1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 static struct workqueue_struct *device_link_wq; 48 49 /** 50 * __fwnode_link_add - Create a link between two fwnode_handles. 51 * @con: Consumer end of the link. 52 * @sup: Supplier end of the link. 53 * 54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 55 * represents the detail that the firmware lists @sup fwnode as supplying a 56 * resource to @con. 57 * 58 * The driver core will use the fwnode link to create a device link between the 59 * two device objects corresponding to @con and @sup when they are created. The 60 * driver core will automatically delete the fwnode link between @con and @sup 61 * after doing that. 62 * 63 * Attempts to create duplicate links between the same pair of fwnode handles 64 * are ignored and there is no reference counting. 65 */ 66 static int __fwnode_link_add(struct fwnode_handle *con, 67 struct fwnode_handle *sup, u8 flags) 68 { 69 struct fwnode_link *link; 70 71 list_for_each_entry(link, &sup->consumers, s_hook) 72 if (link->consumer == con) { 73 link->flags |= flags; 74 return 0; 75 } 76 77 link = kzalloc(sizeof(*link), GFP_KERNEL); 78 if (!link) 79 return -ENOMEM; 80 81 link->supplier = sup; 82 INIT_LIST_HEAD(&link->s_hook); 83 link->consumer = con; 84 INIT_LIST_HEAD(&link->c_hook); 85 link->flags = flags; 86 87 list_add(&link->s_hook, &sup->consumers); 88 list_add(&link->c_hook, &con->suppliers); 89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 90 con, sup); 91 92 return 0; 93 } 94 95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 96 { 97 int ret; 98 99 mutex_lock(&fwnode_link_lock); 100 ret = __fwnode_link_add(con, sup, 0); 101 mutex_unlock(&fwnode_link_lock); 102 return ret; 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 mutex_lock(&fwnode_link_lock); 144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 145 __fwnode_link_del(link); 146 mutex_unlock(&fwnode_link_lock); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 mutex_lock(&fwnode_link_lock); 160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 161 __fwnode_link_del(link); 162 mutex_unlock(&fwnode_link_lock); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the 536 * dedicated workqueue. 537 */ 538 queue_work(device_link_wq, &link->rm_work); 539 } 540 541 /** 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 543 */ 544 void device_link_wait_removal(void) 545 { 546 /* 547 * devlink removal jobs are queued in the dedicated work queue. 548 * To be sure that all removal jobs are terminated, ensure that any 549 * scheduled work has run to completion. 550 */ 551 flush_workqueue(device_link_wq); 552 } 553 EXPORT_SYMBOL_GPL(device_link_wait_removal); 554 555 static struct class devlink_class = { 556 .name = "devlink", 557 .dev_groups = devlink_groups, 558 .dev_release = devlink_dev_release, 559 }; 560 561 static int devlink_add_symlinks(struct device *dev) 562 { 563 int ret; 564 size_t len; 565 struct device_link *link = to_devlink(dev); 566 struct device *sup = link->supplier; 567 struct device *con = link->consumer; 568 char *buf; 569 570 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 571 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 572 len += strlen(":"); 573 len += strlen("supplier:") + 1; 574 buf = kzalloc(len, GFP_KERNEL); 575 if (!buf) 576 return -ENOMEM; 577 578 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 579 if (ret) 580 goto out; 581 582 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 583 if (ret) 584 goto err_con; 585 586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 587 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 588 if (ret) 589 goto err_con_dev; 590 591 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 593 if (ret) 594 goto err_sup_dev; 595 596 goto out; 597 598 err_sup_dev: 599 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 600 sysfs_remove_link(&sup->kobj, buf); 601 err_con_dev: 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 err_con: 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 out: 606 kfree(buf); 607 return ret; 608 } 609 610 static void devlink_remove_symlinks(struct device *dev) 611 { 612 struct device_link *link = to_devlink(dev); 613 size_t len; 614 struct device *sup = link->supplier; 615 struct device *con = link->consumer; 616 char *buf; 617 618 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 619 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 620 621 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 622 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 623 len += strlen(":"); 624 len += strlen("supplier:") + 1; 625 buf = kzalloc(len, GFP_KERNEL); 626 if (!buf) { 627 WARN(1, "Unable to properly free device link symlinks!\n"); 628 return; 629 } 630 631 if (device_is_registered(con)) { 632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 633 sysfs_remove_link(&con->kobj, buf); 634 } 635 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 636 sysfs_remove_link(&sup->kobj, buf); 637 kfree(buf); 638 } 639 640 static struct class_interface devlink_class_intf = { 641 .class = &devlink_class, 642 .add_dev = devlink_add_symlinks, 643 .remove_dev = devlink_remove_symlinks, 644 }; 645 646 static int __init devlink_class_init(void) 647 { 648 int ret; 649 650 ret = class_register(&devlink_class); 651 if (ret) 652 return ret; 653 654 ret = class_interface_register(&devlink_class_intf); 655 if (ret) 656 class_unregister(&devlink_class); 657 658 return ret; 659 } 660 postcore_initcall(devlink_class_init); 661 662 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 663 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 664 DL_FLAG_AUTOPROBE_CONSUMER | \ 665 DL_FLAG_SYNC_STATE_ONLY | \ 666 DL_FLAG_INFERRED | \ 667 DL_FLAG_CYCLE) 668 669 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 670 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 671 672 /** 673 * device_link_add - Create a link between two devices. 674 * @consumer: Consumer end of the link. 675 * @supplier: Supplier end of the link. 676 * @flags: Link flags. 677 * 678 * The caller is responsible for the proper synchronization of the link creation 679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 680 * runtime PM framework to take the link into account. Second, if the 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 682 * be forced into the active meta state and reference-counted upon the creation 683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 684 * ignored. 685 * 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 687 * expected to release the link returned by it directly with the help of either 688 * device_link_del() or device_link_remove(). 689 * 690 * If that flag is not set, however, the caller of this function is handing the 691 * management of the link over to the driver core entirely and its return value 692 * can only be used to check whether or not the link is present. In that case, 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 694 * flags can be used to indicate to the driver core when the link can be safely 695 * deleted. Namely, setting one of them in @flags indicates to the driver core 696 * that the link is not going to be used (by the given caller of this function) 697 * after unbinding the consumer or supplier driver, respectively, from its 698 * device, so the link can be deleted at that point. If none of them is set, 699 * the link will be maintained until one of the devices pointed to by it (either 700 * the consumer or the supplier) is unregistered. 701 * 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 705 * be used to request the driver core to automatically probe for a consumer 706 * driver after successfully binding a driver to the supplier device. 707 * 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 710 * the same time is invalid and will cause NULL to be returned upfront. 711 * However, if a device link between the given @consumer and @supplier pair 712 * exists already when this function is called for them, the existing link will 713 * be returned regardless of its current type and status (the link's flags may 714 * be modified then). The caller of this function is then expected to treat 715 * the link as though it has just been created, so (in particular) if 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 717 * explicitly when not needed any more (as stated above). 718 * 719 * A side effect of the link creation is re-ordering of dpm_list and the 720 * devices_kset list by moving the consumer device and all devices depending 721 * on it to the ends of these lists (that does not happen to devices that have 722 * not been registered when this function is called). 723 * 724 * The supplier device is required to be registered when this function is called 725 * and NULL will be returned if that is not the case. The consumer device need 726 * not be registered, however. 727 */ 728 struct device_link *device_link_add(struct device *consumer, 729 struct device *supplier, u32 flags) 730 { 731 struct device_link *link; 732 733 if (!consumer || !supplier || consumer == supplier || 734 flags & ~DL_ADD_VALID_FLAGS || 735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 736 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 738 DL_FLAG_AUTOREMOVE_SUPPLIER))) 739 return NULL; 740 741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 742 if (pm_runtime_get_sync(supplier) < 0) { 743 pm_runtime_put_noidle(supplier); 744 return NULL; 745 } 746 } 747 748 if (!(flags & DL_FLAG_STATELESS)) 749 flags |= DL_FLAG_MANAGED; 750 751 if (flags & DL_FLAG_SYNC_STATE_ONLY && 752 !device_link_flag_is_sync_state_only(flags)) 753 return NULL; 754 755 device_links_write_lock(); 756 device_pm_lock(); 757 758 /* 759 * If the supplier has not been fully registered yet or there is a 760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 761 * the supplier already in the graph, return NULL. If the link is a 762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 763 * because it only affects sync_state() callbacks. 764 */ 765 if (!device_pm_initialized(supplier) 766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 767 device_is_dependent(consumer, supplier))) { 768 link = NULL; 769 goto out; 770 } 771 772 /* 773 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 774 * So, only create it if the consumer hasn't probed yet. 775 */ 776 if (flags & DL_FLAG_SYNC_STATE_ONLY && 777 consumer->links.status != DL_DEV_NO_DRIVER && 778 consumer->links.status != DL_DEV_PROBING) { 779 link = NULL; 780 goto out; 781 } 782 783 /* 784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 787 */ 788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 790 791 list_for_each_entry(link, &supplier->links.consumers, s_node) { 792 if (link->consumer != consumer) 793 continue; 794 795 if (link->flags & DL_FLAG_INFERRED && 796 !(flags & DL_FLAG_INFERRED)) 797 link->flags &= ~DL_FLAG_INFERRED; 798 799 if (flags & DL_FLAG_PM_RUNTIME) { 800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 801 pm_runtime_new_link(consumer); 802 link->flags |= DL_FLAG_PM_RUNTIME; 803 } 804 if (flags & DL_FLAG_RPM_ACTIVE) 805 refcount_inc(&link->rpm_active); 806 } 807 808 if (flags & DL_FLAG_STATELESS) { 809 kref_get(&link->kref); 810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 811 !(link->flags & DL_FLAG_STATELESS)) { 812 link->flags |= DL_FLAG_STATELESS; 813 goto reorder; 814 } else { 815 link->flags |= DL_FLAG_STATELESS; 816 goto out; 817 } 818 } 819 820 /* 821 * If the life time of the link following from the new flags is 822 * longer than indicated by the flags of the existing link, 823 * update the existing link to stay around longer. 824 */ 825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 829 } 830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 832 DL_FLAG_AUTOREMOVE_SUPPLIER); 833 } 834 if (!(link->flags & DL_FLAG_MANAGED)) { 835 kref_get(&link->kref); 836 link->flags |= DL_FLAG_MANAGED; 837 device_link_init_status(link, consumer, supplier); 838 } 839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 842 goto reorder; 843 } 844 845 goto out; 846 } 847 848 link = kzalloc(sizeof(*link), GFP_KERNEL); 849 if (!link) 850 goto out; 851 852 refcount_set(&link->rpm_active, 1); 853 854 get_device(supplier); 855 link->supplier = supplier; 856 INIT_LIST_HEAD(&link->s_node); 857 get_device(consumer); 858 link->consumer = consumer; 859 INIT_LIST_HEAD(&link->c_node); 860 link->flags = flags; 861 kref_init(&link->kref); 862 863 link->link_dev.class = &devlink_class; 864 device_set_pm_not_required(&link->link_dev); 865 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 866 dev_bus_name(supplier), dev_name(supplier), 867 dev_bus_name(consumer), dev_name(consumer)); 868 if (device_register(&link->link_dev)) { 869 put_device(&link->link_dev); 870 link = NULL; 871 goto out; 872 } 873 874 if (flags & DL_FLAG_PM_RUNTIME) { 875 if (flags & DL_FLAG_RPM_ACTIVE) 876 refcount_inc(&link->rpm_active); 877 878 pm_runtime_new_link(consumer); 879 } 880 881 /* Determine the initial link state. */ 882 if (flags & DL_FLAG_STATELESS) 883 link->status = DL_STATE_NONE; 884 else 885 device_link_init_status(link, consumer, supplier); 886 887 /* 888 * Some callers expect the link creation during consumer driver probe to 889 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 890 */ 891 if (link->status == DL_STATE_CONSUMER_PROBE && 892 flags & DL_FLAG_PM_RUNTIME) 893 pm_runtime_resume(supplier); 894 895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 897 898 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 899 dev_dbg(consumer, 900 "Linked as a sync state only consumer to %s\n", 901 dev_name(supplier)); 902 goto out; 903 } 904 905 reorder: 906 /* 907 * Move the consumer and all of the devices depending on it to the end 908 * of dpm_list and the devices_kset list. 909 * 910 * It is necessary to hold dpm_list locked throughout all that or else 911 * we may end up suspending with a wrong ordering of it. 912 */ 913 device_reorder_to_tail(consumer, NULL); 914 915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 916 917 out: 918 device_pm_unlock(); 919 device_links_write_unlock(); 920 921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 922 pm_runtime_put(supplier); 923 924 return link; 925 } 926 EXPORT_SYMBOL_GPL(device_link_add); 927 928 static void __device_link_del(struct kref *kref) 929 { 930 struct device_link *link = container_of(kref, struct device_link, kref); 931 932 dev_dbg(link->consumer, "Dropping the link to %s\n", 933 dev_name(link->supplier)); 934 935 pm_runtime_drop_link(link); 936 937 device_link_remove_from_lists(link); 938 device_unregister(&link->link_dev); 939 } 940 941 static void device_link_put_kref(struct device_link *link) 942 { 943 if (link->flags & DL_FLAG_STATELESS) 944 kref_put(&link->kref, __device_link_del); 945 else if (!device_is_registered(link->consumer)) 946 __device_link_del(&link->kref); 947 else 948 WARN(1, "Unable to drop a managed device link reference\n"); 949 } 950 951 /** 952 * device_link_del - Delete a stateless link between two devices. 953 * @link: Device link to delete. 954 * 955 * The caller must ensure proper synchronization of this function with runtime 956 * PM. If the link was added multiple times, it needs to be deleted as often. 957 * Care is required for hotplugged devices: Their links are purged on removal 958 * and calling device_link_del() is then no longer allowed. 959 */ 960 void device_link_del(struct device_link *link) 961 { 962 device_links_write_lock(); 963 device_link_put_kref(link); 964 device_links_write_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(device_link_del); 967 968 /** 969 * device_link_remove - Delete a stateless link between two devices. 970 * @consumer: Consumer end of the link. 971 * @supplier: Supplier end of the link. 972 * 973 * The caller must ensure proper synchronization of this function with runtime 974 * PM. 975 */ 976 void device_link_remove(void *consumer, struct device *supplier) 977 { 978 struct device_link *link; 979 980 if (WARN_ON(consumer == supplier)) 981 return; 982 983 device_links_write_lock(); 984 985 list_for_each_entry(link, &supplier->links.consumers, s_node) { 986 if (link->consumer == consumer) { 987 device_link_put_kref(link); 988 break; 989 } 990 } 991 992 device_links_write_unlock(); 993 } 994 EXPORT_SYMBOL_GPL(device_link_remove); 995 996 static void device_links_missing_supplier(struct device *dev) 997 { 998 struct device_link *link; 999 1000 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1001 if (link->status != DL_STATE_CONSUMER_PROBE) 1002 continue; 1003 1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1006 } else { 1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 } 1011 } 1012 1013 static bool dev_is_best_effort(struct device *dev) 1014 { 1015 return (fw_devlink_best_effort && dev->can_match) || 1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1017 } 1018 1019 static struct fwnode_handle *fwnode_links_check_suppliers( 1020 struct fwnode_handle *fwnode) 1021 { 1022 struct fwnode_link *link; 1023 1024 if (!fwnode || fw_devlink_is_permissive()) 1025 return NULL; 1026 1027 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1028 if (!(link->flags & 1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1030 return link->supplier; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * device_links_check_suppliers - Check presence of supplier drivers. 1037 * @dev: Consumer device. 1038 * 1039 * Check links from this device to any suppliers. Walk the list of the device's 1040 * links to suppliers and see if all of them are available. If not, simply 1041 * return -EPROBE_DEFER. 1042 * 1043 * We need to guarantee that the supplier will not go away after the check has 1044 * been positive here. It only can go away in __device_release_driver() and 1045 * that function checks the device's links to consumers. This means we need to 1046 * mark the link as "consumer probe in progress" to make the supplier removal 1047 * wait for us to complete (or bad things may happen). 