xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision f33a751d5a7fe03b11d95e6a33e1fdd3b4f8ec18)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **config_buf;
45 
46 	unsigned int irq_reg_stride;
47 
48 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
49 				    unsigned int base, int index);
50 
51 	unsigned int clear_status:1;
52 };
53 
54 static inline const
55 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
56 				     int irq)
57 {
58 	return &data->chip->irqs[irq];
59 }
60 
61 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
62 {
63 	struct regmap *map = data->map;
64 
65 	/*
66 	 * While possible that a user-defined ->get_irq_reg() callback might
67 	 * be linear enough to support bulk reads, most of the time it won't.
68 	 * Therefore only allow them if the default callback is being used.
69 	 */
70 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
71 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
72 	       !map->use_single_read;
73 }
74 
75 static void regmap_irq_lock(struct irq_data *data)
76 {
77 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
78 
79 	mutex_lock(&d->lock);
80 }
81 
82 static void regmap_irq_sync_unlock(struct irq_data *data)
83 {
84 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
85 	struct regmap *map = d->map;
86 	int i, j, ret;
87 	u32 reg;
88 	u32 val;
89 
90 	if (d->chip->runtime_pm) {
91 		ret = pm_runtime_get_sync(map->dev);
92 		if (ret < 0)
93 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
94 				ret);
95 	}
96 
97 	if (d->clear_status) {
98 		for (i = 0; i < d->chip->num_regs; i++) {
99 			reg = d->get_irq_reg(d, d->chip->status_base, i);
100 
101 			ret = regmap_read(map, reg, &val);
102 			if (ret)
103 				dev_err(d->map->dev,
104 					"Failed to clear the interrupt status bits\n");
105 		}
106 
107 		d->clear_status = false;
108 	}
109 
110 	/*
111 	 * If there's been a change in the mask write it back to the
112 	 * hardware.  We rely on the use of the regmap core cache to
113 	 * suppress pointless writes.
114 	 */
115 	for (i = 0; i < d->chip->num_regs; i++) {
116 		if (d->mask_base) {
117 			if (d->chip->handle_mask_sync)
118 				d->chip->handle_mask_sync(i, d->mask_buf_def[i],
119 							  d->mask_buf[i],
120 							  d->chip->irq_drv_data);
121 			else {
122 				reg = d->get_irq_reg(d, d->mask_base, i);
123 				ret = regmap_update_bits(d->map, reg,
124 						d->mask_buf_def[i],
125 						d->mask_buf[i]);
126 				if (ret)
127 					dev_err(d->map->dev, "Failed to sync masks in %x\n",
128 						reg);
129 			}
130 		}
131 
132 		if (d->unmask_base) {
133 			reg = d->get_irq_reg(d, d->unmask_base, i);
134 			ret = regmap_update_bits(d->map, reg,
135 					d->mask_buf_def[i], ~d->mask_buf[i]);
136 			if (ret)
137 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
138 					reg);
139 		}
140 
141 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
142 		if (d->wake_buf) {
143 			if (d->chip->wake_invert)
144 				ret = regmap_update_bits(d->map, reg,
145 							 d->mask_buf_def[i],
146 							 ~d->wake_buf[i]);
147 			else
148 				ret = regmap_update_bits(d->map, reg,
149 							 d->mask_buf_def[i],
150 							 d->wake_buf[i]);
151 			if (ret != 0)
152 				dev_err(d->map->dev,
153 					"Failed to sync wakes in %x: %d\n",
154 					reg, ret);
155 		}
156 
157 		if (!d->chip->init_ack_masked)
158 			continue;
159 		/*
160 		 * Ack all the masked interrupts unconditionally,
161 		 * OR if there is masked interrupt which hasn't been Acked,
162 		 * it'll be ignored in irq handler, then may introduce irq storm
163 		 */
164 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
165 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
166 
167 			/* some chips ack by write 0 */
168 			if (d->chip->ack_invert)
169 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
170 			else
171 				ret = regmap_write(map, reg, d->mask_buf[i]);
172 			if (d->chip->clear_ack) {
173 				if (d->chip->ack_invert && !ret)
174 					ret = regmap_write(map, reg, UINT_MAX);
175 				else if (!ret)
176 					ret = regmap_write(map, reg, 0);
177 			}
178 			if (ret != 0)
179 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
180 					reg, ret);
181 		}
182 	}
183 
184 	/* Don't update the type bits if we're using mask bits for irq type. */
185 	if (!d->chip->type_in_mask) {
186 		for (i = 0; i < d->chip->num_type_reg; i++) {
187 			if (!d->type_buf_def[i])
188 				continue;
189 			reg = d->get_irq_reg(d, d->chip->type_base, i);
190 			ret = regmap_update_bits(d->map, reg,
191 						 d->type_buf_def[i], d->type_buf[i]);
192 			if (ret != 0)
193 				dev_err(d->map->dev, "Failed to sync type in %x\n",
194 					reg);
195 		}
196 	}
197 
198 	for (i = 0; i < d->chip->num_config_bases; i++) {
199 		for (j = 0; j < d->chip->num_config_regs; j++) {
200 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
