bm_ext_cache    = NULL;
2122 	drbd_al_ext_cache    = NULL;
2123 
2124 	return;
2125 }
2126 
2127 static int drbd_create_mempools(void)
2128 {
2129 	struct page *page;
2130 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2131 	int i, ret;
2132 
2133 	/* caches */
2134 	drbd_request_cache = kmem_cache_create(
2135 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2136 	if (drbd_request_cache == NULL)
2137 		goto Enomem;
2138 
2139 	drbd_ee_cache = kmem_cache_create(
2140 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2141 	if (drbd_ee_cache == NULL)
2142 		goto Enomem;
2143 
2144 	drbd_bm_ext_cache = kmem_cache_create(
2145 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2146 	if (drbd_bm_ext_cache == NULL)
2147 		goto Enomem;
2148 
2149 	drbd_al_ext_cache = kmem_cache_create(
2150 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2151 	if (drbd_al_ext_cache == NULL)
2152 		goto Enomem;
2153 
2154 	/* mempools */
2155 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2156 	if (ret)
2157 		goto Enomem;
2158 
2159 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2160 			  BIOSET_NEED_BVECS);
2161 	if (ret)
2162 		goto Enomem;
2163 
2164 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2165 	if (ret)
2166 		goto Enomem;
2167 
2168 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2169 				     drbd_request_cache);
2170 	if (ret)
2171 		goto Enomem;
2172 
2173 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2174 	if (ret)
2175 		goto Enomem;
2176 
2177 	/* drbd's page pool */
2178 	spin_lock_init(&drbd_pp_lock);
2179 
2180 	for (i = 0; i < number; i++) {
2181 		page = alloc_page(GFP_HIGHUSER);
2182 		if (!page)
2183 			goto Enomem;
2184 		set_page_private(page, (unsigned long)drbd_pp_pool);
2185 		drbd_pp_pool = page;
2186 	}
2187 	drbd_pp_vacant = number;
2188 
2189 	return 0;
2190 
2191 Enomem:
2192 	drbd_destroy_mempools(); /* in case we allocated some */
2193 	return -ENOMEM;
2194 }
2195 
2196 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2197 {
2198 	int rr;
2199 
2200 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2201 	if (rr)
2202 		drbd_err(device, "%d EEs in active list found!\n", rr);
2203 
2204 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2205 	if (rr)
2206 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2207 
2208 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2209 	if (rr)
2210 		drbd_err(device, "%d EEs in read list found!\n", rr);
2211 
2212 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2213 	if (rr)
2214 		drbd_err(device, "%d EEs in done list found!\n", rr);
2215 
2216 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2217 	if (rr)
2218 		drbd_err(device, "%d EEs in net list found!\n", rr);
2219 }
2220 
2221 /* caution. no locking. */
2222 void drbd_destroy_device(struct kref *kref)
2223 {
2224 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2225 	struct drbd_resource *resource = device->resource;
2226 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2227 
2228 	del_timer_sync(&device->request_timer);
2229 
2230 	/* paranoia asserts */
2231 	D_ASSERT(device, device->open_cnt == 0);
2232 	/* end paranoia asserts */
2233 
2234 	/* cleanup stuff that may have been allocated during
2235 	 * device (re-)configuration or state changes */
2236 
2237 	drbd_backing_dev_free(device, device->ldev);
2238 	device->ldev = NULL;
2239 
2240 	drbd_release_all_peer_reqs(device);
2241 
2242 	lc_destroy(device->act_log);
2243 	lc_destroy(device->resync);
2244 
2245 	kfree(device->p_uuid);
2246 	/* device->p_uuid = NULL; */
2247 
2248 	if (device->bitmap) /* should no longer be there. */
2249 		drbd_bm_cleanup(device);
2250 	__free_page(device->md_io.page);
2251 	put_disk(device->vdisk);
2252 	blk_cleanup_queue(device->rq_queue);
2253 	kfree(device->rs_plan_s);
2254 
2255 	/* not for_each_connection(connection, resource):
2256 	 * those may have been cleaned up and disassociated already.
2257 	 */
2258 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2259 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2260 		kfree(peer_device);
2261 	}
2262 	memset(device, 0xfd, sizeof(*device));
2263 	kfree(device);
2264 	kref_put(&resource->kref, drbd_destroy_resource);
2265 }
2266 
2267 /* One global retry thread, if we need to push back some bio and have it
2268  * reinserted through our make request function.
2269  */
2270 static struct retry_worker {
2271 	struct workqueue_struct *wq;
2272 	struct work_struct worker;
2273 
2274 	spinlock_t lock;
2275 	struct list_head writes;
2276 } retry;
2277 
2278 static void do_retry(struct work_struct *ws)
2279 {
2280 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2281 	LIST_HEAD(writes);
2282 	struct drbd_request *req, *tmp;
2283 
2284 	spin_lock_irq(&retry->lock);
2285 	list_splice_init(&retry->writes, &writes);
2286 	spin_unlock_irq(&retry->lock);
2287 
2288 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2289 		struct drbd_device *device = req->device;
2290 		struct bio *bio = req->master_bio;
2291 		unsigned long start_jif = req->start_jif;
2292 		bool expected;
2293 
2294 		expected =
2295 			expect(atomic_read(&req->completion_ref) == 0) &&
2296 			expect(req->rq_state & RQ_POSTPONED) &&
2297 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2298 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2299 
2300 		if (!expected)
2301 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2302 				req, atomic_read(&req->completion_ref),
2303 				req->rq_state);
2304 
2305 		/* We still need to put one kref associated with the
2306 		 * "completion_ref" going zero in the code path that queued it
2307 		 * here.  The request object may still be referenced by a
2308 		 * frozen local req->private_bio, in case we force-detached.
2309 		 */
2310 		kref_put(&req->kref, drbd_req_destroy);
2311 
2312 		/* A single suspended or otherwise blocking device may stall
2313 		 * all others as well.  Fortunately, this code path is to
2314 		 * recover from a situation that "should not happen":
2315 		 * concurrent writes in multi-primary setup.
2316 		 * In a "normal" lifecycle, this workqueue is supposed to be
2317 		 * destroyed without ever doing anything.
2318 		 * If it turns out to be an issue anyways, we can do per
2319 		 * resource (replication group) or per device (minor) retry
2320 		 * workqueues instead.
2321 		 */
2322 
2323 		/* We are not just doing submit_bio_noacct(),
2324 		 * as we want to keep the start_time information. */
2325 		inc_ap_bio(device);
2326 		__drbd_make_request(device, bio, start_jif);
2327 	}
2328 }
2329 
2330 /* called via drbd_req_put_completion_ref(),
2331  * holds resource->req_lock */
2332 void drbd_restart_request(struct drbd_request *req)
2333 {
2334 	unsigned long flags;
2335 	spin_lock_irqsave(&retry.lock, flags);
2336 	list_move_tail(&req->tl_requests, &retry.writes);
2337 	spin_unlock_irqrestore(&retry.lock, flags);
2338 
2339 	/* Drop the extra reference that would otherwise
2340 	 * have been dropped by complete_master_bio.
