1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // regmap based irq_chip 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/irqdomain.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 18 #include "internal.h" 19 20 struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 unsigned int mask_base; 34 unsigned int unmask_base; 35 36 void *status_reg_buf; 37 unsigned int *main_status_buf; 38 unsigned int *status_buf; 39 unsigned int *mask_buf; 40 unsigned int *mask_buf_def; 41 unsigned int *wake_buf; 42 unsigned int *type_buf; 43 unsigned int *type_buf_def; 44 unsigned int **virt_buf; 45 unsigned int **config_buf; 46 47 unsigned int irq_reg_stride; 48 49 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, 50 unsigned int base, int index); 51 52 unsigned int clear_status:1; 53 }; 54 55 static inline const 56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 57 int irq) 58 { 59 return &data->chip->irqs[irq]; 60 } 61 62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data) 63 { 64 struct regmap *map = data->map; 65 66 /* 67 * While possible that a user-defined ->get_irq_reg() callback might 68 * be linear enough to support bulk reads, most of the time it won't. 69 * Therefore only allow them if the default callback is being used. 70 */ 71 return data->irq_reg_stride == 1 && map->reg_stride == 1 && 72 data->get_irq_reg == regmap_irq_get_irq_reg_linear && 73 !map->use_single_read; 74 } 75 76 static void regmap_irq_lock(struct irq_data *data) 77 { 78 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 79 80 mutex_lock(&d->lock); 81 } 82 83 static void regmap_irq_sync_unlock(struct irq_data *data) 84 { 85 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 86 struct regmap *map = d->map; 87 int i, j, ret; 88 u32 reg; 89 u32 val; 90 91 if (d->chip->runtime_pm) { 92 ret = pm_runtime_get_sync(map->dev); 93 if (ret < 0) 94 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 95 ret); 96 } 97 98 if (d->clear_status) { 99 for (i = 0; i < d->chip->num_regs; i++) { 100 reg = d->get_irq_reg(d, d->chip->status_base, i); 101 102 ret = regmap_read(map, reg, &val); 103 if (ret) 104 dev_err(d->map->dev, 105 "Failed to clear the interrupt status bits\n"); 106 } 107 108 d->clear_status = false; 109 } 110 111 /* 112 * If there's been a change in the mask write it back to the 113 * hardware. We rely on the use of the regmap core cache to 114 * suppress pointless writes. 115 */ 116 for (i = 0; i < d->chip->num_regs; i++) { 117 if (d->mask_base) { 118 if (d->chip->handle_mask_sync) 119 d->chip->handle_mask_sync(d->map, i, 120 d->mask_buf_def[i], 121 d->mask_buf[i], 122 d->chip->irq_drv_data); 123 else { 124 reg = d->get_irq_reg(d, d->mask_base, i); 125 ret = regmap_update_bits(d->map, reg, 126 d->mask_buf_def[i], 127 d->mask_buf[i]); 128 if (ret) 129 dev_err(d->map->dev, "Failed to sync masks in %x\n", 130 reg); 131 } 132 } 133 134 if (d->unmask_base) { 135 reg = d->get_irq_reg(d, d->unmask_base, i); 136 ret = regmap_update_bits(d->map, reg, 137 d->mask_buf_def[i], ~d->mask_buf[i]); 138 if (ret) 139 dev_err(d->map->dev, "Failed to sync masks in %x\n", 140 reg); 141 } 142 143 reg = d->get_irq_reg(d, d->chip->wake_base, i); 144 if (d->wake_buf) { 145 if (d->chip->wake_invert) 146 ret = regmap_update_bits(d->map, reg, 147 d->mask_buf_def[i], 148 ~d->wake_buf[i]); 149 else 150 ret = regmap_update_bits(d->map, reg, 151 d->mask_buf_def[i], 152 d->wake_buf[i]); 153 if (ret != 0) 154 dev_err(d->map->dev, 155 "Failed to sync wakes in %x: %d\n", 156 reg, ret); 157 } 158 159 if (!d->chip->init_ack_masked) 160 continue; 161 /* 162 * Ack all the masked interrupts unconditionally, 163 * OR if there is masked interrupt which hasn't been Acked, 164 * it'll be ignored in irq handler, then may introduce irq storm 165 */ 166 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 167 reg = d->get_irq_reg(d, d->chip->ack_base, i); 168 169 /* some chips ack by write 0 */ 170 if (d->chip->ack_invert) 171 ret = regmap_write(map, reg, ~d->mask_buf[i]); 172 else 173 ret = regmap_write(map, reg, d->mask_buf[i]); 174 if (d->chip->clear_ack) { 175 if (d->chip->ack_invert && !ret) 176 ret = regmap_write(map, reg, UINT_MAX); 177 else if (!ret) 178 ret = regmap_write(map, reg, 0); 179 } 180 if (ret != 0) 181 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 182 reg, ret); 183 } 184 } 185 186 /* Don't update the type bits if we're using mask bits for irq type. */ 187 if (!d->chip->type_in_mask) { 188 for (i = 0; i < d->chip->num_type_reg; i++) { 189 if (!d->type_buf_def[i]) 