xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 69da5aa99ea67e86d3461fb281eadc952cc2914f)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **virt_buf;
45 	unsigned int **config_buf;
46 
47 	unsigned int irq_reg_stride;
48 
49 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 				    unsigned int base, int index);
51 
52 	unsigned int clear_status:1;
53 };
54 
55 static inline const
56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 				     int irq)
58 {
59 	return &data->chip->irqs[irq];
60 }
61 
62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 	struct regmap *map = data->map;
65 
66 	/*
67 	 * While possible that a user-defined ->get_irq_reg() callback might
68 	 * be linear enough to support bulk reads, most of the time it won't.
69 	 * Therefore only allow them if the default callback is being used.
70 	 */
71 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 	       !map->use_single_read;
74 }
75 
76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 
80 	mutex_lock(&d->lock);
81 }
82 
83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 	struct regmap *map = d->map;
87 	int i, j, ret;
88 	u32 reg;
89 	u32 val;
90 
91 	if (d->chip->runtime_pm) {
92 		ret = pm_runtime_get_sync(map->dev);
93 		if (ret < 0)
94 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 				ret);
96 	}
97 
98 	if (d->clear_status) {
99 		for (i = 0; i < d->chip->num_regs; i++) {
100 			reg = d->get_irq_reg(d, d->chip->status_base, i);
101 
102 			ret = regmap_read(map, reg, &val);
103 			if (ret)
104 				dev_err(d->map->dev,
105 					"Failed to clear the interrupt status bits\n");
106 		}
107 
108 		d->clear_status = false;
109 	}
110 
111 	/*
112 	 * If there's been a change in the mask write it back to the
113 	 * hardware.  We rely on the use of the regmap core cache to
114 	 * suppress pointless writes.
115 	 */
116 	for (i = 0; i < d->chip->num_regs; i++) {
117 		if (d->mask_base) {
118 			if (d->chip->handle_mask_sync)
119 				d->chip->handle_mask_sync(i, d->mask_buf_def[i],
120 							  d->mask_buf[i],
121 							  d->chip->irq_drv_data);
122 			else {
123 				reg = d->get_irq_reg(d, d->mask_base, i);
124 				ret = regmap_update_bits(d->map, reg,
125 						d->mask_buf_def[i],
126 						d->mask_buf[i]);
127 				if (ret)
128 					dev_err(d->map->dev, "Failed to sync masks in %x\n",
129 						reg);
130 			}
131 		}
132 
133 		if (d->unmask_base) {
134 			reg = d->get_irq_reg(d, d->unmask_base, i);
135 			ret = regmap_update_bits(d->map, reg,
136 					d->mask_buf_def[i], ~d->mask_buf[i]);
137 			if (ret)
138 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
139 					reg);
140 		}
141 
142 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
143 		if (d->wake_buf) {
144 			if (d->chip->wake_invert)
145 				ret = regmap_update_bits(d->map, reg,
146 							 d->mask_buf_def[i],
147 							 ~d->wake_buf[i]);
148 			else
149 				ret = regmap_update_bits(d->map, reg,
150 							 d->mask_buf_def[i],
151 							 d->wake_buf[i]);
152 			if (ret != 0)
153 				dev_err(d->map->dev,
154 					"Failed to sync wakes in %x: %d\n",
155 					reg, ret);
156 		}
157 
158 		if (!d->chip->init_ack_masked)
159 			continue;
160 		/*
161 		 * Ack all the masked interrupts unconditionally,
162 		 * OR if there is masked interrupt which hasn't been Acked,
163 		 * it'll be ignored in irq handler, then may introduce irq storm
164 		 */
165 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
166 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
167 
168 			/* some chips ack by write 0 */
169 			if (d->chip->ack_invert)
170 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
171 			else
172 				ret = regmap_write(map, reg, d->mask_buf[i]);
173 			if (d->chip->clear_ack) {
174 				if (d->chip->ack_invert && !ret)
175 					ret = regmap_write(map, reg, UINT_MAX);
176 				else if (!ret)
177 					ret = regmap_write(map, reg, 0);
178 			}
179 			if (ret != 0)
180 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
181 					reg, ret);
182 		}
183 	}
184 
185 	/* Don't update the type bits if we're using mask bits for irq type. */
186 	if (!d->chip->type_in_mask) {
187 		for (i = 0; i < d->chip->num_type_reg; i++) {
188 			if (!d->type_buf_def[i])
189 				continue;
190 			reg = d->get_irq_reg(d, d->chip->type_base, i);
191 			ret = regmap_update_bits(d->map, reg,
192 						 d->type_buf_def[i], d->type_buf[i]);
193 			if (ret != 0)
194 				dev_err(d->map->dev, "Failed to sync type in %x\n",
195 					reg);
196 		}
197 	}
198 
199 	if (d->chip->num_virt_regs) {
200 		for (i = 0; i < d->chip->num_virt_regs; i++) {
201 			for (j = 0; j < d->chip->num_regs; j++) {
202 				reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
203 						     j);
204 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
205 				if (ret != 0)
206 					dev_err(d->map->dev,
207 						"Failed to write virt 0x%x: %d\n",
208 						reg, ret);
209 			}
210 		}
211 	}
212 
213 	for (i = 0; i < d->chip->num_config_bases; i++) {
214 		for (j = 0; j < d->chip->num_config_regs; j++) {
215 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