2341 	 * do_retry() needs to grab a new one. */
2342 	dec_ap_bio(req->device);
2343 
2344 	queue_work(retry.wq, &retry.worker);
2345 }
2346 
2347 void drbd_destroy_resource(struct kref *kref)
2348 {
2349 	struct drbd_resource *resource =
2350 		container_of(kref, struct drbd_resource, kref);
2351 
2352 	idr_destroy(&resource->devices);
2353 	free_cpumask_var(resource->cpu_mask);
2354 	kfree(resource->name);
2355 	memset(resource, 0xf2, sizeof(*resource));
2356 	kfree(resource);
2357 }
2358 
2359 void drbd_free_resource(struct drbd_resource *resource)
2360 {
2361 	struct drbd_connection *connection, *tmp;
2362 
2363 	for_each_connection_safe(connection, tmp, resource) {
2364 		list_del(&connection->connections);
2365 		drbd_debugfs_connection_cleanup(connection);
2366 		kref_put(&connection->kref, drbd_destroy_connection);
2367 	}
2368 	drbd_debugfs_resource_cleanup(resource);
2369 	kref_put(&resource->kref, drbd_destroy_resource);
2370 }
2371 
2372 static void drbd_cleanup(void)
2373 {
2374 	unsigned int i;
2375 	struct drbd_device *device;
2376 	struct drbd_resource *resource, *tmp;
2377 
2378 	/* first remove proc,
2379 	 * drbdsetup uses it's presence to detect
2380 	 * whether DRBD is loaded.
2381 	 * If we would get stuck in proc removal,
2382 	 * but have netlink already deregistered,
2383 	 * some drbdsetup commands may wait forever
2384 	 * for an answer.
2385 	 */
2386 	if (drbd_proc)
2387 		remove_proc_entry("drbd", NULL);
2388 
2389 	if (retry.wq)
2390 		destroy_workqueue(retry.wq);
2391 
2392 	drbd_genl_unregister();
2393 
2394 	idr_for_each_entry(&drbd_devices, device, i)
2395 		drbd_delete_device(device);
2396 
2397 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2398 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2399 		list_del(&resource->resources);
2400 		drbd_free_resource(resource);
2401 	}
2402 
2403 	drbd_debugfs_cleanup();
2404 
2405 	drbd_destroy_mempools();
2406 	unregister_blkdev(DRBD_MAJOR, "drbd");
2407 
2408 	idr_destroy(&drbd_devices);
2409 
2410 	pr_info("module cleanup done.\n");
2411 }
2412 
2413 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2414 {
2415 	spin_lock_init(&wq->q_lock);
2416 	INIT_LIST_HEAD(&wq->q);
2417 	init_waitqueue_head(&wq->q_wait);
2418 }
2419 
2420 struct completion_work {
2421 	struct drbd_work w;
2422 	struct completion done;
2423 };
2424 
2425 static int w_complete(struct drbd_work *w, int cancel)
2426 {
2427 	struct completion_work *completion_work =
2428 		container_of(w, struct completion_work, w);
2429 
2430 	complete(&completion_work->done);
2431 	return 0;
2432 }
2433 
2434 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2435 {
2436 	struct completion_work completion_work;
2437 
2438 	completion_work.w.cb = w_complete;
2439 	init_completion(&completion_work.done);
2440 	drbd_queue_work(work_queue, &completion_work.w);
2441 	wait_for_completion(&completion_work.done);
2442 }
2443 
2444 struct drbd_resource *drbd_find_resource(const char *name)
2445 {
2446 	struct drbd_resource *resource;
2447 
2448 	if (!name || !name[0])
2449 		return NULL;
2450 
2451 	rcu_read_lock();
2452 	for_each_resource_rcu(resource, &drbd_resources) {
2453 		if (!strcmp(resource->name, name)) {
2454 			kref_get(&resource->kref);
2455 			goto found;
2456 		}
2457 	}
2458 	resource = NULL;
2459 found:
2460 	rcu_read_unlock();
2461 	return resource;
2462 }
2463 
2464 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2465 				     void *peer_addr, int peer_addr_len)
2466 {
2467 	struct drbd_resource *resource;
2468 	struct drbd_connection *connection;
2469 
2470 	rcu_read_lock();
2471 	for_each_resource_rcu(resource, &drbd_resources) {
2472 		for_each_connection_rcu(connection, resource) {
2473 			if (connection->my_addr_len == my_addr_len &&
2474 			    connection->peer_addr_len == peer_addr_len &&
2475 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2476 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2477 				kref_get(&connection->kref);
2478 				goto found;
2479 			}
2480 		}
2481 	}
2482 	connection = NULL;
2483 found:
2484 	rcu_read_unlock();
2485 	return connection;
2486 }
2487 
2488 static int drbd_alloc_socket(struct drbd_socket *socket)
2489 {
2490 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2491 	if (!socket->rbuf)
2492 		return -ENOMEM;
2493 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2494 	if (!socket->sbuf)
2495 		return -ENOMEM;
2496 	return 0;
2497 }
2498 
2499 static void drbd_free_socket(struct drbd_socket *socket)
2500 {
2501 	free_page((unsigned long) socket->sbuf);
2502 	free_page((unsigned long) socket->rbuf);
2503 }
2504 
2505 void conn_free_crypto(struct drbd_connection *connection)
2506 {
2507 	drbd_free_sock(connection);
2508 
2509 	crypto_free_shash(connection->csums_tfm);
2510 	crypto_free_shash(connection->verify_tfm);
2511 	crypto_free_shash(connection->cram_hmac_tfm);
2512 	crypto_free_shash(connection->integrity_tfm);
2513 	crypto_free_shash(connection->peer_integrity_tfm);
2514 	kfree(connection->int_dig_in);
2515 	kfree(connection->int_dig_vv);
2516 
2517 	connection->csums_tfm = NULL;
2518 	connection->verify_tfm = NULL;
2519 	connection->cram_hmac_tfm = NULL;
2520 	connection->integrity_tfm = NULL;
2521 	connection->peer_integrity_tfm = NULL;
2522 	connection->int_dig_in = NULL;
2523 	connection->int_dig_vv = NULL;
2524 }
2525 
2526 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2527 {
2528 	struct drbd_connection *connection;
2529 	cpumask_var_t new_cpu_mask;
2530 	int err;
2531 
2532 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2533 		return -ENOMEM;
2534 
2535 	/* silently ignore cpu mask on UP kernel */
2536 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2537 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2538 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2539 		if (err == -EOVERFLOW) {
2540 			/* So what. mask it out. */
2541 			cpumask_var_t tmp_cpu_mask;
2542 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2543 				cpumask_setall(tmp_cpu_mask);
2544 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2545 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2546 					res_opts->cpu_mask,
2547 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2548 					nr_cpu_ids);
2549 				free_cpumask_var(tmp_cpu_mask);
2550 				err = 0;
2551 			}
2552 		}
2553 		if (err) {
2554 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2555 			/* retcode = ERR_CPU_MASK_PARSE; */