201 			ret = regmap_write(map, reg, d->config_buf[i][j]);
202 			if (ret)
203 				dev_err(d->map->dev,
204 					"Failed to write config %x: %d\n",
205 					reg, ret);
206 		}
207 	}
208 
209 	if (d->chip->runtime_pm)
210 		pm_runtime_put(map->dev);
211 
212 	/* If we've changed our wakeup count propagate it to the parent */
213 	if (d->wake_count < 0)
214 		for (i = d->wake_count; i < 0; i++)
215 			irq_set_irq_wake(d->irq, 0);
216 	else if (d->wake_count > 0)
217 		for (i = 0; i < d->wake_count; i++)
218 			irq_set_irq_wake(d->irq, 1);
219 
220 	d->wake_count = 0;
221 
222 	mutex_unlock(&d->lock);
223 }
224 
225 static void regmap_irq_enable(struct irq_data *data)
226 {
227 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
228 	struct regmap *map = d->map;
229 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
230 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
231 	unsigned int mask;
232 
233 	/*
234 	 * The type_in_mask flag means that the underlying hardware uses
235 	 * separate mask bits for each interrupt trigger type, but we want
236 	 * to have a single logical interrupt with a configurable type.
237 	 *
238 	 * If the interrupt we're enabling defines any supported types
239 	 * then instead of using the regular mask bits for this interrupt,
240 	 * use the value previously written to the type buffer at the
241 	 * corresponding offset in regmap_irq_set_type().
242 	 */
243 	if (d->chip->type_in_mask && irq_data->type.types_supported)
244 		mask = d->type_buf[reg] & irq_data->mask;
245 	else
246 		mask = irq_data->mask;
247 
248 	if (d->chip->clear_on_unmask)
249 		d->clear_status = true;
250 
251 	d->mask_buf[reg] &= ~mask;
252 }
253 
254 static void regmap_irq_disable(struct irq_data *data)
255 {
256 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
257 	struct regmap *map = d->map;
258 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
259 
260 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
261 }
262 
263 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
264 {
265 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
266 	struct regmap *map = d->map;
267 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
268 	int reg, ret;
269 	const struct regmap_irq_type *t = &irq_data->type;
270 
271 	if ((t->types_supported & type) != type)
272 		return 0;
273 
274 	reg = t->type_reg_offset / map->reg_stride;
275 
276 	if (t->type_reg_mask)
277 		d->type_buf[reg] &= ~t->type_reg_mask;
278 	else
279 		d->type_buf[reg] &= ~(t->type_falling_val |
280 				      t->type_rising_val |
281 				      t->type_level_low_val |
282 				      t->type_level_high_val);
283 	switch (type) {
284 	case IRQ_TYPE_EDGE_FALLING:
285 		d->type_buf[reg] |= t->type_falling_val;
286 		break;
287 
288 	case IRQ_TYPE_EDGE_RISING:
289 		d->type_buf[reg] |= t->type_rising_val;
290 		break;
291 
292 	case IRQ_TYPE_EDGE_BOTH:
293 		d->type_buf[reg] |= (t->type_falling_val |
294 					t->type_rising_val);
295 		break;
296 
297 	case IRQ_TYPE_LEVEL_HIGH:
298 		d->type_buf[reg] |= t->type_level_high_val;
299 		break;
300 
301 	case IRQ_TYPE_LEVEL_LOW:
302 		d->type_buf[reg] |= t->type_level_low_val;
303 		break;
304 	default:
305 		return -EINVAL;
306 	}
307 
308 	if (d->chip->set_type_config) {
309 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
310 					       reg, d->chip->irq_drv_data);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	return 0;
316 }
317 
318 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
319 {
320 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
321 	struct regmap *map = d->map;
322 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
323 
324 	if (on) {
325 		if (d->wake_buf)
326 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
327 				&= ~irq_data->mask;
328 		d->wake_count++;
329 	} else {
330 		if (d->wake_buf)
331 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
332 				|= irq_data->mask;
333 		d->wake_count--;
334 	}
335 
336 	return 0;
337 }
338 
339 static const struct irq_chip regmap_irq_chip = {
340 	.irq_bus_lock		= regmap_irq_lock,
341 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
342 	.irq_disable		= regmap_irq_disable,
343 	.irq_enable		= regmap_irq_enable,
344 	.irq_set_type		= regmap_irq_set_type,
345 	.irq_set_wake		= regmap_irq_set_wake,
346 };
347 
348 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
349 					   unsigned int b)
350 {
351 	const struct regmap_irq_chip *chip = data->chip;
352 	struct regmap *map = data->map;
353 	struct regmap_irq_sub_irq_map *subreg;
354 	unsigned int reg;
355 	int i, ret = 0;
356 
357 	if (!chip->sub_reg_offsets) {
358 		reg = data->get_irq_reg(data, chip->status_base, b);
359 		ret = regmap_read(map, reg, &data->status_buf[b]);
360 	} else {
361 		/*
362 		 * Note we can't use ->get_irq_reg() here because the offsets
363 		 * in 'subreg' are *not* interchangeable with indices.
