xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 7697c64b9e4908196f0ae68aa6d423dd40607973)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **virt_buf;
45 	unsigned int **config_buf;
46 
47 	unsigned int irq_reg_stride;
48 
49 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 				    unsigned int base, int index);
51 
52 	unsigned int clear_status:1;
53 };
54 
55 static inline const
56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 				     int irq)
58 {
59 	return &data->chip->irqs[irq];
60 }
61 
62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 	struct regmap *map = data->map;
65 
66 	/*
67 	 * While possible that a user-defined ->get_irq_reg() callback might
68 	 * be linear enough to support bulk reads, most of the time it won't.
69 	 * Therefore only allow them if the default callback is being used.
70 	 */
71 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 	       !map->use_single_read;
74 }
75 
76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 
80 	mutex_lock(&d->lock);
81 }
82 
83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 	struct regmap *map = d->map;
87 	int i, j, ret;
88 	u32 reg;
89 	u32 val;
90 
91 	if (d->chip->runtime_pm) {
92 		ret = pm_runtime_get_sync(map->dev);
93 		if (ret < 0)
94 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 				ret);
96 	}
97 
98 	if (d->clear_status) {
99 		for (i = 0; i < d->chip->num_regs; i++) {
100 			reg = d->get_irq_reg(d, d->chip->status_base, i);
101 
102 			ret = regmap_read(map, reg, &val);
103 			if (ret)
104 				dev_err(d->map->dev,
105 					"Failed to clear the interrupt status bits\n");
106 		}
107 
108 		d->clear_status = false;
109 	}
110 
111 	/*
112 	 * If there's been a change in the mask write it back to the
113 	 * hardware.  We rely on the use of the regmap core cache to
114 	 * suppress pointless writes.
115 	 */
116 	for (i = 0; i < d->chip->num_regs; i++) {
117 		if (d->mask_base) {
118 			if (d->chip->handle_mask_sync)
119 				d->chip->handle_mask_sync(d->map, i,
120 							  d->mask_buf_def[i],
121 							  d->mask_buf[i],
122 							  d->chip->irq_drv_data);
123 			else {
124 				reg = d->get_irq_reg(d, d->mask_base, i);
125 				ret = regmap_update_bits(d->map, reg,
126 						d->mask_buf_def[i],
127 						d->mask_buf[i]);
128 				if (ret)
129 					dev_err(d->map->dev, "Failed to sync masks in %x\n",
130 						reg);
131 			}
132 		}
133 
134 		if (d->unmask_base) {
135 			reg = d->get_irq_reg(d, d->unmask_base, i);
136 			ret = regmap_update_bits(d->map, reg,
137 					d->mask_buf_def[i], ~d->mask_buf[i]);
138 			if (ret)
139 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
140 					reg);
141 		}
142 
143 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
144 		if (d->wake_buf) {
145 			if (d->chip->wake_invert)
146 				ret = regmap_update_bits(d->map, reg,
147 							 d->mask_buf_def[i],
148 							 ~d->wake_buf[i]);
149 			else
150 				ret = regmap_update_bits(d->map, reg,
151 							 d->mask_buf_def[i],
152 							 d->wake_buf[i]);
153 			if (ret != 0)
154 				dev_err(d->map->dev,
155 					"Failed to sync wakes in %x: %d\n",
156 					reg, ret);
157 		}
158 
159 		if (!d->chip->init_ack_masked)
160 			continue;
161 		/*
162 		 * Ack all the masked interrupts unconditionally,
163 		 * OR if there is masked interrupt which hasn't been Acked,
164 		 * it'll be ignored in irq handler, then may introduce irq storm
165 		 */
166 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
167 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
168 
169 			/* some chips ack by write 0 */
170 			if (d->chip->ack_invert)
171 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
172 			else
173 				ret = regmap_write(map, reg, d->mask_buf[i]);
174 			if (d->chip->clear_ack) {
175 				if (d->chip->ack_invert && !ret)
176 					ret = regmap_write(map, reg, UINT_MAX);
177 				else if (!ret)
178 					ret = regmap_write(map, reg, 0);
179 			}
180 			if (ret != 0)
181 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
182 					reg, ret);
183 		}
184 	}
185 
186 	/* Don't update the type bits if we're using mask bits for irq type. */
187 	if (!d->chip->type_in_mask) {
188 		for (i = 0; i < d->chip->num_type_reg; i++) {
189 			if (!d->type_buf_def[i])
190 				continue;
191 			reg = d->get_irq_reg(d, d->chip->type_base, i);
192 			ret = regmap_update_bits(d->map, reg,
193 						 d->type_buf_def[i], d->type_buf[i]);
194 			if (ret != 0)
195 				dev_err(d->map->dev, "Failed to sync type in %x\n",
196 					reg);
197 		}
198 	}
199 
200 	if (d->chip->num_virt_regs) {
201 		for (i = 0; i < d->chip->num_virt_regs; i++) {
202 			for (j = 0; j < d->chip->num_regs; j++) {
203 				reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
204 						     j);
205 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
206 				if (ret != 0)
207 					dev_err(d->map->dev,
208 						"Failed to write virt 0x%x: %d\n",
209 						reg, ret);
210 			}
211 		}
212 	}
213 
214 	for (i = 0; i < d->chip->num_config_bases; i++) {
215 		for (j = 0; j < d->chip->num_config_regs; j++) {