1048 * 1049 * Links without the DL_FLAG_MANAGED flag set are ignored. 1050 */ 1051 int device_links_check_suppliers(struct device *dev) 1052 { 1053 struct device_link *link; 1054 int ret = 0, fwnode_ret = 0; 1055 struct fwnode_handle *sup_fw; 1056 1057 /* 1058 * Device waiting for supplier to become available is not allowed to 1059 * probe. 1060 */ 1061 mutex_lock(&fwnode_link_lock); 1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1063 if (sup_fw) { 1064 if (!dev_is_best_effort(dev)) { 1065 fwnode_ret = -EPROBE_DEFER; 1066 dev_err_probe(dev, -EPROBE_DEFER, 1067 "wait for supplier %pfwf\n", sup_fw); 1068 } else { 1069 fwnode_ret = -EAGAIN; 1070 } 1071 } 1072 mutex_unlock(&fwnode_link_lock); 1073 if (fwnode_ret == -EPROBE_DEFER) 1074 return fwnode_ret; 1075 1076 device_links_write_lock(); 1077 1078 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1079 if (!(link->flags & DL_FLAG_MANAGED)) 1080 continue; 1081 1082 if (link->status != DL_STATE_AVAILABLE && 1083 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1084 1085 if (dev_is_best_effort(dev) && 1086 link->flags & DL_FLAG_INFERRED && 1087 !link->supplier->can_match) { 1088 ret = -EAGAIN; 1089 continue; 1090 } 1091 1092 device_links_missing_supplier(dev); 1093 dev_err_probe(dev, -EPROBE_DEFER, 1094 "supplier %s not ready\n", 1095 dev_name(link->supplier)); 1096 ret = -EPROBE_DEFER; 1097 break; 1098 } 1099 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1100 } 1101 dev->links.status = DL_DEV_PROBING; 1102 1103 device_links_write_unlock(); 1104 1105 return ret ? ret : fwnode_ret; 1106 } 1107 1108 /** 1109 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1110 * @dev: Device to call sync_state() on 1111 * @list: List head to queue the @dev on 1112 * 1113 * Queues a device for a sync_state() callback when the device links write lock 1114 * isn't held. This allows the sync_state() execution flow to use device links 1115 * APIs. The caller must ensure this function is called with 1116 * device_links_write_lock() held. 1117 * 1118 * This function does a get_device() to make sure the device is not freed while 1119 * on this list. 1120 * 1121 * So the caller must also ensure that device_links_flush_sync_list() is called 1122 * as soon as the caller releases device_links_write_lock(). This is necessary 1123 * to make sure the sync_state() is called in a timely fashion and the 1124 * put_device() is called on this device. 1125 */ 1126 static void __device_links_queue_sync_state(struct device *dev, 1127 struct list_head *list) 1128 { 1129 struct device_link *link; 1130 1131 if (!dev_has_sync_state(dev)) 1132 return; 1133 if (dev->state_synced) 1134 return; 1135 1136 list_for_each_entry(link, &dev->links.consumers, s_node) { 1137 if (!(link->flags & DL_FLAG_MANAGED)) 1138 continue; 1139 if (link->status != DL_STATE_ACTIVE) 1140 return; 1141 } 1142 1143 /* 1144 * Set the flag here to avoid adding the same device to a list more 1145 * than once. This can happen if new consumers get added to the device 1146 * and probed before the list is flushed. 1147 */ 1148 dev->state_synced = true; 1149 1150 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1151 return; 1152 1153 get_device(dev); 1154 list_add_tail(&dev->links.defer_sync, list); 1155 } 1156 1157 /** 1158 * device_links_flush_sync_list - Call sync_state() on a list of devices 1159 * @list: List of devices to call sync_state() on 1160 * @dont_lock_dev: Device for which lock is already held by the caller 1161 * 1162 * Calls sync_state() on all the devices that have been queued for it. This 1163 * function is used in conjunction with __device_links_queue_sync_state(). The 1164 * @dont_lock_dev parameter is useful when this function is called from a 1165 * context where a device lock is already held. 1166 */ 1167 static void device_links_flush_sync_list(struct list_head *list, 1168 struct device *dont_lock_dev) 1169 { 1170 struct device *dev, *tmp; 1171 1172 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1173 list_del_init(&dev->links.defer_sync); 1174 1175 if (dev != dont_lock_dev) 1176 device_lock(dev); 1177 1178 dev_sync_state(dev); 1179 1180 if (dev != dont_lock_dev) 1181 device_unlock(dev); 1182 1183 put_device(dev); 1184 } 1185 } 1186 1187 void device_links_supplier_sync_state_pause(void) 1188 { 1189 device_links_write_lock(); 1190 defer_sync_state_count++; 1191 device_links_write_unlock(); 1192 } 1193 1194 void device_links_supplier_sync_state_resume(void) 1195 { 1196 struct device *dev, *tmp; 1197 LIST_HEAD(sync_list); 1198 1199 device_links_write_lock(); 1200 if (!defer_sync_state_count) { 1201 WARN(true, "Unmatched sync_state pause/resume!"); 1202 goto out; 1203 } 1204 defer_sync_state_count--; 1205 if (defer_sync_state_count) 1206 goto out; 1207 1208 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1209 /* 1210 * Delete from deferred_sync list before queuing it to 1211 * sync_list because defer_sync is used for both lists. 1212 */ 1213 list_del_init(&dev->links.defer_sync); 1214 __device_links_queue_sync_state(dev, &sync_list); 1215 } 1216 out: 1217 device_links_write_unlock(); 1218 1219 device_links_flush_sync_list(&sync_list, NULL); 1220 } 1221 1222 static int sync_state_resume_initcall(void) 1223 { 1224 device_links_supplier_sync_state_resume(); 1225 return 0; 1226 } 1227 late_initcall(sync_state_resume_initcall); 1228 1229 static void __device_links_supplier_defer_sync(struct device *sup) 1230 { 1231 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1232 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1233 } 1234 1235 static void device_link_drop_managed(struct device_link *link) 1236 { 1237 link->flags &= ~DL_FLAG_MANAGED; 1238 WRITE_ONCE(link->status, DL_STATE_NONE); 1239 kref_put(&link->kref, __device_link_del); 1240 } 1241 1242 static ssize_t waiting_for_supplier_show(struct device *dev, 1243 struct device_attribute *attr, 1244 char *buf) 1245 { 1246 bool val; 1247 1248 device_lock(dev); 1249 mutex_lock(&fwnode_link_lock); 1250 val = !!fwnode_links_check_suppliers(dev->fwnode); 1251 mutex_unlock(&fwnode_link_lock); 1252 device_unlock(dev); 1253 return sysfs_emit(buf, "%u\n", val); 1254 } 1255 static DEVICE_ATTR_RO(waiting_for_supplier); 1256 1257 /** 1258 * device_links_force_bind - Prepares device to be force bound 1259 * @dev: Consumer device. 1260 * 1261 * device_bind_driver() force binds a device to a driver without calling any 1262 * driver probe functions. So the consumer really isn't going to wait for any 1263 * supplier before it's bound to the driver. We still want the device link 1264 * states to be sensible when this happens. 1265 * 1266 * In preparation for device_bind_driver(), this function goes through each 1267 * supplier device links and checks if the supplier is bound. If it is, then 1268 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1269 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1270 */ 1271 void device_links_force_bind(struct device *dev) 1272 { 1273 struct device_link *link, *ln; 1274 1275 device_links_write_lock(); 1276 1277 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1278 if (!(link->flags & DL_FLAG_MANAGED)) 1279 continue; 1280 1281 if (link->status != DL_STATE_AVAILABLE) { 1282 device_link_drop_managed(link); 1283 continue; 1284 } 1285 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1286 } 1287 dev->links.status = DL_DEV_PROBING; 1288 1289 device_links_write_unlock(); 1290 } 1291 1292 /** 1293 * device_links_driver_bound - Update device links after probing its driver. 1294 * @dev: Device to update the links for. 1295 * 1296 * The probe has been successful, so update links from this device to any 1297 * consumers by changing their status to "available". 1298 * 1299 * Also change the status of @dev's links to suppliers to "active". 1300 * 1301 * Links without the DL_FLAG_MANAGED flag set are ignored. 1302 */ 1303 void device_links_driver_bound(struct device *dev) 1304 { 1305 struct device_link *link, *ln; 1306 LIST_HEAD(sync_list); 1307 1308 /* 1309 * If a device binds successfully, it's expected to have created all 1310 * the device links it needs to or make new device links as it needs 1311 * them. So, fw_devlink no longer needs to create device links to any 1312 * of the device's suppliers. 1313 * 1314 * Also, if a child firmware node of this bound device is not added as a 1315 * device by now, assume it is never going to be added. Make this bound 1316 * device the fallback supplier to the dangling consumers of the child 1317 * firmware node because this bound device is probably implementing the 1318 * child firmware node functionality and we don't want the dangling 1319 * consumers to defer probe indefinitely waiting for a device for the 1320 * child firmware node. 1321 */ 1322 if (dev->fwnode && dev->fwnode->dev == dev) { 1323 struct fwnode_handle *child; 1324 fwnode_links_purge_suppliers(dev->fwnode); 1325 mutex_lock(&fwnode_link_lock); 1326 fwnode_for_each_available_child_node(dev->fwnode, child) 1327 __fw_devlink_pickup_dangling_consumers(child, 1328 dev->fwnode); 1329 __fw_devlink_link_to_consumers(dev); 1330 mutex_unlock(&fwnode_link_lock); 1331 } 1332 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1333 1334 device_links_write_lock(); 1335 1336 list_for_each_entry(link, &dev->links.consumers, s_node) { 1337 if (!(link->flags & DL_FLAG_MANAGED)) 1338 continue; 1339 1340 /* 1341 * Links created during consumer probe may be in the "consumer 1342 * probe" state to start with if the supplier is still probing 1343 * when they are created and they may become "active" if the 1344 * consumer probe returns first. Skip them here. 1345 */ 1346 if (link->status == DL_STATE_CONSUMER_PROBE || 1347 link->status == DL_STATE_ACTIVE) 1348 continue; 1349 1350 WARN_ON(link->status != DL_STATE_DORMANT); 1351 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1352 1353 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1354 driver_deferred_probe_add(link->consumer); 1355 } 1356 1357 if (defer_sync_state_count) 1358 __device_links_supplier_defer_sync(dev); 1359 else 1360 __device_links_queue_sync_state(dev, &sync_list); 1361 1362 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1363 struct device *supplier; 1364 1365 if (!(link->flags & DL_FLAG_MANAGED)) 1366 continue; 1367 1368 supplier = link->supplier; 1369 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1370 /* 1371 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1372 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1373 * save to drop the managed link completely. 1374 */ 1375 device_link_drop_managed(link); 1376 } else if (dev_is_best_effort(dev) && 1377 link->flags & DL_FLAG_INFERRED && 1378 link->status != DL_STATE_CONSUMER_PROBE && 1379 !link->supplier->can_match) { 1380 /* 1381 * When dev_is_best_effort() is true, we ignore device 1382 * links to suppliers that don't have a driver. If the 1383 * consumer device still managed to probe, there's no 1384 * point in maintaining a device link in a weird state 1385 * (consumer probed before supplier). So delete it. 1386 */ 1387 device_link_drop_managed(link); 1388 } else { 1389 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1390 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1391 } 1392 1393 /* 1394 * This needs to be done even for the deleted 1395 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1396 * device link that was preventing the supplier from getting a 1397 * sync_state() call. 1398 */ 1399 if (defer_sync_state_count) 1400 __device_links_supplier_defer_sync(supplier); 1401 else 1402 __device_links_queue_sync_state(supplier, &sync_list); 1403 } 1404 1405 dev->links.status = DL_DEV_DRIVER_BOUND; 1406 1407 device_links_write_unlock(); 1408 1409 device_links_flush_sync_list(&sync_list, dev); 1410 } 1411 1412 /** 1413 * __device_links_no_driver - Update links of a device without a driver. 1414 * @dev: Device without a drvier. 1415 * 1416 * Delete all non-persistent links from this device to any suppliers. 1417 * 1418 * Persistent links stay around, but their status is changed to "available", 1419 * unless they already are in the "supplier unbind in progress" state in which 1420 * case they need not be updated. 1421 * 1422 * Links without the DL_FLAG_MANAGED flag set are ignored. 1423 */ 1424 static void __device_links_no_driver(struct device *dev) 1425 { 1426 struct device_link *link, *ln; 1427 1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1429 if (!(link->flags & DL_FLAG_MANAGED)) 1430 continue; 1431 1432 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1433 device_link_drop_managed(link); 1434 continue; 1435 } 1436 1437 if (link->status != DL_STATE_CONSUMER_PROBE && 1438 link->status != DL_STATE_ACTIVE) 1439 continue; 1440 1441 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1442 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1443 } else { 1444 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1445 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1446 } 1447 } 1448 1449 dev->links.status = DL_DEV_NO_DRIVER; 1450 } 1451 1452 /** 1453 * device_links_no_driver - Update links after failing driver probe. 1454 * @dev: Device whose driver has just failed to probe. 1455 * 1456 * Clean up leftover links to consumers for @dev and invoke 1457 * %__device_links_no_driver() to update links to suppliers for it as 1458 * appropriate. 1459 * 1460 * Links without the DL_FLAG_MANAGED flag set are ignored. 1461 */ 1462 void device_links_no_driver(struct device *dev) 1463 { 1464 struct device_link *link; 1465 1466 device_links_write_lock(); 1467 1468 list_for_each_entry(link, &dev->links.consumers, s_node) { 1469 if (!(link->flags & DL_FLAG_MANAGED)) 1470 continue; 1471 1472 /* 1473 * The probe has failed, so if the status of the link is 1474 * "consumer probe" or "active", it must have been added by 1475 * a probing consumer while this device was still probing. 1476 * Change its state to "dormant", as it represents a valid 1477 * relationship, but it is not functionally meaningful. 1478 */ 1479 if (link->status == DL_STATE_CONSUMER_PROBE || 1480 link->status == DL_STATE_ACTIVE) 1481 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1482 } 1483 1484 __device_links_no_driver(dev); 1485 1486 device_links_write_unlock(); 1487 } 1488 1489 /** 1490 * device_links_driver_cleanup - Update links after driver removal. 1491 * @dev: Device whose driver has just gone away. 1492 * 1493 * Update links to consumers for @dev by changing their status to "dormant" and 1494 * invoke %__device_links_no_driver() to update links to suppliers for it as 1495 * appropriate. 1496 * 1497 * Links without the DL_FLAG_MANAGED flag set are ignored. 1498 */ 1499 void device_links_driver_cleanup(struct device *dev) 1500 { 1501 struct device_link *link, *ln; 1502 1503 device_links_write_lock(); 1504 1505 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1506 if (!(link->flags & DL_FLAG_MANAGED)) 1507 continue; 1508 1509 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1510 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1511 1512 /* 1513 * autoremove the links between this @dev and its consumer 1514 * devices that are not active, i.e. where the link state 1515 * has moved to DL_STATE_SUPPLIER_UNBIND. 1516 */ 1517 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1518 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1519 device_link_drop_managed(link); 1520 1521 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1522 } 1523 1524 list_del_init(&dev->links.defer_sync); 1525 __device_links_no_driver(dev); 1526 1527 device_links_write_unlock(); 1528 } 1529 1530 /** 1531 * device_links_busy - Check if there are any busy links to consumers. 1532 * @dev: Device to check. 1533 * 1534 * Check each consumer of the device and return 'true' if its link's status 1535 * is one of "consumer probe" or "active" (meaning that the given consumer is 1536 * probing right now or its driver is present). Otherwise, change the link 1537 * state to "supplier unbind" to prevent the consumer from being probed 1538 * successfully going forward. 1539 * 1540 * Return 'false' if there are no probing or active consumers. 1541 * 1542 * Links without the DL_FLAG_MANAGED flag set are ignored. 1543 */ 1544 bool device_links_busy(struct device *dev) 1545 { 1546 struct device_link *link; 1547 bool ret = false; 1548 1549 device_links_write_lock(); 1550 1551 list_for_each_entry(link, &dev->links.consumers, s_node) { 1552 if (!(link->flags & DL_FLAG_MANAGED)) 1553 continue; 1554 1555 if (link->status == DL_STATE_CONSUMER_PROBE 1556 || link->status == DL_STATE_ACTIVE) { 1557 ret = true; 1558 break; 1559 } 1560 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1561 } 1562 1563 dev->links.status = DL_DEV_UNBINDING; 1564 1565 device_links_write_unlock(); 1566 return ret; 1567 } 1568 1569 /** 1570 * device_links_unbind_consumers - Force unbind consumers of the given device. 1571 * @dev: Device to unbind the consumers of. 1572 * 1573 * Walk the list of links to consumers for @dev and if any of them is in the 1574 * "consumer probe" state, wait for all device probes in progress to complete 1575 * and start over. 1576 * 1577 * If that's not the case, change the status of the link to "supplier unbind" 1578 * and check if the link was in the "active" state. If so, force the consumer 1579 * driver to unbind and start over (the consumer will not re-probe as we have 1580 * changed the state of the link already). 1581 * 1582 * Links without the DL_FLAG_MANAGED flag set are ignored. 1583 */ 1584 void device_links_unbind_consumers(struct device *dev) 1585 { 1586 struct device_link *link; 1587 1588 start: 1589 device_links_write_lock(); 1590 1591 list_for_each_entry(link, &dev->links.consumers, s_node) { 1592 enum device_link_state status; 1593 1594 if (!