xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision a240d23ee9dce2a9fe68d614f19a463d7029fb87)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **config_buf;
45 
46 	unsigned int irq_reg_stride;
47 
48 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
49 				    unsigned int base, int index);
50 
51 	unsigned int clear_status:1;
52 };
53 
54 static inline const
55 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
56 				     int irq)
57 {
58 	return &data->chip->irqs[irq];
59 }
60 
61 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
62 {
63 	struct regmap *map = data->map;
64 
65 	/*
66 	 * While possible that a user-defined ->get_irq_reg() callback might
67 	 * be linear enough to support bulk reads, most of the time it won't.
68 	 * Therefore only allow them if the default callback is being used.
69 	 */
70 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
71 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
72 	       !map->use_single_read;
73 }
74 
75 static void regmap_irq_lock(struct irq_data *data)
76 {
77 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
78 
79 	mutex_lock(&d->lock);
80 }
81 
82 static void regmap_irq_sync_unlock(struct irq_data *data)
83 {
84 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
85 	struct regmap *map = d->map;
86 	int i, j, ret;
87 	u32 reg;
88 	u32 val;
89 
90 	if (d->chip->runtime_pm) {
91 		ret = pm_runtime_get_sync(map->dev);
92 		if (ret < 0)
93 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
94 				ret);
95 	}
96 
97 	if (d->clear_status) {
98 		for (i = 0; i < d->chip->num_regs; i++) {
99 			reg = d->get_irq_reg(d, d->chip->status_base, i);
100 
101 			ret = regmap_read(map, reg, &val);
102 			if (ret)
103 				dev_err(d->map->dev,
104 					"Failed to clear the interrupt status bits\n");
105 		}
106 
107 		d->clear_status = false;
108 	}
109 
110 	/*
111 	 * If there's been a change in the mask write it back to the
112 	 * hardware.  We rely on the use of the regmap core cache to
113 	 * suppress pointless writes.
114 	 */
115 	for (i = 0; i < d->chip->num_regs; i++) {
116 		if (d->chip->handle_mask_sync)
117 			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
118 						  d->mask_buf[i],
119 						  d->chip->irq_drv_data);
120 
121 		if (d->mask_base && !d->chip->handle_mask_sync) {
122 			reg = d->get_irq_reg(d, d->mask_base, i);
123 			ret = regmap_update_bits(d->map, reg,
124 						 d->mask_buf_def[i],
125 						 d->mask_buf[i]);
126 			if (ret)
127 				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
128 		}
129 
130 		if (d->unmask_base && !d->chip->handle_mask_sync) {
131 			reg = d->get_irq_reg(d, d->unmask_base, i);
132 			ret = regmap_update_bits(d->map, reg,
133 					d->mask_buf_def[i], ~d->mask_buf[i]);
134 			if (ret)
135 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
136 					reg);
137 		}
138 
139 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
140 		if (d->wake_buf) {
141 			if (d->chip->wake_invert)
142 				ret = regmap_update_bits(d->map, reg,
143 							 d->mask_buf_def[i],
144 							 ~d->wake_buf[i]);
145 			else
146 				ret = regmap_update_bits(d->map, reg,
147 							 d->mask_buf_def[i],
148 							 d->wake_buf[i]);
149 			if (ret != 0)
150 				dev_err(d->map->dev,
151 					"Failed to sync wakes in %x: %d\n",
152 					reg, ret);
153 		}
154 
155 		if (!d->chip->init_ack_masked)
156 			continue;
157 		/*
158 		 * Ack all the masked interrupts unconditionally,
159 		 * OR if there is masked interrupt which hasn't been Acked,
160 		 * it'll be ignored in irq handler, then may introduce irq storm
161 		 */
162 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
163 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
164 
165 			/* some chips ack by write 0 */
166 			if (d->chip->ack_invert)
167 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
168 			else
169 				ret = regmap_write(map, reg, d->mask_buf[i]);
170 			if (d->chip->clear_ack) {
171 				if (d->chip->ack_invert && !ret)
172 					ret = regmap_write(map, reg, UINT_MAX);
173 				else if (!ret)
174 					ret = regmap_write(map, reg, 0);
175 			}
176 			if (ret != 0)
177 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
178 					reg, ret);
179 		}
180 	}
181 
182 	for (i = 0; i < d->chip->num_config_bases; i++) {
183 		for (j = 0; j < d->chip->num_config_regs; j++) {