216 			ret = regmap_write(map, reg, d->config_buf[i][j]);
217 			if (ret)
218 				dev_err(d->map->dev,
219 					"Failed to write config %x: %d\n",
220 					reg, ret);
221 		}
222 	}
223 
224 	if (d->chip->runtime_pm)
225 		pm_runtime_put(map->dev);
226 
227 	/* If we've changed our wakeup count propagate it to the parent */
228 	if (d->wake_count < 0)
229 		for (i = d->wake_count; i < 0; i++)
230 			irq_set_irq_wake(d->irq, 0);
231 	else if (d->wake_count > 0)
232 		for (i = 0; i < d->wake_count; i++)
233 			irq_set_irq_wake(d->irq, 1);
234 
235 	d->wake_count = 0;
236 
237 	mutex_unlock(&d->lock);
238 }
239 
240 static void regmap_irq_enable(struct irq_data *data)
241 {
242 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
243 	struct regmap *map = d->map;
244 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
245 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
246 	unsigned int mask;
247 
248 	/*
249 	 * The type_in_mask flag means that the underlying hardware uses
250 	 * separate mask bits for each interrupt trigger type, but we want
251 	 * to have a single logical interrupt with a configurable type.
252 	 *
253 	 * If the interrupt we're enabling defines any supported types
254 	 * then instead of using the regular mask bits for this interrupt,
255 	 * use the value previously written to the type buffer at the
256 	 * corresponding offset in regmap_irq_set_type().
257 	 */
258 	if (d->chip->type_in_mask && irq_data->type.types_supported)
259 		mask = d->type_buf[reg] & irq_data->mask;
260 	else
261 		mask = irq_data->mask;
262 
263 	if (d->chip->clear_on_unmask)
264 		d->clear_status = true;
265 
266 	d->mask_buf[reg] &= ~mask;
267 }
268 
269 static void regmap_irq_disable(struct irq_data *data)
270 {
271 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
272 	struct regmap *map = d->map;
273 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
274 
275 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
276 }
277 
278 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
279 {
280 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
281 	struct regmap *map = d->map;
282 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
283 	int reg, ret;
284 	const struct regmap_irq_type *t = &irq_data->type;
285 
286 	if ((t->types_supported & type) != type)
287 		return 0;
288 
289 	reg = t->type_reg_offset / map->reg_stride;
290 
291 	if (t->type_reg_mask)
292 		d->type_buf[reg] &= ~t->type_reg_mask;
293 	else
294 		d->type_buf[reg] &= ~(t->type_falling_val |
295 				      t->type_rising_val |
296 				      t->type_level_low_val |
297 				      t->type_level_high_val);
298 	switch (type) {
299 	case IRQ_TYPE_EDGE_FALLING:
300 		d->type_buf[reg] |= t->type_falling_val;
301 		break;
302 
303 	case IRQ_TYPE_EDGE_RISING:
304 		d->type_buf[reg] |= t->type_rising_val;
305 		break;
306 
307 	case IRQ_TYPE_EDGE_BOTH:
308 		d->type_buf[reg] |= (t->type_falling_val |
309 					t->type_rising_val);
310 		break;
311 
312 	case IRQ_TYPE_LEVEL_HIGH:
313 		d->type_buf[reg] |= t->type_level_high_val;
314 		break;
315 
316 	case IRQ_TYPE_LEVEL_LOW:
317 		d->type_buf[reg] |= t->type_level_low_val;
318 		break;
319 	default:
320 		return -EINVAL;
321 	}
322 
323 	if (d->chip->set_type_virt) {
324 		ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
325 					     reg);
326 		if (ret)
327 			return ret;
328 	}
329 
330 	if (d->chip->set_type_config) {
331 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
332 					       reg, d->chip->irq_drv_data);
333 		if (ret)
334 			return ret;
335 	}
336 
337 	return 0;
338 }
339 
340 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
341 {
342 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
343 	struct regmap *map = d->map;
344 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
345 
346 	if (on) {
347 		if (d->wake_buf)
348 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
349 				&= ~irq_data->mask;
350 		d->wake_count++;
351 	} else {
352 		if (d->wake_buf)
353 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
354 				|= irq_data->mask;
355 		d->wake_count--;
356 	}
357 
358 	return 0;
359 }
360 
361 static const struct irq_chip regmap_irq_chip = {
362 	.irq_bus_lock		= regmap_irq_lock,
363 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
364 	.irq_disable		= regmap_irq_disable,
365 	.irq_enable		= regmap_irq_enable,
366 	.irq_set_type		= regmap_irq_set_type,
367 	.irq_set_wake		= regmap_irq_set_wake,
368 };
369 
370 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
371 					   unsigned int b)
372 {
373 	const struct regmap_irq_chip *chip = data->chip;
374 	struct regmap *map = data->map;
375 	struct regmap_irq_sub_irq_map *subreg;
376 	unsigned int reg;
377 	int i, ret = 0;
378 
379 	if (!chip->sub_reg_offsets) {
380 		reg = data->get_irq_reg(data, chip->status_base, b);
381 		ret = regmap_read(map, reg, &data->status_buf[b]);
382 	} else {
383 		/*
384 		 * Note we can't use ->get_irq_reg() here because the offsets
385 		 * in 'subreg' are *not* interchangeable with indices.