190 continue; 191 reg = d->get_irq_reg(d, d->chip->type_base, i); 192 ret = regmap_update_bits(d->map, reg, 193 d->type_buf_def[i], d->type_buf[i]); 194 if (ret != 0) 195 dev_err(d->map->dev, "Failed to sync type in %x\n", 196 reg); 197 } 198 } 199 200 if (d->chip->num_virt_regs) { 201 for (i = 0; i < d->chip->num_virt_regs; i++) { 202 for (j = 0; j < d->chip->num_regs; j++) { 203 reg = d->get_irq_reg(d, d->chip->virt_reg_base[i], 204 j); 205 ret = regmap_write(map, reg, d->virt_buf[i][j]); 206 if (ret != 0) 207 dev_err(d->map->dev, 208 "Failed to write virt 0x%x: %d\n", 209 reg, ret); 210 } 211 } 212 } 213 214 for (i = 0; i < d->chip->num_config_bases; i++) { 215 for (j = 0; j < d->chip->num_config_regs; j++) { 216 reg = d->get_irq_reg(d, d->chip->config_base[i], j); 217 ret = regmap_write(map, reg, d->config_buf[i][j]); 218 if (ret) 219 dev_err(d->map->dev, 220 "Failed to write config %x: %d\n", 221 reg, ret); 222 } 223 } 224 225 if (d->chip->runtime_pm) 226 pm_runtime_put(map->dev); 227 228 /* If we've changed our wakeup count propagate it to the parent */ 229 if (d->wake_count < 0) 230 for (i = d->wake_count; i < 0; i++) 231 irq_set_irq_wake(d->irq, 0); 232 else if (d->wake_count > 0) 233 for (i = 0; i < d->wake_count; i++) 234 irq_set_irq_wake(d->irq, 1); 235 236 d->wake_count = 0; 237 238 mutex_unlock(&d->lock); 239 } 240 241 static void regmap_irq_enable(struct irq_data *data) 242 { 243 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 244 struct regmap *map = d->map; 245 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 246 unsigned int reg = irq_data->reg_offset / map->reg_stride; 247 unsigned int mask; 248 249 /* 250 * The type_in_mask flag means that the underlying hardware uses 251 * separate mask bits for each interrupt trigger type, but we want 252 * to have a single logical interrupt with a configurable type. 253 * 254 * If the interrupt we're enabling defines any supported types 255 * then instead of using the regular mask bits for this interrupt, 256 * use the value previously written to the type buffer at the 257 * corresponding offset in regmap_irq_set_type(). 258 */ 259 if (d->chip->type_in_mask && irq_data->type.types_supported) 260 mask = d->type_buf[reg] & irq_data->mask; 261 else 262 mask = irq_data->mask; 263 264 if (d->chip->clear_on_unmask) 265 d->clear_status = true; 266 267 d->mask_buf[reg] &= ~mask; 268 } 269 270 static void regmap_irq_disable(struct irq_data *data) 271 { 272 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 273 struct regmap *map = d->map; 274 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 275 276 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 277 } 278 279 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 280 { 281 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 282 struct regmap *map = d->map; 283 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 284 int reg, ret; 285 const struct regmap_irq_type *t = &irq_data->type; 286 287 if ((t->types_supported & type) != type) 288 return 0; 289 290 reg = t->type_reg_offset / map->reg_stride; 291 292 if (t->type_reg_mask) 293 d->type_buf[reg] &= ~t->type_reg_mask; 294 else 295 d->type_buf[reg] &= ~(t->type_falling_val | 296 t->type_rising_val | 297 t->type_level_low_val | 298 t->type_level_high_val); 299 switch (type) { 300 case IRQ_TYPE_EDGE_FALLING: 301 d->type_buf[reg] |= t->type_falling_val; 302 break; 303 304 case IRQ_TYPE_EDGE_RISING: 305 d->type_buf[reg] |= t->type_rising_val; 306 break; 307 308 case IRQ_TYPE_EDGE_BOTH: 309 d->type_buf[reg] |= (t->type_falling_val | 310 t->type_rising_val); 311 break; 312 313 case IRQ_TYPE_LEVEL_HIGH: 314 d->type_buf[reg] |= t->type_level_high_val; 315 break; 316 317 case IRQ_TYPE_LEVEL_LOW: 318 d->type_buf[reg] |= t->type_level_low_val; 319 break; 320 default: 321 return -EINVAL; 322 } 323 324 if (d->chip->set_type_virt) { 325 ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq, 326 reg); 327 if (ret) 328 return ret; 329 } 330 331 if (d->chip->set_type_config) { 332 ret = d->chip->set_type_config(d->config_buf, type, irq_data, 333 reg, d->chip->irq_drv_data); 334 if (ret) 335 return ret; 336 } 337 338 return 0; 339 } 340 341 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 342 { 343 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 344 struct regmap *map = d->map; 345 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 346 347 if (on) { 348 if (d->wake_buf) 349 d->wake_buf[irq_data->reg_offset / map->reg_stride] 350 &= ~irq_data->mask; 351 