184 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
185 			ret = regmap_write(map, reg, d->config_buf[i][j]);
186 			if (ret)
187 				dev_err(d->map->dev,
188 					"Failed to write config %x: %d\n",
189 					reg, ret);
190 		}
191 	}
192 
193 	if (d->chip->runtime_pm)
194 		pm_runtime_put(map->dev);
195 
196 	/* If we've changed our wakeup count propagate it to the parent */
197 	if (d->wake_count < 0)
198 		for (i = d->wake_count; i < 0; i++)
199 			irq_set_irq_wake(d->irq, 0);
200 	else if (d->wake_count > 0)
201 		for (i = 0; i < d->wake_count; i++)
202 			irq_set_irq_wake(d->irq, 1);
203 
204 	d->wake_count = 0;
205 
206 	mutex_unlock(&d->lock);
207 }
208 
209 static void regmap_irq_enable(struct irq_data *data)
210 {
211 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
212 	struct regmap *map = d->map;
213 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
214 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
215 	unsigned int mask;
216 
217 	/*
218 	 * The type_in_mask flag means that the underlying hardware uses
219 	 * separate mask bits for each interrupt trigger type, but we want
220 	 * to have a single logical interrupt with a configurable type.
221 	 *
222 	 * If the interrupt we're enabling defines any supported types
223 	 * then instead of using the regular mask bits for this interrupt,
224 	 * use the value previously written to the type buffer at the
225 	 * corresponding offset in regmap_irq_set_type().
226 	 */
227 	if (d->chip->type_in_mask && irq_data->type.types_supported)
228 		mask = d->type_buf[reg] & irq_data->mask;
229 	else
230 		mask = irq_data->mask;
231 
232 	if (d->chip->clear_on_unmask)
233 		d->clear_status = true;
234 
235 	d->mask_buf[reg] &= ~mask;
236 }
237 
238 static void regmap_irq_disable(struct irq_data *data)
239 {
240 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
241 	struct regmap *map = d->map;
242 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
243 
244 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
245 }
246 
247 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
248 {
249 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
250 	struct regmap *map = d->map;
251 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
252 	int reg, ret;
253 	const struct regmap_irq_type *t = &irq_data->type;
254 
255 	if ((t->types_supported & type) != type)
256 		return 0;
257 
258 	reg = t->type_reg_offset / map->reg_stride;
259 
260 	if (d->chip->type_in_mask) {
261 		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
262 							irq_data, reg, d->chip->irq_drv_data);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	if (d->chip->set_type_config) {
268 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
269 					       reg, d->chip->irq_drv_data);
270 		if (ret)
271 			return ret;
272 	}
273 
274 	return 0;
275 }
276 
277 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
278 {
279 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
280 	struct regmap *map = d->map;
281 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
282 
283 	if (on) {
284 		if (d->wake_buf)
285 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
286 				&= ~irq_data->mask;
287 		d->wake_count++;
288 	} else {
289 		if (d->wake_buf)
290 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
291 				|= irq_data->mask;
292 		d->wake_count--;
293 	}
294 
295 	return 0;
296 }
297 
298 static const struct irq_chip regmap_irq_chip = {
299 	.irq_bus_lock		= regmap_irq_lock,
300 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
301 	.irq_disable		= regmap_irq_disable,
302 	.irq_enable		= regmap_irq_enable,
303 	.irq_set_type		= regmap_irq_set_type,
304 	.irq_set_wake		= regmap_irq_set_wake,
305 };
306 
307 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
308 					   unsigned int b)
309 {
310 	const struct regmap_irq_chip *chip = data->chip;
311 	struct regmap *map = data->map;
312 	struct regmap_irq_sub_irq_map *subreg;
313 	unsigned int reg;
314 	int i, ret = 0;
315 
316 	if (!chip->sub_reg_offsets) {
317 		reg = data->get_irq_reg(data, chip->status_base, b);
318 		ret = regmap_read(map, reg, &data->status_buf[b]);
319 	} else {
320 		/*
321 		 * Note we can't use ->get_irq_reg() here because the offsets
322 		 * in 'subreg' are *not* interchangeable with indices.
