1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 48 /** 49 * __fwnode_link_add - Create a link between two fwnode_handles. 50 * @con: Consumer end of the link. 51 * @sup: Supplier end of the link. 52 * 53 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 54 * represents the detail that the firmware lists @sup fwnode as supplying a 55 * resource to @con. 56 * 57 * The driver core will use the fwnode link to create a device link between the 58 * two device objects corresponding to @con and @sup when they are created. The 59 * driver core will automatically delete the fwnode link between @con and @sup 60 * after doing that. 61 * 62 * Attempts to create duplicate links between the same pair of fwnode handles 63 * are ignored and there is no reference counting. 64 */ 65 static int __fwnode_link_add(struct fwnode_handle *con, 66 struct fwnode_handle *sup, u8 flags) 67 { 68 struct fwnode_link *link; 69 70 list_for_each_entry(link, &sup->consumers, s_hook) 71 if (link->consumer == con) { 72 link->flags |= flags; 73 return 0; 74 } 75 76 link = kzalloc(sizeof(*link), GFP_KERNEL); 77 if (!link) 78 return -ENOMEM; 79 80 link->supplier = sup; 81 INIT_LIST_HEAD(&link->s_hook); 82 link->consumer = con; 83 INIT_LIST_HEAD(&link->c_hook); 84 link->flags = flags; 85 86 list_add(&link->s_hook, &sup->consumers); 87 list_add(&link->c_hook, &con->suppliers); 88 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 89 con, sup); 90 91 return 0; 92 } 93 94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 95 { 96 int ret; 97 98 mutex_lock(&fwnode_link_lock); 99 ret = __fwnode_link_add(con, sup, 0); 100 mutex_unlock(&fwnode_link_lock); 101 return ret; 102 } 103 104 /** 105 * __fwnode_link_del - Delete a link between two fwnode_handles. 106 * @link: the fwnode_link to be deleted 107 * 108 * The fwnode_link_lock needs to be held when this function is called. 109 */ 110 static void __fwnode_link_del(struct fwnode_link *link) 111 { 112 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 113 link->consumer, link->supplier); 114 list_del(&link->s_hook); 115 list_del(&link->c_hook); 116 kfree(link); 117 } 118 119 /** 120 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 121 * @link: the fwnode_link to be marked 122 * 123 * The fwnode_link_lock needs to be held when this function is called. 124 */ 125 static void __fwnode_link_cycle(struct fwnode_link *link) 126 { 127 pr_debug("%pfwf: Relaxing link with %pfwf\n", 128 link->consumer, link->supplier); 129 link->flags |= FWLINK_FLAG_CYCLE; 130 } 131 132 /** 133 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 134 * @fwnode: fwnode whose supplier links need to be deleted 135 * 136 * Deletes all supplier links connecting directly to @fwnode. 137 */ 138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 139 { 140 struct fwnode_link *link, *tmp; 141 142 mutex_lock(&fwnode_link_lock); 143 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 144 __fwnode_link_del(link); 145 mutex_unlock(&fwnode_link_lock); 146 } 147 148 /** 149 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 150 * @fwnode: fwnode whose consumer links need to be deleted 151 * 152 * Deletes all consumer links connecting directly to @fwnode. 153 */ 154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 155 { 156 struct fwnode_link *link, *tmp; 157 158 mutex_lock(&fwnode_link_lock); 159 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 160 __fwnode_link_del(link); 161 mutex_unlock(&fwnode_link_lock); 162 } 163 164 /** 165 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 166 * @fwnode: fwnode whose links needs to be deleted 167 * 168 * Deletes all links connecting directly to a fwnode. 169 */ 170 void fwnode_links_purge(struct fwnode_handle *fwnode) 171 { 172 fwnode_links_purge_suppliers(fwnode); 173 fwnode_links_purge_consumers(fwnode); 174 } 175 176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 177 { 178 struct fwnode_handle *child; 179 180 /* Don't purge consumer links of an added child */ 181 if (fwnode->dev) 182 return; 183 184 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 185 fwnode_links_purge_consumers(fwnode); 186 187 fwnode_for_each_available_child_node(fwnode, child) 188 fw_devlink_purge_absent_suppliers(child); 189 } 190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 191 192 /** 193 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 194 * @from: move consumers away from this fwnode 195 * @to: move consumers to this fwnode 196 * 197 * Move all consumer links from @from fwnode to @to fwnode. 198 */ 199 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 200 struct fwnode_handle *to) 201 { 202 struct fwnode_link *link, *tmp; 203 204 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 205 __fwnode_link_add(link->consumer, to, link->flags); 206 __fwnode_link_del(link); 207 } 208 } 209 210 /** 211 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 212 * @fwnode: fwnode from which to pick up dangling consumers 213 * @new_sup: fwnode of new supplier 214 * 215 * If the @fwnode has a corresponding struct device and the device supports 216 * probing (that is, added to a bus), then we want to let fw_devlink create 217 * MANAGED device links to this device, so leave @fwnode and its descendant's 218 * fwnode links alone. 