xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 72cc0f523babca3886421721aa662c7d352a6d32)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **config_buf;
45 
46 	unsigned int irq_reg_stride;
47 
48 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
49 				    unsigned int base, int index);
50 
51 	unsigned int clear_status:1;
52 };
53 
54 static inline const
55 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
56 				     int irq)
57 {
58 	return &data->chip->irqs[irq];
59 }
60 
61 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
62 {
63 	struct regmap *map = data->map;
64 
65 	/*
66 	 * While possible that a user-defined ->get_irq_reg() callback might
67 	 * be linear enough to support bulk reads, most of the time it won't.
68 	 * Therefore only allow them if the default callback is being used.
69 	 */
70 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
71 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
72 	       !map->use_single_read;
73 }
74 
75 static void regmap_irq_lock(struct irq_data *data)
76 {
77 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
78 
79 	mutex_lock(&d->lock);
80 }
81 
82 static void regmap_irq_sync_unlock(struct irq_data *data)
83 {
84 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
85 	struct regmap *map = d->map;
86 	int i, j, ret;
87 	u32 reg;
88 	u32 val;
89 
90 	if (d->chip->runtime_pm) {
91 		ret = pm_runtime_get_sync(map->dev);
92 		if (ret < 0)
93 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
94 				ret);
95 	}
96 
97 	if (d->clear_status) {
98 		for (i = 0; i < d->chip->num_regs; i++) {
99 			reg = d->get_irq_reg(d, d->chip->status_base, i);
100 
101 			ret = regmap_read(map, reg, &val);
102 			if (ret)
103 				dev_err(d->map->dev,
104 					"Failed to clear the interrupt status bits\n");
105 		}
106 
107 		d->clear_status = false;
108 	}
109 
110 	/*
111 	 * If there's been a change in the mask write it back to the
112 	 * hardware.  We rely on the use of the regmap core cache to
113 	 * suppress pointless writes.
114 	 */
115 	for (i = 0; i < d->chip->num_regs; i++) {
116 		if (d->mask_base) {
117 			if (d->chip->handle_mask_sync)
118 				d->chip->handle_mask_sync(i, d->mask_buf_def[i],
119 							  d->mask_buf[i],
120 							  d->chip->irq_drv_data);
121 			else {
122 				reg = d->get_irq_reg(d, d->mask_base, i);
123 				ret = regmap_update_bits(d->map, reg,
124 						d->mask_buf_def[i],
125 						d->mask_buf[i]);
126 				if (ret)
127 					dev_err(d->map->dev, "Failed to sync masks in %x\n",
128 						reg);
129 			}
130 		}
131 
132 		if (d->unmask_base) {
133 			reg = d->get_irq_reg(d, d->unmask_base, i);
134 			ret = regmap_update_bits(d->map, reg,
135 					d->mask_buf_def[i], ~d->mask_buf[i]);
136 			if (ret)
137 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
138 					reg);
139 		}
140 
141 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
142 		if (d->wake_buf) {
143 			if (d->chip->wake_invert)
144 				ret = regmap_update_bits(d->map, reg,
145 							 d->mask_buf_def[i],
146 							 ~d->wake_buf[i]);
147 			else
148 				ret = regmap_update_bits(d->map, reg,
149 							 d->mask_buf_def[i],
150 							 d->wake_buf[i]);
151 			if (ret != 0)
152 				dev_err(d->map->dev,
153 					"Failed to sync wakes in %x: %d\n",
154 					reg, ret);
155 		}
156 
157 		if (!d->chip->init_ack_masked)
158 			continue;
159 		/*
160 		 * Ack all the masked interrupts unconditionally,
161 		 * OR if there is masked interrupt which hasn't been Acked,
162 		 * it'll be ignored in irq handler, then may introduce irq storm
163 		 */
164 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
165 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
166 
167 			/* some chips ack by write 0 */
168 			if (d->chip->ack_invert)
169 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
170 			else
171 				ret = regmap_write(map, reg, d->mask_buf[i]);
172 			if (d->chip->clear_ack) {
173 				if (d->chip->ack_invert && !ret)
174 					ret = regmap_write(map, reg, UINT_MAX);
175 				else if (!ret)
176 					ret = regmap_write(map, reg, 0);
177 			}
178 			if (ret != 0)
179 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
180 					reg, ret);
181 		}
182 	}
183 
184 	for (i = 0; i < d->chip->num_config_bases; i++) {
185 		for (j = 0; j < d->chip->num_config_regs; j++) {