323 		 */
324 		subreg = &chip->sub_reg_offsets[b];
325 		for (i = 0; i < subreg->num_regs; i++) {
326 			unsigned int offset = subreg->offset[i];
327 			unsigned int index = offset / map->reg_stride;
328 
329 			ret = regmap_read(map, chip->status_base + offset,
330 					  &data->status_buf[index]);
331 			if (ret)
332 				break;
333 		}
334 	}
335 	return ret;
336 }
337 
338 static irqreturn_t regmap_irq_thread(int irq, void *d)
339 {
340 	struct regmap_irq_chip_data *data = d;
341 	const struct regmap_irq_chip *chip = data->chip;
342 	struct regmap *map = data->map;
343 	int ret, i;
344 	bool handled = false;
345 	u32 reg;
346 
347 	if (chip->handle_pre_irq)
348 		chip->handle_pre_irq(chip->irq_drv_data);
349 
350 	if (chip->runtime_pm) {
351 		ret = pm_runtime_get_sync(map->dev);
352 		if (ret < 0) {
353 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
354 				ret);
355 			goto exit;
356 		}
357 	}
358 
359 	/*
360 	 * Read only registers with active IRQs if the chip has 'main status
361 	 * register'. Else read in the statuses, using a single bulk read if
362 	 * possible in order to reduce the I/O overheads.
363 	 */
364 
365 	if (chip->no_status) {
366 		/* no status register so default to all active */
367 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
368 	} else if (chip->num_main_regs) {
369 		unsigned int max_main_bits;
370 		unsigned long size;
371 
372 		size = chip->num_regs * sizeof(unsigned int);
373 
374 		max_main_bits = (chip->num_main_status_bits) ?
375 				 chip->num_main_status_bits : chip->num_regs;
376 		/* Clear the status buf as we don't read all status regs */
377 		memset(data->status_buf, 0, size);
378 
379 		/* We could support bulk read for main status registers
380 		 * but I don't expect to see devices with really many main
381 		 * status registers so let's only support single reads for the
382 		 * sake of simplicity. and add bulk reads only if needed
383 		 */
384 		for (i = 0; i < chip->num_main_regs; i++) {
385 			reg = data->get_irq_reg(data, chip->main_status, i);
386 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
387 			if (ret) {
388 				dev_err(map->dev,
389 					"Failed to read IRQ status %d\n",
390 					ret);
391 				goto exit;
392 			}
393 		}
394 
395 		/* Read sub registers with active IRQs */
396 		for (i = 0; i < chip->num_main_regs; i++) {
397 			unsigned int b;
398 			const unsigned long mreg = data->main_status_buf[i];
399 
400 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
401 				if (i * map->format.val_bytes * 8 + b >
402 				    max_main_bits)
403 					break;
404 				ret = read_sub_irq_data(data, b);
405 
406 				if (ret != 0) {
407 					dev_err(map->dev,
408 						"Failed to read IRQ status %d\n",
409 						ret);
410 					goto exit;
411 				}
412 			}
413 
414 		}
415 	} else if (regmap_irq_can_bulk_read_status(data)) {
416 
417 		u8 *buf8 = data->status_reg_buf;
418 		u16 *buf16 = data->status_reg_buf;
419 		u32 *buf32 = data->status_reg_buf;
420 
421 		BUG_ON(!data->status_reg_buf);
422 
423 		ret = regmap_bulk_read(map, chip->status_base,
424 				       data->status_reg_buf,
425 				       chip->num_regs);
426 		if (ret != 0) {
427 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
428 				ret);
429 			goto exit;
430 		}
431 
432 		for (i = 0; i < data->chip->num_regs; i++) {
433 			switch (map->format.val_bytes) {
434 			case 1:
435 				data->status_buf[i] = buf8[i];
436 				break;
437 			case 2:
438 				data->status_buf[i] = buf16[i];
439 				break;
440 			case 4:
441 				data->status_buf[i] = buf32[i];
442 				break;
443 			default:
444 				BUG();
445 				goto exit;
446 			}
447 		}
448 
449 	} else {
450 		for (i = 0; i < data->chip->num_regs; i++) {
451 			unsigned int reg = data->get_irq_reg(data,
452 					data->chip->status_base, i);
453 			ret = regmap_read(map, reg, &data->status_buf[i]);
454 
455 			if (ret != 0) {
456 				dev_err(map->dev,
457 					"Failed to read IRQ status: %d\n",
458 					ret);
459 				goto exit;
460 			}
461 		}
462 	}
463 
464 	if (chip->status_invert)
465 		for (i = 0; i < data->chip->num_regs; i++)
466 			data->status_buf[i] = ~data->status_buf[i];
467 
468 	/*
469 	 * Ignore masked IRQs and ack if we need to; we ack early so
470 	 * there is no race between handling and acknowledging the
471 	 * interrupt.  We assume that typically few of the interrupts
472 	 * will fire simultaneously so don't worry about overhead from
473 	 * doing a write per register.