d->wake_count++; 352 } else { 353 if (d->wake_buf) 354 d->wake_buf[irq_data->reg_offset / map->reg_stride] 355 |= irq_data->mask; 356 d->wake_count--; 357 } 358 359 return 0; 360 } 361 362 static const struct irq_chip regmap_irq_chip = { 363 .irq_bus_lock = regmap_irq_lock, 364 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 365 .irq_disable = regmap_irq_disable, 366 .irq_enable = regmap_irq_enable, 367 .irq_set_type = regmap_irq_set_type, 368 .irq_set_wake = regmap_irq_set_wake, 369 }; 370 371 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 372 unsigned int b) 373 { 374 const struct regmap_irq_chip *chip = data->chip; 375 struct regmap *map = data->map; 376 struct regmap_irq_sub_irq_map *subreg; 377 unsigned int reg; 378 int i, ret = 0; 379 380 if (!chip->sub_reg_offsets) { 381 reg = data->get_irq_reg(data, chip->status_base, b); 382 ret = regmap_read(map, reg, &data->status_buf[b]); 383 } else { 384 /* 385 * Note we can't use ->get_irq_reg() here because the offsets 386 * in 'subreg' are *not* interchangeable with indices. 387 */ 388 subreg = &chip->sub_reg_offsets[b]; 389 for (i = 0; i < subreg->num_regs; i++) { 390 unsigned int offset = subreg->offset[i]; 391 unsigned int index = offset / map->reg_stride; 392 393 if (chip->not_fixed_stride) 394 ret = regmap_read(map, 395 chip->status_base + offset, 396 &data->status_buf[b]); 397 else 398 ret = regmap_read(map, 399 chip->status_base + offset, 400 &data->status_buf[index]); 401 402 if (ret) 403 break; 404 } 405 } 406 return ret; 407 } 408 409 static irqreturn_t regmap_irq_thread(int irq, void *d) 410 { 411 struct regmap_irq_chip_data *data = d; 412 const struct regmap_irq_chip *chip = data->chip; 413 struct regmap *map = data->map; 414 int ret, i; 415 bool handled = false; 416 u32 reg; 417 418 if (chip->handle_pre_irq) 419 chip->handle_pre_irq(chip->irq_drv_data); 420 421 if (chip->runtime_pm) { 422 ret = pm_runtime_get_sync(map->dev); 423 if (ret < 0) { 424 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 425 ret); 426 goto exit; 427 } 428 } 429 430 /* 431 * Read only registers with active IRQs if the chip has 'main status 432 * register'. Else read in the statuses, using a single bulk read if 433 * possible in order to reduce the I/O overheads. 434 */ 435 436 if (chip->num_main_regs) { 437 unsigned int max_main_bits; 438 unsigned long size; 439 440 size = chip->num_regs * sizeof(unsigned int); 441 442 max_main_bits = (chip->num_main_status_bits) ? 443 chip->num_main_status_bits : chip->num_regs; 444 /* Clear the status buf as we don't read all status regs */ 445 memset(data->status_buf, 0, size); 446 447 /* We could support bulk read for main status registers 448 * but I don't expect to see devices with really many main 449 * status registers so let's only support single reads for the 450 * sake of simplicity. and add bulk reads only if needed 451 */ 452 for (i = 0; i < chip->num_main_regs; i++) { 453 /* 454 * For not_fixed_stride, don't use ->get_irq_reg(). 455 * It would produce an incorrect result. 456 */ 457 if (data->chip->not_fixed_stride) 458 reg = chip->main_status + 459 i * map->reg_stride * data->irq_reg_stride; 460 else 461 reg = data->get_irq_reg(data, 462 chip->main_status, i); 463 464 ret = regmap_read(map, reg, &data->main_status_buf[i]); 465 if (ret) { 466 dev_err(map->dev, 467 "Failed to read IRQ status %d\n", 468 ret); 469 goto exit; 470 } 471 } 472 473 /* Read sub registers with active IRQs */ 474 for (i = 0; i < chip->num_main_regs; i++) { 475 unsigned int b; 476 const unsigned long mreg = data->main_status_buf[i]; 477 478 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 479 if (i * map->format.val_bytes * 8 + b > 480 max_main_bits) 481 break; 482 ret = read_sub_irq_data(data, b); 483 484 if (ret != 0) { 485 dev_err(map->dev, 486 "Failed to read IRQ status %d\n", 487 ret); 488 goto exit; 489 } 490 } 491 492 } 493 } else if (regmap_irq_can_bulk_read_status(data)) { 494 495 u8 *buf8 = data->status_reg_buf; 496 u16 *buf16 = data->status_reg_buf; 497 u32 *buf32 = data->status_reg_buf; 498 499 BUG_ON(!data->status_reg_buf); 500 501 ret = regmap_bulk_read(map, chip->status_base, 502 data->status_reg_buf, 503 chip->num_regs); 504 if (ret != 0) { 505 dev_err(map->dev, "Failed to read IRQ status: %d\n", 506 ret); 507 goto exit; 508 } 509 510 for (i = 0; i < data->chip->num_regs; i++) { 511 switch (map->format.val_bytes) { 512 case 1: 513 data->status_buf[i] = buf8[i]; 514 break; 515 case 2: 516 data->status_buf[i] = buf16[i]; 517 break; 518 case 4: 