386 		 */
387 		subreg = &chip->sub_reg_offsets[b];
388 		for (i = 0; i < subreg->num_regs; i++) {
389 			unsigned int offset = subreg->offset[i];
390 			unsigned int index = offset / map->reg_stride;
391 
392 			if (chip->not_fixed_stride)
393 				ret = regmap_read(map,
394 						chip->status_base + offset,
395 						&data->status_buf[b]);
396 			else
397 				ret = regmap_read(map,
398 						chip->status_base + offset,
399 						&data->status_buf[index]);
400 
401 			if (ret)
402 				break;
403 		}
404 	}
405 	return ret;
406 }
407 
408 static irqreturn_t regmap_irq_thread(int irq, void *d)
409 {
410 	struct regmap_irq_chip_data *data = d;
411 	const struct regmap_irq_chip *chip = data->chip;
412 	struct regmap *map = data->map;
413 	int ret, i;
414 	bool handled = false;
415 	u32 reg;
416 
417 	if (chip->handle_pre_irq)
418 		chip->handle_pre_irq(chip->irq_drv_data);
419 
420 	if (chip->runtime_pm) {
421 		ret = pm_runtime_get_sync(map->dev);
422 		if (ret < 0) {
423 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
424 				ret);
425 			goto exit;
426 		}
427 	}
428 
429 	/*
430 	 * Read only registers with active IRQs if the chip has 'main status
431 	 * register'. Else read in the statuses, using a single bulk read if
432 	 * possible in order to reduce the I/O overheads.
433 	 */
434 
435 	if (chip->no_status) {
436 		/* no status register so default to all active */
437 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
438 	} else if (chip->num_main_regs) {
439 		unsigned int max_main_bits;
440 		unsigned long size;
441 
442 		size = chip->num_regs * sizeof(unsigned int);
443 
444 		max_main_bits = (chip->num_main_status_bits) ?
445 				 chip->num_main_status_bits : chip->num_regs;
446 		/* Clear the status buf as we don't read all status regs */
447 		memset(data->status_buf, 0, size);
448 
449 		/* We could support bulk read for main status registers
450 		 * but I don't expect to see devices with really many main
451 		 * status registers so let's only support single reads for the
452 		 * sake of simplicity. and add bulk reads only if needed
453 		 */
454 		for (i = 0; i < chip->num_main_regs; i++) {
455 			/*
456 			 * For not_fixed_stride, don't use ->get_irq_reg().
457 			 * It would produce an incorrect result.
458 			 */
459 			if (data->chip->not_fixed_stride)
460 				reg = chip->main_status +
461 					i * map->reg_stride * data->irq_reg_stride;
462 			else
463 				reg = data->get_irq_reg(data,
464 							chip->main_status, i);
465 
466 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
467 			if (ret) {
468 				dev_err(map->dev,
469 					"Failed to read IRQ status %d\n",
470 					ret);
471 				goto exit;
472 			}
473 		}
474 
475 		/* Read sub registers with active IRQs */
476 		for (i = 0; i < chip->num_main_regs; i++) {
477 			unsigned int b;
478 			const unsigned long mreg = data->main_status_buf[i];
479 
480 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
481 				if (i * map->format.val_bytes * 8 + b >
482 				    max_main_bits)
483 					break;
484 				ret = read_sub_irq_data(data, b);
485 
486 				if (ret != 0) {
487 					dev_err(map->dev,
488 						"Failed to read IRQ status %d\n",
489 						ret);
490 					goto exit;
491 				}
492 			}
493 
494 		}
495 	} else if (regmap_irq_can_bulk_read_status(data)) {
496 
497 		u8 *buf8 = data->status_reg_buf;
498 		u16 *buf16 = data->status_reg_buf;
499 		u32 *buf32 = data->status_reg_buf;
500 
501 		BUG_ON(!data->status_reg_buf);
502 
503 		ret = regmap_bulk_read(map, chip->status_base,
504 				       data->status_reg_buf,
505 				       chip->num_regs);
506 		if (ret != 0) {
507 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
508 				ret);
509 			goto exit;
510 		}
511 
512 		for (i = 0; i < data->chip->num_regs; i++) {
513 			switch (map->format.val_bytes) {
514 			case 1:
515 				data->status_buf[i] = buf8[i];
516 				break;
517 			case 2:
518 				data->status_buf[i] = buf16[i];
519 				break;
520 			case 4:
521 				data->status_buf[i] = buf32[i];
522 				break;
523 			default:
524 				BUG();
525 				goto exit;
526 			}
527 		}
528 
529 	} else {
530 		for (i = 0; i < data->chip->num_regs; i++) {
531 			unsigned int reg = data->get_irq_reg(data,
532 					data->chip->status_base, i);
533 			ret = regmap_read(map, reg, &data->status_buf[i]);
534 
535 			if (ret != 0) {
536 				dev_err(map->dev,
537 					"Failed to read IRQ status: %d\n",
538 					ret);
539 				goto exit;
540 			}
541 		}
542 	}
543 
544 	if (chip->status_invert)
545 		for (i = 0; i < data->chip->num_regs; i++)
546 			data->status_buf[i] = ~data->status_buf[i];
547 
548 	/*
549 	 * Ignore masked IRQs and ack if we need to; we ack early so
550 	 * there is no race between handling and acknowledging the
551 	 * interrupt.  We assume that typically few of the interrupts
552 	 * will fire simultaneously so don't worry about overhead from
553 	 * doing a write per register.