2556 			goto fail;
2557 		}
2558 	}
2559 	resource->res_opts = *res_opts;
2560 	if (cpumask_empty(new_cpu_mask))
2561 		drbd_calc_cpu_mask(&new_cpu_mask);
2562 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2563 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2564 		for_each_connection_rcu(connection, resource) {
2565 			connection->receiver.reset_cpu_mask = 1;
2566 			connection->ack_receiver.reset_cpu_mask = 1;
2567 			connection->worker.reset_cpu_mask = 1;
2568 		}
2569 	}
2570 	err = 0;
2571 
2572 fail:
2573 	free_cpumask_var(new_cpu_mask);
2574 	return err;
2575 
2576 }
2577 
2578 struct drbd_resource *drbd_create_resource(const char *name)
2579 {
2580 	struct drbd_resource *resource;
2581 
2582 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2583 	if (!resource)
2584 		goto fail;
2585 	resource->name = kstrdup(name, GFP_KERNEL);
2586 	if (!resource->name)
2587 		goto fail_free_resource;
2588 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2589 		goto fail_free_name;
2590 	kref_init(&resource->kref);
2591 	idr_init(&resource->devices);
2592 	INIT_LIST_HEAD(&resource->connections);
2593 	resource->write_ordering = WO_BDEV_FLUSH;
2594 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2595 	mutex_init(&resource->conf_update);
2596 	mutex_init(&resource->adm_mutex);
2597 	spin_lock_init(&resource->req_lock);
2598 	drbd_debugfs_resource_add(resource);
2599 	return resource;
2600 
2601 fail_free_name:
2602 	kfree(resource->name);
2603 fail_free_resource:
2604 	kfree(resource);
2605 fail:
2606 	return NULL;
2607 }
2608 
2609 /* caller must be under adm_mutex */
2610 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2611 {
2612 	struct drbd_resource *resource;
2613 	struct drbd_connection *connection;
2614 
2615 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2616 	if (!connection)
2617 		return NULL;
2618 
2619 	if (drbd_alloc_socket(&connection->data))
2620 		goto fail;
2621 	if (drbd_alloc_socket(&connection->meta))
2622 		goto fail;
2623 
2624 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2625 	if (!connection->current_epoch)
2626 		goto fail;
2627 
2628 	INIT_LIST_HEAD(&connection->transfer_log);
2629 
2630 	INIT_LIST_HEAD(&connection->current_epoch->list);
2631 	connection->epochs = 1;
2632 	spin_lock_init(&connection->epoch_lock);
2633 
2634 	connection->send.seen_any_write_yet = false;
2635 	connection->send.current_epoch_nr = 0;
2636 	connection->send.current_epoch_writes = 0;
2637 
2638 	resource = drbd_create_resource(name);
2639 	if (!resource)
2640 		goto fail;
2641 
2642 	connection->cstate = C_STANDALONE;
2643 	mutex_init(&connection->cstate_mutex);
2644 	init_waitqueue_head(&connection->ping_wait);
2645 	idr_init(&connection->peer_devices);
2646 
2647 	drbd_init_workqueue(&connection->sender_work);
2648 	mutex_init(&connection->data.mutex);
2649 	mutex_init(&connection->meta.mutex);
2650 
2651 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2652 	connection->receiver.connection = connection;
2653 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2654 	connection->worker.connection = connection;
2655 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2656 	connection->ack_receiver.connection = connection;
2657 
2658 	kref_init(&connection->kref);
2659 
2660 	connection->resource = resource;
2661 
2662 	if (set_resource_options(resource, res_opts))
2663 		goto fail_resource;
2664 
2665 	kref_get(&resource->kref);
2666 	list_add_tail_rcu(&connection->connections, &resource->connections);
2667 	drbd_debugfs_connection_add(connection);
2668 	return connection;
2669 
2670 fail_resource:
2671 	list_del(&resource->resources);
2672 	drbd_free_resource(resource);
2673 fail:
2674 	kfree(connection->current_epoch);
2675 	drbd_free_socket(&connection->meta);
2676 	drbd_free_socket(&connection->data);
2677 	kfree(connection);
2678 	return NULL;
2679 }
2680 
2681 void drbd_destroy_connection(struct kref *kref)
2682 {
2683 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2684 	struct drbd_resource *resource = connection->resource;
2685 
2686 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2687 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2688 	kfree(connection->current_epoch);
2689 
2690 	idr_destroy(&connection->peer_devices);
2691 
2692 	drbd_free_socket(&connection->meta);
2693 	drbd_free_socket(&connection->data);
2694 	kfree(connection->int_dig_in);
2695 	kfree(connection->int_dig_vv);
2696 	memset(connection, 0xfc, sizeof(*connection));
2697 	kfree(connection);
2698 	kref_put(&resource->kref, drbd_destroy_resource);
2699 }
2700 
2701 static int init_submitter(struct drbd_device *device)
2702 {
2703 	/* opencoded create_singlethread_workqueue(),
2704 	 * to be able to say "drbd%d", ..., minor */
2705 	device->submit.wq =
2706 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2707 	if (!device->submit.wq)
2708 		return -ENOMEM;
2709 
2710 	INIT_WORK(&device->submit.worker, do_submit);
2711 	INIT_LIST_HEAD(&device->submit.writes);
2712 	return 0;
2713 }
2714 
2715 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2716 {
2717 	struct drbd_resource *resource = adm_ctx->resource;
2718 	struct drbd_connection *connection;
2719 	struct drbd_device *device;
2720 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2721 	struct gendisk *disk;
2722 	struct request_queue *q;
2723 	int id;
2724 	int vnr = adm_ctx->volume;
2725 	enum drbd_ret_code err = ERR_NOMEM;
2726 
2727 	device = minor_to_device(minor);
2728 	if (device)
2729 		return ERR_MINOR_OR_VOLUME_EXISTS;
2730 
2731 	/* GFP_KERNEL, we are outside of all write-out paths */
2732 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2733 	if (!device)
2734 		return ERR_NOMEM;
2735 	kref_init(&device->kref);
2736 
2737 	kref_get(&resource->kref);
2738 	device->resource = resource;
2739 	device->minor = minor;
2740 	device->vnr = vnr;
2741 
2742 	drbd_init_set_defaults(device);
2743 
2744 	q = blk_alloc_queue(NUMA_NO_NODE);
2745 	if (!q)
2746 		goto out_no_q;
2747 	device->rq_queue = q;
2748 
2749 	disk = alloc_disk(1);
2750 	if (!disk)
2751 		goto out_no_disk;
2752 	device->vdisk = disk;
2753 
2754 	set_disk_ro(disk, true);
2755 
2756 	disk->queue = q;
2757 	disk->major = DRBD_MAJOR;
2758 	disk->first_minor = minor;
2759 	disk->fops = &drbd_ops;
2760 	sprintf(disk->disk_name, "drbd%d", minor);
2761 	disk->private_data = device;