474 	 */
475 	for (i = 0; i < data->chip->num_regs; i++) {
476 		data->status_buf[i] &= ~data->mask_buf[i];
477 
478 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
479 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
480 
481 			if (chip->ack_invert)
482 				ret = regmap_write(map, reg,
483 						~data->status_buf[i]);
484 			else
485 				ret = regmap_write(map, reg,
486 						data->status_buf[i]);
487 			if (chip->clear_ack) {
488 				if (chip->ack_invert && !ret)
489 					ret = regmap_write(map, reg, UINT_MAX);
490 				else if (!ret)
491 					ret = regmap_write(map, reg, 0);
492 			}
493 			if (ret != 0)
494 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
495 					reg, ret);
496 		}
497 	}
498 
499 	for (i = 0; i < chip->num_irqs; i++) {
500 		if (data->status_buf[chip->irqs[i].reg_offset /
501 				     map->reg_stride] & chip->irqs[i].mask) {
502 			handle_nested_irq(irq_find_mapping(data->domain, i));
503 			handled = true;
504 		}
505 	}
506 
507 exit:
508 	if (chip->runtime_pm)
509 		pm_runtime_put(map->dev);
510 
511 	if (chip->handle_post_irq)
512 		chip->handle_post_irq(chip->irq_drv_data);
513 
514 	if (handled)
515 		return IRQ_HANDLED;
516 	else
517 		return IRQ_NONE;
518 }
519 
520 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
521 			  irq_hw_number_t hw)
522 {
523 	struct regmap_irq_chip_data *data = h->host_data;
524 
525 	irq_set_chip_data(virq, data);
526 	irq_set_chip(virq, &data->irq_chip);
527 	irq_set_nested_thread(virq, 1);
528 	irq_set_parent(virq, data->irq);
529 	irq_set_noprobe(virq);
530 
531 	return 0;
532 }
533 
534 static const struct irq_domain_ops regmap_domain_ops = {
535 	.map	= regmap_irq_map,
536 	.xlate	= irq_domain_xlate_onetwocell,
537 };
538 
539 /**
540  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
541  * @data: Data for the &struct regmap_irq_chip
542  * @base: Base register
543  * @index: Register index
544  *
545  * Returns the register address corresponding to the given @base and @index
546  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
547  */
548 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
549 					   unsigned int base, int index)
550 {
551 	struct regmap *map = data->map;
552 
553 	return base + index * map->reg_stride * data->irq_reg_stride;
554 }
555 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
556 
557 /**
558  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
559  * @buf: Buffer containing configuration register values, this is a 2D array of
560  *       `num_config_bases` rows, each of `num_config_regs` elements.
561  * @type: The requested IRQ type.
562  * @irq_data: The IRQ being configured.
563  * @idx: Index of the irq's config registers within each array `buf[i]`
564  * @irq_drv_data: Driver specific IRQ data
565  *
566  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
567  * chips with one config register. Register values are updated according to
568  * the &struct regmap_irq_type data associated with an IRQ.