364 		 */
365 		subreg = &chip->sub_reg_offsets[b];
366 		for (i = 0; i < subreg->num_regs; i++) {
367 			unsigned int offset = subreg->offset[i];
368 			unsigned int index = offset / map->reg_stride;
369 
370 			if (chip->not_fixed_stride)
371 				ret = regmap_read(map,
372 						chip->status_base + offset,
373 						&data->status_buf[b]);
374 			else
375 				ret = regmap_read(map,
376 						chip->status_base + offset,
377 						&data->status_buf[index]);
378 
379 			if (ret)
380 				break;
381 		}
382 	}
383 	return ret;
384 }
385 
386 static irqreturn_t regmap_irq_thread(int irq, void *d)
387 {
388 	struct regmap_irq_chip_data *data = d;
389 	const struct regmap_irq_chip *chip = data->chip;
390 	struct regmap *map = data->map;
391 	int ret, i;
392 	bool handled = false;
393 	u32 reg;
394 
395 	if (chip->handle_pre_irq)
396 		chip->handle_pre_irq(chip->irq_drv_data);
397 
398 	if (chip->runtime_pm) {
399 		ret = pm_runtime_get_sync(map->dev);
400 		if (ret < 0) {
401 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
402 				ret);
403 			goto exit;
404 		}
405 	}
406 
407 	/*
408 	 * Read only registers with active IRQs if the chip has 'main status
409 	 * register'. Else read in the statuses, using a single bulk read if
410 	 * possible in order to reduce the I/O overheads.
411 	 */
412 
413 	if (chip->no_status) {
414 		/* no status register so default to all active */
415 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
416 	} else if (chip->num_main_regs) {
417 		unsigned int max_main_bits;
418 		unsigned long size;
419 
420 		size = chip->num_regs * sizeof(unsigned int);
421 
422 		max_main_bits = (chip->num_main_status_bits) ?
423 				 chip->num_main_status_bits : chip->num_regs;
424 		/* Clear the status buf as we don't read all status regs */
425 		memset(data->status_buf, 0, size);
426 
427 		/* We could support bulk read for main status registers
428 		 * but I don't expect to see devices with really many main
429 		 * status registers so let's only support single reads for the
430 		 * sake of simplicity. and add bulk reads only if needed
431 		 */
432 		for (i = 0; i < chip->num_main_regs; i++) {
433 			/*
434 			 * For not_fixed_stride, don't use ->get_irq_reg().
435 			 * It would produce an incorrect result.
436 			 */
437 			if (data->chip->not_fixed_stride)
438 				reg = chip->main_status +
439 					i * map->reg_stride * data->irq_reg_stride;
440 			else
441 				reg = data->get_irq_reg(data,
442 							chip->main_status, i);
443 
444 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
445 			if (ret) {
446 				dev_err(map->dev,
447 					"Failed to read IRQ status %d\n",
448 					ret);
449 				goto exit;
450 			}
451 		}
452 
453 		/* Read sub registers with active IRQs */
454 		for (i = 0; i < chip->num_main_regs; i++) {
455 			unsigned int b;
456 			const unsigned long mreg = data->main_status_buf[i];
457 
458 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
459 				if (i * map->format.val_bytes * 8 + b >
460 				    max_main_bits)
461 					break;
462 				ret = read_sub_irq_data(data, b);
463 
464 				if (ret != 0) {
465 					dev_err(map->dev,
466 						"Failed to read IRQ status %d\n",
467 						ret);
468 					goto exit;
469 				}
470 			}
471 
472 		}
473 	} else if (regmap_irq_can_bulk_read_status(data)) {
474 
475 		u8 *buf8 = data->status_reg_buf;
476 		u16 *buf16 = data->status_reg_buf;
477 		u32 *buf32 = data->status_reg_buf;
478 
479 		BUG_ON(!data->status_reg_buf);
480 
481 		ret = regmap_bulk_read(map, chip->status_base,
482 				       data->status_reg_buf,
483 				       chip->num_regs);
484 		if (ret != 0) {
485 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
486 				ret);
487 			goto exit;
488 		}
489 
490 		for (i = 0; i < data->chip->num_regs; i++) {
491 			switch (map->format.val_bytes) {
492 			case 1:
493 				data->status_buf[i] = buf8[i];
494 				break;
495 			case 2:
496 				data->status_buf[i] = buf16[i];
497 				break;
498 			case 4:
499 				data->status_buf[i] = buf32[i];
500 				break;
501 			default:
502 				BUG();
503 				goto exit;
504 			}
505 		}
506 
507 	} else {
508 		for (i = 0; i < data->chip->num_regs; i++) {
509 			unsigned int reg = data->get_irq_reg(data,
510 					data->chip->status_base, i);
511 			ret = regmap_read(map, reg, &data->status_buf[i]);
512 
513 			if (ret != 0) {
514 				dev_err(map->dev,
515 					"Failed to read IRQ status: %d\n",
516 					ret);
517 				goto exit;
518 			}
519 		}
520 	}
521 
522 	if (chip->status_invert)
523 		for (i = 0; i < data->chip->num_regs; i++)
524 			data->status_buf[i] = ~data->status_buf[i];
525 
526 	/*
527 	 * Ignore masked IRQs and ack if we need to; we ack early so
528 	 * there is no race between handling and acknowledging the
529 	 * interrupt.  We assume that typically few of the interrupts
530 	 * will fire simultaneously so don't worry about overhead from
531 	 * doing a write per register.