186 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
187 			ret = regmap_write(map, reg, d->config_buf[i][j]);
188 			if (ret)
189 				dev_err(d->map->dev,
190 					"Failed to write config %x: %d\n",
191 					reg, ret);
192 		}
193 	}
194 
195 	if (d->chip->runtime_pm)
196 		pm_runtime_put(map->dev);
197 
198 	/* If we've changed our wakeup count propagate it to the parent */
199 	if (d->wake_count < 0)
200 		for (i = d->wake_count; i < 0; i++)
201 			irq_set_irq_wake(d->irq, 0);
202 	else if (d->wake_count > 0)
203 		for (i = 0; i < d->wake_count; i++)
204 			irq_set_irq_wake(d->irq, 1);
205 
206 	d->wake_count = 0;
207 
208 	mutex_unlock(&d->lock);
209 }
210 
211 static void regmap_irq_enable(struct irq_data *data)
212 {
213 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
214 	struct regmap *map = d->map;
215 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
216 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
217 	unsigned int mask;
218 
219 	/*
220 	 * The type_in_mask flag means that the underlying hardware uses
221 	 * separate mask bits for each interrupt trigger type, but we want
222 	 * to have a single logical interrupt with a configurable type.
223 	 *
224 	 * If the interrupt we're enabling defines any supported types
225 	 * then instead of using the regular mask bits for this interrupt,
226 	 * use the value previously written to the type buffer at the
227 	 * corresponding offset in regmap_irq_set_type().
228 	 */
229 	if (d->chip->type_in_mask && irq_data->type.types_supported)
230 		mask = d->type_buf[reg] & irq_data->mask;
231 	else
232 		mask = irq_data->mask;
233 
234 	if (d->chip->clear_on_unmask)
235 		d->clear_status = true;
236 
237 	d->mask_buf[reg] &= ~mask;
238 }
239 
240 static void regmap_irq_disable(struct irq_data *data)
241 {
242 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
243 	struct regmap *map = d->map;
244 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
245 
246 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
247 }
248 
249 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
250 {
251 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
252 	struct regmap *map = d->map;
253 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
254 	int reg, ret;
255 	const struct regmap_irq_type *t = &irq_data->type;
256 
257 	if ((t->types_supported & type) != type)
258 		return 0;
259 
260 	reg = t->type_reg_offset / map->reg_stride;
261 
262 	if (d->chip->type_in_mask) {
263 		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
264 							irq_data, reg, d->chip->irq_drv_data);
265 		if (ret)
266 			return ret;
267 	}
268 
269 	if (d->chip->set_type_config) {
270 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
271 					       reg, d->chip->irq_drv_data);
272 		if (ret)
273 			return ret;
274 	}
275 
276 	return 0;
277 }
278 
279 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
280 {
281 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
282 	struct regmap *map = d->map;
283 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
284 
285 	if (on) {
286 		if (d->wake_buf)
287 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
288 				&= ~irq_data->mask;
289 		d->wake_count++;
290 	} else {
291 		if (d->wake_buf)
292 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
293 				|= irq_data->mask;
294 		d->wake_count--;
295 	}
296 
297 	return 0;
298 }
299 
300 static const struct irq_chip regmap_irq_chip = {
301 	.irq_bus_lock		= regmap_irq_lock,
302 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
303 	.irq_disable		= regmap_irq_disable,
304 	.irq_enable		= regmap_irq_enable,
305 	.irq_set_type		= regmap_irq_set_type,
306 	.irq_set_wake		= regmap_irq_set_wake,
307 };
308 
309 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
310 					   unsigned int b)
311 {
312 	const struct regmap_irq_chip *chip = data->chip;
313 	struct regmap *map = data->map;
314 	struct regmap_irq_sub_irq_map *subreg;
315 	unsigned int reg;
316 	int i, ret = 0;
317 
318 	if (!chip->sub_reg_offsets) {
319 		reg = data->get_irq_reg(data, chip->status_base, b);
320 		ret = regmap_read(map, reg, &data->status_buf[b]);
321 	} else {
322 		/*
323 		 * Note we can't use ->get_irq_reg() here because the offsets
324 		 * in 'subreg' are *not* interchangeable with indices.