569  */
570 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
571 				      const struct regmap_irq *irq_data,
572 				      int idx, void *irq_drv_data)
573 {
574 	const struct regmap_irq_type *t = &irq_data->type;
575 
576 	if (t->type_reg_mask)
577 		buf[0][idx] &= ~t->type_reg_mask;
578 	else
579 		buf[0][idx] &= ~(t->type_falling_val |
580 				 t->type_rising_val |
581 				 t->type_level_low_val |
582 				 t->type_level_high_val);
583 
584 	switch (type) {
585 	case IRQ_TYPE_EDGE_FALLING:
586 		buf[0][idx] |= t->type_falling_val;
587 		break;
588 
589 	case IRQ_TYPE_EDGE_RISING:
590 		buf[0][idx] |= t->type_rising_val;
591 		break;
592 
593 	case IRQ_TYPE_EDGE_BOTH:
594 		buf[0][idx] |= (t->type_falling_val |
595 				t->type_rising_val);
596 		break;
597 
598 	case IRQ_TYPE_LEVEL_HIGH:
599 		buf[0][idx] |= t->type_level_high_val;
600 		break;
601 
602 	case IRQ_TYPE_LEVEL_LOW:
603 		buf[0][idx] |= t->type_level_low_val;
604 		break;
605 
606 	default:
607 		return -EINVAL;
608 	}
609 
610 	return 0;
611 }
612 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
613 
614 /**
615  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
616  *
617  * @fwnode: The firmware node where the IRQ domain should be added to.
618  * @map: The regmap for the device.
619  * @irq: The IRQ the device uses to signal interrupts.
620  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
621  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
622  * @chip: Configuration for the interrupt controller.
623  * @data: Runtime data structure for the controller, allocated on success.
624  *
625  * Returns 0 on success or an errno on failure.
626  *
627  * In order for this to be efficient the chip really should use a
628  * register cache.  The chip driver is responsible for restoring the
629  * register values used by the IRQ controller over suspend and resume.
630  */
631 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
632 			       struct regmap *map, int irq,
633 			       int irq_flags, int irq_base,
634 			       const struct regmap_irq_chip *chip,
635 			       struct regmap_irq_chip_data **data)
636 {
637 	struct regmap_irq_chip_data *d;
638 	int i;
639 	int ret = -ENOMEM;
640 	u32 reg;
641 
642 	if (chip->num_regs <= 0)
643 		return -EINVAL;
644 
645 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
646 		return -EINVAL;
647 
648 	for (i = 0; i < chip->num_irqs; i++) {
649 		if (chip->irqs[i].reg_offset % map->reg_stride)
650 			return -EINVAL;
651 		if (chip->irqs[i].reg_offset / map->reg_stride >=
652 		    chip->num_regs)
653 			return -EINVAL;
654 	}
655 
656 	if (irq_base) {
657 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
658 		if (irq_base < 0) {
659 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
660 				 irq_base);
661 			return irq_base;
662 		}
663 	}
664 
665 	d = kzalloc(sizeof(*d), GFP_KERNEL);
666 	if (!d)
667 		return -ENOMEM;
668 
669 	if (chip->num_main_regs) {
670 		d->main_status_buf = kcalloc(chip->num_main_regs,
671 					     sizeof(*d->main_status_buf),
672 					     GFP_KERNEL);
673 
674 		if (!d->main_status_buf)
675 			goto err_alloc;
676 	}
677 
678 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
679 				GFP_KERNEL);
680 	if (!d->status_buf)
681 		goto err_alloc;
682 
683 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
684 			      GFP_KERNEL);
685 	if (!d->mask_buf)
686 		goto err_alloc;
687 
688 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
689 				  GFP_KERNEL);
690 	if (!d->mask_buf_def)
691 		goto err_alloc;
692 
693 	if (chip->wake_base) {
694 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
695 				      GFP_KERNEL);
696 		if (!d->wake_buf)
697 			goto err_alloc;
698 	}
699 
700 	if (chip->type_in_mask) {
701 		d->type_buf_def = kcalloc(chip->num_regs,
702 					  sizeof(*d->type_buf_def), GFP_KERNEL);
703 		if (!d->type_buf_def)
704 			goto err_alloc;
705 
706 		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
707 		if (!d->type_buf)
708 			goto err_alloc;
709 	}
710 
711 	if (chip->num_config_bases && chip->num_config_regs) {
712 		/*
713 		 * Create config_buf[num_config_bases][num_config_regs]
714 		 */
715 		d->config_buf = kcalloc(chip->num_config_bases,
716 					sizeof(*d->config_buf), GFP_KERNEL);
717 		if (!d->config_buf)
718 			goto err_alloc;
719 
720 		for (i = 0; i < chip->num_config_regs; i++) {
721 			d->config_buf[i] = kcalloc(chip->num_config_regs,
722 						   sizeof(**d->config_buf),
723 						   GFP_KERNEL);
724 			if (!d->config_buf[i])
725 				goto err_alloc;
726 		}
727 	}
728 
729 	d->irq_chip = regmap_irq_chip;
730 	d->irq_chip.name = chip->name;
731 	d->irq = irq;
732 	d->map = map;
733 	d->chip = chip;
734 	d->irq_base = irq_base;
735 
736 	if (chip->mask_base && chip->unmask_base &&
737 	    !chip->mask_unmask_non_inverted) {
738 		/*
739 		 * Chips that specify both mask_base and unmask_base used to
740 		 * get inverted mask behavior by default, with no way to ask
741 		 * for the normal, non-inverted behavior. This "inverted by
742 		 * default" behavior is deprecated, but we have to support it
743 		 * until existing drivers have been fixed.