(link->flags & DL_FLAG_MANAGED) || 1595 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1596 continue; 1597 1598 status = link->status; 1599 if (status == DL_STATE_CONSUMER_PROBE) { 1600 device_links_write_unlock(); 1601 1602 wait_for_device_probe(); 1603 goto start; 1604 } 1605 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1606 if (status == DL_STATE_ACTIVE) { 1607 struct device *consumer = link->consumer; 1608 1609 get_device(consumer); 1610 1611 device_links_write_unlock(); 1612 1613 device_release_driver_internal(consumer, NULL, 1614 consumer->parent); 1615 put_device(consumer); 1616 goto start; 1617 } 1618 } 1619 1620 device_links_write_unlock(); 1621 } 1622 1623 /** 1624 * device_links_purge - Delete existing links to other devices. 1625 * @dev: Target device. 1626 */ 1627 static void device_links_purge(struct device *dev) 1628 { 1629 struct device_link *link, *ln; 1630 1631 if (dev->class == &devlink_class) 1632 return; 1633 1634 /* 1635 * Delete all of the remaining links from this device to any other 1636 * devices (either consumers or suppliers). 1637 */ 1638 device_links_write_lock(); 1639 1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1641 WARN_ON(link->status == DL_STATE_ACTIVE); 1642 __device_link_del(&link->kref); 1643 } 1644 1645 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1646 WARN_ON(link->status != DL_STATE_DORMANT && 1647 link->status != DL_STATE_NONE); 1648 __device_link_del(&link->kref); 1649 } 1650 1651 device_links_write_unlock(); 1652 } 1653 1654 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1655 DL_FLAG_SYNC_STATE_ONLY) 1656 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1657 DL_FLAG_AUTOPROBE_CONSUMER) 1658 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1659 DL_FLAG_PM_RUNTIME) 1660 1661 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1662 static int __init fw_devlink_setup(char *arg) 1663 { 1664 if (!arg) 1665 return -EINVAL; 1666 1667 if (strcmp(arg, "off") == 0) { 1668 fw_devlink_flags = 0; 1669 } else if (strcmp(arg, "permissive") == 0) { 1670 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1671 } else if (strcmp(arg, "on") == 0) { 1672 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1673 } else if (strcmp(arg, "rpm") == 0) { 1674 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1675 } 1676 return 0; 1677 } 1678 early_param("fw_devlink", fw_devlink_setup); 1679 1680 static bool fw_devlink_strict; 1681 static int __init fw_devlink_strict_setup(char *arg) 1682 { 1683 return kstrtobool(arg, &fw_devlink_strict); 1684 } 1685 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1686 1687 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1688 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1689 1690 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1691 static int fw_devlink_sync_state; 1692 #else 1693 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1694 #endif 1695 1696 static int __init fw_devlink_sync_state_setup(char *arg) 1697 { 1698 if (!arg) 1699 return -EINVAL; 1700 1701 if (strcmp(arg, "strict") == 0) { 1702 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1703 return 0; 1704 } else if (strcmp(arg, "timeout") == 0) { 1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1706 return 0; 1707 } 1708 return -EINVAL; 1709 } 1710 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1711 1712 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1713 { 1714 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1715 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1716 1717 return fw_devlink_flags; 1718 } 1719 1720 static bool fw_devlink_is_permissive(void) 1721 { 1722 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1723 } 1724 1725 bool fw_devlink_is_strict(void) 1726 { 1727 return fw_devlink_strict && !fw_devlink_is_permissive(); 1728 } 1729 1730 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1731 { 1732 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1733 return; 1734 1735 fwnode_call_int_op(fwnode, add_links); 1736 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1737 } 1738 1739 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1740 { 1741 struct fwnode_handle *child = NULL; 1742 1743 fw_devlink_parse_fwnode(fwnode); 1744 1745 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1746 fw_devlink_parse_fwtree(child); 1747 } 1748 1749 static void fw_devlink_relax_link(struct device_link *link) 1750 { 1751 if (!(link->flags & DL_FLAG_INFERRED)) 1752 return; 1753 1754 if (device_link_flag_is_sync_state_only(link->flags)) 1755 return; 1756 1757 pm_runtime_drop_link(link); 1758 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1759 dev_dbg(link->consumer, "Relaxing link with %s\n", 1760 dev_name(link->supplier)); 1761 } 1762 1763 static int fw_devlink_no_driver(struct device *dev, void *data) 1764 { 1765 struct device_link *link = to_devlink(dev); 1766 1767 if (!link->supplier->can_match) 1768 fw_devlink_relax_link(link); 1769 1770 return 0; 1771 } 1772 1773 void fw_devlink_drivers_done(void) 1774 { 1775 fw_devlink_drv_reg_done = true; 1776 device_links_write_lock(); 1777 class_for_each_device(&devlink_class, NULL, NULL, 1778 fw_devlink_no_driver); 1779 device_links_write_unlock(); 1780 } 1781 1782 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1783 { 1784 struct device_link *link = to_devlink(dev); 1785 struct device *sup = link->supplier; 1786 1787 if (!(link->flags & DL_FLAG_MANAGED) || 1788 link->status == DL_STATE_ACTIVE || sup->state_synced || 1789 !dev_has_sync_state(sup)) 1790 return 0; 1791 1792 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1793 dev_warn(sup, "sync_state() pending due to %s\n", 1794 dev_name(link->consumer)); 1795 return 0; 1796 } 1797 1798 if (!list_empty(&sup->links.defer_sync)) 1799 return 0; 1800 1801 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1802 sup->state_synced = true; 1803 get_device(sup); 1804 list_add_tail(&sup->links.defer_sync, data); 1805 1806 return 0; 1807 } 1808 1809 void fw_devlink_probing_done(void) 1810 { 1811 LIST_HEAD(sync_list); 1812 1813 device_links_write_lock(); 1814 class_for_each_device(&devlink_class, NULL, &sync_list, 1815 fw_devlink_dev_sync_state); 1816 device_links_write_unlock(); 1817 device_links_flush_sync_list(&sync_list, NULL); 1818 } 1819 1820 /** 1821 * wait_for_init_devices_probe - Try to probe any device needed for init 1822 * 1823 * Some devices might need to be probed and bound successfully before the kernel 1824 * boot sequence can finish and move on to init/userspace. For example, a 1825 * network interface might need to be bound to be able to mount a NFS rootfs. 1826 * 1827 * With fw_devlink=on by default, some of these devices might be blocked from 1828 * probing because they are waiting on a optional supplier that doesn't have a 1829 * driver. While fw_devlink will eventually identify such devices and unblock 1830 * the probing automatically, it might be too late by the time it unblocks the 1831 * probing of devices. For example, the IP4 autoconfig might timeout before 1832 * fw_devlink unblocks probing of the network interface. 1833 * 1834 * This function is available to temporarily try and probe all devices that have 1835 * a driver even if some of their suppliers haven't been added or don't have 1836 * drivers. 1837 * 1838 * The drivers can then decide which of the suppliers are optional vs mandatory 1839 * and probe the device if possible. By the time this function returns, all such 1840 * "best effort" probes are guaranteed to be completed. If a device successfully 1841 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1842 * device where the supplier hasn't yet probed successfully because they have to 1843 * be optional dependencies. 1844 * 1845 * Any devices that didn't successfully probe go back to being treated as if 1846 * this function was never called. 1847 * 1848 * This also means that some devices that aren't needed for init and could have 1849 * waited for their optional supplier to probe (when the supplier's module is 1850 * loaded later on) would end up probing prematurely with limited functionality. 1851 * So call this function only when boot would fail without it. 1852 */ 1853 void __init wait_for_init_devices_probe(void) 1854 { 1855 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1856 return; 1857 1858 /* 1859 * Wait for all ongoing probes to finish so that the "best effort" is 1860 * only applied to devices that can't probe otherwise. 1861 */ 1862 wait_for_device_probe(); 1863 1864 pr_info("Trying to probe devices needed for running init ...\n"); 1865 fw_devlink_best_effort = true; 1866 driver_deferred_probe_trigger(); 1867 1868 /* 1869 * Wait for all "best effort" probes to finish before going back to 1870 * normal enforcement. 1871 */ 1872 wait_for_device_probe(); 1873 fw_devlink_best_effort = false; 1874 } 1875 1876 static void fw_devlink_unblock_consumers(struct device *dev) 1877 { 1878 struct device_link *link; 1879 1880 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1881 return; 1882 1883 device_links_write_lock(); 1884 list_for_each_entry(link, &dev->links.consumers, s_node) 1885 fw_devlink_relax_link(link); 1886 device_links_write_unlock(); 1887 } 1888 1889 1890 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1891 { 1892 struct device *dev; 1893 bool ret; 1894 1895 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1896 return false; 1897 1898 dev = get_dev_from_fwnode(fwnode); 1899 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1900 put_device(dev); 1901 1902 return ret; 1903 } 1904 1905 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1906 { 1907 struct fwnode_handle *parent; 1908 1909 fwnode_for_each_parent_node(fwnode, parent) { 1910 if (fwnode_init_without_drv(parent)) { 1911 fwnode_handle_put(parent); 1912 return true; 1913 } 1914 } 1915 1916 return false; 1917 } 1918 1919 /** 1920 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1921 * @con: Potential consumer device. 1922 * @sup_handle: Potential supplier's fwnode. 1923 * 1924 * Needs to be called with fwnode_lock and device link lock held. 1925 * 1926 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1927 * depend on @con. This function can detect multiple cyles between @sup_handle 1928 * and @con. When such dependency cycles are found, convert all device links 1929 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1930 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1931 * converted into a device link in the future, they are created as 1932 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1933 * fw_devlink=permissive just between the devices in the cycle. We need to do 1934 * this because, at this point, fw_devlink can't tell which of these 1935 * dependencies is not a real dependency. 1936 * 1937 * Return true if one or more cycles were found. Otherwise, return false. 1938 */ 1939 static bool __fw_devlink_relax_cycles(struct device *con, 1940 struct fwnode_handle *sup_handle) 1941 { 1942 struct device *sup_dev = NULL, *par_dev = NULL; 1943 struct fwnode_link *link; 1944 struct device_link *dev_link; 1945 bool ret = false; 1946 1947 if (!sup_handle) 1948 return false; 1949 1950 /* 1951 * We aren't trying to find all cycles. Just a cycle between con and 1952 * sup_handle. 1953 */ 1954 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1955 return false; 1956 1957 sup_handle->flags |= FWNODE_FLAG_VISITED; 1958 1959 sup_dev = get_dev_from_fwnode(sup_handle); 1960 1961 /* Termination condition. */ 1962 if (sup_dev == con) { 1963 pr_debug("----- cycle: start -----\n"); 1964 ret = true; 1965 goto out; 1966 } 1967 1968 /* 1969 * If sup_dev is bound to a driver and @con hasn't started binding to a 1970 * driver, sup_dev can't be a consumer of @con. So, no need to check 1971 * further. 1972 */ 1973 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1974 con->links.status == DL_DEV_NO_DRIVER) { 1975 ret = false; 1976 goto out; 1977 } 1978 1979 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1980 if (link->flags & FWLINK_FLAG_IGNORE) 1981 continue; 1982 1983 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1984 __fwnode_link_cycle(link); 1985 ret = true; 1986 } 1987 } 1988 1989 /* 1990 * Give priority to device parent over fwnode parent to account for any 1991 * quirks in how fwnodes are converted to devices. 1992 */ 1993 if (sup_dev) 1994 par_dev = get_device(sup_dev->parent); 1995 else 1996 par_dev = fwnode_get_next_parent_dev(sup_handle); 1997 1998 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) { 1999 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2000 par_dev->fwnode); 2001 ret = true; 2002 } 2003 2004 if (!sup_dev) 2005 goto out; 2006 2007 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2008 /* 2009 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2010 * such due to a cycle. 2011 */ 2012 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2013 !(dev_link->flags & DL_FLAG_CYCLE)) 2014 continue; 2015 2016 if (__fw_devlink_relax_cycles(con, 2017 dev_link->supplier->fwnode)) { 2018 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2019 dev_link->supplier->fwnode); 2020 fw_devlink_relax_link(dev_link); 2021 dev_link->flags |= DL_FLAG_CYCLE; 2022 ret = true; 2023 } 2024 } 2025 2026 out: 2027 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2028 put_device(sup_dev); 2029 put_device(par_dev); 2030 return ret; 2031 } 2032 2033 /** 2034 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2035 * @con: consumer device for the device link 2036 * @sup_handle: fwnode handle of supplier 2037 * @link: fwnode link that's being converted to a device link 2038 * 2039 * This function will try to create a device link between the consumer device 2040 * @con and the supplier device represented by @sup_handle. 2041 * 2042 * The supplier has to be provided as a fwnode because incorrect cycles in 2043 * fwnode links can sometimes cause the supplier device to never be created. 2044 * This function detects such cases and returns an error if it cannot create a 2045 * device link from the consumer to a missing supplier. 2046 * 2047 * Returns, 2048 * 0 on successfully creating a device link 2049 * -EINVAL if the device link cannot be created as expected 2050 * -EAGAIN if the device link cannot be created right now, but it may be 2051 * possible to do that in the future 2052 */ 2053 static int fw_devlink_create_devlink(struct device *con, 2054 struct fwnode_handle *sup_handle, 2055 struct fwnode_link *link) 2056 { 2057 struct device *sup_dev; 2058 int ret = 0; 2059 u32 flags; 2060 2061 if (link->flags & FWLINK_FLAG_IGNORE) 2062 return 0; 2063 2064 if (con->fwnode == link->consumer) 2065 flags = fw_devlink_get_flags(link->flags); 2066 else 2067 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2068 2069 /* 2070 * In some cases, a device P might also be a supplier to its child node 2071 * C. However, this would defer the probe of C until the probe of P 2072 * completes successfully. This is perfectly fine in the device driver 2073 * model. device_add() doesn't guarantee probe completion of the device 2074 * by the time it returns. 2075 * 2076 * However, there are a few drivers that assume C will finish probing 2077 * as soon as it's added and before P finishes probing. So, we provide 2078 * a flag to let fw_devlink know not to delay the probe of C until the 2079 * probe of P completes successfully. 2080 * 2081 * When such a flag is set, we can't create device links where P is the 2082 * supplier of C as that would delay the probe of C. 2083 */ 2084 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2085 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2086 return -EINVAL; 2087 2088 /* 2089 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2090 * So, one might expect that cycle detection isn't necessary for them. 2091 * However, if the device link was marked as SYNC_STATE_ONLY because 2092 * it's part of a cycle, then we still need to do cycle detection. This 2093 * is because the consumer and supplier might be part of multiple cycles 2094 * and we need to detect all those cycles. 2095 */ 2096 if (!device_link_flag_is_sync_state_only(flags) || 2097 flags & DL_FLAG_CYCLE) { 2098 device_links_write_lock(); 2099 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2100 __fwnode_link_cycle(link); 2101 flags = fw_devlink_get_flags(link->flags); 2102 pr_debug("----- cycle: end -----\n"); 2103 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2104 sup_handle); 2105 } 2106 device_links_write_unlock(); 2107 } 2108 2109 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2110 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2111 else 2112 sup_dev = get_dev_from_fwnode(sup_handle); 2113 2114 if (sup_dev) { 2115 /* 2116 * If it's one of those drivers that don't actually bind to 2117 * their device using driver core, then don't wait on this 2118 * supplier device indefinitely. 2119 */ 2120 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2121 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2122 dev_dbg(con, 2123 "Not linking %pfwf - dev might never probe\n", 2124 sup_handle); 2125 ret = -EINVAL; 2126 goto out; 2127 } 2128 2129 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2130 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2131 flags, dev_name(sup_dev)); 2132 ret = -EINVAL; 2133 } 2134 2135 goto out; 2136 } 2137 2138 /* 2139 * Supplier or supplier's ancestor already initialized without a struct 2140 * device or being probed by a driver. 2141 */ 2142 if (fwnode_init_without_drv(sup_handle) || 2143 fwnode_ancestor_init_without_drv(sup_handle)) { 2144 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2145 sup_handle); 2146 return -EINVAL; 2147 } 2148 2149 ret = -EAGAIN; 2150 out: 2151 put_device(sup_dev); 2152 return ret; 2153 } 2154 2155 /** 2156 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2157 * @dev: Device that needs to be linked to its consumers 2158 * 2159 * This function looks at all the consumer fwnodes of @dev and creates device 2160 * links between the consumer device and @dev (supplier). 