325 		 */
326 		subreg = &chip->sub_reg_offsets[b];
327 		for (i = 0; i < subreg->num_regs; i++) {
328 			unsigned int offset = subreg->offset[i];
329 			unsigned int index = offset / map->reg_stride;
330 
331 			ret = regmap_read(map, chip->status_base + offset,
332 					  &data->status_buf[index]);
333 			if (ret)
334 				break;
335 		}
336 	}
337 	return ret;
338 }
339 
340 static irqreturn_t regmap_irq_thread(int irq, void *d)
341 {
342 	struct regmap_irq_chip_data *data = d;
343 	const struct regmap_irq_chip *chip = data->chip;
344 	struct regmap *map = data->map;
345 	int ret, i;
346 	bool handled = false;
347 	u32 reg;
348 
349 	if (chip->handle_pre_irq)
350 		chip->handle_pre_irq(chip->irq_drv_data);
351 
352 	if (chip->runtime_pm) {
353 		ret = pm_runtime_get_sync(map->dev);
354 		if (ret < 0) {
355 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
356 				ret);
357 			goto exit;
358 		}
359 	}
360 
361 	/*
362 	 * Read only registers with active IRQs if the chip has 'main status
363 	 * register'. Else read in the statuses, using a single bulk read if
364 	 * possible in order to reduce the I/O overheads.
365 	 */
366 
367 	if (chip->no_status) {
368 		/* no status register so default to all active */
369 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
370 	} else if (chip->num_main_regs) {
371 		unsigned int max_main_bits;
372 		unsigned long size;
373 
374 		size = chip->num_regs * sizeof(unsigned int);
375 
376 		max_main_bits = (chip->num_main_status_bits) ?
377 				 chip->num_main_status_bits : chip->num_regs;
378 		/* Clear the status buf as we don't read all status regs */
379 		memset(data->status_buf, 0, size);
380 
381 		/* We could support bulk read for main status registers
382 		 * but I don't expect to see devices with really many main
383 		 * status registers so let's only support single reads for the
384 		 * sake of simplicity. and add bulk reads only if needed
385 		 */
386 		for (i = 0; i < chip->num_main_regs; i++) {
387 			reg = data->get_irq_reg(data, chip->main_status, i);
388 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
389 			if (ret) {
390 				dev_err(map->dev,
391 					"Failed to read IRQ status %d\n",
392 					ret);
393 				goto exit;
394 			}
395 		}
396 
397 		/* Read sub registers with active IRQs */
398 		for (i = 0; i < chip->num_main_regs; i++) {
399 			unsigned int b;
400 			const unsigned long mreg = data->main_status_buf[i];
401 
402 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
403 				if (i * map->format.val_bytes * 8 + b >
404 				    max_main_bits)
405 					break;
406 				ret = read_sub_irq_data(data, b);
407 
408 				if (ret != 0) {
409 					dev_err(map->dev,
410 						"Failed to read IRQ status %d\n",
411 						ret);
412 					goto exit;
413 				}
414 			}
415 
416 		}
417 	} else if (regmap_irq_can_bulk_read_status(data)) {
418 
419 		u8 *buf8 = data->status_reg_buf;
420 		u16 *buf16 = data->status_reg_buf;
421 		u32 *buf32 = data->status_reg_buf;
422 
423 		BUG_ON(!data->status_reg_buf);
424 
425 		ret = regmap_bulk_read(map, chip->status_base,
426 				       data->status_reg_buf,
427 				       chip->num_regs);
428 		if (ret != 0) {
429 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
430 				ret);
431 			goto exit;
432 		}
433 
434 		for (i = 0; i < data->chip->num_regs; i++) {
435 			switch (map->format.val_bytes) {
436 			case 1:
437 				data->status_buf[i] = buf8[i];
438 				break;
439 			case 2:
440 				data->status_buf[i] = buf16[i];
441 				break;
442 			case 4:
443 				data->status_buf[i] = buf32[i];
444 				break;
445 			default:
446 				BUG();
447 				goto exit;
448 			}
449 		}
450 
451 	} else {
452 		for (i = 0; i < data->chip->num_regs; i++) {
453 			unsigned int reg = data->get_irq_reg(data,
454 					data->chip->status_base, i);
455 			ret = regmap_read(map, reg, &data->status_buf[i]);
456 
457 			if (ret != 0) {
458 				dev_err(map->dev,
459 					"Failed to read IRQ status: %d\n",
460 					ret);
461 				goto exit;
462 			}
463 		}
464 	}
465 
466 	if (chip->status_invert)
467 		for (i = 0; i < data->chip->num_regs; i++)
468 			data->status_buf[i] = ~data->status_buf[i];
469 
470 	/*
471 	 * Ignore masked IRQs and ack if we need to; we ack early so
472 	 * there is no race between handling and acknowledging the
473 	 * interrupt.  We assume that typically few of the interrupts
474 	 * will fire simultaneously so don't worry about overhead from
475 	 * doing a write per register.