2762 
2763 	blk_queue_write_cache(q, true, true);
2764 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2765 	   This triggers a max_bio_size message upon first attach or connect */
2766 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2767 
2768 	device->md_io.page = alloc_page(GFP_KERNEL);
2769 	if (!device->md_io.page)
2770 		goto out_no_io_page;
2771 
2772 	if (drbd_bm_init(device))
2773 		goto out_no_bitmap;
2774 	device->read_requests = RB_ROOT;
2775 	device->write_requests = RB_ROOT;
2776 
2777 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2778 	if (id < 0) {
2779 		if (id == -ENOSPC)
2780 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2781 		goto out_no_minor_idr;
2782 	}
2783 	kref_get(&device->kref);
2784 
2785 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2786 	if (id < 0) {
2787 		if (id == -ENOSPC)
2788 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2789 		goto out_idr_remove_minor;
2790 	}
2791 	kref_get(&device->kref);
2792 
2793 	INIT_LIST_HEAD(&device->peer_devices);
2794 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2795 	for_each_connection(connection, resource) {
2796 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2797 		if (!peer_device)
2798 			goto out_idr_remove_from_resource;
2799 		peer_device->connection = connection;
2800 		peer_device->device = device;
2801 
2802 		list_add(&peer_device->peer_devices, &device->peer_devices);
2803 		kref_get(&device->kref);
2804 
2805 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2806 		if (id < 0) {
2807 			if (id == -ENOSPC)
2808 				err = ERR_INVALID_REQUEST;
2809 			goto out_idr_remove_from_resource;
2810 		}
2811 		kref_get(&connection->kref);
2812 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2813 	}
2814 
2815 	if (init_submitter(device)) {
2816 		err = ERR_NOMEM;
2817 		goto out_idr_remove_vol;
2818 	}
2819 
2820 	add_disk(disk);
2821 
2822 	/* inherit the connection state */
2823 	device->state.conn = first_connection(resource)->cstate;
2824 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2825 		for_each_peer_device(peer_device, device)
2826 			drbd_connected(peer_device);
2827 	}
2828 	/* move to create_peer_device() */
2829 	for_each_peer_device(peer_device, device)
2830 		drbd_debugfs_peer_device_add(peer_device);
2831 	drbd_debugfs_device_add(device);
2832 	return NO_ERROR;
2833 
2834 out_idr_remove_vol:
2835 	idr_remove(&connection->peer_devices, vnr);
2836 out_idr_remove_from_resource:
2837 	for_each_connection(connection, resource) {
2838 		peer_device = idr_remove(&connection->peer_devices, vnr);
2839 		if (peer_device)
2840 			kref_put(&connection->kref, drbd_destroy_connection);
2841 	}
2842 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2843 		list_del(&peer_device->peer_devices);
2844 		kfree(peer_device);
2845 	}
2846 	idr_remove(&resource->devices, vnr);
2847 out_idr_remove_minor:
2848 	idr_remove(&drbd_devices, minor);
2849 	synchronize_rcu();
2850 out_no_minor_idr:
2851 	drbd_bm_cleanup(device);
2852 out_no_bitmap:
2853 	__free_page(device->md_io.page);
2854 out_no_io_page:
2855 	put_disk(disk);
2856 out_no_disk:
2857 	blk_cleanup_queue(q);
2858 out_no_q:
2859 	kref_put(&resource->kref, drbd_destroy_resource);
2860 	kfree(device);
2861 	return err;
2862 }
2863 
2864 void drbd_delete_device(struct drbd_device *device)
2865 {
2866 	struct drbd_resource *resource = device->resource;
2867 	struct drbd_connection *connection;
2868 	struct drbd_peer_device *peer_device;
2869 
2870 	/* move to free_peer_device() */
2871 	for_each_peer_device(peer_device, device)
2872 		drbd_debugfs_peer_device_cleanup(peer_device);
2873 	drbd_debugfs_device_cleanup(device);
2874 	for_each_connection(connection, resource) {
2875 		idr_remove(&connection->peer_devices, device->vnr);
2876 		kref_put(&device->kref, drbd_destroy_device);
2877 	}
2878 	idr_remove(&resource->devices, device->vnr);
2879 	kref_put(&device->kref, drbd_destroy_device);
2880 	idr_remove(&drbd_devices, device_to_minor(device));
2881 	kref_put(&device->kref, drbd_destroy_device);
2882 	del_gendisk(device->vdisk);
2883 	synchronize_rcu();
2884 	kref_put(&device->kref, drbd_destroy_device);
2885 }
2886 
2887 static int __init drbd_init(void)
2888 {
2889 	int err;
2890 
2891 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2892 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2893 #ifdef MODULE
2894 		return -EINVAL;
2895 #else
2896 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2897 #endif
2898 	}
2899 
2900 	err = register_blkdev(DRBD_MAJOR, "drbd");
2901 	if (err) {
2902 		pr_err("unable to register block device major %d\n",
2903 		       DRBD_MAJOR);
2904 		return err;
2905 	}
2906 
2907 	/*
2908 	 * allocate all necessary structs
2909 	 */
2910 	init_waitqueue_head(&drbd_pp_wait);
2911 
2912 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2913 	idr_init(&drbd_devices);
2914 
2915 	mutex_init(&resources_mutex);
2916 	INIT_LIST_HEAD(&drbd_resources);
2917 
2918 	err = drbd_genl_register();
2919 	if (err) {
2920 		pr_err("unable to register generic netlink family\n");
2921 		goto fail;
2922 	}
2923 
2924 	err = drbd_create_mempools();
2925 	if (err)
2926 		goto fail;
2927 
2928 	err = -ENOMEM;
2929 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2930 	if (!drbd_proc)	{
2931 		pr_err("unable to register proc file\n");
2932 		goto fail;
2933 	}
2934 
2935 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2936 	if (!retry.wq) {
2937 		pr_err("unable to create retry workqueue\n");
2938 		goto fail;
2939 	}
2940 	INIT_WORK(&retry.worker, do_retry);
2941 	spin_lock_init(&retry.lock);
2942 	INIT_LIST_HEAD(&retry.writes);
2943 
2944 	drbd_debugfs_init();
2945 
2946 	pr_info("initialized. "
2947 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2948 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2949 	pr_info("%s\n", drbd_buildtag());
2950 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2951 	return 0; /* Success! */
2952 
2953 fail:
2954 	drbd_cleanup();
2955 	if (err == -ENOMEM)
2956 		pr_err("ran out of memory\n");
2957 	else
2958 		pr_err("initialization failure\n");
2959 	return err;
2960 }
2961 
2962 static void drbd_free_one_sock(struct drbd_socket *ds)
2963 {
2964 	struct socket *s;
2965 	mutex_lock(&ds->mutex);
2966 	s = ds->socket;
2967 	ds->socket = NULL;
2968 	mutex_unlock(&ds->mutex);
2969 	if (s) {
