1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // regmap based irq_chip 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/irqdomain.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 18 #include "internal.h" 19 20 struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 unsigned int mask_base; 34 unsigned int unmask_base; 35 36 void *status_reg_buf; 37 unsigned int *main_status_buf; 38 unsigned int *status_buf; 39 unsigned int *mask_buf; 40 unsigned int *mask_buf_def; 41 unsigned int *wake_buf; 42 unsigned int *type_buf; 43 unsigned int *type_buf_def; 44 unsigned int **config_buf; 45 46 unsigned int irq_reg_stride; 47 48 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, 49 unsigned int base, int index); 50 51 unsigned int clear_status:1; 52 }; 53 54 static inline const 55 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 56 int irq) 57 { 58 return &data->chip->irqs[irq]; 59 } 60 61 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data) 62 { 63 struct regmap *map = data->map; 64 65 /* 66 * While possible that a user-defined ->get_irq_reg() callback might 67 * be linear enough to support bulk reads, most of the time it won't. 68 * Therefore only allow them if the default callback is being used. 69 */ 70 return data->irq_reg_stride == 1 && map->reg_stride == 1 && 71 data->get_irq_reg == regmap_irq_get_irq_reg_linear && 72 !map->use_single_read; 73 } 74 75 static void regmap_irq_lock(struct irq_data *data) 76 { 77 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 78 79 mutex_lock(&d->lock); 80 } 81 82 static void regmap_irq_sync_unlock(struct irq_data *data) 83 { 84 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 85 struct regmap *map = d->map; 86 int i, j, ret; 87 u32 reg; 88 u32 val; 89 90 if (d->chip->runtime_pm) { 91 ret = pm_runtime_get_sync(map->dev); 92 if (ret < 0) 93 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 94 ret); 95 } 96 97 if (d->clear_status) { 98 for (i = 0; i < d->chip->num_regs; i++) { 99 reg = d->get_irq_reg(d, d->chip->status_base, i); 100 101 ret = regmap_read(map, reg, &val); 102 if (ret) 103 dev_err(d->map->dev, 104 "Failed to clear the interrupt status bits\n"); 105 } 106 107 d->clear_status = false; 108 } 109 110 /* 111 * If there's been a change in the mask write it back to the 112 * hardware. We rely on the use of the regmap core cache to 113 * suppress pointless writes. 114 */ 115 for (i = 0; i < d->chip->num_regs; i++) { 116 if (d->chip->handle_mask_sync) 117 d->chip->handle_mask_sync(i, d->mask_buf_def[i], 118 d->mask_buf[i], 119 d->chip->irq_drv_data); 120 121 if (d->mask_base && !d->chip->handle_mask_sync) { 122 reg = d->get_irq_reg(d, d->mask_base, i); 123 ret = regmap_update_bits(d->map, reg, 124 d->mask_buf_def[i], 125 d->mask_buf[i]); 126 if (ret) 127 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg); 128 } 129 130 if (d->unmask_base && !d->chip->handle_mask_sync) { 131 reg = d->get_irq_reg(d, d->unmask_base, i); 132 ret = regmap_update_bits(d->map, reg, 133 d->mask_buf_def[i], ~d->mask_buf[i]); 134 if (ret) 135 dev_err(d->map->dev, "Failed to sync masks in %x\n", 136 reg); 137 } 138 139 reg = d->get_irq_reg(d, d->chip->wake_base, i); 140 if (d->wake_buf) { 141 if (d->chip->wake_invert) 142 ret = regmap_update_bits(d->map, reg, 143 d->mask_buf_def[i], 144 ~d->wake_buf[i]); 145 else 146 ret = regmap_update_bits(d->map, reg, 147 d->mask_buf_def[i], 148 d->wake_buf[i]); 149 if (ret != 0) 150 dev_err(d->map->dev, 151 "Failed to sync wakes in %x: %d\n", 152 reg, ret); 153 } 154 155 if (!d->chip->init_ack_masked) 156 continue; 157 /* 158 * Ack all the masked interrupts unconditionally, 159 * OR if there is masked interrupt which hasn't been Acked, 160 * it'll be ignored in irq handler, then may introduce irq storm 161 */ 162 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 163 reg = d->get_irq_reg(d, d->chip->ack_base, i); 164 165 /* some chips ack by write 0 */ 166 if (d->chip->ack_invert) 167 ret = regmap_write(map, reg, ~d->mask_buf[i]); 168 else 169 ret = regmap_write(map, reg, d->mask_buf[i]); 