2161 * 2162 * If the consumer device has not been added yet, then this function creates a 2163 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2164 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2165 * sync_state() callback before the real consumer device gets to be added and 2166 * then probed. 2167 * 2168 * Once device links are created from the real consumer to @dev (supplier), the 2169 * fwnode links are deleted. 2170 */ 2171 static void __fw_devlink_link_to_consumers(struct device *dev) 2172 { 2173 struct fwnode_handle *fwnode = dev->fwnode; 2174 struct fwnode_link *link, *tmp; 2175 2176 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2177 struct device *con_dev; 2178 bool own_link = true; 2179 int ret; 2180 2181 con_dev = get_dev_from_fwnode(link->consumer); 2182 /* 2183 * If consumer device is not available yet, make a "proxy" 2184 * SYNC_STATE_ONLY link from the consumer's parent device to 2185 * the supplier device. This is necessary to make sure the 2186 * supplier doesn't get a sync_state() callback before the real 2187 * consumer can create a device link to the supplier. 2188 * 2189 * This proxy link step is needed to handle the case where the 2190 * consumer's parent device is added before the supplier. 2191 */ 2192 if (!con_dev) { 2193 con_dev = fwnode_get_next_parent_dev(link->consumer); 2194 /* 2195 * However, if the consumer's parent device is also the 2196 * parent of the supplier, don't create a 2197 * consumer-supplier link from the parent to its child 2198 * device. Such a dependency is impossible. 2199 */ 2200 if (con_dev && 2201 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2202 put_device(con_dev); 2203 con_dev = NULL; 2204 } else { 2205 own_link = false; 2206 } 2207 } 2208 2209 if (!con_dev) 2210 continue; 2211 2212 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2213 put_device(con_dev); 2214 if (!own_link || ret == -EAGAIN) 2215 continue; 2216 2217 __fwnode_link_del(link); 2218 } 2219 } 2220 2221 /** 2222 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2223 * @dev: The consumer device that needs to be linked to its suppliers 2224 * @fwnode: Root of the fwnode tree that is used to create device links 2225 * 2226 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2227 * @fwnode and creates device links between @dev (consumer) and all the 2228 * supplier devices of the entire fwnode tree at @fwnode. 2229 * 2230 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2231 * and the real suppliers of @dev. Once these device links are created, the 2232 * fwnode links are deleted. 2233 * 2234 * In addition, it also looks at all the suppliers of the entire fwnode tree 2235 * because some of the child devices of @dev that have not been added yet 2236 * (because @dev hasn't probed) might already have their suppliers added to 2237 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2238 * @dev (consumer) and these suppliers to make sure they don't execute their 2239 * sync_state() callbacks before these child devices have a chance to create 2240 * their device links. The fwnode links that correspond to the child devices 2241 * aren't delete because they are needed later to create the device links 2242 * between the real consumer and supplier devices. 2243 */ 2244 static void __fw_devlink_link_to_suppliers(struct device *dev, 2245 struct fwnode_handle *fwnode) 2246 { 2247 bool own_link = (dev->fwnode == fwnode); 2248 struct fwnode_link *link, *tmp; 2249 struct fwnode_handle *child = NULL; 2250 2251 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2252 int ret; 2253 struct fwnode_handle *sup = link->supplier; 2254 2255 ret = fw_devlink_create_devlink(dev, sup, link); 2256 if (!own_link || ret == -EAGAIN) 2257 continue; 2258 2259 __fwnode_link_del(link); 2260 } 2261 2262 /* 2263 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2264 * all the descendants. This proxy link step is needed to handle the 2265 * case where the supplier is added before the consumer's parent device 2266 * (@dev). 2267 */ 2268 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2269 __fw_devlink_link_to_suppliers(dev, child); 2270 } 2271 2272 static void fw_devlink_link_device(struct device *dev) 2273 { 2274 struct fwnode_handle *fwnode = dev->fwnode; 2275 2276 if (!fw_devlink_flags) 2277 return; 2278 2279 fw_devlink_parse_fwtree(fwnode); 2280 2281 mutex_lock(&fwnode_link_lock); 2282 __fw_devlink_link_to_consumers(dev); 2283 __fw_devlink_link_to_suppliers(dev, fwnode); 2284 mutex_unlock(&fwnode_link_lock); 2285 } 2286 2287 /* Device links support end. */ 2288 2289 int (*platform_notify)(struct device *dev) = NULL; 2290 int (*platform_notify_remove)(struct device *dev) = NULL; 2291 static struct kobject *dev_kobj; 2292 2293 /* /sys/dev/char */ 2294 static struct kobject *sysfs_dev_char_kobj; 2295 2296 /* /sys/dev/block */ 2297 static struct kobject *sysfs_dev_block_kobj; 2298 2299 static DEFINE_MUTEX(device_hotplug_lock); 2300 2301 void lock_device_hotplug(void) 2302 { 2303 mutex_lock(&device_hotplug_lock); 2304 } 2305 2306 void unlock_device_hotplug(void) 2307 { 2308 mutex_unlock(&device_hotplug_lock); 2309 } 2310 2311 int lock_device_hotplug_sysfs(void) 2312 { 2313 if (mutex_trylock(&device_hotplug_lock)) 2314 return 0; 2315 2316 /* Avoid busy looping (5 ms of sleep should do). */ 2317 msleep(5); 2318 return restart_syscall(); 2319 } 2320 2321 #ifdef CONFIG_BLOCK 2322 static inline int device_is_not_partition(struct device *dev) 2323 { 2324 return !(dev->type == &part_type); 2325 } 2326 #else 2327 static inline int device_is_not_partition(struct device *dev) 2328 { 2329 return 1; 2330 } 2331 #endif 2332 2333 static void device_platform_notify(struct device *dev) 2334 { 2335 acpi_device_notify(dev); 2336 2337 software_node_notify(dev); 2338 2339 if (platform_notify) 2340 platform_notify(dev); 2341 } 2342 2343 static void device_platform_notify_remove(struct device *dev) 2344 { 2345 if (platform_notify_remove) 2346 platform_notify_remove(dev); 2347 2348 software_node_notify_remove(dev); 2349 2350 acpi_device_notify_remove(dev); 2351 } 2352 2353 /** 2354 * dev_driver_string - Return a device's driver name, if at all possible 2355 * @dev: struct device to get the name of 2356 * 2357 * Will return the device's driver's name if it is bound to a device. If 2358 * the device is not bound to a driver, it will return the name of the bus 2359 * it is attached to. If it is not attached to a bus either, an empty 2360 * string will be returned. 2361 */ 2362 const char *dev_driver_string(const struct device *dev) 2363 { 2364 struct device_driver *drv; 2365 2366 /* dev->driver can change to NULL underneath us because of unbinding, 2367 * so be careful about accessing it. dev->bus and dev->class should 2368 * never change once they are set, so they don't need special care. 2369 */ 2370 drv = READ_ONCE(dev->driver); 2371 return drv ? drv->name : dev_bus_name(dev); 2372 } 2373 EXPORT_SYMBOL(dev_driver_string); 2374 2375 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2376 2377 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2378 char *buf) 2379 { 2380 struct device_attribute *dev_attr = to_dev_attr(attr); 2381 struct device *dev = kobj_to_dev(kobj); 2382 ssize_t ret = -EIO; 2383 2384 if (dev_attr->show) 2385 ret = dev_attr->show(dev, dev_attr, buf); 2386 if (ret >= (ssize_t)PAGE_SIZE) { 2387 printk("dev_attr_show: %pS returned bad count\n", 2388 dev_attr->show); 2389 } 2390 return ret; 2391 } 2392 2393 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2394 const char *buf, size_t count) 2395 { 2396 struct device_attribute *dev_attr = to_dev_attr(attr); 2397 struct device *dev = kobj_to_dev(kobj); 2398 ssize_t ret = -EIO; 2399 2400 if (dev_attr->store) 2401 ret = dev_attr->store(dev, dev_attr, buf, count); 2402 return ret; 2403 } 2404 2405 static const struct sysfs_ops dev_sysfs_ops = { 2406 .show = dev_attr_show, 2407 .store = dev_attr_store, 2408 }; 2409 2410 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2411 2412 ssize_t device_store_ulong(struct device *dev, 2413 struct device_attribute *attr, 2414 const char *buf, size_t size) 2415 { 2416 struct dev_ext_attribute *ea = to_ext_attr(attr); 2417 int ret; 2418 unsigned long new; 2419 2420 ret = kstrtoul(buf, 0, &new); 2421 if (ret) 2422 return ret; 2423 *(unsigned long *)(ea->var) = new; 2424 /* Always return full write size even if we didn't consume all */ 2425 return size; 2426 } 2427 EXPORT_SYMBOL_GPL(device_store_ulong); 2428 2429 ssize_t device_show_ulong(struct device *dev, 2430 struct device_attribute *attr, 2431 char *buf) 2432 { 2433 struct dev_ext_attribute *ea = to_ext_attr(attr); 2434 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2435 } 2436 EXPORT_SYMBOL_GPL(device_show_ulong); 2437 2438 ssize_t device_store_int(struct device *dev, 2439 struct device_attribute *attr, 2440 const char *buf, size_t size) 2441 { 2442 struct dev_ext_attribute *ea = to_ext_attr(attr); 2443 int ret; 2444 long new; 2445 2446 ret = kstrtol(buf, 0, &new); 2447 if (ret) 2448 return ret; 2449 2450 if (new > INT_MAX || new < INT_MIN) 2451 return -EINVAL; 2452 *(int *)(ea->var) = new; 2453 /* Always return full write size even if we didn't consume all */ 2454 return size; 2455 } 2456 EXPORT_SYMBOL_GPL(device_store_int); 2457 2458 ssize_t device_show_int(struct device *dev, 2459 struct device_attribute *attr, 2460 char *buf) 2461 { 2462 struct dev_ext_attribute *ea = to_ext_attr(attr); 2463 2464 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2465 } 2466 EXPORT_SYMBOL_GPL(device_show_int); 2467 2468 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2469 const char *buf, size_t size) 2470 { 2471 struct dev_ext_attribute *ea = to_ext_attr(attr); 2472 2473 if (kstrtobool(buf, ea->var) < 0) 2474 return -EINVAL; 2475 2476 return size; 2477 } 2478 EXPORT_SYMBOL_GPL(device_store_bool); 2479 2480 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2481 char *buf) 2482 { 2483 struct dev_ext_attribute *ea = to_ext_attr(attr); 2484 2485 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2486 } 2487 EXPORT_SYMBOL_GPL(device_show_bool); 2488 2489 /** 2490 * device_release - free device structure. 2491 * @kobj: device's kobject. 2492 * 2493 * This is called once the reference count for the object 2494 * reaches 0. We forward the call to the device's release 2495 * method, which should handle actually freeing the structure. 2496 */ 2497 static void device_release(struct kobject *kobj) 2498 { 2499 struct device *dev = kobj_to_dev(kobj); 2500 struct device_private *p = dev->p; 2501 2502 /* 2503 * Some platform devices are driven without driver attached 2504 * and managed resources may have been acquired. Make sure 2505 * all resources are released. 2506 * 2507 * Drivers still can add resources into device after device 2508 * is deleted but alive, so release devres here to avoid 2509 * possible memory leak. 2510 */ 2511 devres_release_all(dev); 2512 2513 kfree(dev->dma_range_map); 2514 2515 if (dev->release) 2516 dev->release(dev); 2517 else if (dev->type && dev->type->release) 2518 dev->type->release(dev); 2519 else if (dev->class && dev->class->dev_release) 2520 dev->class->dev_release(dev); 2521 else 2522 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2523 dev_name(dev)); 2524 kfree(p); 2525 } 2526 2527 static const void *device_namespace(const struct kobject *kobj) 2528 { 2529 const struct device *dev = kobj_to_dev(kobj); 2530 const void *ns = NULL; 2531 2532 if (dev->class && dev->class->ns_type) 2533 ns = dev->class->namespace(dev); 2534 2535 return ns; 2536 } 2537 2538 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2539 { 2540 const struct device *dev = kobj_to_dev(kobj); 2541 2542 if (dev->class && dev->class->get_ownership) 2543 dev->class->get_ownership(dev, uid, gid); 2544 } 2545 2546 static const struct kobj_type device_ktype = { 2547 .release = device_release, 2548 .sysfs_ops = &dev_sysfs_ops, 2549 .namespace = device_namespace, 2550 .get_ownership = device_get_ownership, 2551 }; 2552 2553 2554 static int dev_uevent_filter(const struct kobject *kobj) 2555 { 2556 const struct kobj_type *ktype = get_ktype(kobj); 2557 2558 if (ktype == &device_ktype) { 2559 const struct device *dev = kobj_to_dev(kobj); 2560 if (dev->bus) 2561 return 1; 2562 if (dev->class) 2563 return 1; 2564 } 2565 return 0; 2566 } 2567 2568 static const char *dev_uevent_name(const struct kobject *kobj) 2569 { 2570 const struct device *dev = kobj_to_dev(kobj); 2571 2572 if (dev->bus) 2573 return dev->bus->name; 2574 if (dev->class) 2575 return dev->class->name; 2576 return NULL; 2577 } 2578 2579 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2580 { 2581 const struct device *dev = kobj_to_dev(kobj); 2582 int retval = 0; 2583 2584 /* add device node properties if present */ 2585 if (MAJOR(dev->devt)) { 2586 const char *tmp; 2587 const char *name; 2588 umode_t mode = 0; 2589 kuid_t uid = GLOBAL_ROOT_UID; 2590 kgid_t gid = GLOBAL_ROOT_GID; 2591 2592 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2593 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2594 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2595 if (name) { 2596 add_uevent_var(env, "DEVNAME=%s", name); 2597 if (mode) 2598 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2599 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2600 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2601 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2602 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2603 kfree(tmp); 2604 } 2605 } 2606 2607 if (dev->type && dev->type->name) 2608 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2609 2610 if (dev->driver) 2611 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2612 2613 /* Add common DT information about the device */ 2614 of_device_uevent(dev, env); 2615 2616 /* have the bus specific function add its stuff */ 2617 if (dev->bus && dev->bus->uevent) { 2618 retval = dev->bus->uevent(dev, env); 2619 if (retval) 2620 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2621 dev_name(dev), __func__, retval); 2622 } 2623 2624 /* have the class specific function add its stuff */ 2625 if (dev->class && dev->class->dev_uevent) { 2626 retval = dev->class->dev_uevent(dev, env); 2627 if (retval) 2628 pr_debug("device: '%s': %s: class uevent() " 2629 "returned %d\n", dev_name(dev), 2630 __func__, retval); 2631 } 2632 2633 /* have the device type specific function add its stuff */ 2634 if (dev->type && dev->type->uevent) { 2635 retval = dev->type->uevent(dev, env); 2636 if (retval) 2637 pr_debug("device: '%s': %s: dev_type uevent() " 2638 "returned %d\n", dev_name(dev), 2639 __func__, retval); 2640 } 2641 2642 return retval; 2643 } 2644 2645 static const struct kset_uevent_ops device_uevent_ops = { 2646 .filter = dev_uevent_filter, 2647 .name = dev_uevent_name, 2648 .uevent = dev_uevent, 2649 }; 2650 2651 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2652 char *buf) 2653 { 2654 struct kobject *top_kobj; 2655 struct kset *kset; 2656 struct kobj_uevent_env *env = NULL; 2657 int i; 2658 int len = 0; 2659 int retval; 2660 2661 /* search the kset, the device belongs to */ 2662 top_kobj = &dev->kobj; 2663 while (!top_kobj->kset && top_kobj->parent) 2664 top_kobj = top_kobj->parent; 2665 if (!top_kobj->kset) 2666 goto out; 2667 2668 kset = top_kobj->kset; 2669 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2670 goto out; 2671 2672 /* respect filter */ 2673 if (kset->uevent_ops && kset->uevent_ops->filter) 2674 if (!kset->uevent_ops->filter(&dev->kobj)) 2675 goto out; 2676 2677 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2678 if (!env) 2679 return -ENOMEM; 2680 2681 /* Synchronize with really_probe() */ 2682 device_lock(dev); 2683 /* let the kset specific function add its keys */ 2684 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2685 device_unlock(dev); 2686 if (retval) 2687 goto out; 2688 2689 /* copy keys to file */ 2690 for (i = 0; i < env->envp_idx; i++) 2691 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2692 out: 2693 kfree(env); 2694 return len; 2695 } 2696 2697 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2698 const char *buf, size_t count) 2699 { 2700 int rc; 2701 2702 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2703 2704 if (rc) { 2705 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2706 return rc; 2707 } 2708 2709 return count; 2710 } 2711 static DEVICE_ATTR_RW(uevent); 2712 2713 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2714 char *buf) 2715 { 2716 bool val; 2717 2718 device_lock(dev); 2719 val = !dev->offline; 2720 device_unlock(dev); 2721 return sysfs_emit(buf, "%u\n", val); 2722 } 2723 2724 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2725 const char *buf, size_t count) 2726 { 2727 bool val; 2728 int ret; 2729 2730 ret = kstrtobool(buf, &val); 2731 if (ret < 0) 2732 return ret; 2733 2734 ret = lock_device_hotplug_sysfs(); 2735 if (ret) 2736 return ret; 2737 2738 ret = val ? device_online(dev) : device_offline(dev); 2739 unlock_device_hotplug(); 2740 return ret < 0 ? ret : count; 2741 } 2742 static DEVICE_ATTR_RW(online); 2743 2744 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2745 char *buf) 2746 { 2747 const char *loc; 2748 2749 switch (dev->removable) { 2750 case DEVICE_REMOVABLE: 2751 loc = "removable"; 2752 break; 2753 case DEVICE_FIXED: 2754 loc = "fixed"; 2755 break; 2756 default: 2757 loc = "unknown"; 2758 } 2759 return sysfs_emit(buf, "%s\n", loc); 2760 } 2761 static DEVICE_ATTR_RO(removable); 2762 2763 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2764 { 2765 return sysfs_create_groups(&dev->kobj, groups); 2766 } 2767 EXPORT_SYMBOL_GPL(device_add_groups); 2768 2769 void device_remove_groups(struct device *dev, 2770 const struct attribute_group **groups) 2771 { 2772 sysfs_remove_groups(&dev->kobj, groups); 2773 } 2774 EXPORT_SYMBOL_GPL(device_remove_groups); 2775 2776 union device_attr_group_devres { 2777 const struct attribute_group *group; 2778 const struct attribute_group **groups; 2779 }; 2780 2781 static void devm_attr_group_remove(struct device *dev, void *res) 2782 { 2783 union device_attr_group_devres *devres = res; 2784 const struct attribute_group *group = devres->group; 2785 2786 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2787 sysfs_remove_group(&dev->kobj, group); 2788 } 2789 2790 static void devm_attr_groups_remove(struct device *dev, void *res) 2791 { 2792 union device_attr_group_devres *devres = res; 2793 const struct attribute_group **groups = devres->groups; 2794 2795 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2796 sysfs_remove_groups(&dev->kobj, groups); 2797 } 2798 2799 /** 2800 * devm_device_add_group - given a device, create a managed attribute group 2801 * @dev: The device to create the group for 2802 * @grp: The attribute group to create 2803 * 2804 * This function creates a group for the first time. It will explicitly 2805 * warn and error if any of the attribute files being created already exist. 