554 	 */
555 	for (i = 0; i < data->chip->num_regs; i++) {
556 		data->status_buf[i] &= ~data->mask_buf[i];
557 
558 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
559 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
560 
561 			if (chip->ack_invert)
562 				ret = regmap_write(map, reg,
563 						~data->status_buf[i]);
564 			else
565 				ret = regmap_write(map, reg,
566 						data->status_buf[i]);
567 			if (chip->clear_ack) {
568 				if (chip->ack_invert && !ret)
569 					ret = regmap_write(map, reg, UINT_MAX);
570 				else if (!ret)
571 					ret = regmap_write(map, reg, 0);
572 			}
573 			if (ret != 0)
574 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
575 					reg, ret);
576 		}
577 	}
578 
579 	for (i = 0; i < chip->num_irqs; i++) {
580 		if (data->status_buf[chip->irqs[i].reg_offset /
581 				     map->reg_stride] & chip->irqs[i].mask) {
582 			handle_nested_irq(irq_find_mapping(data->domain, i));
583 			handled = true;
584 		}
585 	}
586 
587 exit:
588 	if (chip->runtime_pm)
589 		pm_runtime_put(map->dev);
590 
591 	if (chip->handle_post_irq)
592 		chip->handle_post_irq(chip->irq_drv_data);
593 
594 	if (handled)
595 		return IRQ_HANDLED;
596 	else
597 		return IRQ_NONE;
598 }
599 
600 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
601 			  irq_hw_number_t hw)
602 {
603 	struct regmap_irq_chip_data *data = h->host_data;
604 
605 	irq_set_chip_data(virq, data);
606 	irq_set_chip(virq, &data->irq_chip);
607 	irq_set_nested_thread(virq, 1);
608 	irq_set_parent(virq, data->irq);
609 	irq_set_noprobe(virq);
610 
611 	return 0;
612 }
613 
614 static const struct irq_domain_ops regmap_domain_ops = {
615 	.map	= regmap_irq_map,
616 	.xlate	= irq_domain_xlate_onetwocell,
617 };
618 
619 /**
620  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
621  * @data: Data for the &struct regmap_irq_chip
622  * @base: Base register
623  * @index: Register index
624  *
625  * Returns the register address corresponding to the given @base and @index
626  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
627  */
628 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
629 					   unsigned int base, int index)
630 {
631 	const struct regmap_irq_chip *chip = data->chip;
632 	struct regmap *map = data->map;
633 
634 	/*
635 	 * FIXME: This is for backward compatibility and should be removed
636 	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
637 	 */
638 	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
639 		struct regmap_irq_sub_irq_map *subreg;
640 
641 		subreg = &chip->sub_reg_offsets[0];
642 		return base + subreg->offset[0];
643 	}
644 
645 	return base + index * map->reg_stride * data->irq_reg_stride;
646 }
647 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
648 
649 /**
650  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
651  * @buf: Buffer containing configuration register values, this is a 2D array of
652  *       `num_config_bases` rows, each of `num_config_regs` elements.
653  * @type: The requested IRQ type.
654  * @irq_data: The IRQ being configured.
655  * @idx: Index of the irq's config registers within each array `buf[i]`
656  * @irq_drv_data: Driver specific IRQ data
657  *
658  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
659  * chips with one config register. Register values are updated according to
660  * the &struct regmap_irq_type data associated with an IRQ.