519 data->status_buf[i] = buf32[i]; 520 break; 521 default: 522 BUG(); 523 goto exit; 524 } 525 } 526 527 } else { 528 for (i = 0; i < data->chip->num_regs; i++) { 529 unsigned int reg = data->get_irq_reg(data, 530 data->chip->status_base, i); 531 ret = regmap_read(map, reg, &data->status_buf[i]); 532 533 if (ret != 0) { 534 dev_err(map->dev, 535 "Failed to read IRQ status: %d\n", 536 ret); 537 goto exit; 538 } 539 } 540 } 541 542 if (chip->status_invert) 543 for (i = 0; i < data->chip->num_regs; i++) 544 data->status_buf[i] = ~data->status_buf[i]; 545 546 /* 547 * Ignore masked IRQs and ack if we need to; we ack early so 548 * there is no race between handling and acknowledging the 549 * interrupt. We assume that typically few of the interrupts 550 * will fire simultaneously so don't worry about overhead from 551 * doing a write per register. 552 */ 553 for (i = 0; i < data->chip->num_regs; i++) { 554 data->status_buf[i] &= ~data->mask_buf[i]; 555 556 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 557 reg = data->get_irq_reg(data, data->chip->ack_base, i); 558 559 if (chip->ack_invert) 560 ret = regmap_write(map, reg, 561 ~data->status_buf[i]); 562 else 563 ret = regmap_write(map, reg, 564 data->status_buf[i]); 565 if (chip->clear_ack) { 566 if (chip->ack_invert && !ret) 567 ret = regmap_write(map, reg, UINT_MAX); 568 else if (!ret) 569 ret = regmap_write(map, reg, 0); 570 } 571 if (ret != 0) 572 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 573 reg, ret); 574 } 575 } 576 577 for (i = 0; i < chip->num_irqs; i++) { 578 if (data->status_buf[chip->irqs[i].reg_offset / 579 map->reg_stride] & chip->irqs[i].mask) { 580 handle_nested_irq(irq_find_mapping(data->domain, i)); 581 handled = true; 582 } 583 } 584 585 exit: 586 if (chip->runtime_pm) 587 pm_runtime_put(map->dev); 588 589 if (chip->handle_post_irq) 590 chip->handle_post_irq(chip->irq_drv_data); 591 592 if (handled) 593 return IRQ_HANDLED; 594 else 595 return IRQ_NONE; 596 } 597 598 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 599 irq_hw_number_t hw) 600 { 601 struct regmap_irq_chip_data *data = h->host_data; 602 603 irq_set_chip_data(virq, data); 604 irq_set_chip(virq, &data->irq_chip); 605 irq_set_nested_thread(virq, 1); 606 irq_set_parent(virq, data->irq); 607 irq_set_noprobe(virq); 608 609 return 0; 610 } 611 612 static const struct irq_domain_ops regmap_domain_ops = { 613 .map = regmap_irq_map, 614 .xlate = irq_domain_xlate_onetwocell, 615 }; 616 617 /** 618 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback. 619 * @data: Data for the &struct regmap_irq_chip 620 * @base: Base register 621 * @index: Register index 622 * 623 * Returns the register address corresponding to the given @base and @index 624 * by the formula ``base + index * regmap_stride * irq_reg_stride``. 625 */ 626 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, 627 unsigned int base, int index) 628 { 629 const struct regmap_irq_chip *chip = data->chip; 630 struct regmap *map = data->map; 631 632 /* 633 * FIXME: This is for backward compatibility and should be removed 634 * when not_fixed_stride is dropped (it's only used by qcom-pm8008). 635 */ 636 if (chip->not_fixed_stride && chip->sub_reg_offsets) { 637 struct regmap_irq_sub_irq_map *subreg; 638 639 subreg = &chip->sub_reg_offsets[0]; 640 return base + subreg->offset[0]; 641 } 642 643 return base + index * map->reg_stride * data->irq_reg_stride; 644 } 645 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear); 646 647 /** 648 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback. 649 * @buf: Buffer containing configuration register values, this is a 2D array of 650 * `num_config_bases` rows, each of `num_config_regs` elements. 651 * @type: The requested IRQ type. 652 * @irq_data: The IRQ being configured. 653 * @idx: Index of the irq's config registers within each array `buf[i]` 654 * @irq_drv_data: Driver specific IRQ data 655 * 656 * This is a &struct regmap_irq_chip->set_type_config callback suitable for 657 * chips with one config register. Register values are updated according to 658 * the &struct regmap_irq_type data associated with an IRQ. 659 */ 660 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, 661 const struct regmap_irq *irq_data, 662 int idx, void *irq_drv_data) 663 { 664 const struct regmap_irq_type *t = &irq_data->type; 665 666 if (t->type_reg_mask) 667 buf[0][idx] &= ~t->type_reg_mask; 668 else 669 buf[0][idx] &= ~(t->type_falling_val | 670 t->type_rising_val | 671 t->type_level_low_val | 672 