216 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
217 			ret = regmap_write(map, reg, d->config_buf[i][j]);
218 			if (ret)
219 				dev_err(d->map->dev,
220 					"Failed to write config %x: %d\n",
221 					reg, ret);
222 		}
223 	}
224 
225 	if (d->chip->runtime_pm)
226 		pm_runtime_put(map->dev);
227 
228 	/* If we've changed our wakeup count propagate it to the parent */
229 	if (d->wake_count < 0)
230 		for (i = d->wake_count; i < 0; i++)
231 			irq_set_irq_wake(d->irq, 0);
232 	else if (d->wake_count > 0)
233 		for (i = 0; i < d->wake_count; i++)
234 			irq_set_irq_wake(d->irq, 1);
235 
236 	d->wake_count = 0;
237 
238 	mutex_unlock(&d->lock);
239 }
240 
241 static void regmap_irq_enable(struct irq_data *data)
242 {
243 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
244 	struct regmap *map = d->map;
245 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
246 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
247 	unsigned int mask;
248 
249 	/*
250 	 * The type_in_mask flag means that the underlying hardware uses
251 	 * separate mask bits for each interrupt trigger type, but we want
252 	 * to have a single logical interrupt with a configurable type.
253 	 *
254 	 * If the interrupt we're enabling defines any supported types
255 	 * then instead of using the regular mask bits for this interrupt,
256 	 * use the value previously written to the type buffer at the
257 	 * corresponding offset in regmap_irq_set_type().
258 	 */
259 	if (d->chip->type_in_mask && irq_data->type.types_supported)
260 		mask = d->type_buf[reg] & irq_data->mask;
261 	else
262 		mask = irq_data->mask;
263 
264 	if (d->chip->clear_on_unmask)
265 		d->clear_status = true;
266 
267 	d->mask_buf[reg] &= ~mask;
268 }
269 
270 static void regmap_irq_disable(struct irq_data *data)
271 {
272 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
273 	struct regmap *map = d->map;
274 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
275 
276 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
277 }
278 
279 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
280 {
281 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
282 	struct regmap *map = d->map;
283 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
284 	int reg, ret;
285 	const struct regmap_irq_type *t = &irq_data->type;
286 
287 	if ((t->types_supported & type) != type)
288 		return 0;
289 
290 	reg = t->type_reg_offset / map->reg_stride;
291 
292 	if (t->type_reg_mask)
293 		d->type_buf[reg] &= ~t->type_reg_mask;
294 	else
295 		d->type_buf[reg] &= ~(t->type_falling_val |
296 				      t->type_rising_val |
297 				      t->type_level_low_val |
298 				      t->type_level_high_val);
299 	switch (type) {
300 	case IRQ_TYPE_EDGE_FALLING:
301 		d->type_buf[reg] |= t->type_falling_val;
302 		break;
303 
304 	case IRQ_TYPE_EDGE_RISING:
305 		d->type_buf[reg] |= t->type_rising_val;
306 		break;
307 
308 	case IRQ_TYPE_EDGE_BOTH:
309 		d->type_buf[reg] |= (t->type_falling_val |
310 					t->type_rising_val);
311 		break;
312 
313 	case IRQ_TYPE_LEVEL_HIGH:
314 		d->type_buf[reg] |= t->type_level_high_val;
315 		break;
316 
317 	case IRQ_TYPE_LEVEL_LOW:
318 		d->type_buf[reg] |= t->type_level_low_val;
319 		break;
320 	default:
321 		return -EINVAL;
322 	}
323 
324 	if (d->chip->set_type_virt) {
325 		ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
326 					     reg);
327 		if (ret)
328 			return ret;
329 	}
330 
331 	if (d->chip->set_type_config) {
332 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
333 					       reg, d->chip->irq_drv_data);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	return 0;
339 }
340 
341 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
342 {
343 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
344 	struct regmap *map = d->map;
345 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
346 
347 	if (on) {
348 		if (d->wake_buf)
349 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
350 				&= ~irq_data->mask;
351 		d->wake_count++;
352 	} else {
353 		if (d->wake_buf)
354 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
355 				|= irq_data->mask;
356 		d->wake_count--;
357 	}
358 
359 	return 0;
360 }
361 
362 static const struct irq_chip regmap_irq_chip = {
363 	.irq_bus_lock		= regmap_irq_lock,
364 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
365 	.irq_disable		= regmap_irq_disable,
366 	.irq_enable		= regmap_irq_enable,
367 	.irq_set_type		= regmap_irq_set_type,
368 	.irq_set_wake		= regmap_irq_set_wake,
369 };
370 
371 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
372 					   unsigned int b)
373 {
374 	const struct regmap_irq_chip *chip = data->chip;
375 	struct regmap *map = data->map;
376 	struct regmap_irq_sub_irq_map *subreg;
377 	unsigned int reg;
378 	int i, ret = 0;
379 
380 	if (!chip->sub_reg_offsets) {
381 		reg = data->get_irq_reg(data, chip->status_base, b);
382 		ret = regmap_read(map, reg, &data->status_buf[b]);
383 	} else {
384 		/*
385 		 * Note we can't use ->get_irq_reg() here because the offsets
386 		 * in 'subreg' are *not* interchangeable with indices.