661  */
662 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
663 				      const struct regmap_irq *irq_data,
664 				      int idx, void *irq_drv_data)
665 {
666 	const struct regmap_irq_type *t = &irq_data->type;
667 
668 	if (t->type_reg_mask)
669 		buf[0][idx] &= ~t->type_reg_mask;
670 	else
671 		buf[0][idx] &= ~(t->type_falling_val |
672 				 t->type_rising_val |
673 				 t->type_level_low_val |
674 				 t->type_level_high_val);
675 
676 	switch (type) {
677 	case IRQ_TYPE_EDGE_FALLING:
678 		buf[0][idx] |= t->type_falling_val;
679 		break;
680 
681 	case IRQ_TYPE_EDGE_RISING:
682 		buf[0][idx] |= t->type_rising_val;
683 		break;
684 
685 	case IRQ_TYPE_EDGE_BOTH:
686 		buf[0][idx] |= (t->type_falling_val |
687 				t->type_rising_val);
688 		break;
689 
690 	case IRQ_TYPE_LEVEL_HIGH:
691 		buf[0][idx] |= t->type_level_high_val;
692 		break;
693 
694 	case IRQ_TYPE_LEVEL_LOW:
695 		buf[0][idx] |= t->type_level_low_val;
696 		break;
697 
698 	default:
699 		return -EINVAL;
700 	}
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
705 
706 /**
707  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
708  *
709  * @fwnode: The firmware node where the IRQ domain should be added to.
710  * @map: The regmap for the device.
711  * @irq: The IRQ the device uses to signal interrupts.
712  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
713  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
714  * @chip: Configuration for the interrupt controller.
715  * @data: Runtime data structure for the controller, allocated on success.
716  *
717  * Returns 0 on success or an errno on failure.
718  *
719  * In order for this to be efficient the chip really should use a
720  * register cache.  The chip driver is responsible for restoring the
721  * register values used by the IRQ controller over suspend and resume.
722  */
723 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
724 			       struct regmap *map, int irq,
725 			       int irq_flags, int irq_base,
726 			       const struct regmap_irq_chip *chip,
727 			       struct regmap_irq_chip_data **data)
728 {
729 	struct regmap_irq_chip_data *d;
730 	int i;
731 	int ret = -ENOMEM;
732 	int num_type_reg;
733 	int num_regs;
734 	u32 reg;
735 
736 	if (chip->num_regs <= 0)
737 		return -EINVAL;
738 
739 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
740 		return -EINVAL;
741 
742 	for (i = 0; i < chip->num_irqs; i++) {
743 		if (chip->irqs[i].reg_offset % map->reg_stride)
744 			return -EINVAL;
745 		if (chip->irqs[i].reg_offset / map->reg_stride >=
746 		    chip->num_regs)
747 			return -EINVAL;
748 	}
749 
750 	if (chip->not_fixed_stride) {
751 		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
752 
753 		for (i = 0; i < chip->num_regs; i++)
754 			if (chip->sub_reg_offsets[i].num_regs != 1)
755 				return -EINVAL;
756 	}
757 
758 	if (chip->num_type_reg)
759 		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
760 
761 	if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
762 		dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
763 
764 	if (irq_base) {
765 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
766 		if (irq_base < 0) {
767 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
768 				 irq_base);
769 			return irq_base;
770 		}
771 	}
772 
773 	d = kzalloc(sizeof(*d), GFP_KERNEL);
774 	if (!d)
775 		return -ENOMEM;
776 
777 	if (chip->num_main_regs) {
778 		d->main_status_buf = kcalloc(chip->num_main_regs,
779 					     sizeof(*d->main_status_buf),
780 					     GFP_KERNEL);
781 
782 		if (!d->main_status_buf)
783 			goto err_alloc;
784 	}
785 
786 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
787 				GFP_KERNEL);
788 	if (!d->status_buf)
789 		goto err_alloc;
790 
791 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
792 			      GFP_KERNEL);
793 	if (!d->mask_buf)
794 		goto err_alloc;
795 
796 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
797 				  GFP_KERNEL);
798 	if (!d->mask_buf_def)
799 		goto err_alloc;
800 
801 	if (chip->wake_base) {
802 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
803 				      GFP_KERNEL);
804 		if (!d->wake_buf)
805 			goto err_alloc;
806 	}
807 
808 	/*
809 	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
810 	 * to maintain backward compatibility.