476 	 */
477 	for (i = 0; i < data->chip->num_regs; i++) {
478 		data->status_buf[i] &= ~data->mask_buf[i];
479 
480 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
481 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
482 
483 			if (chip->ack_invert)
484 				ret = regmap_write(map, reg,
485 						~data->status_buf[i]);
486 			else
487 				ret = regmap_write(map, reg,
488 						data->status_buf[i]);
489 			if (chip->clear_ack) {
490 				if (chip->ack_invert && !ret)
491 					ret = regmap_write(map, reg, UINT_MAX);
492 				else if (!ret)
493 					ret = regmap_write(map, reg, 0);
494 			}
495 			if (ret != 0)
496 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
497 					reg, ret);
498 		}
499 	}
500 
501 	for (i = 0; i < chip->num_irqs; i++) {
502 		if (data->status_buf[chip->irqs[i].reg_offset /
503 				     map->reg_stride] & chip->irqs[i].mask) {
504 			handle_nested_irq(irq_find_mapping(data->domain, i));
505 			handled = true;
506 		}
507 	}
508 
509 exit:
510 	if (chip->runtime_pm)
511 		pm_runtime_put(map->dev);
512 
513 	if (chip->handle_post_irq)
514 		chip->handle_post_irq(chip->irq_drv_data);
515 
516 	if (handled)
517 		return IRQ_HANDLED;
518 	else
519 		return IRQ_NONE;
520 }
521 
522 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
523 			  irq_hw_number_t hw)
524 {
525 	struct regmap_irq_chip_data *data = h->host_data;
526 
527 	irq_set_chip_data(virq, data);
528 	irq_set_chip(virq, &data->irq_chip);
529 	irq_set_nested_thread(virq, 1);
530 	irq_set_parent(virq, data->irq);
531 	irq_set_noprobe(virq);
532 
533 	return 0;
534 }
535 
536 static const struct irq_domain_ops regmap_domain_ops = {
537 	.map	= regmap_irq_map,
538 	.xlate	= irq_domain_xlate_onetwocell,
539 };
540 
541 /**
542  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
543  * @data: Data for the &struct regmap_irq_chip
544  * @base: Base register
545  * @index: Register index
546  *
547  * Returns the register address corresponding to the given @base and @index
548  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
549  */
550 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
551 					   unsigned int base, int index)
552 {
553 	struct regmap *map = data->map;
554 
555 	return base + index * map->reg_stride * data->irq_reg_stride;
556 }
557 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
558 
559 /**
560  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
561  * @buf: Buffer containing configuration register values, this is a 2D array of
562  *       `num_config_bases` rows, each of `num_config_regs` elements.
563  * @type: The requested IRQ type.
564  * @irq_data: The IRQ being configured.
565  * @idx: Index of the irq's config registers within each array `buf[i]`
566  * @irq_drv_data: Driver specific IRQ data
567  *
568  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
569  * chips with one config register. Register values are updated according to
570  * the &struct regmap_irq_type data associated with an IRQ.