387 		 */
388 		subreg = &chip->sub_reg_offsets[b];
389 		for (i = 0; i < subreg->num_regs; i++) {
390 			unsigned int offset = subreg->offset[i];
391 			unsigned int index = offset / map->reg_stride;
392 
393 			if (chip->not_fixed_stride)
394 				ret = regmap_read(map,
395 						chip->status_base + offset,
396 						&data->status_buf[b]);
397 			else
398 				ret = regmap_read(map,
399 						chip->status_base + offset,
400 						&data->status_buf[index]);
401 
402 			if (ret)
403 				break;
404 		}
405 	}
406 	return ret;
407 }
408 
409 static irqreturn_t regmap_irq_thread(int irq, void *d)
410 {
411 	struct regmap_irq_chip_data *data = d;
412 	const struct regmap_irq_chip *chip = data->chip;
413 	struct regmap *map = data->map;
414 	int ret, i;
415 	bool handled = false;
416 	u32 reg;
417 
418 	if (chip->handle_pre_irq)
419 		chip->handle_pre_irq(chip->irq_drv_data);
420 
421 	if (chip->runtime_pm) {
422 		ret = pm_runtime_get_sync(map->dev);
423 		if (ret < 0) {
424 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
425 				ret);
426 			goto exit;
427 		}
428 	}
429 
430 	/*
431 	 * Read only registers with active IRQs if the chip has 'main status
432 	 * register'. Else read in the statuses, using a single bulk read if
433 	 * possible in order to reduce the I/O overheads.
434 	 */
435 
436 	if (chip->num_main_regs) {
437 		unsigned int max_main_bits;
438 		unsigned long size;
439 
440 		size = chip->num_regs * sizeof(unsigned int);
441 
442 		max_main_bits = (chip->num_main_status_bits) ?
443 				 chip->num_main_status_bits : chip->num_regs;
444 		/* Clear the status buf as we don't read all status regs */
445 		memset(data->status_buf, 0, size);
446 
447 		/* We could support bulk read for main status registers
448 		 * but I don't expect to see devices with really many main
449 		 * status registers so let's only support single reads for the
450 		 * sake of simplicity. and add bulk reads only if needed
451 		 */
452 		for (i = 0; i < chip->num_main_regs; i++) {
453 			/*
454 			 * For not_fixed_stride, don't use ->get_irq_reg().
455 			 * It would produce an incorrect result.
456 			 */
457 			if (data->chip->not_fixed_stride)
458 				reg = chip->main_status +
459 					i * map->reg_stride * data->irq_reg_stride;
460 			else
461 				reg = data->get_irq_reg(data,
462 							chip->main_status, i);
463 
464 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
465 			if (ret) {
466 				dev_err(map->dev,
467 					"Failed to read IRQ status %d\n",
468 					ret);
469 				goto exit;
470 			}
471 		}
472 
473 		/* Read sub registers with active IRQs */
474 		for (i = 0; i < chip->num_main_regs; i++) {
475 			unsigned int b;
476 			const unsigned long mreg = data->main_status_buf[i];
477 
478 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
479 				if (i * map->format.val_bytes * 8 + b >
480 				    max_main_bits)
481 					break;
482 				ret = read_sub_irq_data(data, b);
483 
484 				if (ret != 0) {
485 					dev_err(map->dev,
486 						"Failed to read IRQ status %d\n",
487 						ret);
488 					goto exit;
489 				}
490 			}
491 
492 		}
493 	} else if (regmap_irq_can_bulk_read_status(data)) {
494 
495 		u8 *buf8 = data->status_reg_buf;
496 		u16 *buf16 = data->status_reg_buf;
497 		u32 *buf32 = data->status_reg_buf;
498 
499 		BUG_ON(!data->status_reg_buf);
500 
501 		ret = regmap_bulk_read(map, chip->status_base,
502 				       data->status_reg_buf,
503 				       chip->num_regs);
504 		if (ret != 0) {
505 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
506 				ret);
507 			goto exit;
508 		}
509 
510 		for (i = 0; i < data->chip->num_regs; i++) {
511 			switch (map->format.val_bytes) {
512 			case 1:
513 				data->status_buf[i] = buf8[i];
514 				break;
515 			case 2:
516 				data->status_buf[i] = buf16[i];
517 				break;
518 			case 4:
519 				data->status_buf[i] = buf32[i];
520 				break;
521 			default:
522 				BUG();
523 				goto exit;
524 			}
525 		}
526 
527 	} else {
528 		for (i = 0; i < data->chip->num_regs; i++) {
529 			unsigned int reg = data->get_irq_reg(data,
530 					data->chip->status_base, i);
531 			ret = regmap_read(map, reg, &data->status_buf[i]);
532 
533 			if (ret != 0) {
534 				dev_err(map->dev,
535 					"Failed to read IRQ status: %d\n",
536 					ret);
537 				goto exit;
538 			}
539 		}
540 	}
541 
542 	if (chip->status_invert)
543 		for (i = 0; i < data->chip->num_regs; i++)
544 			data->status_buf[i] = ~data->status_buf[i];
545 
546 	/*
547 	 * Ignore masked IRQs and ack if we need to; we ack early so
548 	 * there is no race between handling and acknowledging the
549 	 * interrupt.  We assume that typically few of the interrupts
550 	 * will fire simultaneously so don't worry about overhead from
551 	 * doing a write per register.