811 	 */
812 	num_type_reg = chip->num_config_regs ? chip->num_config_regs
813 			: chip->num_type_reg;
814 	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
815 	if (num_regs) {
816 		d->type_buf_def = kcalloc(num_regs,
817 					  sizeof(*d->type_buf_def), GFP_KERNEL);
818 		if (!d->type_buf_def)
819 			goto err_alloc;
820 
821 		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
822 				      GFP_KERNEL);
823 		if (!d->type_buf)
824 			goto err_alloc;
825 	}
826 
827 	if (chip->num_virt_regs) {
828 		/*
829 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
830 		 */
831 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
832 				      GFP_KERNEL);
833 		if (!d->virt_buf)
834 			goto err_alloc;
835 
836 		for (i = 0; i < chip->num_virt_regs; i++) {
837 			d->virt_buf[i] = kcalloc(chip->num_regs,
838 						 sizeof(**d->virt_buf),
839 						 GFP_KERNEL);
840 			if (!d->virt_buf[i])
841 				goto err_alloc;
842 		}
843 	}
844 
845 	if (chip->num_config_bases && chip->num_config_regs) {
846 		/*
847 		 * Create config_buf[num_config_bases][num_config_regs]
848 		 */
849 		d->config_buf = kcalloc(chip->num_config_bases,
850 					sizeof(*d->config_buf), GFP_KERNEL);
851 		if (!d->config_buf)
852 			goto err_alloc;
853 
854 		for (i = 0; i < chip->num_config_regs; i++) {
855 			d->config_buf[i] = kcalloc(chip->num_config_regs,
856 						   sizeof(**d->config_buf),
857 						   GFP_KERNEL);
858 			if (!d->config_buf[i])
859 				goto err_alloc;
860 		}
861 	}
862 
863 	d->irq_chip = regmap_irq_chip;
864 	d->irq_chip.name = chip->name;
865 	d->irq = irq;
866 	d->map = map;
867 	d->chip = chip;
868 	d->irq_base = irq_base;
869 
870 	if (chip->mask_base && chip->unmask_base &&
871 	    !chip->mask_unmask_non_inverted) {
872 		/*
873 		 * Chips that specify both mask_base and unmask_base used to
874 		 * get inverted mask behavior by default, with no way to ask
875 		 * for the normal, non-inverted behavior. This "inverted by
876 		 * default" behavior is deprecated, but we have to support it
877 		 * until existing drivers have been fixed.
878 		 *
879 		 * Existing drivers should be updated by swapping mask_base
880 		 * and unmask_base and setting mask_unmask_non_inverted=true.
881 		 * New drivers should always set the flag.
882 		 */
883 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
884 
885 		d->mask_base = chip->unmask_base;
886 		d->unmask_base = chip->mask_base;
887 	} else {
888 		d->mask_base = chip->mask_base;
889 		d->unmask_base = chip->unmask_base;
890 	}
891 
892 	if (chip->irq_reg_stride)
893 		d->irq_reg_stride = chip->irq_reg_stride;
894 	else
895 		d->irq_reg_stride = 1;
896 
897 	if (chip->get_irq_reg)
898 		d->get_irq_reg = chip->get_irq_reg;
899 	else
900 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
901 
902 	if (regmap_irq_can_bulk_read_status(d)) {
903 		d->status_reg_buf = kmalloc_array(chip->num_regs,
904 						  map->format.val_bytes,
905 						  GFP_KERNEL);
906 		if (!d->status_reg_buf)
907 			goto err_alloc;
908 	}
909 
910 	mutex_init(&d->lock);
911 
912 	for (i = 0; i < chip->num_irqs; i++)
913 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
914 			|= chip->irqs[i].mask;
915 
916 	/* Mask all the interrupts by default */
917 	for (i = 0; i < chip->num_regs; i++) {
918 		d->mask_buf[i] = d->mask_buf_def[i];
919 
920 		if (d->mask_base) {
921 			if (chip->handle_mask_sync) {
922 				ret = chip->handle_mask_sync(i,
923 							     d->mask_buf_def[i],
924 							     d->mask_buf[i],
925 							     chip->irq_drv_data);
926 				if (ret)
927 					goto err_alloc;
928 			} else {
929 				reg = d->get_irq_reg(d, d->mask_base, i);
930 				ret = regmap_update_bits(d->map, reg,
931 						d->mask_buf_def[i],
932 						d->mask_buf[i]);
933 				if (ret) {
934 					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
935 						reg, ret);
936 					goto err_alloc;
937 				}
938 			}
939 		}
940 
941 		if (d->unmask_base) {
942 			reg = d->get_irq_reg(d, d->unmask_base, i);
943 			ret = regmap_update_bits(d->map, reg,
944 					d->mask_buf_def[i], ~d->mask_buf[i]);
945 			if (ret) {
946 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
947 					reg, ret);
948 				goto err_alloc;
949 			}
950 		}
951 
952 		if (!chip->init_ack_masked)
953 			continue;
954 
955 		/* Ack masked but set interrupts */
956 		if (d->chip->no_status) {
957 			/* no status register so default to all active */
958 			d->status_buf[i] = GENMASK(31, 0);
959 		} else {
960 			reg = d->get_irq_reg(d, d->chip->status_base, i);