744 		 *
745 		 * Existing drivers should be updated by swapping mask_base
746 		 * and unmask_base and setting mask_unmask_non_inverted=true.
747 		 * New drivers should always set the flag.
748 		 */
749 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
750 
751 		d->mask_base = chip->unmask_base;
752 		d->unmask_base = chip->mask_base;
753 	} else {
754 		d->mask_base = chip->mask_base;
755 		d->unmask_base = chip->unmask_base;
756 	}
757 
758 	if (chip->irq_reg_stride)
759 		d->irq_reg_stride = chip->irq_reg_stride;
760 	else
761 		d->irq_reg_stride = 1;
762 
763 	if (chip->get_irq_reg)
764 		d->get_irq_reg = chip->get_irq_reg;
765 	else
766 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
767 
768 	if (regmap_irq_can_bulk_read_status(d)) {
769 		d->status_reg_buf = kmalloc_array(chip->num_regs,
770 						  map->format.val_bytes,
771 						  GFP_KERNEL);
772 		if (!d->status_reg_buf)
773 			goto err_alloc;
774 	}
775 
776 	mutex_init(&d->lock);
777 
778 	for (i = 0; i < chip->num_irqs; i++)
779 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
780 			|= chip->irqs[i].mask;
781 
782 	/* Mask all the interrupts by default */
783 	for (i = 0; i < chip->num_regs; i++) {
784 		d->mask_buf[i] = d->mask_buf_def[i];
785 
786 		if (chip->handle_mask_sync) {
787 			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
788 						     d->mask_buf[i],
789 						     chip->irq_drv_data);
790 			if (ret)
791 				goto err_alloc;
792 		}
793 
794 		if (d->mask_base && !chip->handle_mask_sync) {
795 			reg = d->get_irq_reg(d, d->mask_base, i);
796 			ret = regmap_update_bits(d->map, reg,
797 						 d->mask_buf_def[i],
798 						 d->mask_buf[i]);
799 			if (ret) {
800 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
801 					reg, ret);
802 				goto err_alloc;
803 			}
804 		}
805 
806 		if (d->unmask_base && !chip->handle_mask_sync) {
807 			reg = d->get_irq_reg(d, d->unmask_base, i);
808 			ret = regmap_update_bits(d->map, reg,
809 					d->mask_buf_def[i], ~d->mask_buf[i]);
810 			if (ret) {
811 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
812 					reg, ret);
813 				goto err_alloc;
814 			}
815 		}
816 
817 		if (!chip->init_ack_masked)
818 			continue;
819 
820 		/* Ack masked but set interrupts */
821 		if (d->chip->no_status) {
822 			/* no status register so default to all active */
823 			d->status_buf[i] = GENMASK(31, 0);
824 		} else {
825 			reg = d->get_irq_reg(d, d->chip->status_base, i);
826 			ret = regmap_read(map, reg, &d->status_buf[i]);
827 			if (ret != 0) {
828 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
829 					ret);
830 				goto err_alloc;
831 			}
832 		}
833 
834 		if (chip->status_invert)
835 			d->status_buf[i] = ~d->status_buf[i];
836 
837 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
838 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
839 			if (chip->ack_invert)
840 				ret = regmap_write(map, reg,
841 					~(d->status_buf[i] & d->mask_buf[i]));
842 			else
843 				ret = regmap_write(map, reg,
844 					d->status_buf[i] & d->mask_buf[i]);
845 			if (chip->clear_ack) {
846 				if (chip->ack_invert && !ret)
847 					ret = regmap_write(map, reg, UINT_MAX);
848 				else if (!ret)
849 					ret = regmap_write(map, reg, 0);
850 			}
851 			if (ret != 0) {
852 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
853 					reg, ret);
854 				goto err_alloc;
855 			}
856 		}
857 	}
858 
859 	/* Wake is disabled by default */
860 	if (d->wake_buf) {
861 		for (i = 0; i < chip->num_regs; i++) {
862 			d->wake_buf[i] = d->mask_buf_def[i];
863 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
864 
865 			if (chip->wake_invert)
866 				ret = regmap_update_bits(d->map, reg,
867 							 d->mask_buf_def[i],
868 							 0);
869 			else
870 				ret = regmap_update_bits(d->map, reg,
871 							 d->mask_buf_def[i],
872 							 d->wake_buf[i]);
873 			if (ret != 0) {
874 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
875 					reg, ret);
876 				goto err_alloc;
877 			}
878 		}
879 	}
880 
881 	if (irq_base)