2970 		/* so debugfs does not need to mutex_lock() */
2971 		synchronize_rcu();
2972 		kernel_sock_shutdown(s, SHUT_RDWR);
2973 		sock_release(s);
2974 	}
2975 }
2976 
2977 void drbd_free_sock(struct drbd_connection *connection)
2978 {
2979 	if (connection->data.socket)
2980 		drbd_free_one_sock(&connection->data);
2981 	if (connection->meta.socket)
2982 		drbd_free_one_sock(&connection->meta);
2983 }
2984 
2985 /* meta data management */
2986 
2987 void conn_md_sync(struct drbd_connection *connection)
2988 {
2989 	struct drbd_peer_device *peer_device;
2990 	int vnr;
2991 
2992 	rcu_read_lock();
2993 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2994 		struct drbd_device *device = peer_device->device;
2995 
2996 		kref_get(&device->kref);
2997 		rcu_read_unlock();
2998 		drbd_md_sync(device);
2999 		kref_put(&device->kref, drbd_destroy_device);
3000 		rcu_read_lock();
3001 	}
3002 	rcu_read_unlock();
3003 }
3004 
3005 /* aligned 4kByte */
3006 struct meta_data_on_disk {
3007 	u64 la_size_sect;      /* last agreed size. */
3008 	u64 uuid[UI_SIZE];   /* UUIDs. */
3009 	u64 device_uuid;
3010 	u64 reserved_u64_1;
3011 	u32 flags;             /* MDF */
3012 	u32 magic;
3013 	u32 md_size_sect;
3014 	u32 al_offset;         /* offset to this block */
3015 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3016 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3017 	u32 bm_offset;         /* offset to the bitmap, from here */
3018 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3019 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3020 
3021 	/* see al_tr_number_to_on_disk_sector() */
3022 	u32 al_stripes;
3023 	u32 al_stripe_size_4k;
3024 
3025 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3026 } __packed;
3027 
3028 
3029 
3030 void drbd_md_write(struct drbd_device *device, void *b)
3031 {
3032 	struct meta_data_on_disk *buffer = b;
3033 	sector_t sector;
3034 	int i;
3035 
3036 	memset(buffer, 0, sizeof(*buffer));
3037 
3038 	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3039 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3040 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3041 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3042 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3043 
3044 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3045 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3046 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3047 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3048 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3049 
3050 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3051 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3052 
3053 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3054 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3055 
3056 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3057 	sector = device->ldev->md.md_offset;
3058 
3059 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3060 		/* this was a try anyways ... */
3061 		drbd_err(device, "meta data update failed!\n");
3062 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3063 	}
3064 }
3065 
3066 /**
3067  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3068  * @device:	DRBD device.
3069  */
3070 void drbd_md_sync(struct drbd_device *device)
3071 {
3072 	struct meta_data_on_disk *buffer;
3073 
3074 	/* Don't accidentally change the DRBD meta data layout. */
3075 	BUILD_BUG_ON(UI_SIZE != 4);
3076 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3077 
3078 	del_timer(&device->md_sync_timer);
3079 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3080 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3081 		return;
3082 
3083 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3084 	 * metadata even if we detach due to a disk failure! */
3085 	if (!get_ldev_if_state(device, D_FAILED))
3086 		return;
3087 
3088 	buffer = drbd_md_get_buffer(device, __func__);
3089 	if (!buffer)
3090 		goto out;
3091 
3092 	drbd_md_write(device, buffer);
3093 
3094 	/* Update device->ldev->md.la_size_sect,
3095 	 * since we updated it on metadata. */
3096 	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3097 
3098 	drbd_md_put_buffer(device);
3099 out:
3100 	put_ldev(device);
3101 }
3102 
3103 static int check_activity_log_stripe_size(struct drbd_device *device,
3104 		struct meta_data_on_disk *on_disk,
3105 		struct drbd_md *in_core)
3106 {
3107 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3108 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3109 	u64 al_size_4k;
3110 
3111 	/* both not set: default to old fixed size activity log */
3112 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3113 		al_stripes = 1;
3114 		al_stripe_size_4k = MD_32kB_SECT/8;
3115 	}
3116 
3117 	/* some paranoia plausibility checks */
3118 
3119 	/* we need both values to be set */
3120 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3121 		goto err;
3122 
3123 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3124 
3125 	/* Upper limit of activity log area, to avoid potential overflow
3126 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3127 	 * than 72 * 4k blocks total only increases the amount of history,
3128 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3129 	if (al_size_4k > (16 * 1024 * 1024/4))
3130 		goto err;
3131 
3132 	/* Lower limit: we need at least 8 transaction slots (32kB)
3133 	 * to not break existing setups */
3134 	if (al_size_4k < MD_32kB_SECT/8)
3135 		goto err;
3136 
3137 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3138 	in_core->al_stripes = al_stripes;
3139 	in_core->al_size_4k = al_size_4k;
3140 
3141 	return 0;
3142 err:
3143 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3144 			al_stripes, al_stripe_size_4k);
3145 	return -EINVAL;
3146 }
3147 
3148 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3149 {
3150 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3151 	struct drbd_md *in_core = &bdev->md;
3152 	s32 on_disk_al_sect;
3153 	s32 on_disk_bm_sect;
3154 
3155 	/* The on-disk size of the activity log, calculated from offsets, and
3156 	 * the size of the activity log calculated from the stripe settings,
3157 	 * should match.
3158 	 * Though we could relax this a bit: it is ok, if the striped activity log
3159 	 * fits in the available on-disk activity log size.
3160 	 * Right now, that would break how resize is implemented.