t->type_level_high_val); 673 674 switch (type) { 675 case IRQ_TYPE_EDGE_FALLING: 676 buf[0][idx] |= t->type_falling_val; 677 break; 678 679 case IRQ_TYPE_EDGE_RISING: 680 buf[0][idx] |= t->type_rising_val; 681 break; 682 683 case IRQ_TYPE_EDGE_BOTH: 684 buf[0][idx] |= (t->type_falling_val | 685 t->type_rising_val); 686 break; 687 688 case IRQ_TYPE_LEVEL_HIGH: 689 buf[0][idx] |= t->type_level_high_val; 690 break; 691 692 case IRQ_TYPE_LEVEL_LOW: 693 buf[0][idx] |= t->type_level_low_val; 694 break; 695 696 default: 697 return -EINVAL; 698 } 699 700 return 0; 701 } 702 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple); 703 704 /** 705 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 706 * 707 * @fwnode: The firmware node where the IRQ domain should be added to. 708 * @map: The regmap for the device. 709 * @irq: The IRQ the device uses to signal interrupts. 710 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 711 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 712 * @chip: Configuration for the interrupt controller. 713 * @data: Runtime data structure for the controller, allocated on success. 714 * 715 * Returns 0 on success or an errno on failure. 716 * 717 * In order for this to be efficient the chip really should use a 718 * register cache. The chip driver is responsible for restoring the 719 * register values used by the IRQ controller over suspend and resume. 720 */ 721 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 722 struct regmap *map, int irq, 723 int irq_flags, int irq_base, 724 const struct regmap_irq_chip *chip, 725 struct regmap_irq_chip_data **data) 726 { 727 struct regmap_irq_chip_data *d; 728 int i; 729 int ret = -ENOMEM; 730 int num_type_reg; 731 int num_regs; 732 u32 reg; 733 734 if (chip->num_regs <= 0) 735 return -EINVAL; 736 737 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 738 return -EINVAL; 739 740 for (i = 0; i < chip->num_irqs; i++) { 741 if (chip->irqs[i].reg_offset % map->reg_stride) 742 return -EINVAL; 743 if (chip->irqs[i].reg_offset / map->reg_stride >= 744 chip->num_regs) 745 return -EINVAL; 746 } 747 748 if (chip->not_fixed_stride) { 749 dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead"); 750 751 for (i = 0; i < chip->num_regs; i++) 752 if (chip->sub_reg_offsets[i].num_regs != 1) 753 return -EINVAL; 754 } 755 756 if (chip->num_type_reg) 757 dev_warn(map->dev, "type registers are deprecated; use config registers instead"); 758 759 if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt) 760 dev_warn(map->dev, "virtual registers are deprecated; use config registers instead"); 761 762 if (irq_base) { 763 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 764 if (irq_base < 0) { 765 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 766 irq_base); 767 return irq_base; 768 } 769 } 770 771 d = kzalloc(sizeof(*d), GFP_KERNEL); 772 if (!d) 773 return -ENOMEM; 774 775 if (chip->num_main_regs) { 776 d->main_status_buf = kcalloc(chip->num_main_regs, 777 sizeof(*d->main_status_buf), 778 GFP_KERNEL); 779 780 if (!d->main_status_buf) 781 goto err_alloc; 782 } 783 784 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf), 785 GFP_KERNEL); 786 if (!d->status_buf) 787 goto err_alloc; 788 789 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf), 790 GFP_KERNEL); 791 if (!d->mask_buf) 792 goto err_alloc; 793 794 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def), 795 GFP_KERNEL); 796 if (!d->mask_buf_def) 797 goto err_alloc; 798 799 if (chip->wake_base) { 800 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf), 801 GFP_KERNEL); 802 if (!d->wake_buf) 803 goto err_alloc; 804 } 805 806 /* 807 * Use num_config_regs if defined, otherwise fall back to num_type_reg 808 * to maintain backward compatibility. 809 */ 810 num_type_reg = chip->num_config_regs ? chip->num_config_regs 811 : chip->num_type_reg; 812 num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg; 813 if (num_regs) { 814 d->type_buf_def = kcalloc(num_regs, 815 sizeof(*d->type_buf_def), GFP_KERNEL); 816 if (!d->type_buf_def) 817 goto err_alloc; 818 819 d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf), 820 GFP_KERNEL); 821 if (!d->type_buf) 822 goto err_alloc; 823 } 824 825 if (chip->num_virt_regs) { 826 /* 827 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs] 828 */ 829 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf), 830 GFP_KERNEL); 831 if (!d->virt_buf) 832 goto err_alloc; 833 834 for (i = 0; i < chip->num_virt_regs; i++) { 835 d->virt_buf[i] = kcalloc(chip->num_regs, 