2806 * 2807 * Returns 0 on success or error code on failure. 2808 */ 2809 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2810 { 2811 union device_attr_group_devres *devres; 2812 int error; 2813 2814 devres = devres_alloc(devm_attr_group_remove, 2815 sizeof(*devres), GFP_KERNEL); 2816 if (!devres) 2817 return -ENOMEM; 2818 2819 error = sysfs_create_group(&dev->kobj, grp); 2820 if (error) { 2821 devres_free(devres); 2822 return error; 2823 } 2824 2825 devres->group = grp; 2826 devres_add(dev, devres); 2827 return 0; 2828 } 2829 EXPORT_SYMBOL_GPL(devm_device_add_group); 2830 2831 /** 2832 * devm_device_add_groups - create a bunch of managed attribute groups 2833 * @dev: The device to create the group for 2834 * @groups: The attribute groups to create, NULL terminated 2835 * 2836 * This function creates a bunch of managed attribute groups. If an error 2837 * occurs when creating a group, all previously created groups will be 2838 * removed, unwinding everything back to the original state when this 2839 * function was called. It will explicitly warn and error if any of the 2840 * attribute files being created already exist. 2841 * 2842 * Returns 0 on success or error code from sysfs_create_group on failure. 2843 */ 2844 int devm_device_add_groups(struct device *dev, 2845 const struct attribute_group **groups) 2846 { 2847 union device_attr_group_devres *devres; 2848 int error; 2849 2850 devres = devres_alloc(devm_attr_groups_remove, 2851 sizeof(*devres), GFP_KERNEL); 2852 if (!devres) 2853 return -ENOMEM; 2854 2855 error = sysfs_create_groups(&dev->kobj, groups); 2856 if (error) { 2857 devres_free(devres); 2858 return error; 2859 } 2860 2861 devres->groups = groups; 2862 devres_add(dev, devres); 2863 return 0; 2864 } 2865 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2866 2867 static int device_add_attrs(struct device *dev) 2868 { 2869 const struct class *class = dev->class; 2870 const struct device_type *type = dev->type; 2871 int error; 2872 2873 if (class) { 2874 error = device_add_groups(dev, class->dev_groups); 2875 if (error) 2876 return error; 2877 } 2878 2879 if (type) { 2880 error = device_add_groups(dev, type->groups); 2881 if (error) 2882 goto err_remove_class_groups; 2883 } 2884 2885 error = device_add_groups(dev, dev->groups); 2886 if (error) 2887 goto err_remove_type_groups; 2888 2889 if (device_supports_offline(dev) && !dev->offline_disabled) { 2890 error = device_create_file(dev, &dev_attr_online); 2891 if (error) 2892 goto err_remove_dev_groups; 2893 } 2894 2895 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2896 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2897 if (error) 2898 goto err_remove_dev_online; 2899 } 2900 2901 if (dev_removable_is_valid(dev)) { 2902 error = device_create_file(dev, &dev_attr_removable); 2903 if (error) 2904 goto err_remove_dev_waiting_for_supplier; 2905 } 2906 2907 if (dev_add_physical_location(dev)) { 2908 error = device_add_group(dev, 2909 &dev_attr_physical_location_group); 2910 if (error) 2911 goto err_remove_dev_removable; 2912 } 2913 2914 return 0; 2915 2916 err_remove_dev_removable: 2917 device_remove_file(dev, &dev_attr_removable); 2918 err_remove_dev_waiting_for_supplier: 2919 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2920 err_remove_dev_online: 2921 device_remove_file(dev, &dev_attr_online); 2922 err_remove_dev_groups: 2923 device_remove_groups(dev, dev->groups); 2924 err_remove_type_groups: 2925 if (type) 2926 device_remove_groups(dev, type->groups); 2927 err_remove_class_groups: 2928 if (class) 2929 device_remove_groups(dev, class->dev_groups); 2930 2931 return error; 2932 } 2933 2934 static void device_remove_attrs(struct device *dev) 2935 { 2936 const struct class *class = dev->class; 2937 const struct device_type *type = dev->type; 2938 2939 if (dev->physical_location) { 2940 device_remove_group(dev, &dev_attr_physical_location_group); 2941 kfree(dev->physical_location); 2942 } 2943 2944 device_remove_file(dev, &dev_attr_removable); 2945 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2946 device_remove_file(dev, &dev_attr_online); 2947 device_remove_groups(dev, dev->groups); 2948 2949 if (type) 2950 device_remove_groups(dev, type->groups); 2951 2952 if (class) 2953 device_remove_groups(dev, class->dev_groups); 2954 } 2955 2956 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2957 char *buf) 2958 { 2959 return print_dev_t(buf, dev->devt); 2960 } 2961 static DEVICE_ATTR_RO(dev); 2962 2963 /* /sys/devices/ */ 2964 struct kset *devices_kset; 2965 2966 /** 2967 * devices_kset_move_before - Move device in the devices_kset's list. 2968 * @deva: Device to move. 2969 * @devb: Device @deva should come before. 2970 */ 2971 static void devices_kset_move_before(struct device *deva, struct device *devb) 2972 { 2973 if (!devices_kset) 2974 return; 2975 pr_debug("devices_kset: Moving %s before %s\n", 2976 dev_name(deva), dev_name(devb)); 2977 spin_lock(&devices_kset->list_lock); 2978 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2979 spin_unlock(&devices_kset->list_lock); 2980 } 2981 2982 /** 2983 * devices_kset_move_after - Move device in the devices_kset's list. 2984 * @deva: Device to move 2985 * @devb: Device @deva should come after. 2986 */ 2987 static void devices_kset_move_after(struct device *deva, struct device *devb) 2988 { 2989 if (!devices_kset) 2990 return; 2991 pr_debug("devices_kset: Moving %s after %s\n", 2992 dev_name(deva), dev_name(devb)); 2993 spin_lock(&devices_kset->list_lock); 2994 list_move(&deva->kobj.entry, &devb->kobj.entry); 2995 spin_unlock(&devices_kset->list_lock); 2996 } 2997 2998 /** 2999 * devices_kset_move_last - move the device to the end of devices_kset's list. 3000 * @dev: device to move 3001 */ 3002 void devices_kset_move_last(struct device *dev) 3003 { 3004 if (!devices_kset) 3005 return; 3006 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3007 spin_lock(&devices_kset->list_lock); 3008 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3009 spin_unlock(&devices_kset->list_lock); 3010 } 3011 3012 /** 3013 * device_create_file - create sysfs attribute file for device. 3014 * @dev: device. 3015 * @attr: device attribute descriptor. 3016 */ 3017 int device_create_file(struct device *dev, 3018 const struct device_attribute *attr) 3019 { 3020 int error = 0; 3021 3022 if (dev) { 3023 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3024 "Attribute %s: write permission without 'store'\n", 3025 attr->attr.name); 3026 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3027 "Attribute %s: read permission without 'show'\n", 3028 attr->attr.name); 3029 error = sysfs_create_file(&dev->kobj, &attr->attr); 3030 } 3031 3032 return error; 3033 } 3034 EXPORT_SYMBOL_GPL(device_create_file); 3035 3036 /** 3037 * device_remove_file - remove sysfs attribute file. 3038 * @dev: device. 3039 * @attr: device attribute descriptor. 3040 */ 3041 void device_remove_file(struct device *dev, 3042 const struct device_attribute *attr) 3043 { 3044 if (dev) 3045 sysfs_remove_file(&dev->kobj, &attr->attr); 3046 } 3047 EXPORT_SYMBOL_GPL(device_remove_file); 3048 3049 /** 3050 * device_remove_file_self - remove sysfs attribute file from its own method. 3051 * @dev: device. 3052 * @attr: device attribute descriptor. 3053 * 3054 * See kernfs_remove_self() for details. 3055 */ 3056 bool device_remove_file_self(struct device *dev, 3057 const struct device_attribute *attr) 3058 { 3059 if (dev) 3060 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3061 else 3062 return false; 3063 } 3064 EXPORT_SYMBOL_GPL(device_remove_file_self); 3065 3066 /** 3067 * device_create_bin_file - create sysfs binary attribute file for device. 3068 * @dev: device. 3069 * @attr: device binary attribute descriptor. 3070 */ 3071 int device_create_bin_file(struct device *dev, 3072 const struct bin_attribute *attr) 3073 { 3074 int error = -EINVAL; 3075 if (dev) 3076 error = sysfs_create_bin_file(&dev->kobj, attr); 3077 return error; 3078 } 3079 EXPORT_SYMBOL_GPL(device_create_bin_file); 3080 3081 /** 3082 * device_remove_bin_file - remove sysfs binary attribute file 3083 * @dev: device. 3084 * @attr: device binary attribute descriptor. 3085 */ 3086 void device_remove_bin_file(struct device *dev, 3087 const struct bin_attribute *attr) 3088 { 3089 if (dev) 3090 sysfs_remove_bin_file(&dev->kobj, attr); 3091 } 3092 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3093 3094 static void klist_children_get(struct klist_node *n) 3095 { 3096 struct device_private *p = to_device_private_parent(n); 3097 struct device *dev = p->device; 3098 3099 get_device(dev); 3100 } 3101 3102 static void klist_children_put(struct klist_node *n) 3103 { 3104 struct device_private *p = to_device_private_parent(n); 3105 struct device *dev = p->device; 3106 3107 put_device(dev); 3108 } 3109 3110 /** 3111 * device_initialize - init device structure. 3112 * @dev: device. 3113 * 3114 * This prepares the device for use by other layers by initializing 3115 * its fields. 3116 * It is the first half of device_register(), if called by 3117 * that function, though it can also be called separately, so one 3118 * may use @dev's fields. In particular, get_device()/put_device() 3119 * may be used for reference counting of @dev after calling this 3120 * function. 3121 * 3122 * All fields in @dev must be initialized by the caller to 0, except 3123 * for those explicitly set to some other value. The simplest 3124 * approach is to use kzalloc() to allocate the structure containing 3125 * @dev. 3126 * 3127 * NOTE: Use put_device() to give up your reference instead of freeing 3128 * @dev directly once you have called this function. 3129 */ 3130 void device_initialize(struct device *dev) 3131 { 3132 dev->kobj.kset = devices_kset; 3133 kobject_init(&dev->kobj, &device_ktype); 3134 INIT_LIST_HEAD(&dev->dma_pools); 3135 mutex_init(&dev->mutex); 3136 lockdep_set_novalidate_class(&dev->mutex); 3137 spin_lock_init(&dev->devres_lock); 3138 INIT_LIST_HEAD(&dev->devres_head); 3139 device_pm_init(dev); 3140 set_dev_node(dev, NUMA_NO_NODE); 3141 INIT_LIST_HEAD(&dev->links.consumers); 3142 INIT_LIST_HEAD(&dev->links.suppliers); 3143 INIT_LIST_HEAD(&dev->links.defer_sync); 3144 dev->links.status = DL_DEV_NO_DRIVER; 3145 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3146 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3147 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3148 dev->dma_coherent = dma_default_coherent; 3149 #endif 3150 swiotlb_dev_init(dev); 3151 } 3152 EXPORT_SYMBOL_GPL(device_initialize); 3153 3154 struct kobject *virtual_device_parent(struct device *dev) 3155 { 3156 static struct kobject *virtual_dir = NULL; 3157 3158 if (!virtual_dir) 3159 virtual_dir = kobject_create_and_add("virtual", 3160 &devices_kset->kobj); 3161 3162 return virtual_dir; 3163 } 3164 3165 struct class_dir { 3166 struct kobject kobj; 3167 const struct class *class; 3168 }; 3169 3170 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3171 3172 static void class_dir_release(struct kobject *kobj) 3173 { 3174 struct class_dir *dir = to_class_dir(kobj); 3175 kfree(dir); 3176 } 3177 3178 static const 3179 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3180 { 3181 const struct class_dir *dir = to_class_dir(kobj); 3182 return dir->class->ns_type; 3183 } 3184 3185 static const struct kobj_type class_dir_ktype = { 3186 .release = class_dir_release, 3187 .sysfs_ops = &kobj_sysfs_ops, 3188 .child_ns_type = class_dir_child_ns_type 3189 }; 3190 3191 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3192 struct kobject *parent_kobj) 3193 { 3194 struct class_dir *dir; 3195 int retval; 3196 3197 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3198 if (!dir) 3199 return ERR_PTR(-ENOMEM); 3200 3201 dir->class = sp->class; 3202 kobject_init(&dir->kobj, &class_dir_ktype); 3203 3204 dir->kobj.kset = &sp->glue_dirs; 3205 3206 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3207 if (retval < 0) { 3208 kobject_put(&dir->kobj); 3209 return ERR_PTR(retval); 3210 } 3211 return &dir->kobj; 3212 } 3213 3214 static DEFINE_MUTEX(gdp_mutex); 3215 3216 static struct kobject *get_device_parent(struct device *dev, 3217 struct device *parent) 3218 { 3219 struct subsys_private *sp = class_to_subsys(dev->class); 3220 struct kobject *kobj = NULL; 3221 3222 if (sp) { 3223 struct kobject *parent_kobj; 3224 struct kobject *k; 3225 3226 /* 3227 * If we have no parent, we live in "virtual". 3228 * Class-devices with a non class-device as parent, live 3229 * in a "glue" directory to prevent namespace collisions. 3230 */ 3231 if (parent == NULL) 3232 parent_kobj = virtual_device_parent(dev); 3233 else if (parent->class && !dev->class->ns_type) { 3234 subsys_put(sp); 3235 return &parent->kobj; 3236 } else { 3237 parent_kobj = &parent->kobj; 3238 } 3239 3240 mutex_lock(&gdp_mutex); 3241 3242 /* find our class-directory at the parent and reference it */ 3243 spin_lock(&sp->glue_dirs.list_lock); 3244 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3245 if (k->parent == parent_kobj) { 3246 kobj = kobject_get(k); 3247 break; 3248 } 3249 spin_unlock(&sp->glue_dirs.list_lock); 3250 if (kobj) { 3251 mutex_unlock(&gdp_mutex); 3252 subsys_put(sp); 3253 return kobj; 3254 } 3255 3256 /* or create a new class-directory at the parent device */ 3257 k = class_dir_create_and_add(sp, parent_kobj); 3258 /* do not emit an uevent for this simple "glue" directory */ 3259 mutex_unlock(&gdp_mutex); 3260 subsys_put(sp); 3261 return k; 3262 } 3263 3264 /* subsystems can specify a default root directory for their devices */ 3265 if (!parent && dev->bus) { 3266 struct device *dev_root = bus_get_dev_root(dev->bus); 3267 3268 if (dev_root) { 3269 kobj = &dev_root->kobj; 3270 put_device(dev_root); 3271 return kobj; 3272 } 3273 } 3274 3275 if (parent) 3276 return &parent->kobj; 3277 return NULL; 3278 } 3279 3280 static inline bool live_in_glue_dir(struct kobject *kobj, 3281 struct device *dev) 3282 { 3283 struct subsys_private *sp; 3284 bool retval; 3285 3286 if (!kobj || !dev->class) 3287 return false; 3288 3289 sp = class_to_subsys(dev->class); 3290 if (!sp) 3291 return false; 3292 3293 if (kobj->kset == &sp->glue_dirs) 3294 retval = true; 3295 else 3296 retval = false; 3297 3298 subsys_put(sp); 3299 return retval; 3300 } 3301 3302 static inline struct kobject *get_glue_dir(struct device *dev) 3303 { 3304 return dev->kobj.parent; 3305 } 3306 3307 /** 3308 * kobject_has_children - Returns whether a kobject has children. 3309 * @kobj: the object to test 3310 * 3311 * This will return whether a kobject has other kobjects as children. 3312 * 3313 * It does NOT account for the presence of attribute files, only sub 3314 * directories. It also assumes there is no concurrent addition or 3315 * removal of such children, and thus relies on external locking. 3316 */ 3317 static inline bool kobject_has_children(struct kobject *kobj) 3318 { 3319 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3320 3321 return kobj->sd && kobj->sd->dir.subdirs; 3322 } 3323 3324 /* 3325 * make sure cleaning up dir as the last step, we need to make 3326 * sure .release handler of kobject is run with holding the 3327 * global lock 3328 */ 3329 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3330 { 3331 unsigned int ref; 3332 3333 /* see if we live in a "glue" directory */ 3334 if (!live_in_glue_dir(glue_dir, dev)) 3335 return; 3336 3337 mutex_lock(&gdp_mutex); 3338 /** 3339 * There is a race condition between removing glue directory 3340 * and adding a new device under the glue directory. 3341 * 3342 * CPU1: CPU2: 3343 * 3344 * device_add() 3345 * get_device_parent() 3346 * class_dir_create_and_add() 3347 * kobject_add_internal() 3348 * create_dir() // create glue_dir 3349 * 3350 * device_add() 3351 * get_device_parent() 3352 * kobject_get() // get glue_dir 3353 * 3354 * device_del() 3355 * cleanup_glue_dir() 3356 * kobject_del(glue_dir) 3357 * 3358 * kobject_add() 3359 * kobject_add_internal() 3360 * create_dir() // in glue_dir 3361 * sysfs_create_dir_ns() 3362 * kernfs_create_dir_ns(sd) 3363 * 3364 * sysfs_remove_dir() // glue_dir->sd=NULL 3365 * sysfs_put() // free glue_dir->sd 3366 * 3367 * // sd is freed 3368 * kernfs_new_node(sd) 3369 * kernfs_get(glue_dir) 3370 * kernfs_add_one() 3371 * kernfs_put() 3372 * 3373 * Before CPU1 remove last child device under glue dir, if CPU2 add 3374 * a new device under glue dir, the glue_dir kobject reference count 3375 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3376 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3377 * and sysfs_put(). This result in glue_dir->sd is freed. 3378 * 3379 * Then the CPU2 will see a stale "empty" but still potentially used 3380 * glue dir around in kernfs_new_node(). 3381 * 3382 * In order to avoid this happening, we also should make sure that 3383 * kernfs_node for glue_dir is released in CPU1 only when refcount 3384 * for glue_dir kobj is 1. 3385 */ 3386 ref = kref_read(&glue_dir->kref); 3387 if (!kobject_has_children(glue_dir) && !