552 	 */
553 	for (i = 0; i < data->chip->num_regs; i++) {
554 		data->status_buf[i] &= ~data->mask_buf[i];
555 
556 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
557 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
558 
559 			if (chip->ack_invert)
560 				ret = regmap_write(map, reg,
561 						~data->status_buf[i]);
562 			else
563 				ret = regmap_write(map, reg,
564 						data->status_buf[i]);
565 			if (chip->clear_ack) {
566 				if (chip->ack_invert && !ret)
567 					ret = regmap_write(map, reg, UINT_MAX);
568 				else if (!ret)
569 					ret = regmap_write(map, reg, 0);
570 			}
571 			if (ret != 0)
572 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
573 					reg, ret);
574 		}
575 	}
576 
577 	for (i = 0; i < chip->num_irqs; i++) {
578 		if (data->status_buf[chip->irqs[i].reg_offset /
579 				     map->reg_stride] & chip->irqs[i].mask) {
580 			handle_nested_irq(irq_find_mapping(data->domain, i));
581 			handled = true;
582 		}
583 	}
584 
585 exit:
586 	if (chip->runtime_pm)
587 		pm_runtime_put(map->dev);
588 
589 	if (chip->handle_post_irq)
590 		chip->handle_post_irq(chip->irq_drv_data);
591 
592 	if (handled)
593 		return IRQ_HANDLED;
594 	else
595 		return IRQ_NONE;
596 }
597 
598 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
599 			  irq_hw_number_t hw)
600 {
601 	struct regmap_irq_chip_data *data = h->host_data;
602 
603 	irq_set_chip_data(virq, data);
604 	irq_set_chip(virq, &data->irq_chip);
605 	irq_set_nested_thread(virq, 1);
606 	irq_set_parent(virq, data->irq);
607 	irq_set_noprobe(virq);
608 
609 	return 0;
610 }
611 
612 static const struct irq_domain_ops regmap_domain_ops = {
613 	.map	= regmap_irq_map,
614 	.xlate	= irq_domain_xlate_onetwocell,
615 };
616 
617 /**
618  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
619  * @data: Data for the &struct regmap_irq_chip
620  * @base: Base register
621  * @index: Register index
622  *
623  * Returns the register address corresponding to the given @base and @index
624  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
625  */
626 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
627 					   unsigned int base, int index)
628 {
629 	const struct regmap_irq_chip *chip = data->chip;
630 	struct regmap *map = data->map;
631 
632 	/*
633 	 * FIXME: This is for backward compatibility and should be removed
634 	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
635 	 */
636 	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
637 		struct regmap_irq_sub_irq_map *subreg;
638 
639 		subreg = &chip->sub_reg_offsets[0];
640 		return base + subreg->offset[0];
641 	}
642 
643 	return base + index * map->reg_stride * data->irq_reg_stride;
644 }
645 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
646 
647 /**
648  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
649  * @buf: Buffer containing configuration register values, this is a 2D array of
650  *       `num_config_bases` rows, each of `num_config_regs` elements.
651  * @type: The requested IRQ type.
652  * @irq_data: The IRQ being configured.
653  * @idx: Index of the irq's config registers within each array `buf[i]`
654  * @irq_drv_data: Driver specific IRQ data
655  *
656  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
657  * chips with one config register. Register values are updated according to
658  * the &struct regmap_irq_type data associated with an IRQ.