571  */
572 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
573 				      const struct regmap_irq *irq_data,
574 				      int idx, void *irq_drv_data)
575 {
576 	const struct regmap_irq_type *t = &irq_data->type;
577 
578 	if (t->type_reg_mask)
579 		buf[0][idx] &= ~t->type_reg_mask;
580 	else
581 		buf[0][idx] &= ~(t->type_falling_val |
582 				 t->type_rising_val |
583 				 t->type_level_low_val |
584 				 t->type_level_high_val);
585 
586 	switch (type) {
587 	case IRQ_TYPE_EDGE_FALLING:
588 		buf[0][idx] |= t->type_falling_val;
589 		break;
590 
591 	case IRQ_TYPE_EDGE_RISING:
592 		buf[0][idx] |= t->type_rising_val;
593 		break;
594 
595 	case IRQ_TYPE_EDGE_BOTH:
596 		buf[0][idx] |= (t->type_falling_val |
597 				t->type_rising_val);
598 		break;
599 
600 	case IRQ_TYPE_LEVEL_HIGH:
601 		buf[0][idx] |= t->type_level_high_val;
602 		break;
603 
604 	case IRQ_TYPE_LEVEL_LOW:
605 		buf[0][idx] |= t->type_level_low_val;
606 		break;
607 
608 	default:
609 		return -EINVAL;
610 	}
611 
612 	return 0;
613 }
614 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
615 
616 /**
617  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
618  *
619  * @fwnode: The firmware node where the IRQ domain should be added to.
620  * @map: The regmap for the device.
621  * @irq: The IRQ the device uses to signal interrupts.
622  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
623  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
624  * @chip: Configuration for the interrupt controller.
625  * @data: Runtime data structure for the controller, allocated on success.
626  *
627  * Returns 0 on success or an errno on failure.
628  *
629  * In order for this to be efficient the chip really should use a
630  * register cache.  The chip driver is responsible for restoring the
631  * register values used by the IRQ controller over suspend and resume.
632  */
633 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
634 			       struct regmap *map, int irq,
635 			       int irq_flags, int irq_base,
636 			       const struct regmap_irq_chip *chip,
637 			       struct regmap_irq_chip_data **data)
638 {
639 	struct regmap_irq_chip_data *d;
640 	int i;
641 	int ret = -ENOMEM;
642 	u32 reg;
643 
644 	if (chip->num_regs <= 0)
645 		return -EINVAL;
646 
647 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
648 		return -EINVAL;
649 
650 	for (i = 0; i < chip->num_irqs; i++) {
651 		if (chip->irqs[i].reg_offset % map->reg_stride)
652 			return -EINVAL;
653 		if (chip->irqs[i].reg_offset / map->reg_stride >=
654 		    chip->num_regs)
655 			return -EINVAL;
656 	}
657 
658 	if (irq_base) {
659 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
660 		if (irq_base < 0) {
661 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
662 				 irq_base);
663 			return irq_base;
664 		}
665 	}
666 
667 	d = kzalloc(sizeof(*d), GFP_KERNEL);
668 	if (!d)
669 		return -ENOMEM;
670 
671 	if (chip->num_main_regs) {
672 		d->main_status_buf = kcalloc(chip->num_main_regs,
673 					     sizeof(*d->main_status_buf),
674 					     GFP_KERNEL);
675 
676 		if (!d->main_status_buf)
677 			goto err_alloc;
678 	}
679 
680 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
681 				GFP_KERNEL);
682 	if (!d->status_buf)
683 		goto err_alloc;
684 
685 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
686 			      GFP_KERNEL);
687 	if (!d->mask_buf)
688 		goto err_alloc;
689 
690 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
691 				  GFP_KERNEL);
692 	if (!d->mask_buf_def)
693 		goto err_alloc;
694 
695 	if (chip->wake_base) {
696 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
697 				      GFP_KERNEL);
698 		if (!d->wake_buf)
699 			goto err_alloc;
700 	}
701 
702 	if (chip->type_in_mask) {
703 		d->type_buf_def = kcalloc(chip->num_regs,
704 					  sizeof(*d->type_buf_def), GFP_KERNEL);
705 		if (!d->type_buf_def)
706 			goto err_alloc;
707 
708 		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
709 		if (!d->type_buf)
710 			goto err_alloc;
711 	}
712 
713 	if (chip->num_config_bases && chip->num_config_regs) {
714 		/*
715 		 * Create config_buf[num_config_bases][num_config_regs]
716 		 */
717 		d->config_buf = kcalloc(chip->num_config_bases,
718 					sizeof(*d->config_buf), GFP_KERNEL);
719 		if (!d->config_buf)
720 			goto err_alloc;
721 
722 		for (i = 0; i < chip->num_config_regs; i++) {
723 			d->config_buf[i] = kcalloc(chip->num_config_regs,
724 						   sizeof(**d->config_buf),
725 						   GFP_KERNEL);
726 			if (!d->config_buf[i])
727 				goto err_alloc;
728 		}
729 	}
730 
731 	d->irq_chip = regmap_irq_chip;
732 	d->irq_chip.name = chip->name;
733 	d->irq = irq;
734 	d->map = map;
735 	d->chip = chip;
736 	d->irq_base = irq_base;
737 
738 	if (chip->mask_base && chip->unmask_base &&
739 	    !chip->mask_unmask_non_inverted) {
740 		/*
741 		 * Chips that specify both mask_base and unmask_base used to
742 		 * get inverted mask behavior by default, with no way to ask
743 		 * for the normal, non-inverted behavior. This "inverted by
744 		 * default" behavior is deprecated, but we have to support it
745 		 * until existing drivers have been fixed.