--ref) 3388 kobject_del(glue_dir); 3389 kobject_put(glue_dir); 3390 mutex_unlock(&gdp_mutex); 3391 } 3392 3393 static int device_add_class_symlinks(struct device *dev) 3394 { 3395 struct device_node *of_node = dev_of_node(dev); 3396 struct subsys_private *sp; 3397 int error; 3398 3399 if (of_node) { 3400 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3401 if (error) 3402 dev_warn(dev, "Error %d creating of_node link\n",error); 3403 /* An error here doesn't warrant bringing down the device */ 3404 } 3405 3406 sp = class_to_subsys(dev->class); 3407 if (!sp) 3408 return 0; 3409 3410 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3411 if (error) 3412 goto out_devnode; 3413 3414 if (dev->parent && device_is_not_partition(dev)) { 3415 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3416 "device"); 3417 if (error) 3418 goto out_subsys; 3419 } 3420 3421 /* link in the class directory pointing to the device */ 3422 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3423 if (error) 3424 goto out_device; 3425 goto exit; 3426 3427 out_device: 3428 sysfs_remove_link(&dev->kobj, "device"); 3429 out_subsys: 3430 sysfs_remove_link(&dev->kobj, "subsystem"); 3431 out_devnode: 3432 sysfs_remove_link(&dev->kobj, "of_node"); 3433 exit: 3434 subsys_put(sp); 3435 return error; 3436 } 3437 3438 static void device_remove_class_symlinks(struct device *dev) 3439 { 3440 struct subsys_private *sp = class_to_subsys(dev->class); 3441 3442 if (dev_of_node(dev)) 3443 sysfs_remove_link(&dev->kobj, "of_node"); 3444 3445 if (!sp) 3446 return; 3447 3448 if (dev->parent && device_is_not_partition(dev)) 3449 sysfs_remove_link(&dev->kobj, "device"); 3450 sysfs_remove_link(&dev->kobj, "subsystem"); 3451 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3452 subsys_put(sp); 3453 } 3454 3455 /** 3456 * dev_set_name - set a device name 3457 * @dev: device 3458 * @fmt: format string for the device's name 3459 */ 3460 int dev_set_name(struct device *dev, const char *fmt, ...) 3461 { 3462 va_list vargs; 3463 int err; 3464 3465 va_start(vargs, fmt); 3466 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3467 va_end(vargs); 3468 return err; 3469 } 3470 EXPORT_SYMBOL_GPL(dev_set_name); 3471 3472 /* select a /sys/dev/ directory for the device */ 3473 static struct kobject *device_to_dev_kobj(struct device *dev) 3474 { 3475 if (is_blockdev(dev)) 3476 return sysfs_dev_block_kobj; 3477 else 3478 return sysfs_dev_char_kobj; 3479 } 3480 3481 static int device_create_sys_dev_entry(struct device *dev) 3482 { 3483 struct kobject *kobj = device_to_dev_kobj(dev); 3484 int error = 0; 3485 char devt_str[15]; 3486 3487 if (kobj) { 3488 format_dev_t(devt_str, dev->devt); 3489 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3490 } 3491 3492 return error; 3493 } 3494 3495 static void device_remove_sys_dev_entry(struct device *dev) 3496 { 3497 struct kobject *kobj = device_to_dev_kobj(dev); 3498 char devt_str[15]; 3499 3500 if (kobj) { 3501 format_dev_t(devt_str, dev->devt); 3502 sysfs_remove_link(kobj, devt_str); 3503 } 3504 } 3505 3506 static int device_private_init(struct device *dev) 3507 { 3508 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3509 if (!dev->p) 3510 return -ENOMEM; 3511 dev->p->device = dev; 3512 klist_init(&dev->p->klist_children, klist_children_get, 3513 klist_children_put); 3514 INIT_LIST_HEAD(&dev->p->deferred_probe); 3515 return 0; 3516 } 3517 3518 /** 3519 * device_add - add device to device hierarchy. 3520 * @dev: device. 3521 * 3522 * This is part 2 of device_register(), though may be called 3523 * separately _iff_ device_initialize() has been called separately. 3524 * 3525 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3526 * to the global and sibling lists for the device, then 3527 * adds it to the other relevant subsystems of the driver model. 3528 * 3529 * Do not call this routine or device_register() more than once for 3530 * any device structure. The driver model core is not designed to work 3531 * with devices that get unregistered and then spring back to life. 3532 * (Among other things, it's very hard to guarantee that all references 3533 * to the previous incarnation of @dev have been dropped.) Allocate 3534 * and register a fresh new struct device instead. 3535 * 3536 * NOTE: _Never_ directly free @dev after calling this function, even 3537 * if it returned an error! Always use put_device() to give up your 3538 * reference instead. 3539 * 3540 * Rule of thumb is: if device_add() succeeds, you should call 3541 * device_del() when you want to get rid of it. If device_add() has 3542 * *not* succeeded, use *only* put_device() to drop the reference 3543 * count. 3544 */ 3545 int device_add(struct device *dev) 3546 { 3547 struct subsys_private *sp; 3548 struct device *parent; 3549 struct kobject *kobj; 3550 struct class_interface *class_intf; 3551 int error = -EINVAL; 3552 struct kobject *glue_dir = NULL; 3553 3554 dev = get_device(dev); 3555 if (!dev) 3556 goto done; 3557 3558 if (!dev->p) { 3559 error = device_private_init(dev); 3560 if (error) 3561 goto done; 3562 } 3563 3564 /* 3565 * for statically allocated devices, which should all be converted 3566 * some day, we need to initialize the name. We prevent reading back 3567 * the name, and force the use of dev_name() 3568 */ 3569 if (dev->init_name) { 3570 error = dev_set_name(dev, "%s", dev->init_name); 3571 dev->init_name = NULL; 3572 } 3573 3574 if (dev_name(dev)) 3575 error = 0; 3576 /* subsystems can specify simple device enumeration */ 3577 else if (dev->bus && dev->bus->dev_name) 3578 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3579 else 3580 error = -EINVAL; 3581 if (error) 3582 goto name_error; 3583 3584 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3585 3586 parent = get_device(dev->parent); 3587 kobj = get_device_parent(dev, parent); 3588 if (IS_ERR(kobj)) { 3589 error = PTR_ERR(kobj); 3590 goto parent_error; 3591 } 3592 if (kobj) 3593 dev->kobj.parent = kobj; 3594 3595 /* use parent numa_node */ 3596 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3597 set_dev_node(dev, dev_to_node(parent)); 3598 3599 /* first, register with generic layer. */ 3600 /* we require the name to be set before, and pass NULL */ 3601 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3602 if (error) { 3603 glue_dir = kobj; 3604 goto Error; 3605 } 3606 3607 /* notify platform of device entry */ 3608 device_platform_notify(dev); 3609 3610 error = device_create_file(dev, &dev_attr_uevent); 3611 if (error) 3612 goto attrError; 3613 3614 error = device_add_class_symlinks(dev); 3615 if (error) 3616 goto SymlinkError; 3617 error = device_add_attrs(dev); 3618 if (error) 3619 goto AttrsError; 3620 error = bus_add_device(dev); 3621 if (error) 3622 goto BusError; 3623 error = dpm_sysfs_add(dev); 3624 if (error) 3625 goto DPMError; 3626 device_pm_add(dev); 3627 3628 if (MAJOR(dev->devt)) { 3629 error = device_create_file(dev, &dev_attr_dev); 3630 if (error) 3631 goto DevAttrError; 3632 3633 error = device_create_sys_dev_entry(dev); 3634 if (error) 3635 goto SysEntryError; 3636 3637 devtmpfs_create_node(dev); 3638 } 3639 3640 /* Notify clients of device addition. This call must come 3641 * after dpm_sysfs_add() and before kobject_uevent(). 3642 */ 3643 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3644 kobject_uevent(&dev->kobj, KOBJ_ADD); 3645 3646 /* 3647 * Check if any of the other devices (consumers) have been waiting for 3648 * this device (supplier) to be added so that they can create a device 3649 * link to it. 3650 * 3651 * This needs to happen after device_pm_add() because device_link_add() 3652 * requires the supplier be registered before it's called. 3653 * 3654 * But this also needs to happen before bus_probe_device() to make sure 3655 * waiting consumers can link to it before the driver is bound to the 3656 * device and the driver sync_state callback is called for this device. 3657 */ 3658 if (dev->fwnode && !dev->fwnode->dev) { 3659 dev->fwnode->dev = dev; 3660 fw_devlink_link_device(dev); 3661 } 3662 3663 bus_probe_device(dev); 3664 3665 /* 3666 * If all driver registration is done and a newly added device doesn't 3667 * match with any driver, don't block its consumers from probing in 3668 * case the consumer device is able to operate without this supplier. 3669 */ 3670 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3671 fw_devlink_unblock_consumers(dev); 3672 3673 if (parent) 3674 klist_add_tail(&dev->p->knode_parent, 3675 &parent->p->klist_children); 3676 3677 sp = class_to_subsys(dev->class); 3678 if (sp) { 3679 mutex_lock(&sp->mutex); 3680 /* tie the class to the device */ 3681 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3682 3683 /* notify any interfaces that the device is here */ 3684 list_for_each_entry(class_intf, &sp->interfaces, node) 3685 if (class_intf->add_dev) 3686 class_intf->add_dev(dev); 3687 mutex_unlock(&sp->mutex); 3688 subsys_put(sp); 3689 } 3690 done: 3691 put_device(dev); 3692 return error; 3693 SysEntryError: 3694 if (MAJOR(dev->devt)) 3695 device_remove_file(dev, &dev_attr_dev); 3696 DevAttrError: 3697 device_pm_remove(dev); 3698 dpm_sysfs_remove(dev); 3699 DPMError: 3700 dev->driver = NULL; 3701 bus_remove_device(dev); 3702 BusError: 3703 device_remove_attrs(dev); 3704 AttrsError: 3705 device_remove_class_symlinks(dev); 3706 SymlinkError: 3707 device_remove_file(dev, &dev_attr_uevent); 3708 attrError: 3709 device_platform_notify_remove(dev); 3710 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3711 glue_dir = get_glue_dir(dev); 3712 kobject_del(&dev->kobj); 3713 Error: 3714 cleanup_glue_dir(dev, glue_dir); 3715 parent_error: 3716 put_device(parent); 3717 name_error: 3718 kfree(dev->p); 3719 dev->p = NULL; 3720 goto done; 3721 } 3722 EXPORT_SYMBOL_GPL(device_add); 3723 3724 /** 3725 * device_register - register a device with the system. 3726 * @dev: pointer to the device structure 3727 * 3728 * This happens in two clean steps - initialize the device 3729 * and add it to the system. The two steps can be called 3730 * separately, but this is the easiest and most common. 3731 * I.e. you should only call the two helpers separately if 3732 * have a clearly defined need to use and refcount the device 3733 * before it is added to the hierarchy. 3734 * 3735 * For more information, see the kerneldoc for device_initialize() 3736 * and device_add(). 3737 * 3738 * NOTE: _Never_ directly free @dev after calling this function, even 3739 * if it returned an error! Always use put_device() to give up the 3740 * reference initialized in this function instead. 3741 */ 3742 int device_register(struct device *dev) 3743 { 3744 device_initialize(dev); 3745 return device_add(dev); 3746 } 3747 EXPORT_SYMBOL_GPL(device_register); 3748 3749 /** 3750 * get_device - increment reference count for device. 3751 * @dev: device. 3752 * 3753 * This simply forwards the call to kobject_get(), though 3754 * we do take care to provide for the case that we get a NULL 3755 * pointer passed in. 3756 */ 3757 struct device *get_device(struct device *dev) 3758 { 3759 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3760 } 3761 EXPORT_SYMBOL_GPL(get_device); 3762 3763 /** 3764 * put_device - decrement reference count. 3765 * @dev: device in question. 3766 */ 3767 void put_device(struct device *dev) 3768 { 3769 /* might_sleep(); */ 3770 if (dev) 3771 kobject_put(&dev->kobj); 3772 } 3773 EXPORT_SYMBOL_GPL(put_device); 3774 3775 bool kill_device(struct device *dev) 3776 { 3777 /* 3778 * Require the device lock and set the "dead" flag to guarantee that 3779 * the update behavior is consistent with the other bitfields near 3780 * it and that we cannot have an asynchronous probe routine trying 3781 * to run while we are tearing out the bus/class/sysfs from 3782 * underneath the device. 3783 */ 3784 device_lock_assert(dev); 3785 3786 if (dev->p->dead) 3787 return false; 3788 dev->p->dead = true; 3789 return true; 3790 } 3791 EXPORT_SYMBOL_GPL(kill_device); 3792 3793 /** 3794 * device_del - delete device from system. 3795 * @dev: device. 3796 * 3797 * This is the first part of the device unregistration 3798 * sequence. This removes the device from the lists we control 3799 * from here, has it removed from the other driver model 3800 * subsystems it was added to in device_add(), and removes it 3801 * from the kobject hierarchy. 3802 * 3803 * NOTE: this should be called manually _iff_ device_add() was 3804 * also called manually. 3805 */ 3806 void device_del(struct device *dev) 3807 { 3808 struct subsys_private *sp; 3809 struct device *parent = dev->parent; 3810 struct kobject *glue_dir = NULL; 3811 struct class_interface *class_intf; 3812 unsigned int noio_flag; 3813 3814 device_lock(dev); 3815 kill_device(dev); 3816 device_unlock(dev); 3817 3818 if (dev->fwnode && dev->fwnode->dev == dev) 3819 dev->fwnode->dev = NULL; 3820 3821 /* Notify clients of device removal. This call must come 3822 * before dpm_sysfs_remove(). 3823 */ 3824 noio_flag = memalloc_noio_save(); 3825 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3826 3827 dpm_sysfs_remove(dev); 3828 if (parent) 3829 klist_del(&dev->p->knode_parent); 3830 if (MAJOR(dev->devt)) { 3831 devtmpfs_delete_node(dev); 3832 device_remove_sys_dev_entry(dev); 3833 device_remove_file(dev, &dev_attr_dev); 3834 } 3835 3836 sp = class_to_subsys(dev->class); 3837 if (sp) { 3838 device_remove_class_symlinks(dev); 3839 3840 mutex_lock(&sp->mutex); 3841 /* notify any interfaces that the device is now gone */ 3842 list_for_each_entry(class_intf, &sp->interfaces, node) 3843 if (class_intf->remove_dev) 3844 class_intf->remove_dev(dev); 3845 /* remove the device from the class list */ 3846 klist_del(&dev->p->knode_class); 3847 mutex_unlock(&sp->mutex); 3848 subsys_put(sp); 3849 } 3850 device_remove_file(dev, &dev_attr_uevent); 3851 device_remove_attrs(dev); 3852 bus_remove_device(dev); 3853 device_pm_remove(dev); 3854 driver_deferred_probe_del(dev); 3855 device_platform_notify_remove(dev); 3856 device_links_purge(dev); 3857 3858 /* 3859 * If a device does not have a driver attached, we need to clean 3860 * up any managed resources. We do this in device_release(), but 3861 * it's never called (and we leak the device) if a managed 3862 * resource holds a reference to the device. So release all 3863 * managed resources here, like we do in driver_detach(). We 3864 * still need to do so again in device_release() in case someone 3865 * adds a new resource after this point, though. 3866 */ 3867 devres_release_all(dev); 3868 3869 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3870 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3871 glue_dir = get_glue_dir(dev); 3872 kobject_del(&dev->kobj); 3873 cleanup_glue_dir(dev, glue_dir); 3874 memalloc_noio_restore(noio_flag); 3875 put_device(parent); 3876 } 3877 EXPORT_SYMBOL_GPL(device_del); 3878 3879 /** 3880 * device_unregister - unregister device from system. 3881 * @dev: device going away. 3882 * 3883 * We do this in two parts, like we do device_register(). First, 3884 * we remove it from all the subsystems with device_del(), then 3885 * we decrement the reference count via put_device(). If that 3886 * is the final reference count, the device will be cleaned up 3887 * via device_release() above. Otherwise, the structure will 3888 * stick around until the final reference to the device is dropped. 3889 */ 3890 void device_unregister(struct device *dev) 3891 { 3892 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3893 device_del(dev); 3894 put_device(dev); 3895 } 3896 EXPORT_SYMBOL_GPL(device_unregister); 3897 3898 static struct device *prev_device(struct klist_iter *i) 3899 { 3900 struct klist_node *n = klist_prev(i); 3901 struct device *dev = NULL; 3902 struct device_private *p; 3903 3904 if (n) { 3905 p = to_device_private_parent(n); 3906 dev = p->device; 3907 } 3908 return dev; 3909 } 3910 3911 static struct device *next_device(struct klist_iter *i) 3912 { 3913 struct klist_node *n = klist_next(i); 3914 struct device *dev = NULL; 3915 struct device_private *p; 3916 3917 if (n) { 3918 p = to_device_private_parent(n); 3919 dev = p->device; 3920 } 3921 return dev; 3922 } 3923 3924 /** 3925 * device_get_devnode - path of device node file 3926 * @dev: device 3927 * @mode: returned file access mode 3928 * @uid: returned file owner 3929 * @gid: returned file group 3930 * @tmp: possibly allocated string 3931 * 3932 * Return the relative path of a possible device node. 3933 * Non-default names may need to allocate a memory to compose 3934 * a name. This memory is returned in tmp and needs to be 3935 * freed by the caller. 3936 */ 3937 const char *device_get_devnode(const struct device *dev, 3938 umode_t *mode, kuid_t *uid, kgid_t *gid, 3939 const char **tmp) 3940 { 3941 char *s; 3942 3943 *tmp = NULL; 3944 3945 /* the device type may provide a specific name */ 3946 if (dev->type && dev->type->devnode) 3947 *tmp = dev->type->devnode(dev, mode, uid, gid); 3948 if (*tmp) 3949 return *tmp; 3950 3951 /* the class may provide a specific name */ 3952 if (dev->class && dev->class->devnode) 3953 *tmp = dev->class->devnode(dev, mode); 3954 if (*tmp) 3955 return *tmp; 3956 3957 /* return name without allocation, tmp == NULL */ 3958 if (strchr(dev_name(dev), '!') == NULL) 3959 return dev_name(dev); 3960 3961 /* replace '!' in the name with '/' */ 3962 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3963 if (!s) 3964 return NULL; 3965 return *tmp = s; 3966 } 3967 3968 /** 3969 * device_for_each_child - device child iterator. 3970 * @parent: parent struct device. 3971 * @fn: function to be called for each device. 3972 * @data: data for the callback. 3973 * 3974 * Iterate over @parent's child devices, and call @fn for each, 3975 * passing it @data. 3976 * 3977 * We check the return of @fn each time. If it returns anything 3978 * other than 0, we break out and return that value. 