219 * 220 * Otherwise, move its consumers to the new supplier @new_sup. 221 */ 222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 223 struct fwnode_handle *new_sup) 224 { 225 struct fwnode_handle *child; 226 227 if (fwnode->dev && fwnode->dev->bus) 228 return; 229 230 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 231 __fwnode_links_move_consumers(fwnode, new_sup); 232 233 fwnode_for_each_available_child_node(fwnode, child) 234 __fw_devlink_pickup_dangling_consumers(child, new_sup); 235 } 236 237 static DEFINE_MUTEX(device_links_lock); 238 DEFINE_STATIC_SRCU(device_links_srcu); 239 240 static inline void device_links_write_lock(void) 241 { 242 mutex_lock(&device_links_lock); 243 } 244 245 static inline void device_links_write_unlock(void) 246 { 247 mutex_unlock(&device_links_lock); 248 } 249 250 int device_links_read_lock(void) __acquires(&device_links_srcu) 251 { 252 return srcu_read_lock(&device_links_srcu); 253 } 254 255 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 256 { 257 srcu_read_unlock(&device_links_srcu, idx); 258 } 259 260 int device_links_read_lock_held(void) 261 { 262 return srcu_read_lock_held(&device_links_srcu); 263 } 264 265 static void device_link_synchronize_removal(void) 266 { 267 synchronize_srcu(&device_links_srcu); 268 } 269 270 static void device_link_remove_from_lists(struct device_link *link) 271 { 272 list_del_rcu(&link->s_node); 273 list_del_rcu(&link->c_node); 274 } 275 276 static bool device_is_ancestor(struct device *dev, struct device *target) 277 { 278 while (target->parent) { 279 target = target->parent; 280 if (dev == target) 281 return true; 282 } 283 return false; 284 } 285 286 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 287 DL_FLAG_CYCLE | \ 288 DL_FLAG_MANAGED) 289 static inline bool device_link_flag_is_sync_state_only(u32 flags) 290 { 291 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 292 } 293 294 /** 295 * device_is_dependent - Check if one device depends on another one 296 * @dev: Device to check dependencies for. 297 * @target: Device to check against. 298 * 299 * Check if @target depends on @dev or any device dependent on it (its child or 300 * its consumer etc). Return 1 if that is the case or 0 otherwise. 301 */ 302 int device_is_dependent(struct device *dev, void *target) 303 { 304 struct device_link *link; 305 int ret; 306 307 /* 308 * The "ancestors" check is needed to catch the case when the target 309 * device has not been completely initialized yet and it is still 310 * missing from the list of children of its parent device. 311 */ 312 if (dev == target || device_is_ancestor(dev, target)) 313 return 1; 314 315 ret = device_for_each_child(dev, target, device_is_dependent); 316 if (ret) 317 return ret; 318 319 list_for_each_entry(link, &dev->links.consumers, s_node) { 320 if (device_link_flag_is_sync_state_only(link->flags)) 321 continue; 322 323 if (link->consumer == target) 324 return 1; 325 326 ret = device_is_dependent(link->consumer, target); 327 if (ret) 328 break; 329 } 330 return ret; 331 } 332 333 static void device_link_init_status(struct device_link *link, 334 struct device *consumer, 335 struct device *supplier) 336 { 337 switch (supplier->links.status) { 338 case DL_DEV_PROBING: 339 switch (consumer->links.status) { 340 case DL_DEV_PROBING: 341 /* 342 * A consumer driver can create a link to a supplier 343 * that has not completed its probing yet as long as it 344 * knows that the supplier is already functional (for 345 * example, it has just acquired some resources from the 346 * supplier). 347 */ 348 link->status = DL_STATE_CONSUMER_PROBE; 349 break; 350 default: 351 link->status = DL_STATE_DORMANT; 352 break; 353 } 354 break; 355 case DL_DEV_DRIVER_BOUND: 356 switch (consumer->links.status) { 357 case DL_DEV_PROBING: 358 link->status = DL_STATE_CONSUMER_PROBE; 359 break; 360 case DL_DEV_DRIVER_BOUND: 361 link->status = DL_STATE_ACTIVE; 362 break; 363 default: 364 link->status = DL_STATE_AVAILABLE; 365 break; 366 } 367 break; 368 case DL_DEV_UNBINDING: 369 link->status = DL_STATE_SUPPLIER_UNBIND; 370 break; 371 default: 372 link->status = DL_STATE_DORMANT; 373 break; 374 } 375 } 376 377 static int device_reorder_to_tail(struct device *dev, void *not_used) 378 { 379 struct device_link *link; 380 381 /* 382 * Devices that have not been registered yet will be put to the ends 383 * of the lists during the registration, so skip them here. 384 */ 385 if (device_is_registered(dev)) 386 devices_kset_move_last(dev); 387 388 if (device_pm_initialized(dev)) 389 device_pm_move_last(dev); 390 391 device_for_each_child(dev, NULL, device_reorder_to_tail); 392 list_for_each_entry(link, &dev->links.consumers, s_node) { 393 if (device_link_flag_is_sync_state_only(link->flags)) 394 continue; 395 device_reorder_to_tail(link->consumer, NULL); 396 } 397 398 return 0; 399 } 400 401 /** 402 * device_pm_move_to_tail - Move set of devices to the end of device lists 403 * @dev: Device to move 404 * 405 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 406 * 407 * It moves the @dev along with all of its children and all of its consumers 408 * to the ends of the device_kset and dpm_list, recursively. 