3161 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3162 	 * of possible unused padding space in the on disk layout. */
3163 	if (in_core->al_offset < 0) {
3164 		if (in_core->bm_offset > in_core->al_offset)
3165 			goto err;
3166 		on_disk_al_sect = -in_core->al_offset;
3167 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3168 	} else {
3169 		if (in_core->al_offset != MD_4kB_SECT)
3170 			goto err;
3171 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3172 			goto err;
3173 
3174 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3175 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3176 	}
3177 
3178 	/* old fixed size meta data is exactly that: fixed. */
3179 	if (in_core->meta_dev_idx >= 0) {
3180 		if (in_core->md_size_sect != MD_128MB_SECT
3181 		||  in_core->al_offset != MD_4kB_SECT
3182 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3183 		||  in_core->al_stripes != 1
3184 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3185 			goto err;
3186 	}
3187 
3188 	if (capacity < in_core->md_size_sect)
3189 		goto err;
3190 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3191 		goto err;
3192 
3193 	/* should be aligned, and at least 32k */
3194 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3195 		goto err;
3196 
3197 	/* should fit (for now: exactly) into the available on-disk space;
3198 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3199 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3200 		goto err;
3201 
3202 	/* again, should be aligned */
3203 	if (in_core->bm_offset & 7)
3204 		goto err;
3205 
3206 	/* FIXME check for device grow with flex external meta data? */
3207 
3208 	/* can the available bitmap space cover the last agreed device size? */
3209 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3210 		goto err;
3211 
3212 	return 0;
3213 
3214 err:
3215 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3216 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3217 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3218 			in_core->meta_dev_idx,
3219 			in_core->al_stripes, in_core->al_stripe_size_4k,
3220 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3221 			(unsigned long long)in_core->la_size_sect,
3222 			(unsigned long long)capacity);
3223 
3224 	return -EINVAL;
3225 }
3226 
3227 
3228 /**
3229  * drbd_md_read() - Reads in the meta data super block
3230  * @device:	DRBD device.
3231  * @bdev:	Device from which the meta data should be read in.
3232  *
3233  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3234  * something goes wrong.
3235  *
3236  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3237  * even before @bdev is assigned to @device->ldev.
3238  */
3239 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3240 {
3241 	struct meta_data_on_disk *buffer;
3242 	u32 magic, flags;
3243 	int i, rv = NO_ERROR;
3244 
3245 	if (device->state.disk != D_DISKLESS)
3246 		return ERR_DISK_CONFIGURED;
3247 
3248 	buffer = drbd_md_get_buffer(device, __func__);
3249 	if (!buffer)
3250 		return ERR_NOMEM;
3251 
3252 	/* First, figure out where our meta data superblock is located,
3253 	 * and read it. */
3254 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3255 	bdev->md.md_offset = drbd_md_ss(bdev);
3256 	/* Even for (flexible or indexed) external meta data,
3257 	 * initially restrict us to the 4k superblock for now.
3258 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3259 	bdev->md.md_size_sect = 8;
3260 
3261 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3262 				 REQ_OP_READ)) {
3263 		/* NOTE: can't do normal error processing here as this is
3264 		   called BEFORE disk is attached */
3265 		drbd_err(device, "Error while reading metadata.\n");
3266 		rv = ERR_IO_MD_DISK;
3267 		goto err;
3268 	}
3269 
3270 	magic = be32_to_cpu(buffer->magic);
3271 	flags = be32_to_cpu(buffer->flags);
3272 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3273 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3274 			/* btw: that's Activity Log clean, not "all" clean. */
3275 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3276 		rv = ERR_MD_UNCLEAN;
3277 		goto err;
3278 	}
3279 
3280 	rv = ERR_MD_INVALID;
3281 	if (magic != DRBD_MD_MAGIC_08) {
3282 		if (magic == DRBD_MD_MAGIC_07)
3283 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3284 		else
3285 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3286 		goto err;
3287 	}
3288 
3289 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3290 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3291 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3292 		goto err;
3293 	}
3294 
3295 
3296 	/* convert to in_core endian */
3297 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3298 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3299 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3300 	bdev->md.flags = be32_to_cpu(buffer->flags);
3301 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3302 
3303 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3304 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3305 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3306 
3307 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3308 		goto err;
3309 	if (check_offsets_and_sizes(device, bdev))
3310 		goto err;
3311 
3312 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3313 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3314 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3315 		goto err;
3316 	}
3317 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3318 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3319 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3320 		goto err;
3321 	}
3322 
3323 	rv = NO_ERROR;
3324 
3325 	spin_lock_irq(&device->resource->req_lock);
3326 	if (device->state.conn < C_CONNECTED) {
3327 		unsigned int peer;
3328 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3329 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3330 		device->peer_max_bio_size = peer;
3331 	}
3332 	spin_unlock_irq(&device->resource->req_lock);
3333 
3334  err:
3335 	drbd_md_put_buffer(device);
3336 
3337 	return rv;
3338 }
3339 
3340 /**
3341  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3342  * @device:	DRBD device.
3343  *
3344  * Call this function if you change anything that should be written to
3345  * the meta-data super block. This function sets MD_DIRTY, and starts a
3346  * timer that ensures that within five seconds you have to call drbd_md_sync().
3347  */
3348 void drbd_md_mark_dirty(struct drbd_device *device)
3349 {
3350 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3351 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3352 }
3353 
3354 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3355 {
3356 	int i;
3357 
3358 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3359 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3360 }
3361 
3362 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3363 {
3364 	if (idx == UI_CURRENT) {
3365 		if (device->state.role == R_PRIMARY)
3366 			val |= 1;
3367 		else
3368 			val &= ~((u64)1);
3369 
3370 		drbd_set_ed_uuid(device, val);
3371 	}
3372 
3373 	device->ldev->md.uuid[idx] = val;
3374 	drbd_md_mark_dirty(device);
3375 }
3376 
3377 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3378 {
3379 	unsigned long flags;
3380 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3381 	__drbd_uuid_set(device, idx, val);
3382 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3383 }
3384 
3385 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3386 {
3387 	unsigned long flags;
3388 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3389 	if (device->ldev->md.uuid[idx]) {
3390 		drbd_uuid_move_history(device);
3391 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3392 	}
3393 	__drbd_uuid_set(device, idx, val);
3394 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3395 }
3396 
3397 /**
3398  * drbd_uuid_new_current() - Creates a new current UUID
3399  * @device:	DRBD device.
3400  *
3401  * Creates a new current UUID, and rotates the old current UUID into
3402  * the bitmap slot. Causes an incremental resync upon next connect.
3403  */
3404 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3405 {
3406 	u64 val;
3407 	unsigned long long bm_uuid;
3408 
3409 	get_random_bytes(&val, sizeof(u64));
3410 
3411 	spin_lock_irq(&device->ldev->md.uuid_lock);
3412 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3413 
3414 	if (bm_uuid)
3415 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3416 
3417 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3418 	__drbd_uuid_set(device, UI_CURRENT, val);
3419 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3420 
3421 	drbd_print_uuids(device, "new current UUID");
3422 	/* get it to stable storage _now_ */
3423 	drbd_md_sync(device);
3424 }
3425 
3426 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3427 {
3428 	unsigned long flags;
3429 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3430 		return;
3431 
3432 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3433 	if (val == 0) {
3434 		drbd_uuid_move_history(device);
3435 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3436 		device->ldev->md.uuid[UI_BITMAP] = 0;
3437 	} else {
3438 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3439 		if (bm_uuid)
3440 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3441 
3442 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3443 	}
3444 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3445 
3446 	drbd_md_mark_dirty(device);
3447 }
3448 
3449 /**
3450  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3451  * @device:	DRBD device.