3979 */ 3980 int device_for_each_child(struct device *parent, void *data, 3981 int (*fn)(struct device *dev, void *data)) 3982 { 3983 struct klist_iter i; 3984 struct device *child; 3985 int error = 0; 3986 3987 if (!parent->p) 3988 return 0; 3989 3990 klist_iter_init(&parent->p->klist_children, &i); 3991 while (!error && (child = next_device(&i))) 3992 error = fn(child, data); 3993 klist_iter_exit(&i); 3994 return error; 3995 } 3996 EXPORT_SYMBOL_GPL(device_for_each_child); 3997 3998 /** 3999 * device_for_each_child_reverse - device child iterator in reversed order. 4000 * @parent: parent struct device. 4001 * @fn: function to be called for each device. 4002 * @data: data for the callback. 4003 * 4004 * Iterate over @parent's child devices, and call @fn for each, 4005 * passing it @data. 4006 * 4007 * We check the return of @fn each time. If it returns anything 4008 * other than 0, we break out and return that value. 4009 */ 4010 int device_for_each_child_reverse(struct device *parent, void *data, 4011 int (*fn)(struct device *dev, void *data)) 4012 { 4013 struct klist_iter i; 4014 struct device *child; 4015 int error = 0; 4016 4017 if (!parent->p) 4018 return 0; 4019 4020 klist_iter_init(&parent->p->klist_children, &i); 4021 while ((child = prev_device(&i)) && !error) 4022 error = fn(child, data); 4023 klist_iter_exit(&i); 4024 return error; 4025 } 4026 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4027 4028 /** 4029 * device_for_each_child_reverse_from - device child iterator in reversed order. 4030 * @parent: parent struct device. 4031 * @from: optional starting point in child list 4032 * @fn: function to be called for each device. 4033 * @data: data for the callback. 4034 * 4035 * Iterate over @parent's child devices, starting at @from, and call @fn 4036 * for each, passing it @data. This helper is identical to 4037 * device_for_each_child_reverse() when @from is NULL. 4038 * 4039 * @fn is checked each iteration. If it returns anything other than 0, 4040 * iteration stop and that value is returned to the caller of 4041 * device_for_each_child_reverse_from(); 4042 */ 4043 int device_for_each_child_reverse_from(struct device *parent, 4044 struct device *from, const void *data, 4045 int (*fn)(struct device *, const void *)) 4046 { 4047 struct klist_iter i; 4048 struct device *child; 4049 int error = 0; 4050 4051 if (!parent->p) 4052 return 0; 4053 4054 klist_iter_init_node(&parent->p->klist_children, &i, 4055 (from ? &from->p->knode_parent : NULL)); 4056 while ((child = prev_device(&i)) && !error) 4057 error = fn(child, data); 4058 klist_iter_exit(&i); 4059 return error; 4060 } 4061 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4062 4063 /** 4064 * device_find_child - device iterator for locating a particular device. 4065 * @parent: parent struct device 4066 * @match: Callback function to check device 4067 * @data: Data to pass to match function 4068 * 4069 * This is similar to the device_for_each_child() function above, but it 4070 * returns a reference to a device that is 'found' for later use, as 4071 * determined by the @match callback. 4072 * 4073 * The callback should return 0 if the device doesn't match and non-zero 4074 * if it does. If the callback returns non-zero and a reference to the 4075 * current device can be obtained, this function will return to the caller 4076 * and not iterate over any more devices. 4077 * 4078 * NOTE: you will need to drop the reference with put_device() after use. 4079 */ 4080 struct device *device_find_child(struct device *parent, void *data, 4081 int (*match)(struct device *dev, void *data)) 4082 { 4083 struct klist_iter i; 4084 struct device *child; 4085 4086 if (!parent) 4087 return NULL; 4088 4089 klist_iter_init(&parent->p->klist_children, &i); 4090 while ((child = next_device(&i))) 4091 if (match(child, data) && get_device(child)) 4092 break; 4093 klist_iter_exit(&i); 4094 return child; 4095 } 4096 EXPORT_SYMBOL_GPL(device_find_child); 4097 4098 /** 4099 * device_find_child_by_name - device iterator for locating a child device. 4100 * @parent: parent struct device 4101 * @name: name of the child device 4102 * 4103 * This is similar to the device_find_child() function above, but it 4104 * returns a reference to a device that has the name @name. 4105 * 4106 * NOTE: you will need to drop the reference with put_device() after use. 4107 */ 4108 struct device *device_find_child_by_name(struct device *parent, 4109 const char *name) 4110 { 4111 struct klist_iter i; 4112 struct device *child; 4113 4114 if (!parent) 4115 return NULL; 4116 4117 klist_iter_init(&parent->p->klist_children, &i); 4118 while ((child = next_device(&i))) 4119 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4120 break; 4121 klist_iter_exit(&i); 4122 return child; 4123 } 4124 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4125 4126 static int match_any(struct device *dev, void *unused) 4127 { 4128 return 1; 4129 } 4130 4131 /** 4132 * device_find_any_child - device iterator for locating a child device, if any. 4133 * @parent: parent struct device 4134 * 4135 * This is similar to the device_find_child() function above, but it 4136 * returns a reference to a child device, if any. 4137 * 4138 * NOTE: you will need to drop the reference with put_device() after use. 4139 */ 4140 struct device *device_find_any_child(struct device *parent) 4141 { 4142 return device_find_child(parent, NULL, match_any); 4143 } 4144 EXPORT_SYMBOL_GPL(device_find_any_child); 4145 4146 int __init devices_init(void) 4147 { 4148 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4149 if (!devices_kset) 4150 return -ENOMEM; 4151 dev_kobj = kobject_create_and_add("dev", NULL); 4152 if (!dev_kobj) 4153 goto dev_kobj_err; 4154 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4155 if (!sysfs_dev_block_kobj) 4156 goto block_kobj_err; 4157 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4158 if (!sysfs_dev_char_kobj) 4159 goto char_kobj_err; 4160 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4161 if (!device_link_wq) 4162 goto wq_err; 4163 4164 return 0; 4165 4166 wq_err: 4167 kobject_put(sysfs_dev_char_kobj); 4168 char_kobj_err: 4169 kobject_put(sysfs_dev_block_kobj); 4170 block_kobj_err: 4171 kobject_put(dev_kobj); 4172 dev_kobj_err: 4173 kset_unregister(devices_kset); 4174 return -ENOMEM; 4175 } 4176 4177 static int device_check_offline(struct device *dev, void *not_used) 4178 { 4179 int ret; 4180 4181 ret = device_for_each_child(dev, NULL, device_check_offline); 4182 if (ret) 4183 return ret; 4184 4185 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4186 } 4187 4188 /** 4189 * device_offline - Prepare the device for hot-removal. 4190 * @dev: Device to be put offline. 4191 * 4192 * Execute the device bus type's .offline() callback, if present, to prepare 4193 * the device for a subsequent hot-removal. If that succeeds, the device must 4194 * not be used until either it is removed or its bus type's .online() callback 4195 * is executed. 4196 * 4197 * Call under device_hotplug_lock. 4198 */ 4199 int device_offline(struct device *dev) 4200 { 4201 int ret; 4202 4203 if (dev->offline_disabled) 4204 return -EPERM; 4205 4206 ret = device_for_each_child(dev, NULL, device_check_offline); 4207 if (ret) 4208 return ret; 4209 4210 device_lock(dev); 4211 if (device_supports_offline(dev)) { 4212 if (dev->offline) { 4213 ret = 1; 4214 } else { 4215 ret = dev->bus->offline(dev); 4216 if (!ret) { 4217 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4218 dev->offline = true; 4219 } 4220 } 4221 } 4222 device_unlock(dev); 4223 4224 return ret; 4225 } 4226 4227 /** 4228 * device_online - Put the device back online after successful device_offline(). 4229 * @dev: Device to be put back online. 4230 * 4231 * If device_offline() has been successfully executed for @dev, but the device 4232 * has not been removed subsequently, execute its bus type's .online() callback 4233 * to indicate that the device can be used again. 4234 * 4235 * Call under device_hotplug_lock. 4236 */ 4237 int device_online(struct device *dev) 4238 { 4239 int ret = 0; 4240 4241 device_lock(dev); 4242 if (device_supports_offline(dev)) { 4243 if (dev->offline) { 4244 ret = dev->bus->online(dev); 4245 if (!ret) { 4246 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4247 dev->offline = false; 4248 } 4249 } else { 4250 ret = 1; 4251 } 4252 } 4253 device_unlock(dev); 4254 4255 return ret; 4256 } 4257 4258 struct root_device { 4259 struct device dev; 4260 struct module *owner; 4261 }; 4262 4263 static inline struct root_device *to_root_device(struct device *d) 4264 { 4265 return container_of(d, struct root_device, dev); 4266 } 4267 4268 static void root_device_release(struct device *dev) 4269 { 4270 kfree(to_root_device(dev)); 4271 } 4272 4273 /** 4274 * __root_device_register - allocate and register a root device 4275 * @name: root device name 4276 * @owner: owner module of the root device, usually THIS_MODULE 4277 * 4278 * This function allocates a root device and registers it 4279 * using device_register(). In order to free the returned 4280 * device, use root_device_unregister(). 4281 * 4282 * Root devices are dummy devices which allow other devices 4283 * to be grouped under /sys/devices. Use this function to 4284 * allocate a root device and then use it as the parent of 4285 * any device which should appear under /sys/devices/{name} 4286 * 4287 * The /sys/devices/{name} directory will also contain a 4288 * 'module' symlink which points to the @owner directory 4289 * in sysfs. 4290 * 4291 * Returns &struct device pointer on success, or ERR_PTR() on error. 4292 * 4293 * Note: You probably want to use root_device_register(). 4294 */ 4295 struct device *__root_device_register(const char *name, struct module *owner) 4296 { 4297 struct root_device *root; 4298 int err = -ENOMEM; 4299 4300 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4301 if (!root) 4302 return ERR_PTR(err); 4303 4304 err = dev_set_name(&root->dev, "%s", name); 4305 if (err) { 4306 kfree(root); 4307 return ERR_PTR(err); 4308 } 4309 4310 root->dev.release = root_device_release; 4311 4312 err = device_register(&root->dev); 4313 if (err) { 4314 put_device(&root->dev); 4315 return ERR_PTR(err); 4316 } 4317 4318 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4319 if (owner) { 4320 struct module_kobject *mk = &owner->mkobj; 4321 4322 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4323 if (err) { 4324 device_unregister(&root->dev); 4325 return ERR_PTR(err); 4326 } 4327 root->owner = owner; 4328 } 4329 #endif 4330 4331 return &root->dev; 4332 } 4333 EXPORT_SYMBOL_GPL(__root_device_register); 4334 4335 /** 4336 * root_device_unregister - unregister and free a root device 4337 * @dev: device going away 4338 * 4339 * This function unregisters and cleans up a device that was created by 4340 * root_device_register(). 4341 */ 4342 void root_device_unregister(struct device *dev) 4343 { 4344 struct root_device *root = to_root_device(dev); 4345 4346 if (root->owner) 4347 sysfs_remove_link(&root->dev.kobj, "module"); 4348 4349 device_unregister(dev); 4350 } 4351 EXPORT_SYMBOL_GPL(root_device_unregister); 4352 4353 4354 static void device_create_release(struct device *dev) 4355 { 4356 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4357 kfree(dev); 4358 } 4359 4360 static __printf(6, 0) struct device * 4361 device_create_groups_vargs(const struct class *class, struct device *parent, 4362 dev_t devt, void *drvdata, 4363 const struct attribute_group **groups, 4364 const char *fmt, va_list args) 4365 { 4366 struct device *dev = NULL; 4367 int retval = -ENODEV; 4368 4369 if (IS_ERR_OR_NULL(class)) 4370 goto error; 4371 4372 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4373 if (!dev) { 4374 retval = -ENOMEM; 4375 goto error; 4376 } 4377 4378 device_initialize(dev); 4379 dev->devt = devt; 4380 dev->class = class; 4381 dev->parent = parent; 4382 dev->groups = groups; 4383 dev->release = device_create_release; 4384 dev_set_drvdata(dev, drvdata); 4385 4386 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4387 if (retval) 4388 goto error; 4389 4390 retval = device_add(dev); 4391 if (retval) 4392 goto error; 4393 4394 return dev; 4395 4396 error: 4397 put_device(dev); 4398 return ERR_PTR(retval); 4399 } 4400 4401 /** 4402 * device_create - creates a device and registers it with sysfs 4403 * @class: pointer to the struct class that this device should be registered to 4404 * @parent: pointer to the parent struct device of this new device, if any 4405 * @devt: the dev_t for the char device to be added 4406 * @drvdata: the data to be added to the device for callbacks 4407 * @fmt: string for the device's name 4408 * 4409 * This function can be used by char device classes. A struct device 4410 * will be created in sysfs, registered to the specified class. 4411 * 4412 * A "dev" file will be created, showing the dev_t for the device, if 4413 * the dev_t is not 0,0. 4414 * If a pointer to a parent struct device is passed in, the newly created 4415 * struct device will be a child of that device in sysfs. 4416 * The pointer to the struct device will be returned from the call. 4417 * Any further sysfs files that might be required can be created using this 4418 * pointer. 4419 * 4420 * Returns &struct device pointer on success, or ERR_PTR() on error. 4421 */ 4422 struct device *device_create(const struct class *class, struct device *parent, 4423 dev_t devt, void *drvdata, const char *fmt, ...) 4424 { 4425 va_list vargs; 4426 struct device *dev; 4427 4428 va_start(vargs, fmt); 4429 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4430 fmt, vargs); 4431 va_end(vargs); 4432 return dev; 4433 } 4434 EXPORT_SYMBOL_GPL(device_create); 4435 4436 /** 4437 * device_create_with_groups - creates a device and registers it with sysfs 4438 * @class: pointer to the struct class that this device should be registered to 4439 * @parent: pointer to the parent struct device of this new device, if any 4440 * @devt: the dev_t for the char device to be added 4441 * @drvdata: the data to be added to the device for callbacks 4442 * @groups: NULL-terminated list of attribute groups to be created 4443 * @fmt: string for the device's name 4444 * 4445 * This function can be used by char device classes. A struct device 4446 * will be created in sysfs, registered to the specified class. 4447 * Additional attributes specified in the groups parameter will also 4448 * be created automatically. 4449 * 4450 * A "dev" file will be created, showing the dev_t for the device, if 4451 * the dev_t is not 0,0. 4452 * If a pointer to a parent struct device is passed in, the newly created 4453 * struct device will be a child of that device in sysfs. 4454 * The pointer to the struct device will be returned from the call. 4455 * Any further sysfs files that might be required can be created using this 4456 * pointer. 4457 * 4458 * Returns &struct device pointer on success, or ERR_PTR() on error. 4459 */ 4460 struct device *device_create_with_groups(const struct class *class, 4461 struct device *parent, dev_t devt, 4462 void *drvdata, 4463 const struct attribute_group **groups, 4464 const char *fmt, ...) 4465 { 4466 va_list vargs; 4467 struct device *dev; 4468 4469 va_start(vargs, fmt); 4470 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4471 fmt, vargs); 4472 va_end(vargs); 4473 return dev; 4474 } 4475 EXPORT_SYMBOL_GPL(device_create_with_groups); 4476 4477 /** 4478 * device_destroy - removes a device that was created with device_create() 4479 * @class: pointer to the struct class that this device was registered with 4480 * @devt: the dev_t of the device that was previously registered 4481 * 4482 * This call unregisters and cleans up a device that was created with a 4483 * call to device_create(). 4484 */ 4485 void device_destroy(const struct class *class, dev_t devt) 4486 { 4487 struct device *dev; 4488 4489 dev = class_find_device_by_devt(class, devt); 4490 if (dev) { 4491 put_device(dev); 4492 device_unregister(dev); 4493 } 4494 } 4495 EXPORT_SYMBOL_GPL(device_destroy); 4496 4497 /** 4498 * device_rename - renames a device 4499 * @dev: the pointer to the struct device to be renamed 4500 * @new_name: the new name of the device 4501 * 4502 * It is the responsibility of the caller to provide mutual 4503 * exclusion between two different calls of device_rename 4504 * on the same device to ensure that new_name is valid and 4505 * won't conflict with other devices. 4506 * 4507 * Note: given that some subsystems (networking and infiniband) use this 4508 * function, with no immediate plans for this to change, we cannot assume or 4509 * require that this function not be called at all. 4510 * 4511 * However, if you're writing new code, do not call this function. The following 4512 * text from Kay Sievers offers some insight: 4513 * 4514 * Renaming devices is racy at many levels, symlinks and other stuff are not 4515 * replaced atomically, and you get a "move" uevent, but it's not easy to 4516 * connect the event to the old and new device. Device nodes are not renamed at 4517 * all, there isn't even support for that in the kernel now. 4518 * 4519 * In the meantime, during renaming, your target name might be taken by another 4520 * driver, creating conflicts. Or the old name is taken directly after you 4521 * renamed it -- then you get events for the same DEVPATH, before you even see 4522 * the "move" event. It's just a mess, and nothing new should ever rely on 4523 * kernel device renaming. Besides that, it's not even implemented now for 4524 * other things than (driver-core wise very simple) network devices. 