409 */ 410 void device_pm_move_to_tail(struct device *dev) 411 { 412 int idx; 413 414 idx = device_links_read_lock(); 415 device_pm_lock(); 416 device_reorder_to_tail(dev, NULL); 417 device_pm_unlock(); 418 device_links_read_unlock(idx); 419 } 420 421 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 422 423 static ssize_t status_show(struct device *dev, 424 struct device_attribute *attr, char *buf) 425 { 426 const char *output; 427 428 switch (to_devlink(dev)->status) { 429 case DL_STATE_NONE: 430 output = "not tracked"; 431 break; 432 case DL_STATE_DORMANT: 433 output = "dormant"; 434 break; 435 case DL_STATE_AVAILABLE: 436 output = "available"; 437 break; 438 case DL_STATE_CONSUMER_PROBE: 439 output = "consumer probing"; 440 break; 441 case DL_STATE_ACTIVE: 442 output = "active"; 443 break; 444 case DL_STATE_SUPPLIER_UNBIND: 445 output = "supplier unbinding"; 446 break; 447 default: 448 output = "unknown"; 449 break; 450 } 451 452 return sysfs_emit(buf, "%s\n", output); 453 } 454 static DEVICE_ATTR_RO(status); 455 456 static ssize_t auto_remove_on_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 struct device_link *link = to_devlink(dev); 460 const char *output; 461 462 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 463 output = "supplier unbind"; 464 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 465 output = "consumer unbind"; 466 else 467 output = "never"; 468 469 return sysfs_emit(buf, "%s\n", output); 470 } 471 static DEVICE_ATTR_RO(auto_remove_on); 472 473 static ssize_t runtime_pm_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct device_link *link = to_devlink(dev); 477 478 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 479 } 480 static DEVICE_ATTR_RO(runtime_pm); 481 482 static ssize_t sync_state_only_show(struct device *dev, 483 struct device_attribute *attr, char *buf) 484 { 485 struct device_link *link = to_devlink(dev); 486 487 return sysfs_emit(buf, "%d\n", 488 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 489 } 490 static DEVICE_ATTR_RO(sync_state_only); 491 492 static struct attribute *devlink_attrs[] = { 493 &dev_attr_status.attr, 494 &dev_attr_auto_remove_on.attr, 495 &dev_attr_runtime_pm.attr, 496 &dev_attr_sync_state_only.attr, 497 NULL, 498 }; 499 ATTRIBUTE_GROUPS(devlink); 500 501 static void device_link_release_fn(struct work_struct *work) 502 { 503 struct device_link *link = container_of(work, struct device_link, rm_work); 504 505 /* Ensure that all references to the link object have been dropped. */ 506 device_link_synchronize_removal(); 507 508 pm_runtime_release_supplier(link); 509 /* 510 * If supplier_preactivated is set, the link has been dropped between 511 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 512 * in __driver_probe_device(). In that case, drop the supplier's 513 * PM-runtime usage counter to remove the reference taken by 514 * pm_runtime_get_suppliers(). 515 */ 516 if (link->supplier_preactivated) 517 pm_runtime_put_noidle(link->supplier); 518 519 pm_request_idle(link->supplier); 520 521 put_device(link->consumer); 522 put_device(link->supplier); 523 kfree(link); 524 } 525 526 static void devlink_dev_release(struct device *dev) 527 { 528 struct device_link *link = to_devlink(dev); 529 530 INIT_WORK(&link->rm_work, device_link_release_fn); 531 /* 532 * It may take a while to complete this work because of the SRCU 533 * synchronization in device_link_release_fn() and if the consumer or 534 * supplier devices get deleted when it runs, so put it into the "long" 535 * workqueue. 536 */ 537 queue_work(system_long_wq, &link->rm_work); 538 } 539 540 static struct class devlink_class = { 541 .name = "devlink", 542 .dev_groups = devlink_groups, 543 .dev_release = devlink_dev_release, 544 }; 545 546 static int devlink_add_symlinks(struct device *dev) 547 { 548 int ret; 549 size_t len; 550 struct device_link *link = to_devlink(dev); 551 struct device *sup = link->supplier; 552 struct device *con = link->consumer; 553 char *buf; 554 555 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 556 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 557 len += strlen(":"); 558 len += strlen("supplier:") + 1; 559 buf = kzalloc(len, GFP_KERNEL); 560 if (!buf) 561 return -ENOMEM; 562 563 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 564 if (ret) 565 goto out; 566 567 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 568 if (ret) 569 goto err_con; 570 571 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 572 