532 	 */
533 	for (i = 0; i < data->chip->num_regs; i++) {
534 		data->status_buf[i] &= ~data->mask_buf[i];
535 
536 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
537 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
538 
539 			if (chip->ack_invert)
540 				ret = regmap_write(map, reg,
541 						~data->status_buf[i]);
542 			else
543 				ret = regmap_write(map, reg,
544 						data->status_buf[i]);
545 			if (chip->clear_ack) {
546 				if (chip->ack_invert && !ret)
547 					ret = regmap_write(map, reg, UINT_MAX);
548 				else if (!ret)
549 					ret = regmap_write(map, reg, 0);
550 			}
551 			if (ret != 0)
552 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
553 					reg, ret);
554 		}
555 	}
556 
557 	for (i = 0; i < chip->num_irqs; i++) {
558 		if (data->status_buf[chip->irqs[i].reg_offset /
559 				     map->reg_stride] & chip->irqs[i].mask) {
560 			handle_nested_irq(irq_find_mapping(data->domain, i));
561 			handled = true;
562 		}
563 	}
564 
565 exit:
566 	if (chip->runtime_pm)
567 		pm_runtime_put(map->dev);
568 
569 	if (chip->handle_post_irq)
570 		chip->handle_post_irq(chip->irq_drv_data);
571 
572 	if (handled)
573 		return IRQ_HANDLED;
574 	else
575 		return IRQ_NONE;
576 }
577 
578 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
579 			  irq_hw_number_t hw)
580 {
581 	struct regmap_irq_chip_data *data = h->host_data;
582 
583 	irq_set_chip_data(virq, data);
584 	irq_set_chip(virq, &data->irq_chip);
585 	irq_set_nested_thread(virq, 1);
586 	irq_set_parent(virq, data->irq);
587 	irq_set_noprobe(virq);
588 
589 	return 0;
590 }
591 
592 static const struct irq_domain_ops regmap_domain_ops = {
593 	.map	= regmap_irq_map,
594 	.xlate	= irq_domain_xlate_onetwocell,
595 };
596 
597 /**
598  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
599  * @data: Data for the &struct regmap_irq_chip
600  * @base: Base register
601  * @index: Register index
602  *
603  * Returns the register address corresponding to the given @base and @index
604  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
605  */
606 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
607 					   unsigned int base, int index)
608 {
609 	const struct regmap_irq_chip *chip = data->chip;
610 	struct regmap *map = data->map;
611 
612 	/*
613 	 * FIXME: This is for backward compatibility and should be removed
614 	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
615 	 */
616 	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
617 		struct regmap_irq_sub_irq_map *subreg;
618 
619 		subreg = &chip->sub_reg_offsets[0];
620 		return base + subreg->offset[0];
621 	}
622 
623 	return base + index * map->reg_stride * data->irq_reg_stride;
624 }
625 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
626 
627 /**
628  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
629  * @buf: Buffer containing configuration register values, this is a 2D array of
630  *       `num_config_bases` rows, each of `num_config_regs` elements.
631  * @type: The requested IRQ type.
632  * @irq_data: The IRQ being configured.
633  * @idx: Index of the irq's config registers within each array `buf[i]`
634  * @irq_drv_data: Driver specific IRQ data
635  *
636  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
637  * chips with one config register. Register values are updated according to
638  * the &struct regmap_irq_type data associated with an IRQ.