659  */
660 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
661 				      const struct regmap_irq *irq_data,
662 				      int idx, void *irq_drv_data)
663 {
664 	const struct regmap_irq_type *t = &irq_data->type;
665 
666 	if (t->type_reg_mask)
667 		buf[0][idx] &= ~t->type_reg_mask;
668 	else
669 		buf[0][idx] &= ~(t->type_falling_val |
670 				 t->type_rising_val |
671 				 t->type_level_low_val |
672 				 t->type_level_high_val);
673 
674 	switch (type) {
675 	case IRQ_TYPE_EDGE_FALLING:
676 		buf[0][idx] |= t->type_falling_val;
677 		break;
678 
679 	case IRQ_TYPE_EDGE_RISING:
680 		buf[0][idx] |= t->type_rising_val;
681 		break;
682 
683 	case IRQ_TYPE_EDGE_BOTH:
684 		buf[0][idx] |= (t->type_falling_val |
685 				t->type_rising_val);
686 		break;
687 
688 	case IRQ_TYPE_LEVEL_HIGH:
689 		buf[0][idx] |= t->type_level_high_val;
690 		break;
691 
692 	case IRQ_TYPE_LEVEL_LOW:
693 		buf[0][idx] |= t->type_level_low_val;
694 		break;
695 
696 	default:
697 		return -EINVAL;
698 	}
699 
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
703 
704 /**
705  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
706  *
707  * @fwnode: The firmware node where the IRQ domain should be added to.
708  * @map: The regmap for the device.
709  * @irq: The IRQ the device uses to signal interrupts.
710  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
711  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
712  * @chip: Configuration for the interrupt controller.
713  * @data: Runtime data structure for the controller, allocated on success.
714  *
715  * Returns 0 on success or an errno on failure.
716  *
717  * In order for this to be efficient the chip really should use a
718  * register cache.  The chip driver is responsible for restoring the
719  * register values used by the IRQ controller over suspend and resume.
720  */
721 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
722 			       struct regmap *map, int irq,
723 			       int irq_flags, int irq_base,
724 			       const struct regmap_irq_chip *chip,
725 			       struct regmap_irq_chip_data **data)
726 {
727 	struct regmap_irq_chip_data *d;
728 	int i;
729 	int ret = -ENOMEM;
730 	int num_type_reg;
731 	int num_regs;
732 	u32 reg;
733 
734 	if (chip->num_regs <= 0)
735 		return -EINVAL;
736 
737 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
738 		return -EINVAL;
739 
740 	for (i = 0; i < chip->num_irqs; i++) {
741 		if (chip->irqs[i].reg_offset % map->reg_stride)
742 			return -EINVAL;
743 		if (chip->irqs[i].reg_offset / map->reg_stride >=
744 		    chip->num_regs)
745 			return -EINVAL;
746 	}
747 
748 	if (chip->not_fixed_stride) {
749 		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
750 
751 		for (i = 0; i < chip->num_regs; i++)
752 			if (chip->sub_reg_offsets[i].num_regs != 1)
753 				return -EINVAL;
754 	}
755 
756 	if (chip->num_type_reg)
757 		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
758 
759 	if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
760 		dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
761 
762 	if (irq_base) {
763 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
764 		if (irq_base < 0) {
765 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
766 				 irq_base);
767 			return irq_base;
768 		}
769 	}
770 
771 	d = kzalloc(sizeof(*d), GFP_KERNEL);
772 	if (!d)
773 		return -ENOMEM;
774 
775 	if (chip->num_main_regs) {
776 		d->main_status_buf = kcalloc(chip->num_main_regs,
777 					     sizeof(*d->main_status_buf),
778 					     GFP_KERNEL);
779 
780 		if (!d->main_status_buf)
781 			goto err_alloc;
782 	}
783 
784 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
785 				GFP_KERNEL);
786 	if (!d->status_buf)
787 		goto err_alloc;
788 
789 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
790 			      GFP_KERNEL);
791 	if (!d->mask_buf)
792 		goto err_alloc;
793 
794 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
795 				  GFP_KERNEL);
796 	if (!d->mask_buf_def)
797 		goto err_alloc;
798 
799 	if (chip->wake_base) {
800 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
801 				      GFP_KERNEL);
802 		if (!d->wake_buf)
803 			goto err_alloc;
804 	}
805 
806 	/*
807 	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
808 	 * to maintain backward compatibility.