170 if (d->chip->clear_ack) { 171 if (d->chip->ack_invert && !ret) 172 ret = regmap_write(map, reg, UINT_MAX); 173 else if (!ret) 174 ret = regmap_write(map, reg, 0); 175 } 176 if (ret != 0) 177 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 178 reg, ret); 179 } 180 } 181 182 for (i = 0; i < d->chip->num_config_bases; i++) { 183 for (j = 0; j < d->chip->num_config_regs; j++) { 184 reg = d->get_irq_reg(d, d->chip->config_base[i], j); 185 ret = regmap_write(map, reg, d->config_buf[i][j]); 186 if (ret) 187 dev_err(d->map->dev, 188 "Failed to write config %x: %d\n", 189 reg, ret); 190 } 191 } 192 193 if (d->chip->runtime_pm) 194 pm_runtime_put(map->dev); 195 196 /* If we've changed our wakeup count propagate it to the parent */ 197 if (d->wake_count < 0) 198 for (i = d->wake_count; i < 0; i++) 199 irq_set_irq_wake(d->irq, 0); 200 else if (d->wake_count > 0) 201 for (i = 0; i < d->wake_count; i++) 202 irq_set_irq_wake(d->irq, 1); 203 204 d->wake_count = 0; 205 206 mutex_unlock(&d->lock); 207 } 208 209 static void regmap_irq_enable(struct irq_data *data) 210 { 211 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 212 struct regmap *map = d->map; 213 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 214 unsigned int reg = irq_data->reg_offset / map->reg_stride; 215 unsigned int mask; 216 217 /* 218 * The type_in_mask flag means that the underlying hardware uses 219 * separate mask bits for each interrupt trigger type, but we want 220 * to have a single logical interrupt with a configurable type. 221 * 222 * If the interrupt we're enabling defines any supported types 223 * then instead of using the regular mask bits for this interrupt, 224 * use the value previously written to the type buffer at the 225 * corresponding offset in regmap_irq_set_type(). 226 */ 227 if (d->chip->type_in_mask && irq_data->type.types_supported) 228 mask = d->type_buf[reg] & irq_data->mask; 229 else 230 mask = irq_data->mask; 231 232 if (d->chip->clear_on_unmask) 233 d->clear_status = true; 234 235 d->mask_buf[reg] &= ~mask; 236 } 237 238 static void regmap_irq_disable(struct irq_data *data) 239 { 240 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 241 struct regmap *map = d->map; 242 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 243 244 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 245 } 246 247 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 248 { 249 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 250 struct regmap *map = d->map; 251 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 252 int reg, ret; 253 const struct regmap_irq_type *t = &irq_data->type; 254 255 if ((t->types_supported & type) != type) 256 return 0; 257 258 reg = t->type_reg_offset / map->reg_stride; 259 260 if (d->chip->type_in_mask) { 261 ret = regmap_irq_set_type_config_simple(&d->type_buf, type, 262 irq_data, reg, d->chip->irq_drv_data); 263 if (ret) 264 return ret; 265 } 266 267 if (d->chip->set_type_config) { 268 ret = d->chip->set_type_config(d->config_buf, type, irq_data, 269 reg, d->chip->irq_drv_data); 270 if (ret) 271 return ret; 272 } 273 274 return 0; 275 } 276 277 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 278 { 279 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 280 struct regmap *map = d->map; 281 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 282 283 if (on) { 284 if (d->wake_buf) 285 d->wake_buf[irq_data->reg_offset / map->reg_stride] 286 &= ~irq_data->mask; 287 d->wake_count++; 288 } else { 289 if (d->wake_buf) 290 d->wake_buf[irq_data->reg_offset / map->reg_stride] 291 |= irq_data->mask; 292 d->wake_count--; 293 } 294 295 return 0; 296 } 297 298 static const struct irq_chip regmap_irq_chip = { 299 .irq_bus_lock = regmap_irq_lock, 300 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 301 .irq_disable = regmap_irq_disable, 302 .irq_enable = regmap_irq_enable, 303 .irq_set_type = regmap_irq_set_type, 304 .irq_set_wake = regmap_irq_set_wake, 305 }; 306 307 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 308 unsigned int b) 309 { 310 const struct regmap_irq_chip *chip = data->chip; 311 struct regmap *map = data->map; 312 struct regmap_irq_sub_irq_map *subreg; 313 unsigned int reg; 314 int i, ret = 0; 315 316 if (!chip->sub_reg_offsets) { 317 reg = data->get_irq_reg(data, chip->status_base, b); 318 ret = regmap_read(map, reg, &data->status_buf[b]); 319 } else { 320 /* 321 * Note we can't use ->get_irq_reg() here because the offsets 322 * in 'subreg' are *not* interchangeable with indices. 