961 			ret = regmap_read(map, reg, &d->status_buf[i]);
962 			if (ret != 0) {
963 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
964 					ret);
965 				goto err_alloc;
966 			}
967 		}
968 
969 		if (chip->status_invert)
970 			d->status_buf[i] = ~d->status_buf[i];
971 
972 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
973 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
974 			if (chip->ack_invert)
975 				ret = regmap_write(map, reg,
976 					~(d->status_buf[i] & d->mask_buf[i]));
977 			else
978 				ret = regmap_write(map, reg,
979 					d->status_buf[i] & d->mask_buf[i]);
980 			if (chip->clear_ack) {
981 				if (chip->ack_invert && !ret)
982 					ret = regmap_write(map, reg, UINT_MAX);
983 				else if (!ret)
984 					ret = regmap_write(map, reg, 0);
985 			}
986 			if (ret != 0) {
987 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
988 					reg, ret);
989 				goto err_alloc;
990 			}
991 		}
992 	}
993 
994 	/* Wake is disabled by default */
995 	if (d->wake_buf) {
996 		for (i = 0; i < chip->num_regs; i++) {
997 			d->wake_buf[i] = d->mask_buf_def[i];
998 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
999 
1000 			if (chip->wake_invert)
1001 				ret = regmap_update_bits(d->map, reg,
1002 							 d->mask_buf_def[i],
1003 							 0);
1004 			else
1005 				ret = regmap_update_bits(d->map, reg,
1006 							 d->mask_buf_def[i],
1007 							 d->wake_buf[i]);
1008 			if (ret != 0) {
1009 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1010 					reg, ret);
1011 				goto err_alloc;
1012 			}
1013 		}
1014 	}
1015 
1016 	if (chip->num_type_reg && !chip->type_in_mask) {
1017 		for (i = 0; i < chip->num_type_reg; ++i) {
1018 			reg = d->get_irq_reg(d, d->chip->type_base, i);
1019 
1020 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
1021 
1022 			if (ret) {
1023 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1024 					reg, ret);
1025 				goto err_alloc;
1026 			}
1027 		}
1028 	}
1029 
1030 	if (irq_base)
1031 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1032 						     irq_base, 0,
1033 						     &regmap_domain_ops, d);
1034 	else
1035 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1036 						     &regmap_domain_ops, d);
1037 	if (!d->domain) {
1038 		dev_err(map->dev, "Failed to create IRQ domain\n");
1039 		ret = -ENOMEM;
1040 		goto err_alloc;
1041 	}
1042 
1043 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1044 				   irq_flags | IRQF_ONESHOT,
1045 				   chip->name, d);
1046 	if (ret != 0) {
1047 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1048 			irq, chip->name, ret);
1049 		goto err_domain;
1050 	}
1051 
1052 	*data = d;
1053 
1054 	return 0;
1055 
1056 err_domain:
1057 	/* Should really dispose of the domain but... */
1058 err_alloc:
1059 	kfree(d->type_buf);
1060 	kfree(d->type_buf_def);
1061 	kfree(d->wake_buf);
1062 	kfree(d->mask_buf_def);
1063 	kfree(d->mask_buf);
1064 	kfree(d->status_buf);
1065 	kfree(d->status_reg_buf);
1066 	if (d->virt_buf) {
1067 		for (i = 0; i < chip->num_virt_regs; i++)
1068 			kfree(d->virt_buf[i]);
1069 		kfree(d->virt_buf);
1070 	}
1071 	if (d->config_buf) {
1072 		for (i = 0; i < chip->num_config_bases; i++)
1073 			kfree(d->config_buf[i]);
1074 		kfree(d->config_buf);
1075 	}
1076 	kfree(d);
1077 	return ret;
1078 }
1079 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1080 
1081 /**
1082  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1083  *
1084  * @map: The regmap for the device.
1085  * @irq: The IRQ the device uses to signal interrupts.
1086  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1087  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1088  * @chip: Configuration for the interrupt controller.
1089  * @data: Runtime data structure for the controller, allocated on success.
1090  *
1091  * Returns 0 on success or an errno on failure.
1092  *
1093  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1094  * node of the regmap is used.
1095  */
1096 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1097 			int irq_base, const struct regmap_irq_chip *chip,
1098 			struct regmap_irq_chip_data **data)
1099 {
1100 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1101 					  irq_flags, irq_base, chip, data);
1102 }
1103 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1104 
1105 /**
1106  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1107  *
1108  * @irq: Primary IRQ for the device
1109  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1110  *
1111  * This function also disposes of all mapped IRQs on the chip.