836 sizeof(**d->virt_buf), 837 GFP_KERNEL); 838 if (!d->virt_buf[i]) 839 goto err_alloc; 840 } 841 } 842 843 if (chip->num_config_bases && chip->num_config_regs) { 844 /* 845 * Create config_buf[num_config_bases][num_config_regs] 846 */ 847 d->config_buf = kcalloc(chip->num_config_bases, 848 sizeof(*d->config_buf), GFP_KERNEL); 849 if (!d->config_buf) 850 goto err_alloc; 851 852 for (i = 0; i < chip->num_config_regs; i++) { 853 d->config_buf[i] = kcalloc(chip->num_config_regs, 854 sizeof(**d->config_buf), 855 GFP_KERNEL); 856 if (!d->config_buf[i]) 857 goto err_alloc; 858 } 859 } 860 861 d->irq_chip = regmap_irq_chip; 862 d->irq_chip.name = chip->name; 863 d->irq = irq; 864 d->map = map; 865 d->chip = chip; 866 d->irq_base = irq_base; 867 868 if (chip->mask_base && chip->unmask_base && 869 !chip->mask_unmask_non_inverted) { 870 /* 871 * Chips that specify both mask_base and unmask_base used to 872 * get inverted mask behavior by default, with no way to ask 873 * for the normal, non-inverted behavior. This "inverted by 874 * default" behavior is deprecated, but we have to support it 875 * until existing drivers have been fixed. 876 * 877 * Existing drivers should be updated by swapping mask_base 878 * and unmask_base and setting mask_unmask_non_inverted=true. 879 * New drivers should always set the flag. 880 */ 881 dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it"); 882 883 d->mask_base = chip->unmask_base; 884 d->unmask_base = chip->mask_base; 885 } else { 886 d->mask_base = chip->mask_base; 887 d->unmask_base = chip->unmask_base; 888 } 889 890 if (chip->irq_reg_stride) 891 d->irq_reg_stride = chip->irq_reg_stride; 892 else 893 d->irq_reg_stride = 1; 894 895 if (chip->get_irq_reg) 896 d->get_irq_reg = chip->get_irq_reg; 897 else 898 d->get_irq_reg = regmap_irq_get_irq_reg_linear; 899 900 if (regmap_irq_can_bulk_read_status(d)) { 901 d->status_reg_buf = kmalloc_array(chip->num_regs, 902 map->format.val_bytes, 903 GFP_KERNEL); 904 if (!d->status_reg_buf) 905 goto err_alloc; 906 } 907 908 mutex_init(&d->lock); 909 910 for (i = 0; i < chip->num_irqs; i++) 911 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 912 |= chip->irqs[i].mask; 913 914 /* Mask all the interrupts by default */ 915 for (i = 0; i < chip->num_regs; i++) { 916 d->mask_buf[i] = d->mask_buf_def[i]; 917 918 if (d->mask_base) { 919 if (chip->handle_mask_sync) { 920 ret = chip->handle_mask_sync(d->map, i, 921 d->mask_buf_def[i], 922 d->mask_buf[i], 923 chip->irq_drv_data); 924 if (ret) 925 goto err_alloc; 926 } else { 927 reg = d->get_irq_reg(d, d->mask_base, i); 928 ret = regmap_update_bits(d->map, reg, 929 d->mask_buf_def[i], 930 d->mask_buf[i]); 931 if (ret) { 932 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 933 reg, ret); 934 goto err_alloc; 935 } 936 } 937 } 938 939 if (d->unmask_base) { 940 reg = d->get_irq_reg(d, d->unmask_base, i); 941 ret = regmap_update_bits(d->map, reg, 942 d->mask_buf_def[i], ~d->mask_buf[i]); 943 if (ret) { 944 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 945 reg, ret); 946 goto err_alloc; 947 } 948 } 949 950 if (!chip->init_ack_masked) 951 continue; 952 953 /* Ack masked but set interrupts */ 954 reg = d->get_irq_reg(d, d->chip->status_base, i); 955 ret = regmap_read(map, reg, &d->status_buf[i]); 956 if (ret != 0) { 957 dev_err(map->dev, "Failed to read IRQ status: %d\n", 958 ret); 959 goto err_alloc; 960 } 961 962 if (chip->status_invert) 963 d->status_buf[i] = ~d->status_buf[i]; 964 965 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 966 reg = d->get_irq_reg(d, d->chip->ack_base, i); 967 if (chip->ack_invert) 968 ret = regmap_write(map, reg, 969 ~(d->status_buf[i] & d->mask_buf[i])); 970 else 971 ret = regmap_write(map, reg, 972 d->status_buf[i] & d->mask_buf[i]); 973 if (chip->clear_ack) { 974 if (chip->ack_invert && !ret) 975 ret = regmap_write(map, reg, UINT_MAX); 976 else if (!ret) 977 ret = regmap_write(map, reg, 0); 978 } 979 if (ret != 0) { 980 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 981 reg, ret); 982 goto err_alloc; 983 } 984 } 985 } 986 987 /* Wake is disabled by default */ 988 if (d->wake_buf) { 989 for (i = 0; i < chip->num_regs; i++) { 990 d->wake_buf[i] = d->mask_buf_def[i]; 991 reg = d->get_irq_reg(d, d->chip->wake_base, i); 992 993 if (chip->wake_invert) 994 ret = regmap_update_bits(d->map, reg, 995 d->mask_buf_def[i], 996 0); 997 else 998 ret = regmap_update_bits(d->map, reg, 999 d->mask_buf_def[i], 1000 d->wake_buf[i]); 1001 if (ret != 0) { 1002 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 