746 		 *
747 		 * Existing drivers should be updated by swapping mask_base
748 		 * and unmask_base and setting mask_unmask_non_inverted=true.
749 		 * New drivers should always set the flag.
750 		 */
751 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
752 
753 		d->mask_base = chip->unmask_base;
754 		d->unmask_base = chip->mask_base;
755 	} else {
756 		d->mask_base = chip->mask_base;
757 		d->unmask_base = chip->unmask_base;
758 	}
759 
760 	if (chip->irq_reg_stride)
761 		d->irq_reg_stride = chip->irq_reg_stride;
762 	else
763 		d->irq_reg_stride = 1;
764 
765 	if (chip->get_irq_reg)
766 		d->get_irq_reg = chip->get_irq_reg;
767 	else
768 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
769 
770 	if (regmap_irq_can_bulk_read_status(d)) {
771 		d->status_reg_buf = kmalloc_array(chip->num_regs,
772 						  map->format.val_bytes,
773 						  GFP_KERNEL);
774 		if (!d->status_reg_buf)
775 			goto err_alloc;
776 	}
777 
778 	mutex_init(&d->lock);
779 
780 	for (i = 0; i < chip->num_irqs; i++)
781 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
782 			|= chip->irqs[i].mask;
783 
784 	/* Mask all the interrupts by default */
785 	for (i = 0; i < chip->num_regs; i++) {
786 		d->mask_buf[i] = d->mask_buf_def[i];
787 
788 		if (d->mask_base) {
789 			if (chip->handle_mask_sync) {
790 				ret = chip->handle_mask_sync(i,
791 							     d->mask_buf_def[i],
792 							     d->mask_buf[i],
793 							     chip->irq_drv_data);
794 				if (ret)
795 					goto err_alloc;
796 			} else {
797 				reg = d->get_irq_reg(d, d->mask_base, i);
798 				ret = regmap_update_bits(d->map, reg,
799 						d->mask_buf_def[i],
800 						d->mask_buf[i]);
801 				if (ret) {
802 					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
803 						reg, ret);
804 					goto err_alloc;
805 				}
806 			}
807 		}
808 
809 		if (d->unmask_base) {
810 			reg = d->get_irq_reg(d, d->unmask_base, i);
811 			ret = regmap_update_bits(d->map, reg,
812 					d->mask_buf_def[i], ~d->mask_buf[i]);
813 			if (ret) {
814 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
815 					reg, ret);
816 				goto err_alloc;
817 			}
818 		}
819 
820 		if (!chip->init_ack_masked)
821 			continue;
822 
823 		/* Ack masked but set interrupts */
824 		if (d->chip->no_status) {
825 			/* no status register so default to all active */
826 			d->status_buf[i] = GENMASK(31, 0);
827 		} else {
828 			reg = d->get_irq_reg(d, d->chip->status_base, i);
829 			ret = regmap_read(map, reg, &d->status_buf[i]);
830 			if (ret != 0) {
831 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
832 					ret);
833 				goto err_alloc;
834 			}
835 		}
836 
837 		if (chip->status_invert)
838 			d->status_buf[i] = ~d->status_buf[i];
839 
840 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
841 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
842 			if (chip->ack_invert)
843 				ret = regmap_write(map, reg,
844 					~(d->status_buf[i] & d->mask_buf[i]));
845 			else
846 				ret = regmap_write(map, reg,
847 					d->status_buf[i] & d->mask_buf[i]);
848 			if (chip->clear_ack) {
849 				if (chip->ack_invert && !ret)
850 					ret = regmap_write(map, reg, UINT_MAX);
851 				else if (!ret)
852 					ret = regmap_write(map, reg, 0);
853 			}
854 			if (ret != 0) {
855 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
856 					reg, ret);
857 				goto err_alloc;
858 			}
859 		}
860 	}
861 
862 	/* Wake is disabled by default */
863 	if (d->wake_buf) {
864 		for (i = 0; i < chip->num_regs; i++) {
865 			d->wake_buf[i] = d->mask_buf_def[i];
866 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
867 
868 			if (chip->wake_invert)
869 				ret = regmap_update_bits(d->map, reg,
870 							 d->mask_buf_def[i],
871 							 0);
872 			else
873 				ret = regmap_update_bits(d->map, reg,
874 							 d->mask_buf_def[i],
875 							 d->wake_buf[i]);
876 			if (ret != 0) {
877 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
878 					reg, ret);
879 				goto err_alloc;
880 			}
881 		}
882 	}
883 
884 	if (irq_base)