809 	 */
810 	num_type_reg = chip->num_config_regs ? chip->num_config_regs
811 			: chip->num_type_reg;
812 	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
813 	if (num_regs) {
814 		d->type_buf_def = kcalloc(num_regs,
815 					  sizeof(*d->type_buf_def), GFP_KERNEL);
816 		if (!d->type_buf_def)
817 			goto err_alloc;
818 
819 		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
820 				      GFP_KERNEL);
821 		if (!d->type_buf)
822 			goto err_alloc;
823 	}
824 
825 	if (chip->num_virt_regs) {
826 		/*
827 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
828 		 */
829 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
830 				      GFP_KERNEL);
831 		if (!d->virt_buf)
832 			goto err_alloc;
833 
834 		for (i = 0; i < chip->num_virt_regs; i++) {
835 			d->virt_buf[i] = kcalloc(chip->num_regs,
836 						 sizeof(**d->virt_buf),
837 						 GFP_KERNEL);
838 			if (!d->virt_buf[i])
839 				goto err_alloc;
840 		}
841 	}
842 
843 	if (chip->num_config_bases && chip->num_config_regs) {
844 		/*
845 		 * Create config_buf[num_config_bases][num_config_regs]
846 		 */
847 		d->config_buf = kcalloc(chip->num_config_bases,
848 					sizeof(*d->config_buf), GFP_KERNEL);
849 		if (!d->config_buf)
850 			goto err_alloc;
851 
852 		for (i = 0; i < chip->num_config_regs; i++) {
853 			d->config_buf[i] = kcalloc(chip->num_config_regs,
854 						   sizeof(**d->config_buf),
855 						   GFP_KERNEL);
856 			if (!d->config_buf[i])
857 				goto err_alloc;
858 		}
859 	}
860 
861 	d->irq_chip = regmap_irq_chip;
862 	d->irq_chip.name = chip->name;
863 	d->irq = irq;
864 	d->map = map;
865 	d->chip = chip;
866 	d->irq_base = irq_base;
867 
868 	if (chip->mask_base && chip->unmask_base &&
869 	    !chip->mask_unmask_non_inverted) {
870 		/*
871 		 * Chips that specify both mask_base and unmask_base used to
872 		 * get inverted mask behavior by default, with no way to ask
873 		 * for the normal, non-inverted behavior. This "inverted by
874 		 * default" behavior is deprecated, but we have to support it
875 		 * until existing drivers have been fixed.
876 		 *
877 		 * Existing drivers should be updated by swapping mask_base
878 		 * and unmask_base and setting mask_unmask_non_inverted=true.
879 		 * New drivers should always set the flag.
880 		 */
881 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
882 
883 		d->mask_base = chip->unmask_base;
884 		d->unmask_base = chip->mask_base;
885 	} else {
886 		d->mask_base = chip->mask_base;
887 		d->unmask_base = chip->unmask_base;
888 	}
889 
890 	if (chip->irq_reg_stride)
891 		d->irq_reg_stride = chip->irq_reg_stride;
892 	else
893 		d->irq_reg_stride = 1;
894 
895 	if (chip->get_irq_reg)
896 		d->get_irq_reg = chip->get_irq_reg;
897 	else
898 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
899 
900 	if (regmap_irq_can_bulk_read_status(d)) {
901 		d->status_reg_buf = kmalloc_array(chip->num_regs,
902 						  map->format.val_bytes,
903 						  GFP_KERNEL);
904 		if (!d->status_reg_buf)
905 			goto err_alloc;
906 	}
907 
908 	mutex_init(&d->lock);
909 
910 	for (i = 0; i < chip->num_irqs; i++)
911 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
912 			|= chip->irqs[i].mask;
913 
914 	/* Mask all the interrupts by default */
915 	for (i = 0; i < chip->num_regs; i++) {
916 		d->mask_buf[i] = d->mask_buf_def[i];
917 
918 		if (d->mask_base) {
919 			if (chip->handle_mask_sync) {
920 				ret = chip->handle_mask_sync(d->map, i,
921 							     d->mask_buf_def[i],
922 							     d->mask_buf[i],
923 							     chip->irq_drv_data);
924 				if (ret)
925 					goto err_alloc;
926 			} else {
927 				reg = d->get_irq_reg(d, d->mask_base, i);
928 				ret = regmap_update_bits(d->map, reg,
929 						d->mask_buf_def[i],
930 						d->mask_buf[i]);
931 				if (ret) {
932 					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
933 						reg, ret);
934 					goto err_alloc;
935 				}
936 			}
937 		}
938 
939 		if (d->unmask_base) {
940 			reg = d->get_irq_reg(d, d->unmask_base, i);
941 			ret = regmap_update_bits(d->map, reg,
942 					d->mask_buf_def[i], ~d->mask_buf[i]);
943 			if (ret) {
944 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
945 					reg, ret);
946 				goto err_alloc;
947 			}
948 		}
949 
950 		if (!chip->init_ack_masked)
951 			continue;
952 
953 		/* Ack masked but set interrupts */
954 		reg = d->get_irq_reg(d, d->chip->status_base, i);
955 		ret = regmap_read(map, reg, &d->status_buf[i]);