639  */
640 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
641 				      const struct regmap_irq *irq_data,
642 				      int idx, void *irq_drv_data)
643 {
644 	const struct regmap_irq_type *t = &irq_data->type;
645 
646 	if (t->type_reg_mask)
647 		buf[0][idx] &= ~t->type_reg_mask;
648 	else
649 		buf[0][idx] &= ~(t->type_falling_val |
650 				 t->type_rising_val |
651 				 t->type_level_low_val |
652 				 t->type_level_high_val);
653 
654 	switch (type) {
655 	case IRQ_TYPE_EDGE_FALLING:
656 		buf[0][idx] |= t->type_falling_val;
657 		break;
658 
659 	case IRQ_TYPE_EDGE_RISING:
660 		buf[0][idx] |= t->type_rising_val;
661 		break;
662 
663 	case IRQ_TYPE_EDGE_BOTH:
664 		buf[0][idx] |= (t->type_falling_val |
665 				t->type_rising_val);
666 		break;
667 
668 	case IRQ_TYPE_LEVEL_HIGH:
669 		buf[0][idx] |= t->type_level_high_val;
670 		break;
671 
672 	case IRQ_TYPE_LEVEL_LOW:
673 		buf[0][idx] |= t->type_level_low_val;
674 		break;
675 
676 	default:
677 		return -EINVAL;
678 	}
679 
680 	return 0;
681 }
682 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
683 
684 /**
685  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
686  *
687  * @fwnode: The firmware node where the IRQ domain should be added to.
688  * @map: The regmap for the device.
689  * @irq: The IRQ the device uses to signal interrupts.
690  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
691  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
692  * @chip: Configuration for the interrupt controller.
693  * @data: Runtime data structure for the controller, allocated on success.
694  *
695  * Returns 0 on success or an errno on failure.
696  *
697  * In order for this to be efficient the chip really should use a
698  * register cache.  The chip driver is responsible for restoring the
699  * register values used by the IRQ controller over suspend and resume.
700  */
701 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
702 			       struct regmap *map, int irq,
703 			       int irq_flags, int irq_base,
704 			       const struct regmap_irq_chip *chip,
705 			       struct regmap_irq_chip_data **data)
706 {
707 	struct regmap_irq_chip_data *d;
708 	int i;
709 	int ret = -ENOMEM;
710 	int num_type_reg;
711 	int num_regs;
712 	u32 reg;
713 
714 	if (chip->num_regs <= 0)
715 		return -EINVAL;
716 
717 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
718 		return -EINVAL;
719 
720 	for (i = 0; i < chip->num_irqs; i++) {
721 		if (chip->irqs[i].reg_offset % map->reg_stride)
722 			return -EINVAL;
723 		if (chip->irqs[i].reg_offset / map->reg_stride >=
724 		    chip->num_regs)
725 			return -EINVAL;
726 	}
727 
728 	if (chip->not_fixed_stride) {
729 		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
730 
731 		for (i = 0; i < chip->num_regs; i++)
732 			if (chip->sub_reg_offsets[i].num_regs != 1)
733 				return -EINVAL;
734 	}
735 
736 	if (chip->num_type_reg)
737 		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
738 
739 	if (irq_base) {
740 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
741 		if (irq_base < 0) {
742 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
743 				 irq_base);
744 			return irq_base;
745 		}
746 	}
747 
748 	d = kzalloc(sizeof(*d), GFP_KERNEL);
749 	if (!d)
750 		return -ENOMEM;
751 
752 	if (chip->num_main_regs) {
753 		d->main_status_buf = kcalloc(chip->num_main_regs,
754 					     sizeof(*d->main_status_buf),
755 					     GFP_KERNEL);
756 
757 		if (!d->main_status_buf)
758 			goto err_alloc;
759 	}
760 
761 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
762 				GFP_KERNEL);
763 	if (!d->status_buf)
764 		goto err_alloc;
765 
766 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
767 			      GFP_KERNEL);
768 	if (!d->mask_buf)
769 		goto err_alloc;
770 
771 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
772 				  GFP_KERNEL);
773 	if (!d->mask_buf_def)
774 		goto err_alloc;
775 
776 	if (chip->wake_base) {
777 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
778 				      GFP_KERNEL);
779 		if (!d->wake_buf)
780 			goto err_alloc;
781 	}
782 
783 	/*
784 	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
785 	 * to maintain backward compatibility.