3452  *
3453  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3454  */
3455 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3456 {
3457 	int rv = -EIO;
3458 
3459 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3460 	drbd_md_sync(device);
3461 	drbd_bm_set_all(device);
3462 
3463 	rv = drbd_bm_write(device);
3464 
3465 	if (!rv) {
3466 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3467 		drbd_md_sync(device);
3468 	}
3469 
3470 	return rv;
3471 }
3472 
3473 /**
3474  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3475  * @device:	DRBD device.
3476  *
3477  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3478  */
3479 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3480 {
3481 	drbd_resume_al(device);
3482 	drbd_bm_clear_all(device);
3483 	return drbd_bm_write(device);
3484 }
3485 
3486 static int w_bitmap_io(struct drbd_work *w, int unused)
3487 {
3488 	struct drbd_device *device =
3489 		container_of(w, struct drbd_device, bm_io_work.w);
3490 	struct bm_io_work *work = &device->bm_io_work;
3491 	int rv = -EIO;
3492 
3493 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3494 		int cnt = atomic_read(&device->ap_bio_cnt);
3495 		if (cnt)
3496 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3497 					cnt, work->why);
3498 	}
3499 
3500 	if (get_ldev(device)) {
3501 		drbd_bm_lock(device, work->why, work->flags);
3502 		rv = work->io_fn(device);
3503 		drbd_bm_unlock(device);
3504 		put_ldev(device);
3505 	}
3506 
3507 	clear_bit_unlock(BITMAP_IO, &device->flags);
3508 	wake_up(&device->misc_wait);
3509 
3510 	if (work->done)
3511 		work->done(device, rv);
3512 
3513 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3514 	work->why = NULL;
3515 	work->flags = 0;
3516 
3517 	return 0;
3518 }
3519 
3520 /**
3521  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3522  * @device:	DRBD device.
3523  * @io_fn:	IO callback to be called when bitmap IO is possible
3524  * @done:	callback to be called after the bitmap IO was performed
3525  * @why:	Descriptive text of the reason for doing the IO
3526  *
3527  * While IO on the bitmap happens we freeze application IO thus we ensure
3528  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3529  * called from worker context. It MUST NOT be used while a previous such
3530  * work is still pending!
3531  *
3532  * Its worker function encloses the call of io_fn() by get_ldev() and
3533  * put_ldev().
3534  */
3535 void drbd_queue_bitmap_io(struct drbd_device *device,
3536 			  int (*io_fn)(struct drbd_device *),
3537 			  void (*done)(struct drbd_device *, int),
3538 			  char *why, enum bm_flag flags)
3539 {
3540 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3541 
3542 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3543 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3544 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3545 	if (device->bm_io_work.why)
3546 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3547 			why, device->bm_io_work.why);
3548 
3549 	device->bm_io_work.io_fn = io_fn;
3550 	device->bm_io_work.done = done;
3551 	device->bm_io_work.why = why;
3552 	device->bm_io_work.flags = flags;
3553 
3554 	spin_lock_irq(&device->resource->req_lock);
3555 	set_bit(BITMAP_IO, &device->flags);
3556 	/* don't wait for pending application IO if the caller indicates that
3557 	 * application IO does not conflict anyways. */
3558 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3559 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3560 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3561 					&device->bm_io_work.w);
3562 	}
3563 	spin_unlock_irq(&device->resource->req_lock);
3564 }
3565 
3566 /**
3567  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3568  * @device:	DRBD device.
3569  * @io_fn:	IO callback to be called when bitmap IO is possible
3570  * @why:	Descriptive text of the reason for doing the IO
3571  *
3572  * freezes application IO while that the actual IO operations runs. This
3573  * functions MAY NOT be called from worker context.
3574  */
3575 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3576 		char *why, enum bm_flag flags)
3577 {
3578 	/* Only suspend io, if some operation is supposed to be locked out */
3579 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3580 	int rv;
3581 
3582 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3583 
3584 	if (do_suspend_io)
3585 		drbd_suspend_io(device);
3586 
3587 	drbd_bm_lock(device, why, flags);
3588 	rv = io_fn(device);
3589 	drbd_bm_unlock(device);
3590 
3591 	if (do_suspend_io)
3592 		drbd_resume_io(device);
3593 
3594 	return rv;
3595 }
3596 
3597 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3598 {
3599 	if ((device->ldev->md.flags & flag) != flag) {
3600 		drbd_md_mark_dirty(device);
3601 		device->ldev->md.flags |= flag;
3602 	}
3603 }
3604 
3605 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3606 {
3607 	if ((device->ldev->md.flags & flag) != 0) {
3608 		drbd_md_mark_dirty(device);
3609 		device->ldev->md.flags &= ~flag;
3610 	}
3611 }
3612 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3613 {
3614 	return (bdev->md.flags & flag) != 0;
3615 }
3616 
3617 static void md_sync_timer_fn(struct timer_list *t)
3618 {
3619 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3620 	drbd_device_post_work(device, MD_SYNC);
3621 }
3622 
3623 const char *cmdname(enum drbd_packet cmd)
3624 {
3625 	/* THINK may need to become several global tables
3626 	 * when we want to support more than
3627 	 * one PRO_VERSION */
3628 	static const char *cmdnames[] = {
3629 		[P_DATA]	        = "Data",
3630 		[P_WSAME]	        = "WriteSame",
3631 		[P_TRIM]	        = "Trim",
3632 		[P_DATA_REPLY]	        = "DataReply",
3633 		[P_RS_DATA_REPLY]	= "RSDataReply",
3634 		[P_BARRIER]	        = "Barrier",
3635 		[P_BITMAP]	        = "ReportBitMap",
3636 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3637 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3638 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3639 		[P_DATA_REQUEST]	= "DataRequest",
3640 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3641 		[P_SYNC_PARAM]	        = "SyncParam",
3642 		[P_SYNC_PARAM89]	= "SyncParam89",
3643 		[P_PROTOCOL]            = "ReportProtocol",
3644 		[P_UUIDS]	        = "ReportUUIDs",
3645 		[P_SIZES]	        = "ReportSizes",
3646 		[P_STATE]	        = "ReportState",
3647 		[P_SYNC_UUID]           = "ReportSyncUUID",