882 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
883 						     irq_base, 0,
884 						     &regmap_domain_ops, d);
885 	else
886 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
887 						     &regmap_domain_ops, d);
888 	if (!d->domain) {
889 		dev_err(map->dev, "Failed to create IRQ domain\n");
890 		ret = -ENOMEM;
891 		goto err_alloc;
892 	}
893 
894 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
895 				   irq_flags | IRQF_ONESHOT,
896 				   chip->name, d);
897 	if (ret != 0) {
898 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
899 			irq, chip->name, ret);
900 		goto err_domain;
901 	}
902 
903 	*data = d;
904 
905 	return 0;
906 
907 err_domain:
908 	/* Should really dispose of the domain but... */
909 err_alloc:
910 	kfree(d->type_buf);
911 	kfree(d->type_buf_def);
912 	kfree(d->wake_buf);
913 	kfree(d->mask_buf_def);
914 	kfree(d->mask_buf);
915 	kfree(d->status_buf);
916 	kfree(d->status_reg_buf);
917 	if (d->config_buf) {
918 		for (i = 0; i < chip->num_config_bases; i++)
919 			kfree(d->config_buf[i]);
920 		kfree(d->config_buf);
921 	}
922 	kfree(d);
923 	return ret;
924 }
925 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
926 
927 /**
928  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
929  *
930  * @map: The regmap for the device.
931  * @irq: The IRQ the device uses to signal interrupts.
932  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
933  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
934  * @chip: Configuration for the interrupt controller.
935  * @data: Runtime data structure for the controller, allocated on success.
936  *
937  * Returns 0 on success or an errno on failure.
938  *
939  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
940  * node of the regmap is used.
941  */
942 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
943 			int irq_base, const struct regmap_irq_chip *chip,
944 			struct regmap_irq_chip_data **data)
945 {
946 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
947 					  irq_flags, irq_base, chip, data);
948 }
949 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
950 
951 /**
952  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
953  *
954  * @irq: Primary IRQ for the device
955  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
956  *
957  * This function also disposes of all mapped IRQs on the chip.
958  */
959 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
960 {
961 	unsigned int virq;
962 	int i, hwirq;
963 
964 	if (!d)
965 		return;
966 
967 	free_irq(irq, d);
968 
969 	/* Dispose all virtual irq from irq domain before removing it */
970 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
971 		/* Ignore hwirq if holes in the IRQ list */
972 		if (!d->chip->irqs[hwirq].mask)
973 			continue;
974 
975 		/*
976 		 * Find the virtual irq of hwirq on chip and if it is
977 		 * there then dispose it
978 		 */
979 		virq = irq_find_mapping(d->domain, hwirq);
980 		if (virq)
981 			irq_dispose_mapping(virq);
982 	}
983 
984 	irq_domain_remove(d->domain);
985 	kfree(d->type_buf);
986 	kfree(d->type_buf_def);
987 	kfree(d->wake_buf);
988 	kfree(d->mask_buf_def);
989 	kfree(d->mask_buf);
990 	kfree(d->status_reg_buf);
991 	kfree(d->status_buf);
992 	if (d->config_buf) {
993 		for (i = 0; i < d->chip->num_config_bases; i++)
994 			kfree(d->config_buf[i]);
995 		kfree(d->config_buf);
996 	}
997 	kfree(d);
998 }
999 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1000 
1001 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1002 {
1003 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1004 
1005 	regmap_del_irq_chip(d->irq, d);
1006 }
1007 
1008 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1009 
1010 {
1011 	struct regmap_irq_chip_data **r = res;
1012 
1013 	if (!r || !*r) {
1014 		WARN_ON(!r || !*r);
1015 		return 0;
1016 	}
1017 	return *r == data;
1018 }
1019 
1020 /**
1021  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1022  *
1023  * @dev: The device pointer on which irq_chip belongs to.