1003 reg, ret); 1004 goto err_alloc; 1005 } 1006 } 1007 } 1008 1009 if (chip->num_type_reg && !chip->type_in_mask) { 1010 for (i = 0; i < chip->num_type_reg; ++i) { 1011 reg = d->get_irq_reg(d, d->chip->type_base, i); 1012 1013 ret = regmap_read(map, reg, &d->type_buf_def[i]); 1014 1015 if (ret) { 1016 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", 1017 reg, ret); 1018 goto err_alloc; 1019 } 1020 } 1021 } 1022 1023 if (irq_base) 1024 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs, 1025 irq_base, 0, 1026 ®map_domain_ops, d); 1027 else 1028 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs, 1029 ®map_domain_ops, d); 1030 if (!d->domain) { 1031 dev_err(map->dev, "Failed to create IRQ domain\n"); 1032 ret = -ENOMEM; 1033 goto err_alloc; 1034 } 1035 1036 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 1037 irq_flags | IRQF_ONESHOT, 1038 chip->name, d); 1039 if (ret != 0) { 1040 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 1041 irq, chip->name, ret); 1042 goto err_domain; 1043 } 1044 1045 *data = d; 1046 1047 return 0; 1048 1049 err_domain: 1050 /* Should really dispose of the domain but... */ 1051 err_alloc: 1052 kfree(d->type_buf); 1053 kfree(d->type_buf_def); 1054 kfree(d->wake_buf); 1055 kfree(d->mask_buf_def); 1056 kfree(d->mask_buf); 1057 kfree(d->status_buf); 1058 kfree(d->status_reg_buf); 1059 if (d->virt_buf) { 1060 for (i = 0; i < chip->num_virt_regs; i++) 1061 kfree(d->virt_buf[i]); 1062 kfree(d->virt_buf); 1063 } 1064 if (d->config_buf) { 1065 for (i = 0; i < chip->num_config_bases; i++) 1066 kfree(d->config_buf[i]); 1067 kfree(d->config_buf); 1068 } 1069 kfree(d); 1070 return ret; 1071 } 1072 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 1073 1074 /** 1075 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 1076 * 1077 * @map: The regmap for the device. 1078 * @irq: The IRQ the device uses to signal interrupts. 1079 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1080 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1081 * @chip: Configuration for the interrupt controller. 1082 * @data: Runtime data structure for the controller, allocated on success. 1083 * 1084 * Returns 0 on success or an errno on failure. 1085 * 1086 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 1087 * node of the regmap is used. 1088 */ 1089 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 1090 int irq_base, const struct regmap_irq_chip *chip, 1091 struct regmap_irq_chip_data **data) 1092 { 1093 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 1094 irq_flags, irq_base, chip, data); 1095 } 1096 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 1097 1098 /** 1099 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 1100 * 1101 * @irq: Primary IRQ for the device 1102 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 1103 * 1104 * This function also disposes of all mapped IRQs on the chip. 1105 */ 1106 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 1107 { 1108 unsigned int virq; 1109 int i, hwirq; 1110 1111 if (!d) 1112 return; 1113 1114 free_irq(irq, d); 1115 1116 /* Dispose all virtual irq from irq domain before removing it */ 1117 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 1118 /* Ignore hwirq if holes in the IRQ list */ 1119 if (!d->chip->irqs[hwirq].mask) 1120 continue; 1121 1122 /* 1123 * Find the virtual irq of hwirq on chip and if it is 1124 * there then dispose it 1125 */ 1126 virq = irq_find_mapping(d->domain, hwirq); 1127 if (virq) 1128 irq_dispose_mapping(virq); 1129 } 1130 1131 irq_domain_remove(d->domain); 1132 kfree(d->type_buf); 1133 kfree(d->type_buf_def); 1134 kfree(d->wake_buf); 1135 kfree(d->mask_buf_def); 1136 kfree(d->mask_buf); 1137 kfree(d->status_reg_buf); 1138 kfree(d->status_buf); 1139 if (d->config_buf) { 1140 for (i = 0; i < d->chip->num_config_bases; i++) 1141 kfree(d->config_buf[i]); 1142 kfree(d->config_buf); 1143 } 1144 kfree(d); 1145 } 1146 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 1147 1148 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 1149 { 1150 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 1151 1152 regmap_del_irq_chip(d->irq, d); 1153 } 1154 1155 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 1156 1157 { 1158 struct regmap_irq_chip_data **r = res; 1159 1160 if (!r || !*r) { 1161 WARN_ON(!r || !*r); 1162 return 0; 1163 } 1164 return *r == data; 1165 } 1166 1167 /** 1168 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 1169 * 1170 * @dev: The device pointer on which irq_chip belongs to. 1171 * @fwnode: The firmware node where the IRQ domain should be added to. 1172 * @map: The regmap for the device. 