323 */ 324 subreg = &chip->sub_reg_offsets[b]; 325 for (i = 0; i < subreg->num_regs; i++) { 326 unsigned int offset = subreg->offset[i]; 327 unsigned int index = offset / map->reg_stride; 328 329 ret = regmap_read(map, chip->status_base + offset, 330 &data->status_buf[index]); 331 if (ret) 332 break; 333 } 334 } 335 return ret; 336 } 337 338 static irqreturn_t regmap_irq_thread(int irq, void *d) 339 { 340 struct regmap_irq_chip_data *data = d; 341 const struct regmap_irq_chip *chip = data->chip; 342 struct regmap *map = data->map; 343 int ret, i; 344 bool handled = false; 345 u32 reg; 346 347 if (chip->handle_pre_irq) 348 chip->handle_pre_irq(chip->irq_drv_data); 349 350 if (chip->runtime_pm) { 351 ret = pm_runtime_get_sync(map->dev); 352 if (ret < 0) { 353 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 354 ret); 355 goto exit; 356 } 357 } 358 359 /* 360 * Read only registers with active IRQs if the chip has 'main status 361 * register'. Else read in the statuses, using a single bulk read if 362 * possible in order to reduce the I/O overheads. 363 */ 364 365 if (chip->no_status) { 366 /* no status register so default to all active */ 367 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs); 368 } else if (chip->num_main_regs) { 369 unsigned int max_main_bits; 370 unsigned long size; 371 372 size = chip->num_regs * sizeof(unsigned int); 373 374 max_main_bits = (chip->num_main_status_bits) ? 375 chip->num_main_status_bits : chip->num_regs; 376 /* Clear the status buf as we don't read all status regs */ 377 memset(data->status_buf, 0, size); 378 379 /* We could support bulk read for main status registers 380 * but I don't expect to see devices with really many main 381 * status registers so let's only support single reads for the 382 * sake of simplicity. and add bulk reads only if needed 383 */ 384 for (i = 0; i < chip->num_main_regs; i++) { 385 reg = data->get_irq_reg(data, chip->main_status, i); 386 ret = regmap_read(map, reg, &data->main_status_buf[i]); 387 if (ret) { 388 dev_err(map->dev, 389 "Failed to read IRQ status %d\n", 390 ret); 391 goto exit; 392 } 393 } 394 395 /* Read sub registers with active IRQs */ 396 for (i = 0; i < chip->num_main_regs; i++) { 397 unsigned int b; 398 const unsigned long mreg = data->main_status_buf[i]; 399 400 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 401 if (i * map->format.val_bytes * 8 + b > 402 max_main_bits) 403 break; 404 ret = read_sub_irq_data(data, b); 405 406 if (ret != 0) { 407 dev_err(map->dev, 408 "Failed to read IRQ status %d\n", 409 ret); 410 goto exit; 411 } 412 } 413 414 } 415 } else if (regmap_irq_can_bulk_read_status(data)) { 416 417 u8 *buf8 = data->status_reg_buf; 418 u16 *buf16 = data->status_reg_buf; 419 u32 *buf32 = data->status_reg_buf; 420 421 BUG_ON(!data->status_reg_buf); 422 423 ret = regmap_bulk_read(map, chip->status_base, 424 data->status_reg_buf, 425 chip->num_regs); 426 if (ret != 0) { 427 dev_err(map->dev, "Failed to read IRQ status: %d\n", 428 ret); 429 goto exit; 430 } 431 432 for (i = 0; i < data->chip->num_regs; i++) { 433 switch (map->format.val_bytes) { 434 case 1: 435 data->status_buf[i] = buf8[i]; 436 break; 437 case 2: 438 data->status_buf[i] = buf16[i]; 439 break; 440 case 4: 441 data->status_buf[i] = buf32[i]; 442 break; 443 default: 444 BUG(); 445 goto exit; 446 } 447 } 448 449 } else { 450 for (i = 0; i < data->chip->num_regs; i++) { 451 unsigned int reg = data->get_irq_reg(data, 452 data->chip->status_base, i); 453 ret = regmap_read(map, reg, &data->status_buf[i]); 454 455 if (ret != 0) { 456 dev_err(map->dev, 457 "Failed to read IRQ status: %d\n", 458 ret); 459 goto exit; 460 } 461 } 462 } 463 464 if (chip->status_invert) 465 for (i = 0; i < data->chip->num_regs; i++) 466 data->status_buf[i] = ~data->status_buf[i]; 467 468 /* 469 * Ignore masked IRQs and ack if we need to; we ack early so 470 * there is no race between handling and acknowledging the 471 * interrupt. We assume that typically few of the interrupts 472 * will fire simultaneously so don't worry about overhead from 473 * doing a write per register. 