1112  */
1113 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1114 {
1115 	unsigned int virq;
1116 	int i, hwirq;
1117 
1118 	if (!d)
1119 		return;
1120 
1121 	free_irq(irq, d);
1122 
1123 	/* Dispose all virtual irq from irq domain before removing it */
1124 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1125 		/* Ignore hwirq if holes in the IRQ list */
1126 		if (!d->chip->irqs[hwirq].mask)
1127 			continue;
1128 
1129 		/*
1130 		 * Find the virtual irq of hwirq on chip and if it is
1131 		 * there then dispose it
1132 		 */
1133 		virq = irq_find_mapping(d->domain, hwirq);
1134 		if (virq)
1135 			irq_dispose_mapping(virq);
1136 	}
1137 
1138 	irq_domain_remove(d->domain);
1139 	kfree(d->type_buf);
1140 	kfree(d->type_buf_def);
1141 	kfree(d->wake_buf);
1142 	kfree(d->mask_buf_def);
1143 	kfree(d->mask_buf);
1144 	kfree(d->status_reg_buf);
1145 	kfree(d->status_buf);
1146 	if (d->config_buf) {
1147 		for (i = 0; i < d->chip->num_config_bases; i++)
1148 			kfree(d->config_buf[i]);
1149 		kfree(d->config_buf);
1150 	}
1151 	kfree(d);
1152 }
1153 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1154 
1155 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1156 {
1157 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1158 
1159 	regmap_del_irq_chip(d->irq, d);
1160 }
1161 
1162 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1163 
1164 {
1165 	struct regmap_irq_chip_data **r = res;
1166 
1167 	if (!r || !*r) {
1168 		WARN_ON(!r || !*r);
1169 		return 0;
1170 	}
1171 	return *r == data;
1172 }
1173 
1174 /**
1175  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1176  *
1177  * @dev: The device pointer on which irq_chip belongs to.
1178  * @fwnode: The firmware node where the IRQ domain should be added to.
1179  * @map: The regmap for the device.
1180  * @irq: The IRQ the device uses to signal interrupts
1181  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1182  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1183  * @chip: Configuration for the interrupt controller.
1184  * @data: Runtime data structure for the controller, allocated on success
1185  *
1186  * Returns 0 on success or an errno on failure.
1187  *
1188  * The &regmap_irq_chip_data will be automatically released when the device is
1189  * unbound.
1190  */
1191 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1192 				    struct fwnode_handle *fwnode,
1193 				    struct regmap *map, int irq,
1194 				    int irq_flags, int irq_base,
1195 				    const struct regmap_irq_chip *chip,
1196 				    struct regmap_irq_chip_data **data)
1197 {
1198 	struct regmap_irq_chip_data **ptr, *d;
1199 	int ret;
1200 
1201 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1202 			   GFP_KERNEL);
1203 	if (!ptr)
1204 		return -ENOMEM;
1205 
1206 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1207 					 chip, &d);
1208 	if (ret < 0) {
1209 		devres_free(ptr);
1210 		return ret;
1211 	}
1212 
1213 	*ptr = d;
1214 	devres_add(dev, ptr);
1215 	*data = d;
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1219 
1220 /**
1221  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1222  *
1223  * @dev: The device pointer on which irq_chip belongs to.
1224  * @map: The regmap for the device.
1225  * @irq: The IRQ the device uses to signal interrupts
1226  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1227  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1228  * @chip: Configuration for the interrupt controller.
1229  * @data: Runtime data structure for the controller, allocated on success
1230  *
1231  * Returns 0 on success or an errno on failure.
1232  *
1233  * The &regmap_irq_chip_data will be automatically released when the device is
1234  * unbound.
1235  */
1236 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1237 			     int irq_flags, int irq_base,
1238 			     const struct regmap_irq_chip *chip,
1239 			     struct regmap_irq_chip_data **data)
1240 {
1241 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1242 					       irq, irq_flags, irq_base, chip,
1243 					       data);
1244 }
1245 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1246 
1247 /**
1248  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1249  *
1250  * @dev: Device for which the resource was allocated.
1251  * @irq: Primary IRQ for the device.
1252  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1253  *
1254  * A resource managed version of regmap_del_irq_chip().
1255  */
1256 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1257 			      struct regmap_irq_chip_data *data)
1258 {
1259 	int rc;
1260 
1261 	WARN_ON(irq != data->irq);
1262 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1263 			    devm_regmap_irq_chip_match, data);
1264 
1265 	if (rc != 0)
1266 		WARN_ON(rc);
1267 }
1268 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1269 
1270 /**
1271  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1272  *
1273  * @data: regmap irq controller to operate on.
1274  *
1275  * Useful for drivers to request their own IRQs.
1276  */
1277 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1278 {
1279 	WARN_ON(!data->irq_base);
1280 	return data->irq_base;
1281 }
1282 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1283 
1284 /**
1285  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1286  *
1287  * @data: regmap irq controller to operate on.
1288  * @irq: index of the interrupt requested in the chip IRQs.
1289  *
1290  * Useful for drivers to request their own IRQs.
1291  */
1292 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1293 {
1294 	/* Handle holes in the IRQ list */
1295 	if (!data->chip->irqs[irq].mask)
1296 		return -EINVAL;
1297 
1298 	return irq_create_mapping(data->domain, irq);
1299 }
1300 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1301 
1302 /**
1303  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1304  *
1305  * @data: regmap_irq controller to operate on.
1306  *
1307  * Useful for drivers to request their own IRQs and for integration
1308  * with subsystems.  For ease of integration NULL is accepted as a
1309  * domain, allowing devices to just call this even if no domain is
1310  * allocated.
1311  */
1312 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1313 {
1314 	if (data)
1315 		return data->domain;
1316 	else
1317 		return NULL;
1318 }
1319 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1320