3648 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3649 		[P_AUTH_RESPONSE]	= "AuthResponse",
3650 		[P_PING]		= "Ping",
3651 		[P_PING_ACK]	        = "PingAck",
3652 		[P_RECV_ACK]	        = "RecvAck",
3653 		[P_WRITE_ACK]	        = "WriteAck",
3654 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3655 		[P_SUPERSEDED]          = "Superseded",
3656 		[P_NEG_ACK]	        = "NegAck",
3657 		[P_NEG_DREPLY]	        = "NegDReply",
3658 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3659 		[P_BARRIER_ACK]	        = "BarrierAck",
3660 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3661 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3662 		[P_OV_REQUEST]          = "OVRequest",
3663 		[P_OV_REPLY]            = "OVReply",
3664 		[P_OV_RESULT]           = "OVResult",
3665 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3666 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3667 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3668 		[P_DELAY_PROBE]         = "DelayProbe",
3669 		[P_OUT_OF_SYNC]		= "OutOfSync",
3670 		[P_RETRY_WRITE]		= "RetryWrite",
3671 		[P_RS_CANCEL]		= "RSCancel",
3672 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3673 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3674 		[P_RETRY_WRITE]		= "retry_write",
3675 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3676 		[P_RS_THIN_REQ]         = "rs_thin_req",
3677 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3678 
3679 		/* enum drbd_packet, but not commands - obsoleted flags:
3680 		 *	P_MAY_IGNORE
3681 		 *	P_MAX_OPT_CMD
3682 		 */
3683 	};
3684 
3685 	/* too big for the array: 0xfffX */
3686 	if (cmd == P_INITIAL_META)
3687 		return "InitialMeta";
3688 	if (cmd == P_INITIAL_DATA)
3689 		return "InitialData";
3690 	if (cmd == P_CONNECTION_FEATURES)
3691 		return "ConnectionFeatures";
3692 	if (cmd >= ARRAY_SIZE(cmdnames))
3693 		return "Unknown";
3694 	return cmdnames[cmd];
3695 }
3696 
3697 /**
3698  * drbd_wait_misc  -  wait for a request to make progress
3699  * @device:	device associated with the request
3700  * @i:		the struct drbd_interval embedded in struct drbd_request or
3701  *		struct drbd_peer_request
3702  */
3703 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3704 {
3705 	struct net_conf *nc;
3706 	DEFINE_WAIT(wait);
3707 	long timeout;
3708 
3709 	rcu_read_lock();
3710 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3711 	if (!nc) {
3712 		rcu_read_unlock();
3713 		return -ETIMEDOUT;
3714 	}
3715 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3716 	rcu_read_unlock();
3717 
3718 	/* Indicate to wake up device->misc_wait on progress.  */
3719 	i->waiting = true;
3720 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3721 	spin_unlock_irq(&device->resource->req_lock);
3722 	timeout = schedule_timeout(timeout);
3723 	finish_wait(&device->misc_wait, &wait);
3724 	spin_lock_irq(&device->resource->req_lock);
3725 	if (!timeout || device->state.conn < C_CONNECTED)
3726 		return -ETIMEDOUT;
3727 	if (signal_pending(current))
3728 		return -ERESTARTSYS;
3729 	return 0;
3730 }
3731 
3732 void lock_all_resources(void)
3733 {
3734 	struct drbd_resource *resource;
3735 	int __maybe_unused i = 0;
3736 
3737 	mutex_lock(&resources_mutex);
3738 	local_irq_disable();
3739 	for_each_resource(resource, &drbd_resources)
3740 		spin_lock_nested(&resource->req_lock, i++);
3741 }
3742 
3743 void unlock_all_resources(void)
3744 {
3745 	struct drbd_resource *resource;
3746 
3747 	for_each_resource(resource, &drbd_resources)
3748 		spin_unlock(&resource->req_lock);
3749 	local_irq_enable();
3750 	mutex_unlock(&resources_mutex);
3751 }
3752 
3753 #ifdef CONFIG_DRBD_FAULT_INJECTION
3754 /* Fault insertion support including random number generator shamelessly
3755  * stolen from kernel/rcutorture.c */
3756 struct fault_random_state {
3757 	unsigned long state;
3758 	unsigned long count;
3759 };
3760 
3761 #define FAULT_RANDOM_MULT 39916801  /* prime */
3762 #define FAULT_RANDOM_ADD	479001701 /* prime */
3763 #define FAULT_RANDOM_REFRESH 10000
3764 
3765 /*
3766  * Crude but fast random-number generator.  Uses a linear congruential
3767  * generator, with occasional help from get_random_bytes().
3768  */
3769 static unsigned long
3770 _drbd_fault_random(struct fault_random_state *rsp)
3771 {
3772 	long refresh;
3773 
3774 	if (!rsp->count--) {
3775 		get_random_bytes(&refresh, sizeof(refresh));
3776 		rsp->state += refresh;
3777 		rsp->count = FAULT_RANDOM_REFRESH;
3778 	}
3779 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3780 	return swahw32(rsp->state);
3781 }
3782 
3783 static char *
3784 _drbd_fault_str(unsigned int type) {
3785 	static char *_faults[] = {
3786 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3787 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3788 		[DRBD_FAULT_RS_WR] = "Resync write",
3789 		[DRBD_FAULT_RS_RD] = "Resync read",
3790 		[DRBD_FAULT_DT_WR] = "Data write",
3791 		[DRBD_FAULT_DT_RD] = "Data read",
3792 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3793 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3794 		[DRBD_FAULT_AL_EE] = "EE allocation",
3795 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3796 	};
3797 
3798 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3799 }
3800 
3801 unsigned int
3802 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3803 {
3804 	static struct fault_random_state rrs = {0, 0};
3805 
3806 	unsigned int ret = (
3807 		(drbd_fault_devs == 0 ||
3808 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3809 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3810 
3811 	if (ret) {
3812 		drbd_fault_count++;
3813 
3814 		if (__ratelimit(&drbd_ratelimit_state))
3815 			drbd_warn(device, "***Simulating %s failure\n",
3816 				_drbd_fault_str(type));
3817 	}
3818 
3819 	return ret;
3820 }
3821 #endif
3822 
3823 const char *drbd_buildtag(void)
3824 {
3825 	/* DRBD built from external sources has here a reference to the
3826 	   git hash of the source code. */
3827 
3828 	static char buildtag[38] = "\0uilt-in";
3829 
3830 	if (buildtag[0] == 0) {
3831 #ifdef MODULE
3832 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3833 #else
3834 		buildtag[0] = 'b';
3835 #endif
3836 	}
3837 
3838 	return buildtag;
3839 }
3840 
3841 module_init(drbd_init)
3842 module_exit(drbd_cleanup)
3843 
3844 EXPORT_SYMBOL(drbd_conn_str);
3845 EXPORT_SYMBOL(drbd_role_str);
3846 EXPORT_SYMBOL(drbd_disk_str);
3847 EXPORT_SYMBOL(drbd_set_st_err_str);
3848