474 */ 475 for (i = 0; i < data->chip->num_regs; i++) { 476 data->status_buf[i] &= ~data->mask_buf[i]; 477 478 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 479 reg = data->get_irq_reg(data, data->chip->ack_base, i); 480 481 if (chip->ack_invert) 482 ret = regmap_write(map, reg, 483 ~data->status_buf[i]); 484 else 485 ret = regmap_write(map, reg, 486 data->status_buf[i]); 487 if (chip->clear_ack) { 488 if (chip->ack_invert && !ret) 489 ret = regmap_write(map, reg, UINT_MAX); 490 else if (!ret) 491 ret = regmap_write(map, reg, 0); 492 } 493 if (ret != 0) 494 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 495 reg, ret); 496 } 497 } 498 499 for (i = 0; i < chip->num_irqs; i++) { 500 if (data->status_buf[chip->irqs[i].reg_offset / 501 map->reg_stride] & chip->irqs[i].mask) { 502 handle_nested_irq(irq_find_mapping(data->domain, i)); 503 handled = true; 504 } 505 } 506 507 exit: 508 if (chip->runtime_pm) 509 pm_runtime_put(map->dev); 510 511 if (chip->handle_post_irq) 512 chip->handle_post_irq(chip->irq_drv_data); 513 514 if (handled) 515 return IRQ_HANDLED; 516 else 517 return IRQ_NONE; 518 } 519 520 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 521 irq_hw_number_t hw) 522 { 523 struct regmap_irq_chip_data *data = h->host_data; 524 525 irq_set_chip_data(virq, data); 526 irq_set_chip(virq, &data->irq_chip); 527 irq_set_nested_thread(virq, 1); 528 irq_set_parent(virq, data->irq); 529 irq_set_noprobe(virq); 530 531 return 0; 532 } 533 534 static const struct irq_domain_ops regmap_domain_ops = { 535 .map = regmap_irq_map, 536 .xlate = irq_domain_xlate_onetwocell, 537 }; 538 539 /** 540 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback. 541 * @data: Data for the &struct regmap_irq_chip 542 * @base: Base register 543 * @index: Register index 544 * 545 * Returns the register address corresponding to the given @base and @index 546 * by the formula ``base + index * regmap_stride * irq_reg_stride``. 547 */ 548 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, 549 unsigned int base, int index) 550 { 551 struct regmap *map = data->map; 552 553 return base + index * map->reg_stride * data->irq_reg_stride; 554 } 555 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear); 556 557 /** 558 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback. 559 * @buf: Buffer containing configuration register values, this is a 2D array of 560 * `num_config_bases` rows, each of `num_config_regs` elements. 561 * @type: The requested IRQ type. 562 * @irq_data: The IRQ being configured. 563 * @idx: Index of the irq's config registers within each array `buf[i]` 564 * @irq_drv_data: Driver specific IRQ data 565 * 566 * This is a &struct regmap_irq_chip->set_type_config callback suitable for 567 * chips with one config register. Register values are updated according to 568 * the &struct regmap_irq_type data associated with an IRQ. 569 */ 570 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, 571 const struct regmap_irq *irq_data, 572 int idx, void *irq_drv_data) 573 { 574 const struct regmap_irq_type *t = &irq_data->type; 575 576 if (t->type_reg_mask) 577 buf[0][idx] &= ~t->type_reg_mask; 578 else 579 buf[0][idx] &= ~(t->type_falling_val | 580 t->type_rising_val | 581 t->type_level_low_val | 582 t->type_level_high_val); 583 584 switch (type) { 585 case IRQ_TYPE_EDGE_FALLING: 586 buf[0][idx] |= t->type_falling_val; 587 break; 588 589 case IRQ_TYPE_EDGE_RISING: 590 buf[0][idx] |= t->type_rising_val; 591 break; 592 593 case IRQ_TYPE_EDGE_BOTH: 594 buf[0][idx] |= (t->type_falling_val | 595 t->type_rising_val); 596 break; 597 598 case IRQ_TYPE_LEVEL_HIGH: 599 buf[0][idx] |= t->type_level_high_val; 600 break; 601 602 case IRQ_TYPE_LEVEL_LOW: 603 buf[0][idx] |= t->type_level_low_val; 604 break; 605 606 default: 607 return -EINVAL; 608 } 609 610 return 0; 611 } 612 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple); 613 614 /** 615 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 616 * 617 * @fwnode: The firmware node where the IRQ domain should be added to. 618 * @map: The regmap for the device. 