4525 * 4526 * Make up a "real" name in the driver before you register anything, or add 4527 * some other attributes for userspace to find the device, or use udev to add 4528 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4529 * don't even want to get into that and try to implement the missing pieces in 4530 * the core. We really have other pieces to fix in the driver core mess. :) 4531 */ 4532 int device_rename(struct device *dev, const char *new_name) 4533 { 4534 struct subsys_private *sp = NULL; 4535 struct kobject *kobj = &dev->kobj; 4536 char *old_device_name = NULL; 4537 int error; 4538 bool is_link_renamed = false; 4539 4540 dev = get_device(dev); 4541 if (!dev) 4542 return -EINVAL; 4543 4544 dev_dbg(dev, "renaming to %s\n", new_name); 4545 4546 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4547 if (!old_device_name) { 4548 error = -ENOMEM; 4549 goto out; 4550 } 4551 4552 if (dev->class) { 4553 sp = class_to_subsys(dev->class); 4554 4555 if (!sp) { 4556 error = -EINVAL; 4557 goto out; 4558 } 4559 4560 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4561 new_name, kobject_namespace(kobj)); 4562 if (error) 4563 goto out; 4564 4565 is_link_renamed = true; 4566 } 4567 4568 error = kobject_rename(kobj, new_name); 4569 out: 4570 if (error && is_link_renamed) 4571 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4572 old_device_name, kobject_namespace(kobj)); 4573 subsys_put(sp); 4574 4575 put_device(dev); 4576 4577 kfree(old_device_name); 4578 4579 return error; 4580 } 4581 EXPORT_SYMBOL_GPL(device_rename); 4582 4583 static int device_move_class_links(struct device *dev, 4584 struct device *old_parent, 4585 struct device *new_parent) 4586 { 4587 int error = 0; 4588 4589 if (old_parent) 4590 sysfs_remove_link(&dev->kobj, "device"); 4591 if (new_parent) 4592 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4593 "device"); 4594 return error; 4595 } 4596 4597 /** 4598 * device_move - moves a device to a new parent 4599 * @dev: the pointer to the struct device to be moved 4600 * @new_parent: the new parent of the device (can be NULL) 4601 * @dpm_order: how to reorder the dpm_list 4602 */ 4603 int device_move(struct device *dev, struct device *new_parent, 4604 enum dpm_order dpm_order) 4605 { 4606 int error; 4607 struct device *old_parent; 4608 struct kobject *new_parent_kobj; 4609 4610 dev = get_device(dev); 4611 if (!dev) 4612 return -EINVAL; 4613 4614 device_pm_lock(); 4615 new_parent = get_device(new_parent); 4616 new_parent_kobj = get_device_parent(dev, new_parent); 4617 if (IS_ERR(new_parent_kobj)) { 4618 error = PTR_ERR(new_parent_kobj); 4619 put_device(new_parent); 4620 goto out; 4621 } 4622 4623 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4624 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4625 error = kobject_move(&dev->kobj, new_parent_kobj); 4626 if (error) { 4627 cleanup_glue_dir(dev, new_parent_kobj); 4628 put_device(new_parent); 4629 goto out; 4630 } 4631 old_parent = dev->parent; 4632 dev->parent = new_parent; 4633 if (old_parent) 4634 klist_remove(&dev->p->knode_parent); 4635 if (new_parent) { 4636 klist_add_tail(&dev->p->knode_parent, 4637 &new_parent->p->klist_children); 4638 set_dev_node(dev, dev_to_node(new_parent)); 4639 } 4640 4641 if (dev->class) { 4642 error = device_move_class_links(dev, old_parent, new_parent); 4643 if (error) { 4644 /* We ignore errors on cleanup since we're hosed anyway... */ 4645 device_move_class_links(dev, new_parent, old_parent); 4646 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4647 if (new_parent) 4648 klist_remove(&dev->p->knode_parent); 4649 dev->parent = old_parent; 4650 if (old_parent) { 4651 klist_add_tail(&dev->p->knode_parent, 4652 &old_parent->p->klist_children); 4653 set_dev_node(dev, dev_to_node(old_parent)); 4654 } 4655 } 4656 cleanup_glue_dir(dev, new_parent_kobj); 4657 put_device(new_parent); 4658 goto out; 4659 } 4660 } 4661 switch (dpm_order) { 4662 case DPM_ORDER_NONE: 4663 break; 4664 case DPM_ORDER_DEV_AFTER_PARENT: 4665 device_pm_move_after(dev, new_parent); 4666 devices_kset_move_after(dev, new_parent); 4667 break; 4668 case DPM_ORDER_PARENT_BEFORE_DEV: 4669 device_pm_move_before(new_parent, dev); 4670 devices_kset_move_before(new_parent, dev); 4671 break; 4672 case DPM_ORDER_DEV_LAST: 4673 device_pm_move_last(dev); 4674 devices_kset_move_last(dev); 4675 break; 4676 } 4677 4678 put_device(old_parent); 4679 out: 4680 device_pm_unlock(); 4681 put_device(dev); 4682 return error; 4683 } 4684 EXPORT_SYMBOL_GPL(device_move); 4685 4686 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4687 kgid_t kgid) 4688 { 4689 struct kobject *kobj = &dev->kobj; 4690 const struct class *class = dev->class; 4691 const struct device_type *type = dev->type; 4692 int error; 4693 4694 if (class) { 4695 /* 4696 * Change the device groups of the device class for @dev to 4697 * @kuid/@kgid. 4698 */ 4699 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4700 kgid); 4701 if (error) 4702 return error; 4703 } 4704 4705 if (type) { 4706 /* 4707 * Change the device groups of the device type for @dev to 4708 * @kuid/@kgid. 4709 */ 4710 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4711 kgid); 4712 if (error) 4713 return error; 4714 } 4715 4716 /* Change the device groups of @dev to @kuid/@kgid. */ 4717 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4718 if (error) 4719 return error; 4720 4721 if (device_supports_offline(dev) && !dev->offline_disabled) { 4722 /* Change online device attributes of @dev to @kuid/@kgid. */ 4723 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4724 kuid, kgid); 4725 if (error) 4726 return error; 4727 } 4728 4729 return 0; 4730 } 4731 4732 /** 4733 * device_change_owner - change the owner of an existing device. 4734 * @dev: device. 4735 * @kuid: new owner's kuid 4736 * @kgid: new owner's kgid 4737 * 4738 * This changes the owner of @dev and its corresponding sysfs entries to 4739 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4740 * core. 4741 * 4742 * Returns 0 on success or error code on failure. 4743 */ 4744 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4745 { 4746 int error; 4747 struct kobject *kobj = &dev->kobj; 4748 struct subsys_private *sp; 4749 4750 dev = get_device(dev); 4751 if (!dev) 4752 return -EINVAL; 4753 4754 /* 4755 * Change the kobject and the default attributes and groups of the 4756 * ktype associated with it to @kuid/@kgid. 4757 */ 4758 error = sysfs_change_owner(kobj, kuid, kgid); 4759 if (error) 4760 goto out; 4761 4762 /* 4763 * Change the uevent file for @dev to the new owner. The uevent file 4764 * was created in a separate step when @dev got added and we mirror 4765 * that step here. 4766 */ 4767 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4768 kgid); 4769 if (error) 4770 goto out; 4771 4772 /* 4773 * Change the device groups, the device groups associated with the 4774 * device class, and the groups associated with the device type of @dev 4775 * to @kuid/@kgid. 4776 */ 4777 error = device_attrs_change_owner(dev, kuid, kgid); 4778 if (error) 4779 goto out; 4780 4781 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4782 if (error) 4783 goto out; 4784 4785 /* 4786 * Change the owner of the symlink located in the class directory of 4787 * the device class associated with @dev which points to the actual 4788 * directory entry for @dev to @kuid/@kgid. This ensures that the 4789 * symlink shows the same permissions as its target. 4790 */ 4791 sp = class_to_subsys(dev->class); 4792 if (!sp) { 4793 error = -EINVAL; 4794 goto out; 4795 } 4796 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4797 subsys_put(sp); 4798 4799 out: 4800 put_device(dev); 4801 return error; 4802 } 4803 EXPORT_SYMBOL_GPL(device_change_owner); 4804 4805 /** 4806 * device_shutdown - call ->shutdown() on each device to shutdown. 4807 */ 4808 void device_shutdown(void) 4809 { 4810 struct device *dev, *parent; 4811 4812 wait_for_device_probe(); 4813 device_block_probing(); 4814 4815 cpufreq_suspend(); 4816 4817 spin_lock(&devices_kset->list_lock); 4818 /* 4819 * Walk the devices list backward, shutting down each in turn. 4820 * Beware that device unplug events may also start pulling 4821 * devices offline, even as the system is shutting down. 4822 */ 4823 while (!list_empty(&devices_kset->list)) { 4824 dev = list_entry(devices_kset->list.prev, struct device, 4825 kobj.entry); 4826 4827 /* 4828 * hold reference count of device's parent to 4829 * prevent it from being freed because parent's 4830 * lock is to be held 4831 */ 4832 parent = get_device(dev->parent); 4833 get_device(dev); 4834 /* 4835 * Make sure the device is off the kset list, in the 4836 * event that dev->*->shutdown() doesn't remove it. 4837 */ 4838 list_del_init(&dev->kobj.entry); 4839 spin_unlock(&devices_kset->list_lock); 4840 4841 /* hold lock to avoid race with probe/release */ 4842 if (parent) 4843 device_lock(parent); 4844 device_lock(dev); 4845 4846 /* Don't allow any more runtime suspends */ 4847 pm_runtime_get_noresume(dev); 4848 pm_runtime_barrier(dev); 4849 4850 if (dev->class && dev->class->shutdown_pre) { 4851 if (initcall_debug) 4852 dev_info(dev, "shutdown_pre\n"); 4853 dev->class->shutdown_pre(dev); 4854 } 4855 if (dev->bus && dev->bus->shutdown) { 4856 if (initcall_debug) 4857 dev_info(dev, "shutdown\n"); 4858 dev->bus->shutdown(dev); 4859 } else if (dev->driver && dev->driver->shutdown) { 4860 if (initcall_debug) 4861 dev_info(dev, "shutdown\n"); 4862 dev->driver->shutdown(dev); 4863 } 4864 4865 device_unlock(dev); 4866 if (parent) 4867 device_unlock(parent); 4868 4869 put_device(dev); 4870 put_device(parent); 4871 4872 spin_lock(&devices_kset->list_lock); 4873 } 4874 spin_unlock(&devices_kset->list_lock); 4875 } 4876 4877 /* 4878 * Device logging functions 4879 */ 4880 4881 #ifdef CONFIG_PRINTK 4882 static void 4883 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4884 { 4885 const char *subsys; 4886 4887 memset(dev_info, 0, sizeof(*dev_info)); 4888 4889 if (dev->class) 4890 subsys = dev->class->name; 4891 else if (dev->bus) 4892 subsys = dev->bus->name; 4893 else 4894 return; 4895 4896 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4897 4898 /* 4899 * Add device identifier DEVICE=: 4900 * b12:8 block dev_t 4901 * c127:3 char dev_t 4902 * n8 netdev ifindex 4903 * +sound:card0 subsystem:devname 4904 */ 4905 if (MAJOR(dev->devt)) { 4906 char c; 4907 4908 if (strcmp(subsys, "block") == 0) 4909 c = 'b'; 4910 else 4911 c = 'c'; 4912 4913 snprintf(dev_info->device, sizeof(dev_info->device), 4914 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4915 } else if (strcmp(subsys, "net") == 0) { 4916 struct net_device *net = to_net_dev(dev); 4917 4918 snprintf(dev_info->device, sizeof(dev_info->device), 4919 "n%u", net->ifindex); 4920 } else { 4921 snprintf(dev_info->device, sizeof(dev_info->device), 4922 "+%s:%s", subsys, dev_name(dev)); 4923 } 4924 } 4925 4926 int dev_vprintk_emit(int level, const struct device *dev, 4927 const char *fmt, va_list args) 4928 { 4929 struct dev_printk_info dev_info; 4930 4931 set_dev_info(dev, &dev_info); 4932 4933 return vprintk_emit(0, level, &dev_info, fmt, args); 4934 } 4935 EXPORT_SYMBOL(dev_vprintk_emit); 4936 4937 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4938 { 4939 va_list args; 4940 int r; 4941 4942 va_start(args, fmt); 4943 4944 r = dev_vprintk_emit(level, dev, fmt, args); 4945 4946 va_end(args); 4947 4948 return r; 4949 } 4950 EXPORT_SYMBOL(dev_printk_emit); 4951 4952 static void __dev_printk(const char *level, const struct device *dev, 4953 struct va_format *vaf) 4954 { 4955 if (dev) 4956 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4957 dev_driver_string(dev), dev_name(dev), vaf); 4958 else 4959 printk("%s(NULL device *): %pV", level, vaf); 4960 } 4961 4962 void _dev_printk(const char *level, const struct device *dev, 4963 const char *fmt, ...) 4964 { 4965 struct va_format vaf; 4966 va_list args; 4967 4968 va_start(args, fmt); 4969 4970 vaf.fmt = fmt; 4971 vaf.va = &args; 4972 4973 __dev_printk(level, dev, &vaf); 4974 4975 va_end(args); 4976 } 4977 EXPORT_SYMBOL(_dev_printk); 4978 4979 #define define_dev_printk_level(func, kern_level) \ 4980 void func(const struct device *dev, const char *fmt, ...) \ 4981 { \ 4982 struct va_format vaf; \ 4983 va_list args; \ 4984 \ 4985 va_start(args, fmt); \ 4986 \ 4987 vaf.fmt = fmt; \ 4988 vaf.va = &args; \ 4989 \ 4990 __dev_printk(kern_level, dev, &vaf); \ 4991 \ 4992 va_end(args); \ 4993 } \ 4994 EXPORT_SYMBOL(func); 4995 4996 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4997 define_dev_printk_level(_dev_alert, KERN_ALERT); 4998 define_dev_printk_level(_dev_crit, KERN_CRIT); 4999 define_dev_printk_level(_dev_err, KERN_ERR); 5000 define_dev_printk_level(_dev_warn, KERN_WARNING); 5001 define_dev_printk_level(_dev_notice, KERN_NOTICE); 5002 define_dev_printk_level(_dev_info, KERN_INFO); 5003 5004 #endif 5005 5006 /** 5007 * dev_err_probe - probe error check and log helper 5008 * @dev: the pointer to the struct device 5009 * @err: error value to test 5010 * @fmt: printf-style format string 5011 * @...: arguments as specified in the format string 5012 * 5013 * This helper implements common pattern present in probe functions for error 5014 * checking: print debug or error message depending if the error value is 5015 * -EPROBE_DEFER and propagate error upwards. 5016 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5017 * checked later by reading devices_deferred debugfs attribute. 5018 * It replaces code sequence:: 5019 * 5020 * if (err != -EPROBE_DEFER) 5021 * dev_err(dev, ...); 5022 * else 5023 * dev_dbg(dev, ...); 5024 * return err; 5025 * 5026 * with:: 5027 * 5028 * return dev_err_probe(dev, err, ...); 5029 * 5030 * Note that it is deemed acceptable to use this function for error 5031 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 5032 * The benefit compared to a normal dev_err() is the standardized format 5033 * of the error code and the fact that the error code is returned. 5034 * 5035 * Returns @err. 5036 * 5037 */ 5038 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5039 { 5040 struct va_format vaf; 5041 va_list args; 5042 5043 va_start(args, fmt); 5044 vaf.fmt = fmt; 5045 vaf.va = &args; 5046 5047 if (err != -EPROBE_DEFER) { 5048 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5049 } else { 5050 device_set_deferred_probe_reason(dev, &vaf); 5051 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5052 } 5053 5054 va_end(args); 5055 5056 return err; 5057 } 5058 EXPORT_SYMBOL_GPL(dev_err_probe); 5059 5060 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5061 { 5062 return fwnode && !IS_ERR(fwnode->secondary); 5063 } 5064 5065 /** 5066 * set_primary_fwnode - Change the primary firmware node of a given device. 5067 * @dev: Device to handle. 5068 * @fwnode: New primary firmware node of the device. 5069 * 5070 * Set the device's firmware node pointer to @fwnode, but if a secondary 5071 * firmware node of the device is present, preserve it. 5072 * 5073 * Valid fwnode cases are: 5074 * - primary --> secondary --> -ENODEV 5075 * - primary --> NULL 5076 * - secondary --> -ENODEV 5077 * - NULL 5078 */ 5079 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5080 { 5081 struct device *parent = dev->parent; 5082 struct fwnode_handle *fn = dev->fwnode; 5083 5084 if (fwnode) { 5085 if (fwnode_is_primary(fn)) 5086 fn = fn->secondary; 5087 5088 if (fn) { 5089 WARN_ON(fwnode->secondary); 5090 fwnode->secondary = fn; 5091 } 5092 dev->fwnode = fwnode; 5093 } else { 5094 if (fwnode_is_primary(fn)) { 5095 dev->fwnode = fn->secondary; 5096 5097 /* Skip nullifying fn->secondary if the primary is shared */ 5098 if (parent && fn == parent->fwnode) 5099 return; 5100 5101 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5102 fn->secondary = NULL; 5103 } else { 5104 dev->fwnode = NULL; 5105 } 5106 } 5107 } 5108 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5109 5110 /** 5111 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5112 * @dev: Device to handle. 5113 * @fwnode: New secondary firmware node of the device. 5114 * 5115 * If a primary firmware node of the device is present, set its secondary 5116 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5117 * @fwnode. 5118 */ 5119 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5120 { 5121 if (fwnode) 5122 fwnode->secondary = ERR_PTR(-ENODEV); 5123 5124 if (fwnode_is_primary(dev->fwnode)) 5125 dev->fwnode->secondary = fwnode; 5126 else 5127 dev->fwnode = fwnode; 5128 } 5129 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5130 5131 /** 5132 * device_set_of_node_from_dev - reuse device-tree node of another device 5133 * @dev: device whose device-tree node is being set 5134 * @dev2: device whose device-tree node is being reused 5135 * 5136 * Takes another reference to the new device-tree node after first dropping 5137 * any reference held to the old node. 5138 */ 5139 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5140 { 5141 of_node_put(dev->of_node); 5142 dev->of_node = of_node_get(dev2->of_node); 5143 dev->of_node_reused = true; 5144 } 5145 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5146 5147 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5148 { 5149 dev->fwnode = fwnode; 5150 dev->of_node = to_of_node(fwnode); 5151 } 5152 EXPORT_SYMBOL_GPL(device_set_node); 5153 5154 int device_match_name(struct device *dev, const void *name) 5155 { 5156 return sysfs_streq(dev_name(dev), name); 5157 } 5158 EXPORT_SYMBOL_GPL(device_match_name); 5159 5160 int device_match_of_node(struct device *dev, const void *np) 5161 { 5162 return dev->of_node == np; 5163 } 5164 EXPORT_SYMBOL_GPL(device_match_of_node); 5165 5166 int device_match_fwnode(struct device *dev, const void *fwnode) 5167 { 5168 return dev_fwnode(dev) == fwnode; 5169 } 5170 EXPORT_SYMBOL_GPL(device_match_fwnode); 5171 5172 int device_match_devt(struct device *dev, const void *pdevt) 5173 { 5174 return dev->devt == *(dev_t *)pdevt; 5175 } 5176 EXPORT_SYMBOL_GPL(device_match_devt); 5177 5178 int device_match_acpi_dev(struct device *dev, const void *adev) 5179 { 5180 return ACPI_COMPANION(dev) == adev; 5181 } 5182 EXPORT_SYMBOL(device_match_acpi_dev); 5183 5184 int device_match_acpi_handle(struct device *dev, const void *handle) 5185 { 5186 return ACPI_HANDLE(dev) == handle; 5187 } 5188 EXPORT_SYMBOL(device_match_acpi_handle); 5189 5190 int device_match_any(struct device *dev, const void *unused) 5191 { 5192 return 1; 5193 } 5194 EXPORT_SYMBOL_GPL(device_match_any); 5195