1173 * @irq: The IRQ the device uses to signal interrupts 1174 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1175 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1176 * @chip: Configuration for the interrupt controller. 1177 * @data: Runtime data structure for the controller, allocated on success 1178 * 1179 * Returns 0 on success or an errno on failure. 1180 * 1181 * The ®map_irq_chip_data will be automatically released when the device is 1182 * unbound. 1183 */ 1184 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1185 struct fwnode_handle *fwnode, 1186 struct regmap *map, int irq, 1187 int irq_flags, int irq_base, 1188 const struct regmap_irq_chip *chip, 1189 struct regmap_irq_chip_data **data) 1190 { 1191 struct regmap_irq_chip_data **ptr, *d; 1192 int ret; 1193 1194 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 1195 GFP_KERNEL); 1196 if (!ptr) 1197 return -ENOMEM; 1198 1199 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 1200 chip, &d); 1201 if (ret < 0) { 1202 devres_free(ptr); 1203 return ret; 1204 } 1205 1206 *ptr = d; 1207 devres_add(dev, ptr); 1208 *data = d; 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 1212 1213 /** 1214 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip() 1215 * 1216 * @dev: The device pointer on which irq_chip belongs to. 1217 * @map: The regmap for the device. 1218 * @irq: The IRQ the device uses to signal interrupts 1219 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1220 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1221 * @chip: Configuration for the interrupt controller. 1222 * @data: Runtime data structure for the controller, allocated on success 1223 * 1224 * Returns 0 on success or an errno on failure. 1225 * 1226 * The ®map_irq_chip_data will be automatically released when the device is 1227 * unbound. 1228 */ 1229 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1230 int irq_flags, int irq_base, 1231 const struct regmap_irq_chip *chip, 1232 struct regmap_irq_chip_data **data) 1233 { 1234 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 1235 irq, irq_flags, irq_base, chip, 1236 data); 1237 } 1238 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1239 1240 /** 1241 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1242 * 1243 * @dev: Device for which the resource was allocated. 1244 * @irq: Primary IRQ for the device. 1245 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1246 * 1247 * A resource managed version of regmap_del_irq_chip(). 1248 */ 1249 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1250 struct regmap_irq_chip_data *data) 1251 { 1252 int rc; 1253 1254 WARN_ON(irq != data->irq); 1255 rc = devres_release(dev, devm_regmap_irq_chip_release, 1256 devm_regmap_irq_chip_match, data); 1257 1258 if (rc != 0) 1259 WARN_ON(rc); 1260 } 1261 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1262 1263 /** 1264 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1265 * 1266 * @data: regmap irq controller to operate on. 1267 * 1268 * Useful for drivers to request their own IRQs. 1269 */ 1270 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1271 { 1272 WARN_ON(!data->irq_base); 1273 return data->irq_base; 1274 } 1275 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1276 1277 /** 1278 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1279 * 1280 * @data: regmap irq controller to operate on. 1281 * @irq: index of the interrupt requested in the chip IRQs. 1282 * 1283 * Useful for drivers to request their own IRQs. 1284 */ 1285 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1286 { 1287 /* Handle holes in the IRQ list */ 1288 if (!data->chip->irqs[irq].mask) 1289 return -EINVAL; 1290 1291 return irq_create_mapping(data->domain, irq); 1292 } 1293 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1294 1295 /** 1296 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1297 * 1298 * @data: regmap_irq controller to operate on. 1299 * 1300 * Useful for drivers to request their own IRQs and for integration 1301 * with subsystems. For ease of integration NULL is accepted as a 1302 * domain, allowing devices to just call this even if no domain is 1303 * allocated. 1304 */ 1305 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1306 { 1307 if (data) 1308 return data->domain; 1309 else 1310 return NULL; 1311 } 1312 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1313