619 * @irq: The IRQ the device uses to signal interrupts. 620 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 621 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 622 * @chip: Configuration for the interrupt controller. 623 * @data: Runtime data structure for the controller, allocated on success. 624 * 625 * Returns 0 on success or an errno on failure. 626 * 627 * In order for this to be efficient the chip really should use a 628 * register cache. The chip driver is responsible for restoring the 629 * register values used by the IRQ controller over suspend and resume. 630 */ 631 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 632 struct regmap *map, int irq, 633 int irq_flags, int irq_base, 634 const struct regmap_irq_chip *chip, 635 struct regmap_irq_chip_data **data) 636 { 637 struct regmap_irq_chip_data *d; 638 int i; 639 int ret = -ENOMEM; 640 u32 reg; 641 642 if (chip->num_regs <= 0) 643 return -EINVAL; 644 645 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 646 return -EINVAL; 647 648 for (i = 0; i < chip->num_irqs; i++) { 649 if (chip->irqs[i].reg_offset % map->reg_stride) 650 return -EINVAL; 651 if (chip->irqs[i].reg_offset / map->reg_stride >= 652 chip->num_regs) 653 return -EINVAL; 654 } 655 656 if (irq_base) { 657 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 658 if (irq_base < 0) { 659 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 660 irq_base); 661 return irq_base; 662 } 663 } 664 665 d = kzalloc(sizeof(*d), GFP_KERNEL); 666 if (!d) 667 return -ENOMEM; 668 669 if (chip->num_main_regs) { 670 d->main_status_buf = kcalloc(chip->num_main_regs, 671 sizeof(*d->main_status_buf), 672 GFP_KERNEL); 673 674 if (!d->main_status_buf) 675 goto err_alloc; 676 } 677 678 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf), 679 GFP_KERNEL); 680 if (!d->status_buf) 681 goto err_alloc; 682 683 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf), 684 GFP_KERNEL); 685 if (!d->mask_buf) 686 goto err_alloc; 687 688 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def), 689 GFP_KERNEL); 690 if (!d->mask_buf_def) 691 goto err_alloc; 692 693 if (chip->wake_base) { 694 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf), 695 GFP_KERNEL); 696 if (!d->wake_buf) 697 goto err_alloc; 698 } 699 700 if (chip->type_in_mask) { 701 d->type_buf_def = kcalloc(chip->num_regs, 702 sizeof(*d->type_buf_def), GFP_KERNEL); 703 if (!d->type_buf_def) 704 goto err_alloc; 705 706 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL); 707 if (!d->type_buf) 708 goto err_alloc; 709 } 710 711 if (chip->num_config_bases && chip->num_config_regs) { 712 /* 713 * Create config_buf[num_config_bases][num_config_regs] 714 */ 715 d->config_buf = kcalloc(chip->num_config_bases, 716 sizeof(*d->config_buf), GFP_KERNEL); 717 if (!d->config_buf) 718 goto err_alloc; 719 720 for (i = 0; i < chip->num_config_regs; i++) { 721 d->config_buf[i] = kcalloc(chip->num_config_regs, 722 sizeof(**d->config_buf), 723 GFP_KERNEL); 724 if (!d->config_buf[i]) 725 goto err_alloc; 726 } 727 } 728 729 d->irq_chip = regmap_irq_chip; 730 d->irq_chip.name = chip->name; 731 d->irq = irq; 732 d->map = map; 733 d->chip = chip; 734 d->irq_base = irq_base; 735 736 if (chip->mask_base && chip->unmask_base && 737 !chip->mask_unmask_non_inverted) { 738 /* 739 * Chips that specify both mask_base and unmask_base used to 740 * get inverted mask behavior by default, with no way to ask 741 * for the normal, non-inverted behavior. This "inverted by 742 * default" behavior is deprecated, but we have to support it 743 * until existing drivers have been fixed. 