956 		if (ret != 0) {
957 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
958 				ret);
959 			goto err_alloc;
960 		}
961 
962 		if (chip->status_invert)
963 			d->status_buf[i] = ~d->status_buf[i];
964 
965 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
966 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
967 			if (chip->ack_invert)
968 				ret = regmap_write(map, reg,
969 					~(d->status_buf[i] & d->mask_buf[i]));
970 			else
971 				ret = regmap_write(map, reg,
972 					d->status_buf[i] & d->mask_buf[i]);
973 			if (chip->clear_ack) {
974 				if (chip->ack_invert && !ret)
975 					ret = regmap_write(map, reg, UINT_MAX);
976 				else if (!ret)
977 					ret = regmap_write(map, reg, 0);
978 			}
979 			if (ret != 0) {
980 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
981 					reg, ret);
982 				goto err_alloc;
983 			}
984 		}
985 	}
986 
987 	/* Wake is disabled by default */
988 	if (d->wake_buf) {
989 		for (i = 0; i < chip->num_regs; i++) {
990 			d->wake_buf[i] = d->mask_buf_def[i];
991 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
992 
993 			if (chip->wake_invert)
994 				ret = regmap_update_bits(d->map, reg,
995 							 d->mask_buf_def[i],
996 							 0);
997 			else
998 				ret = regmap_update_bits(d->map, reg,
999 							 d->mask_buf_def[i],
1000 							 d->wake_buf[i]);
1001 			if (ret != 0) {
1002 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1003 					reg, ret);
1004 				goto err_alloc;
1005 			}
1006 		}
1007 	}
1008 
1009 	if (chip->num_type_reg && !chip->type_in_mask) {
1010 		for (i = 0; i < chip->num_type_reg; ++i) {
1011 			reg = d->get_irq_reg(d, d->chip->type_base, i);
1012 
1013 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
1014 
1015 			if (ret) {
1016 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1017 					reg, ret);
1018 				goto err_alloc;
1019 			}
1020 		}
1021 	}
1022 
1023 	if (irq_base)
1024 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1025 						     irq_base, 0,
1026 						     &regmap_domain_ops, d);
1027 	else
1028 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1029 						     &regmap_domain_ops, d);
1030 	if (!d->domain) {
1031 		dev_err(map->dev, "Failed to create IRQ domain\n");
1032 		ret = -ENOMEM;
1033 		goto err_alloc;
1034 	}
1035 
1036 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1037 				   irq_flags | IRQF_ONESHOT,
1038 				   chip->name, d);
1039 	if (ret != 0) {
1040 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1041 			irq, chip->name, ret);
1042 		goto err_domain;
1043 	}
1044 
1045 	*data = d;
1046 
1047 	return 0;
1048 
1049 err_domain:
1050 	/* Should really dispose of the domain but... */
1051 err_alloc:
1052 	kfree(d->type_buf);
1053 	kfree(d->type_buf_def);
1054 	kfree(d->wake_buf);
1055 	kfree(d->mask_buf_def);
1056 	kfree(d->mask_buf);
1057 	kfree(d->status_buf);
1058 	kfree(d->status_reg_buf);
1059 	if (d->virt_buf) {
1060 		for (i = 0; i < chip->num_virt_regs; i++)
1061 			kfree(d->virt_buf[i]);
1062 		kfree(d->virt_buf);
1063 	}
1064 	if (d->config_buf) {
1065 		for (i = 0; i < chip->num_config_bases; i++)
1066 			kfree(d->config_buf[i]);
1067 		kfree(d->config_buf);
1068 	}
1069 	kfree(d);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1073 
1074 /**
1075  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1076  *
1077  * @map: The regmap for the device.
1078  * @irq: The IRQ the device uses to signal interrupts.
1079  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1080  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1081  * @chip: Configuration for the interrupt controller.
1082  * @data: Runtime data structure for the controller, allocated on success.
1083  *
1084  * Returns 0 on success or an errno on failure.
1085  *
1086  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1087  * node of the regmap is used.
1088  */
1089 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1090 			int irq_base, const struct regmap_irq_chip *chip,
1091 			struct regmap_irq_chip_data **data)
1092 {
1093 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1094 					  irq_flags, irq_base, chip, data);
1095 }
1096 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1097 
1098 /**
1099  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1100  *
1101  * @irq: Primary IRQ for the device
1102  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1103  *
1104  * This function also disposes of all mapped IRQs on the chip.
1105  */
1106 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1107 {
1108 	unsigned int virq;
1109 	int i, hwirq;
1110 
1111 	if (!d)
1112 		return;
1113 
1114 	free_irq(irq, d);
1115 
1116 	/* Dispose all virtual irq from irq domain before removing it */
1117 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1118 		/* Ignore hwirq if holes in the IRQ list */
1119 		if (!d->chip->irqs[hwirq].mask)
1120 			continue;
1121 
1122 		/*
1123 		 * Find the virtual irq of hwirq on chip and if it is
1124 		 * there then dispose it
1125 		 */
1126 		virq = irq_find_mapping(d->domain, hwirq);
1127 		if (virq)
1128 			irq_dispose_mapping(virq);
1129 	}
1130 
1131 	irq_domain_remove(d->domain);
1132 	kfree(d->type_buf);
1133 	kfree(d->type_buf_def);
1134 	kfree(d->wake_buf);
1135 	kfree(d->mask_buf_def);
1136 	kfree(d->mask_buf);
1137 	kfree(d->status_reg_buf);
1138 	kfree(d->status_buf);
1139 	if (d->config_buf) {
1140 		for (i = 0; i < d->chip->num_config_bases; i++)
1141 			kfree(d->config_buf[i]);
1142 		kfree(d->config_buf);
1143 	}
1144 	kfree(d);
1145 }
1146 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1147 
1148 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1149 {
1150 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1151 
1152 	regmap_del_irq_chip(d->irq, d);
1153 }
1154 
1155 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1156 
1157 {
1158 	struct regmap_irq_chip_data **r = res;
1159 
1160 	if (!r || !*r) {
1161 		WARN_ON(!r || !*r);
1162 		return 0;
1163 	}
1164 	return *r == data;
1165 }
1166 
1167 /**
1168  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1169  *
1170  * @dev: The device pointer on which irq_chip belongs to.
1171  * @fwnode: The firmware node where the IRQ domain should be added to.
1172  * @map: The regmap for the device.
1173  * @irq: The IRQ the device uses to signal interrupts
1174  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1175  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1176  * @chip: Configuration for the interrupt controller.
1177  * @data: Runtime data structure for the controller, allocated on success
1178  *
1179  * Returns 0 on success or an errno on failure.
1180  *
1181  * The &regmap_irq_chip_data will be automatically released when the device is
1182  * unbound.
1183  */
1184 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1185 				    struct fwnode_handle *fwnode,
1186 				    struct regmap *map, int irq,
1187 				    int irq_flags, int irq_base,
1188 				    const struct regmap_irq_chip *chip,
1189 				    struct regmap_irq_chip_data **data)
1190 {
1191 	struct regmap_irq_chip_data **ptr, *d;
1192 	int ret;
1193 
1194 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1195 			   GFP_KERNEL);
1196 	if (!ptr)
1197 		return -ENOMEM;
1198 
1199 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1200 					 chip, &d);
1201 	if (ret < 0) {
1202 		devres_free(ptr);
1203 		return ret;
1204 	}
1205 
1206 	*ptr = d;
1207 	devres_add(dev, ptr);
1208 	*data = d;
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1212 
1213 /**
1214  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1215  *
1216  * @dev: The device pointer on which irq_chip belongs to.
1217  * @map: The regmap for the device.
1218  * @irq: The IRQ the device uses to signal interrupts
1219  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1220  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1221  * @chip: Configuration for the interrupt controller.
1222  * @data: Runtime data structure for the controller, allocated on success
1223  *
1224  * Returns 0 on success or an errno on failure.
1225  *
1226  * The &regmap_irq_chip_data will be automatically released when the device is
1227  * unbound.
1228  */
1229 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1230 			     int irq_flags, int irq_base,
1231 			     const struct regmap_irq_chip *chip,
1232 			     struct regmap_irq_chip_data **data)
1233 {
1234 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1235 					       irq, irq_flags, irq_base, chip,
1236 					       data);
1237 }
1238 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1239 
1240 /**
1241  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1242  *
1243  * @dev: Device for which the resource was allocated.
1244  * @irq: Primary IRQ for the device.
1245  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1246  *
1247  * A resource managed version of regmap_del_irq_chip().
1248  */
1249 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1250 			      struct regmap_irq_chip_data *data)
1251 {
1252 	int rc;
1253 
1254 	WARN_ON(irq != data->irq);
1255 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1256 			    devm_regmap_irq_chip_match, data);
1257 
1258 	if (rc != 0)
1259 		WARN_ON(rc);
1260 }
1261 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1262 
1263 /**
1264  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1265  *
1266  * @data: regmap irq controller to operate on.
1267  *
1268  * Useful for drivers to request their own IRQs.
1269  */
1270 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1271 {
1272 	WARN_ON(!data->irq_base);
1273 	return data->irq_base;
1274 }
1275 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1276 
1277 /**
1278  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1279  *
1280  * @data: regmap irq controller to operate on.
1281  * @irq: index of the interrupt requested in the chip IRQs.
1282  *
1283  * Useful for drivers to request their own IRQs.
1284  */
1285 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1286 {
1287 	/* Handle holes in the IRQ list */
1288 	if (!data->chip->irqs[irq].mask)
1289 		return -EINVAL;
1290 
1291 	return irq_create_mapping(data->domain, irq);
1292 }
1293 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1294 
1295 /**
1296  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1297  *
1298  * @data: regmap_irq controller to operate on.
1299  *
1300  * Useful for drivers to request their own IRQs and for integration
1301  * with subsystems.  For ease of integration NULL is accepted as a
1302  * domain, allowing devices to just call this even if no domain is
1303  * allocated.
1304  */
1305 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1306 {
1307 	if (data)
1308 		return data->domain;
1309 	else
1310 		return NULL;
1311 }
1312 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1313