885 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
886 						     irq_base, 0,
887 						     &regmap_domain_ops, d);
888 	else
889 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
890 						     &regmap_domain_ops, d);
891 	if (!d->domain) {
892 		dev_err(map->dev, "Failed to create IRQ domain\n");
893 		ret = -ENOMEM;
894 		goto err_alloc;
895 	}
896 
897 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
898 				   irq_flags | IRQF_ONESHOT,
899 				   chip->name, d);
900 	if (ret != 0) {
901 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
902 			irq, chip->name, ret);
903 		goto err_domain;
904 	}
905 
906 	*data = d;
907 
908 	return 0;
909 
910 err_domain:
911 	/* Should really dispose of the domain but... */
912 err_alloc:
913 	kfree(d->type_buf);
914 	kfree(d->type_buf_def);
915 	kfree(d->wake_buf);
916 	kfree(d->mask_buf_def);
917 	kfree(d->mask_buf);
918 	kfree(d->status_buf);
919 	kfree(d->status_reg_buf);
920 	if (d->config_buf) {
921 		for (i = 0; i < chip->num_config_bases; i++)
922 			kfree(d->config_buf[i]);
923 		kfree(d->config_buf);
924 	}
925 	kfree(d);
926 	return ret;
927 }
928 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
929 
930 /**
931  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
932  *
933  * @map: The regmap for the device.
934  * @irq: The IRQ the device uses to signal interrupts.
935  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
936  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
937  * @chip: Configuration for the interrupt controller.
938  * @data: Runtime data structure for the controller, allocated on success.
939  *
940  * Returns 0 on success or an errno on failure.
941  *
942  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
943  * node of the regmap is used.
944  */
945 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
946 			int irq_base, const struct regmap_irq_chip *chip,
947 			struct regmap_irq_chip_data **data)
948 {
949 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
950 					  irq_flags, irq_base, chip, data);
951 }
952 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
953 
954 /**
955  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
956  *
957  * @irq: Primary IRQ for the device
958  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
959  *
960  * This function also disposes of all mapped IRQs on the chip.
961  */
962 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
963 {
964 	unsigned int virq;
965 	int i, hwirq;
966 
967 	if (!d)
968 		return;
969 
970 	free_irq(irq, d);
971 
972 	/* Dispose all virtual irq from irq domain before removing it */
973 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
974 		/* Ignore hwirq if holes in the IRQ list */
975 		if (!d->chip->irqs[hwirq].mask)
976 			continue;
977 
978 		/*
979 		 * Find the virtual irq of hwirq on chip and if it is
980 		 * there then dispose it
981 		 */
982 		virq = irq_find_mapping(d->domain, hwirq);
983 		if (virq)
984 			irq_dispose_mapping(virq);
985 	}
986 
987 	irq_domain_remove(d->domain);
988 	kfree(d->type_buf);
989 	kfree(d->type_buf_def);
990 	kfree(d->wake_buf);
991 	kfree(d->mask_buf_def);
992 	kfree(d->mask_buf);
993 	kfree(d->status_reg_buf);
994 	kfree(d->status_buf);
995 	if (d->config_buf) {
996 		for (i = 0; i < d->chip->num_config_bases; i++)
997 			kfree(d->config_buf[i]);
998 		kfree(d->config_buf);
999 	}
1000 	kfree(d);
1001 }
1002 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1003 
1004 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1005 {
1006 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1007 
1008 	regmap_del_irq_chip(d->irq, d);
1009 }
1010 
1011 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1012 
1013 {
1014 	struct regmap_irq_chip_data **r = res;
1015 
1016 	if (!r || !*r) {
1017 		WARN_ON(!r || !*r);
1018 		return 0;
1019 	}
1020 	return *r == data;
1021 }
1022 
1023 /**
1024  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1025  *
1026  * @dev: The device pointer on which irq_chip belongs to.