786 	 */
787 	num_type_reg = chip->num_config_regs ? chip->num_config_regs
788 			: chip->num_type_reg;
789 	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
790 	if (num_regs) {
791 		d->type_buf_def = kcalloc(num_regs,
792 					  sizeof(*d->type_buf_def), GFP_KERNEL);
793 		if (!d->type_buf_def)
794 			goto err_alloc;
795 
796 		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
797 				      GFP_KERNEL);
798 		if (!d->type_buf)
799 			goto err_alloc;
800 	}
801 
802 	if (chip->num_config_bases && chip->num_config_regs) {
803 		/*
804 		 * Create config_buf[num_config_bases][num_config_regs]
805 		 */
806 		d->config_buf = kcalloc(chip->num_config_bases,
807 					sizeof(*d->config_buf), GFP_KERNEL);
808 		if (!d->config_buf)
809 			goto err_alloc;
810 
811 		for (i = 0; i < chip->num_config_regs; i++) {
812 			d->config_buf[i] = kcalloc(chip->num_config_regs,
813 						   sizeof(**d->config_buf),
814 						   GFP_KERNEL);
815 			if (!d->config_buf[i])
816 				goto err_alloc;
817 		}
818 	}
819 
820 	d->irq_chip = regmap_irq_chip;
821 	d->irq_chip.name = chip->name;
822 	d->irq = irq;
823 	d->map = map;
824 	d->chip = chip;
825 	d->irq_base = irq_base;
826 
827 	if (chip->mask_base && chip->unmask_base &&
828 	    !chip->mask_unmask_non_inverted) {
829 		/*
830 		 * Chips that specify both mask_base and unmask_base used to
831 		 * get inverted mask behavior by default, with no way to ask
832 		 * for the normal, non-inverted behavior. This "inverted by
833 		 * default" behavior is deprecated, but we have to support it
834 		 * until existing drivers have been fixed.
835 		 *
836 		 * Existing drivers should be updated by swapping mask_base
837 		 * and unmask_base and setting mask_unmask_non_inverted=true.
838 		 * New drivers should always set the flag.
839 		 */
840 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
841 
842 		d->mask_base = chip->unmask_base;
843 		d->unmask_base = chip->mask_base;
844 	} else {
845 		d->mask_base = chip->mask_base;
846 		d->unmask_base = chip->unmask_base;
847 	}
848 
849 	if (chip->irq_reg_stride)
850 		d->irq_reg_stride = chip->irq_reg_stride;
851 	else
852 		d->irq_reg_stride = 1;
853 
854 	if (chip->get_irq_reg)
855 		d->get_irq_reg = chip->get_irq_reg;
856 	else
857 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
858 
859 	if (regmap_irq_can_bulk_read_status(d)) {
860 		d->status_reg_buf = kmalloc_array(chip->num_regs,
861 						  map->format.val_bytes,
862 						  GFP_KERNEL);
863 		if (!d->status_reg_buf)
864 			goto err_alloc;
865 	}
866 
867 	mutex_init(&d->lock);
868 
869 	for (i = 0; i < chip->num_irqs; i++)
870 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
871 			|= chip->irqs[i].mask;
872 
873 	/* Mask all the interrupts by default */
874 	for (i = 0; i < chip->num_regs; i++) {
875 		d->mask_buf[i] = d->mask_buf_def[i];
876 
877 		if (d->mask_base) {
878 			if (chip->handle_mask_sync) {
879 				ret = chip->handle_mask_sync(i,
880 							     d->mask_buf_def[i],
881 							     d->mask_buf[i],
882 							     chip->irq_drv_data);
883 				if (ret)
884 					goto err_alloc;
885 			} else {
886 				reg = d->get_irq_reg(d, d->mask_base, i);
887 				ret = regmap_update_bits(d->map, reg,
888 						d->mask_buf_def[i],
889 						d->mask_buf[i]);
890 				if (ret) {
891 					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
892 						reg, ret);
893 					goto err_alloc;
894 				}
895 			}
896 		}
897 
898 		if (d->unmask_base) {
899 			reg = d->get_irq_reg(d, d->unmask_base, i);
900 			ret = regmap_update_bits(d->map, reg,
901 					d->mask_buf_def[i], ~d->mask_buf[i]);
902 			if (ret) {
903 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
904 					reg, ret);
905 				goto err_alloc;
906 			}
907 		}
908 
909 		if (!chip->init_ack_masked)
910 			continue;
911 
912 		/* Ack masked but set interrupts */
913 		if (d->chip->no_status) {
914 			/* no status register so default to all active */
915 			d->status_buf[i] = GENMASK(31, 0);
916 		} else {
917 			reg = d->get_irq_reg(d, d->chip->status_base, i);
918 			ret = regmap_read(map, reg, &d->status_buf[i]);
919 			if (ret != 0) {
920 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
921 					ret);
922 				goto err_alloc;
923 			}
924 		}
925 
926 		if (chip->status_invert)
927 			d->status_buf[i] = ~d->status_buf[i];
928 
929 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
930 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
931 			if (chip->ack_invert)
932 				ret = regmap_write(map, reg,
933 					~(d->status_buf[i] & d->mask_buf[i]));
934 			else
935 				ret = regmap_write(map, reg,
936 					d->status_buf[i] & d->mask_buf[i]);
937 			if (chip->clear_ack) {
938 				if (chip->ack_invert && !ret)
939 					ret = regmap_write(map, reg, UINT_MAX);
940 				else if (!ret)
941 					ret = regmap_write(map, reg, 0);
942 			}
943 			if (ret != 0) {
944 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
945 					reg, ret);
946 				goto err_alloc;
947 			}
948 		}
949 	}
950 
951 	/* Wake is disabled by default */
952 	if (d->wake_buf) {