744 * 745 * Existing drivers should be updated by swapping mask_base 746 * and unmask_base and setting mask_unmask_non_inverted=true. 747 * New drivers should always set the flag. 748 */ 749 dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it"); 750 751 d->mask_base = chip->unmask_base; 752 d->unmask_base = chip->mask_base; 753 } else { 754 d->mask_base = chip->mask_base; 755 d->unmask_base = chip->unmask_base; 756 } 757 758 if (chip->irq_reg_stride) 759 d->irq_reg_stride = chip->irq_reg_stride; 760 else 761 d->irq_reg_stride = 1; 762 763 if (chip->get_irq_reg) 764 d->get_irq_reg = chip->get_irq_reg; 765 else 766 d->get_irq_reg = regmap_irq_get_irq_reg_linear; 767 768 if (regmap_irq_can_bulk_read_status(d)) { 769 d->status_reg_buf = kmalloc_array(chip->num_regs, 770 map->format.val_bytes, 771 GFP_KERNEL); 772 if (!d->status_reg_buf) 773 goto err_alloc; 774 } 775 776 mutex_init(&d->lock); 777 778 for (i = 0; i < chip->num_irqs; i++) 779 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 780 |= chip->irqs[i].mask; 781 782 /* Mask all the interrupts by default */ 783 for (i = 0; i < chip->num_regs; i++) { 784 d->mask_buf[i] = d->mask_buf_def[i]; 785 786 if (chip->handle_mask_sync) { 787 ret = chip->handle_mask_sync(i, d->mask_buf_def[i], 788 d->mask_buf[i], 789 chip->irq_drv_data); 790 if (ret) 791 goto err_alloc; 792 } 793 794 if (d->mask_base && !chip->handle_mask_sync) { 795 reg = d->get_irq_reg(d, d->mask_base, i); 796 ret = regmap_update_bits(d->map, reg, 797 d->mask_buf_def[i], 798 d->mask_buf[i]); 799 if (ret) { 800 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 801 reg, ret); 802 goto err_alloc; 803 } 804 } 805 806 if (d->unmask_base && !chip->handle_mask_sync) { 807 reg = d->get_irq_reg(d, d->unmask_base, i); 808 ret = regmap_update_bits(d->map, reg, 809 d->mask_buf_def[i], ~d->mask_buf[i]); 810 if (ret) { 811 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 812 reg, ret); 813 goto err_alloc; 814 } 815 } 816 817 if (!chip->init_ack_masked) 818 continue; 819 820 /* Ack masked but set interrupts */ 821 if (d->chip->no_status) { 822 /* no status register so default to all active */ 823 d->status_buf[i] = GENMASK(31, 0); 824 } else { 825 reg = d->get_irq_reg(d, d->chip->status_base, i); 826 ret = regmap_read(map, reg, &d->status_buf[i]); 827 if (ret != 0) { 828 dev_err(map->dev, "Failed to read IRQ status: %d\n", 829 ret); 830 goto err_alloc; 831 } 832 } 833 834 if (chip->status_invert) 835 d->status_buf[i] = ~d->status_buf[i]; 836 837 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 838 reg = d->get_irq_reg(d, d->chip->ack_base, i); 839 if (chip->ack_invert) 840 ret = regmap_write(map, reg, 841 ~(d->status_buf[i] & d->mask_buf[i])); 842 else 843 ret = regmap_write(map, reg, 844 d->status_buf[i] & d->mask_buf[i]); 845 if (chip->clear_ack) { 846 if (chip->ack_invert && !ret) 847 ret = regmap_write(map, reg, UINT_MAX); 848 else if (!ret) 849 ret = regmap_write(map, reg, 0); 850 } 851 if (ret != 0) { 852 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 853 reg, ret); 854 goto err_alloc; 855 } 856 } 857 } 858 859 /* Wake is disabled by default */ 860 if (d->wake_buf) { 861 for (i = 0; i < chip->num_regs; i++) { 862 d->wake_buf[i] = d->mask_buf_def[i]; 863 reg = d->get_irq_reg(d, d->chip->wake_base, i); 864 865 if (chip->wake_invert) 866 ret = regmap_update_bits(d->map, reg, 867 d->mask_buf_def[i], 868 0); 869 else 870 ret = regmap_update_bits(d->map, reg, 871 d->mask_buf_def[i], 872 d->wake_buf[i]); 873 if (ret != 0) { 874 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 875 reg, ret); 876 goto err_alloc; 877 } 878 } 879 } 880 881 if (irq_base) 882 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs, 883 irq_base, 0, 884 ®map_domain_ops, d); 885 else 886 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs, 887 ®map_domain_ops, d); 888 if (!d->domain) { 889 dev_err(map->dev, "Failed to create IRQ domain\n"); 890 ret = -ENOMEM; 891 goto err_alloc; 892 } 893 894 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 895 irq_flags | IRQF_ONESHOT, 896 chip->name, d); 897 if (ret != 0) { 898 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 899 irq, chip->name, ret); 900 goto err_domain; 901 } 902 903 *data = d; 904 905 return 0; 906 907 err_domain: 908 /* Should really dispose of the domain but... */ 909 err_alloc: 910 kfree(d->type_buf); 911 kfree(d->type_buf_def); 912 kfree(d->wake_buf); 913 kfree(d->mask_buf_def); 914 kfree(d->mask_buf); 915 kfree(d->status_buf); 916 kfree(d->status_reg_buf); 917 if (d->config_buf) { 918 for (i = 0; i < chip->num_config_bases; i++) 919 kfree(d->config_buf[i]); 920 kfree(d->config_buf); 921 } 922 kfree(d); 923 return ret; 924 } 925 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 926 927 /** 928 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 929 * 930 * @map: The regmap for the device. 931 * @irq: The IRQ the device uses to signal interrupts. 932 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 933 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 934 * @chip: Configuration for the interrupt controller. 935 * @data: Runtime data structure for the controller, allocated on success. 936 * 937 * Returns 0 on success or an errno on failure. 938 * 939 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 940 * node of the regmap is used. 941 */ 942 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 943 int irq_base, const struct regmap_irq_chip *chip, 944 struct regmap_irq_chip_data **data) 945 { 946 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 947 irq_flags, irq_base, chip, data); 948 } 949 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 950 951 /** 952 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 953 * 954 * @irq: Primary IRQ for the device 955 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 956 * 957 * This function also disposes of all mapped IRQs on the chip. 958 */ 959 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 960 { 961 unsigned int virq; 962 int i, hwirq; 963 964 if (!d) 965 return; 966 967 free_irq(irq, d); 968 969 /* Dispose all virtual irq from irq domain before removing it */ 970 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 971 /* Ignore hwirq if holes in the IRQ list */ 972 if (!d->chip->irqs[hwirq].mask) 973 continue; 974 975 /* 976 * Find the virtual irq of hwirq on chip and if it is 977 * there then dispose it 978 */ 979 virq = irq_find_mapping(d->domain, hwirq); 980 if (virq) 981 irq_dispose_mapping(virq); 982 } 983 984 irq_domain_remove(d->domain); 985 kfree(d->type_buf); 986 kfree(d->type_buf_def); 987 kfree(d->wake_buf); 988 kfree(d->mask_buf_def); 989 kfree(d->mask_buf); 990 kfree(d->status_reg_buf); 991 kfree(d->status_buf); 992 if (d->config_buf) { 993 for (i = 0; i < d->chip->num_config_bases; i++) 994 kfree(d->config_buf[i]); 995 kfree(d->config_buf); 996 } 997 kfree(d); 998 } 999 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 1000 1001 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 1002 { 1003 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 1004 1005 regmap_del_irq_chip(d->irq, d); 1006 } 1007 1008 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 1009 1010 { 1011 struct regmap_irq_chip_data **r = res; 1012 1013 if (!r || !*r) { 1014 WARN_ON(!r || !*r); 1015 return 0; 1016 } 1017 return *r == data; 1018 } 1019 1020 /** 1021 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 1022 * 1023 * @dev: The device pointer on which irq_chip belongs to. 1024 * @fwnode: The firmware node where the IRQ domain should be added to. 1025 * @map: The regmap for the device. 1026 * @irq: The IRQ the device uses to signal interrupts 1027 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1028 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1029 * @chip: Configuration for the interrupt controller. 1030 * @data: Runtime data structure for the controller, allocated on success 1031 * 1032 * Returns 0 on success or an errno on failure. 