1024  * @fwnode: The firmware node where the IRQ domain should be added to.
1025  * @map: The regmap for the device.
1026  * @irq: The IRQ the device uses to signal interrupts
1027  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1028  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1029  * @chip: Configuration for the interrupt controller.
1030  * @data: Runtime data structure for the controller, allocated on success
1031  *
1032  * Returns 0 on success or an errno on failure.
1033  *
1034  * The &regmap_irq_chip_data will be automatically released when the device is
1035  * unbound.
1036  */
1037 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1038 				    struct fwnode_handle *fwnode,
1039 				    struct regmap *map, int irq,
1040 				    int irq_flags, int irq_base,
1041 				    const struct regmap_irq_chip *chip,
1042 				    struct regmap_irq_chip_data **data)
1043 {
1044 	struct regmap_irq_chip_data **ptr, *d;
1045 	int ret;
1046 
1047 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1048 			   GFP_KERNEL);
1049 	if (!ptr)
1050 		return -ENOMEM;
1051 
1052 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1053 					 chip, &d);
1054 	if (ret < 0) {
1055 		devres_free(ptr);
1056 		return ret;
1057 	}
1058 
1059 	*ptr = d;
1060 	devres_add(dev, ptr);
1061 	*data = d;
1062 	return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1065 
1066 /**
1067  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1068  *
1069  * @dev: The device pointer on which irq_chip belongs to.
1070  * @map: The regmap for the device.
1071  * @irq: The IRQ the device uses to signal interrupts
1072  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1073  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1074  * @chip: Configuration for the interrupt controller.
1075  * @data: Runtime data structure for the controller, allocated on success
1076  *
1077  * Returns 0 on success or an errno on failure.
1078  *
1079  * The &regmap_irq_chip_data will be automatically released when the device is
1080  * unbound.
1081  */
1082 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1083 			     int irq_flags, int irq_base,
1084 			     const struct regmap_irq_chip *chip,
1085 			     struct regmap_irq_chip_data **data)
1086 {
1087 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1088 					       irq, irq_flags, irq_base, chip,
1089 					       data);
1090 }
1091 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1092 
1093 /**
1094  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1095  *
1096  * @dev: Device for which the resource was allocated.
1097  * @irq: Primary IRQ for the device.
1098  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1099  *
1100  * A resource managed version of regmap_del_irq_chip().
1101  */
1102 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1103 			      struct regmap_irq_chip_data *data)
1104 {
1105 	int rc;
1106 
1107 	WARN_ON(irq != data->irq);
1108 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1109 			    devm_regmap_irq_chip_match, data);
1110 
1111 	if (rc != 0)
1112 		WARN_ON(rc);
1113 }
1114 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1115 
1116 /**
1117  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1118  *
1119  * @data: regmap irq controller to operate on.
1120  *
1121  * Useful for drivers to request their own IRQs.
1122  */
1123 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1124 {
1125 	WARN_ON(!data->irq_base);
1126 	return data->irq_base;
1127 }
1128 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1129 
1130 /**
1131  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1132  *
1133  * @data: regmap irq controller to operate on.
1134  * @irq: index of the interrupt requested in the chip IRQs.
1135  *
1136  * Useful for drivers to request their own IRQs.
1137  */
1138 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1139 {
1140 	/* Handle holes in the IRQ list */
1141 	if (!data->chip->irqs[irq].mask)
1142 		return -EINVAL;
1143 
1144 	return irq_create_mapping(data->domain, irq);
1145 }
1146 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1147 
1148 /**
1149  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1150  *
1151  * @data: regmap_irq controller to operate on.
1152  *
1153  * Useful for drivers to request their own IRQs and for integration
1154  * with subsystems.  For ease of integration NULL is accepted as a
1155  * domain, allowing devices to just call this even if no domain is
1156  * allocated.
1157  */
1158 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1159 {
1160 	if (data)
1161 		return data->domain;
1162 	else
1163 		return NULL;
1164 }
1165 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1166