953 		for (i = 0; i < chip->num_regs; i++) {
954 			d->wake_buf[i] = d->mask_buf_def[i];
955 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
956 
957 			if (chip->wake_invert)
958 				ret = regmap_update_bits(d->map, reg,
959 							 d->mask_buf_def[i],
960 							 0);
961 			else
962 				ret = regmap_update_bits(d->map, reg,
963 							 d->mask_buf_def[i],
964 							 d->wake_buf[i]);
965 			if (ret != 0) {
966 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
967 					reg, ret);
968 				goto err_alloc;
969 			}
970 		}
971 	}
972 
973 	if (chip->num_type_reg && !chip->type_in_mask) {
974 		for (i = 0; i < chip->num_type_reg; ++i) {
975 			reg = d->get_irq_reg(d, d->chip->type_base, i);
976 
977 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
978 
979 			if (ret) {
980 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
981 					reg, ret);
982 				goto err_alloc;
983 			}
984 		}
985 	}
986 
987 	if (irq_base)
988 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
989 						     irq_base, 0,
990 						     &regmap_domain_ops, d);
991 	else
992 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
993 						     &regmap_domain_ops, d);
994 	if (!d->domain) {
995 		dev_err(map->dev, "Failed to create IRQ domain\n");
996 		ret = -ENOMEM;
997 		goto err_alloc;
998 	}
999 
1000 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1001 				   irq_flags | IRQF_ONESHOT,
1002 				   chip->name, d);
1003 	if (ret != 0) {
1004 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1005 			irq, chip->name, ret);
1006 		goto err_domain;
1007 	}
1008 
1009 	*data = d;
1010 
1011 	return 0;
1012 
1013 err_domain:
1014 	/* Should really dispose of the domain but... */
1015 err_alloc:
1016 	kfree(d->type_buf);
1017 	kfree(d->type_buf_def);
1018 	kfree(d->wake_buf);
1019 	kfree(d->mask_buf_def);
1020 	kfree(d->mask_buf);
1021 	kfree(d->status_buf);
1022 	kfree(d->status_reg_buf);
1023 	if (d->config_buf) {
1024 		for (i = 0; i < chip->num_config_bases; i++)
1025 			kfree(d->config_buf[i]);
1026 		kfree(d->config_buf);
1027 	}
1028 	kfree(d);
1029 	return ret;
1030 }
1031 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1032 
1033 /**
1034  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1035  *
1036  * @map: The regmap for the device.
1037  * @irq: The IRQ the device uses to signal interrupts.
1038  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1039  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1040  * @chip: Configuration for the interrupt controller.
1041  * @data: Runtime data structure for the controller, allocated on success.
1042  *
1043  * Returns 0 on success or an errno on failure.
1044  *
1045  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1046  * node of the regmap is used.
1047  */
1048 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1049 			int irq_base, const struct regmap_irq_chip *chip,
1050 			struct regmap_irq_chip_data **data)
1051 {
1052 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1053 					  irq_flags, irq_base, chip, data);
1054 }
1055 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1056 
1057 /**
1058  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1059  *
1060  * @irq: Primary IRQ for the device
1061  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1062  *
1063  * This function also disposes of all mapped IRQs on the chip.
1064  */
1065 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1066 {
1067 	unsigned int virq;
1068 	int i, hwirq;
1069 
1070 	if (!d)
1071 		return;
1072 
1073 	free_irq(irq, d);
1074 
1075 	/* Dispose all virtual irq from irq domain before removing it */
1076 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1077 		/* Ignore hwirq if holes in the IRQ list */
1078 		if (!d->chip->irqs[hwirq].mask)
1079 			continue;
1080 
1081 		/*
1082 		 * Find the virtual irq of hwirq on chip and if it is
1083 		 * there then dispose it
1084 		 */
1085 		virq = irq_find_mapping(d->domain, hwirq);
1086 		if (virq)
1087 			irq_dispose_mapping(virq);
1088 	}
1089 
1090 	irq_domain_remove(d->domain);
1091 	kfree(d->type_buf);
1092 	kfree(d->type_buf_def);
1093 	kfree(d->wake_buf);
1094 	kfree(d->mask_buf_def);
1095 	kfree(d->mask_buf);
1096 	kfree(d->status_reg_buf);
1097 	kfree(d->status_buf);
1098 	if (d->config_buf) {
1099 		for (i = 0; i < d->chip->num_config_bases; i++)
1100 			kfree(d->config_buf[i]);
1101 		kfree(d->config_buf);
1102 	}
1103 	kfree(d);
1104 }
1105 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1106 
1107 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1108 {
1109 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1110 
1111 	regmap_del_irq_chip(d->irq, d);
1112 }
1113 
1114 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1115 
1116 {
1117 	struct regmap_irq_chip_data **r = res;
1118 
1119 	if (!r || !*r) {
1120 		WARN_ON(!r || !*r);
1121 		return 0;
1122 	}
1123 	return *r == data;
1124 }
1125 
1126 /**
1127  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1128  *
1129  * @dev: The device pointer on which irq_chip belongs to.