1027  * @fwnode: The firmware node where the IRQ domain should be added to.
1028  * @map: The regmap for the device.
1029  * @irq: The IRQ the device uses to signal interrupts
1030  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1031  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1032  * @chip: Configuration for the interrupt controller.
1033  * @data: Runtime data structure for the controller, allocated on success
1034  *
1035  * Returns 0 on success or an errno on failure.
1036  *
1037  * The &regmap_irq_chip_data will be automatically released when the device is
1038  * unbound.
1039  */
1040 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1041 				    struct fwnode_handle *fwnode,
1042 				    struct regmap *map, int irq,
1043 				    int irq_flags, int irq_base,
1044 				    const struct regmap_irq_chip *chip,
1045 				    struct regmap_irq_chip_data **data)
1046 {
1047 	struct regmap_irq_chip_data **ptr, *d;
1048 	int ret;
1049 
1050 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1051 			   GFP_KERNEL);
1052 	if (!ptr)
1053 		return -ENOMEM;
1054 
1055 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1056 					 chip, &d);
1057 	if (ret < 0) {
1058 		devres_free(ptr);
1059 		return ret;
1060 	}
1061 
1062 	*ptr = d;
1063 	devres_add(dev, ptr);
1064 	*data = d;
1065 	return 0;
1066 }
1067 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1068 
1069 /**
1070  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1071  *
1072  * @dev: The device pointer on which irq_chip belongs to.
1073  * @map: The regmap for the device.
1074  * @irq: The IRQ the device uses to signal interrupts
1075  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1076  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1077  * @chip: Configuration for the interrupt controller.
1078  * @data: Runtime data structure for the controller, allocated on success
1079  *
1080  * Returns 0 on success or an errno on failure.
1081  *
1082  * The &regmap_irq_chip_data will be automatically released when the device is
1083  * unbound.
1084  */
1085 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1086 			     int irq_flags, int irq_base,
1087 			     const struct regmap_irq_chip *chip,
1088 			     struct regmap_irq_chip_data **data)
1089 {
1090 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1091 					       irq, irq_flags, irq_base, chip,
1092 					       data);
1093 }
1094 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1095 
1096 /**
1097  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1098  *
1099  * @dev: Device for which the resource was allocated.
1100  * @irq: Primary IRQ for the device.
1101  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1102  *
1103  * A resource managed version of regmap_del_irq_chip().
1104  */
1105 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1106 			      struct regmap_irq_chip_data *data)
1107 {
1108 	int rc;
1109 
1110 	WARN_ON(irq != data->irq);
1111 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1112 			    devm_regmap_irq_chip_match, data);
1113 
1114 	if (rc != 0)
1115 		WARN_ON(rc);
1116 }
1117 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1118 
1119 /**
1120  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1121  *
1122  * @data: regmap irq controller to operate on.
1123  *
1124  * Useful for drivers to request their own IRQs.
1125  */
1126 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1127 {
1128 	WARN_ON(!data->irq_base);
1129 	return data->irq_base;
1130 }
1131 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1132 
1133 /**
1134  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1135  *
1136  * @data: regmap irq controller to operate on.
1137  * @irq: index of the interrupt requested in the chip IRQs.
1138  *
1139  * Useful for drivers to request their own IRQs.
1140  */
1141 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1142 {
1143 	/* Handle holes in the IRQ list */
1144 	if (!data->chip->irqs[irq].mask)
1145 		return -EINVAL;
1146 
1147 	return irq_create_mapping(data->domain, irq);
1148 }
1149 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1150 
1151 /**
1152  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1153  *
1154  * @data: regmap_irq controller to operate on.
1155  *
1156  * Useful for drivers to request their own IRQs and for integration
1157  * with subsystems.  For ease of integration NULL is accepted as a
1158  * domain, allowing devices to just call this even if no domain is
1159  * allocated.
1160  */
1161 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1162 {
1163 	if (data)
1164 		return data->domain;
1165 	else
1166 		return NULL;
1167 }
1168 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1169