1033 * 1034 * The ®map_irq_chip_data will be automatically released when the device is 1035 * unbound. 1036 */ 1037 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1038 struct fwnode_handle *fwnode, 1039 struct regmap *map, int irq, 1040 int irq_flags, int irq_base, 1041 const struct regmap_irq_chip *chip, 1042 struct regmap_irq_chip_data **data) 1043 { 1044 struct regmap_irq_chip_data **ptr, *d; 1045 int ret; 1046 1047 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 1048 GFP_KERNEL); 1049 if (!ptr) 1050 return -ENOMEM; 1051 1052 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 1053 chip, &d); 1054 if (ret < 0) { 1055 devres_free(ptr); 1056 return ret; 1057 } 1058 1059 *ptr = d; 1060 devres_add(dev, ptr); 1061 *data = d; 1062 return 0; 1063 } 1064 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 1065 1066 /** 1067 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip() 1068 * 1069 * @dev: The device pointer on which irq_chip belongs to. 1070 * @map: The regmap for the device. 1071 * @irq: The IRQ the device uses to signal interrupts 1072 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1073 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1074 * @chip: Configuration for the interrupt controller. 1075 * @data: Runtime data structure for the controller, allocated on success 1076 * 1077 * Returns 0 on success or an errno on failure. 1078 * 1079 * The ®map_irq_chip_data will be automatically released when the device is 1080 * unbound. 1081 */ 1082 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1083 int irq_flags, int irq_base, 1084 const struct regmap_irq_chip *chip, 1085 struct regmap_irq_chip_data **data) 1086 { 1087 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 1088 irq, irq_flags, irq_base, chip, 1089 data); 1090 } 1091 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1092 1093 /** 1094 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1095 * 1096 * @dev: Device for which the resource was allocated. 1097 * @irq: Primary IRQ for the device. 1098 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1099 * 1100 * A resource managed version of regmap_del_irq_chip(). 1101 */ 1102 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1103 struct regmap_irq_chip_data *data) 1104 { 1105 int rc; 1106 1107 WARN_ON(irq != data->irq); 1108 rc = devres_release(dev, devm_regmap_irq_chip_release, 1109 devm_regmap_irq_chip_match, data); 1110 1111 if (rc != 0) 1112 WARN_ON(rc); 1113 } 1114 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1115 1116 /** 1117 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1118 * 1119 * @data: regmap irq controller to operate on. 1120 * 1121 * Useful for drivers to request their own IRQs. 1122 */ 1123 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1124 { 1125 WARN_ON(!data->irq_base); 1126 return data->irq_base; 1127 } 1128 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1129 1130 /** 1131 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1132 * 1133 * @data: regmap irq controller to operate on. 1134 * @irq: index of the interrupt requested in the chip IRQs. 1135 * 1136 * Useful for drivers to request their own IRQs. 1137 */ 1138 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1139 { 1140 /* Handle holes in the IRQ list */ 1141 if (!data->chip->irqs[irq].mask) 1142 return -EINVAL; 1143 1144 return irq_create_mapping(data->domain, irq); 1145 } 1146 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1147 1148 /** 1149 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1150 * 1151 * @data: regmap_irq controller to operate on. 1152 * 1153 * Useful for drivers to request their own IRQs and for integration 1154 * with subsystems. For ease of integration NULL is accepted as a 1155 * domain, allowing devices to just call this even if no domain is 1156 * allocated. 1157 */ 1158 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1159 { 1160 if (data) 1161 return data->domain; 1162 else 1163 return NULL; 1164 } 1165 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1166