1130  * @fwnode: The firmware node where the IRQ domain should be added to.
1131  * @map: The regmap for the device.
1132  * @irq: The IRQ the device uses to signal interrupts
1133  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1134  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1135  * @chip: Configuration for the interrupt controller.
1136  * @data: Runtime data structure for the controller, allocated on success
1137  *
1138  * Returns 0 on success or an errno on failure.
1139  *
1140  * The &regmap_irq_chip_data will be automatically released when the device is
1141  * unbound.
1142  */
1143 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1144 				    struct fwnode_handle *fwnode,
1145 				    struct regmap *map, int irq,
1146 				    int irq_flags, int irq_base,
1147 				    const struct regmap_irq_chip *chip,
1148 				    struct regmap_irq_chip_data **data)
1149 {
1150 	struct regmap_irq_chip_data **ptr, *d;
1151 	int ret;
1152 
1153 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1154 			   GFP_KERNEL);
1155 	if (!ptr)
1156 		return -ENOMEM;
1157 
1158 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1159 					 chip, &d);
1160 	if (ret < 0) {
1161 		devres_free(ptr);
1162 		return ret;
1163 	}
1164 
1165 	*ptr = d;
1166 	devres_add(dev, ptr);
1167 	*data = d;
1168 	return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1171 
1172 /**
1173  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1174  *
1175  * @dev: The device pointer on which irq_chip belongs to.
1176  * @map: The regmap for the device.
1177  * @irq: The IRQ the device uses to signal interrupts
1178  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1179  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1180  * @chip: Configuration for the interrupt controller.
1181  * @data: Runtime data structure for the controller, allocated on success
1182  *
1183  * Returns 0 on success or an errno on failure.
1184  *
1185  * The &regmap_irq_chip_data will be automatically released when the device is
1186  * unbound.
1187  */
1188 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1189 			     int irq_flags, int irq_base,
1190 			     const struct regmap_irq_chip *chip,
1191 			     struct regmap_irq_chip_data **data)
1192 {
1193 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1194 					       irq, irq_flags, irq_base, chip,
1195 					       data);
1196 }
1197 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1198 
1199 /**
1200  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1201  *
1202  * @dev: Device for which the resource was allocated.
1203  * @irq: Primary IRQ for the device.
1204  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1205  *
1206  * A resource managed version of regmap_del_irq_chip().
1207  */
1208 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1209 			      struct regmap_irq_chip_data *data)
1210 {
1211 	int rc;
1212 
1213 	WARN_ON(irq != data->irq);
1214 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1215 			    devm_regmap_irq_chip_match, data);
1216 
1217 	if (rc != 0)
1218 		WARN_ON(rc);
1219 }
1220 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1221 
1222 /**
1223  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1224  *
1225  * @data: regmap irq controller to operate on.
1226  *
1227  * Useful for drivers to request their own IRQs.
1228  */
1229 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1230 {
1231 	WARN_ON(!data->irq_base);
1232 	return data->irq_base;
1233 }
1234 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1235 
1236 /**
1237  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1238  *
1239  * @data: regmap irq controller to operate on.
1240  * @irq: index of the interrupt requested in the chip IRQs.
1241  *
1242  * Useful for drivers to request their own IRQs.
1243  */
1244 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1245 {
1246 	/* Handle holes in the IRQ list */
1247 	if (!data->chip->irqs[irq].mask)
1248 		return -EINVAL;
1249 
1250 	return irq_create_mapping(data->domain, irq);
1251 }
1252 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1253 
1254 /**
1255  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1256  *
1257  * @data: regmap_irq controller to operate on.
1258  *
1259  * Useful for drivers to request their own IRQs and for integration
1260  * with subsystems.  For ease of integration NULL is accepted as a
1261  * domain, allowing devices to just call this even if no domain is
1262  * allocated.
1263  */
1264 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1265 {
1266 	if (data)
1267 		return data->domain;
1268 	else
1269 		return NULL;
1270 }
1271 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1272