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 573 if (ret) 574 goto err_con_dev; 575 576 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 577 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 578 if (ret) 579 goto err_sup_dev; 580 581 goto out; 582 583 err_sup_dev: 584 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 585 sysfs_remove_link(&sup->kobj, buf); 586 err_con_dev: 587 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 588 err_con: 589 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 590 out: 591 kfree(buf); 592 return ret; 593 } 594 595 static void devlink_remove_symlinks(struct device *dev) 596 { 597 struct device_link *link = to_devlink(dev); 598 size_t len; 599 struct device *sup = link->supplier; 600 struct device *con = link->consumer; 601 char *buf; 602 603 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 606 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 607 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 608 len += strlen(":"); 609 len += strlen("supplier:") + 1; 610 buf = kzalloc(len, GFP_KERNEL); 611 if (!buf) { 612 WARN(1, "Unable to properly free device link symlinks!\n"); 613 return; 614 } 615 616 if (device_is_registered(con)) { 617 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 618 sysfs_remove_link(&con->kobj, buf); 619 } 620 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 621 sysfs_remove_link(&sup->kobj, buf); 622 kfree(buf); 623 } 624 625 static struct class_interface devlink_class_intf = { 626 .class = &devlink_class, 627 .add_dev = devlink_add_symlinks, 628 .remove_dev = devlink_remove_symlinks, 629 }; 630 631 static int __init devlink_class_init(void) 632 { 633 int ret; 634 635 ret = class_register(&devlink_class); 636 if (ret) 637 return ret; 638 639 ret = class_interface_register(&devlink_class_intf); 640 if (ret) 641 class_unregister(&devlink_class); 642 643 return ret; 644 } 645 postcore_initcall(devlink_class_init); 646 647 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 648 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 649 DL_FLAG_AUTOPROBE_CONSUMER | \ 650 DL_FLAG_SYNC_STATE_ONLY | \ 651 DL_FLAG_INFERRED | \ 652 DL_FLAG_CYCLE) 653 654 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 655 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 656 657 /** 658 * device_link_add - Create a link between two devices. 659 * @consumer: Consumer end of the link. 660 * @supplier: Supplier end of the link. 661 * @flags: Link flags. 662 * 663 * The caller is responsible for the proper synchronization of the link creation 664 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 665 * runtime PM framework to take the link into account. Second, if the 666 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 667 * be forced into the active meta state and reference-counted upon the creation 668 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 669 * ignored. 670 * 671 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 672 * expected to release the link returned by it directly with the help of either 673 * device_link_del() or device_link_remove(). 674 * 675 * If that flag is not set, however, the caller of this function is handing the 676 * management of the link over to the driver core entirely and its return value 677 * can only be used to check whether or not the link is present. In that case, 678 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 679 * flags can be used to indicate to the driver core when the link can be safely 680 * deleted. Namely, setting one of them in @flags indicates to the driver core 681 * that the link is not going to be used (by the given caller of this function) 682 * after unbinding the consumer or supplier driver, respectively, from its 683 * device, so the link can be deleted at that point. If none of them is set, 684 * the link will be maintained until one of the devices pointed to by it (either 685 * the consumer or the supplier) is unregistered. 686 * 687 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 688 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 689 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 690 * be used to request the driver core to automatically probe for a consumer 691 * driver after successfully binding a driver to the supplier device. 692 * 693 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 694 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 695 * the same time is invalid and will cause NULL to be returned upfront. 696 * However, if a device link between the given @consumer and @supplier pair 697 * exists already when this function is called for them, the existing link will 698 * be returned regardless of its current type and status (the link's flags may 699 * be modified then). The caller of this function is then expected to treat 700 * the link as though it has just been created, so (in particular) if 701 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 702 * explicitly when not needed any more (as stated above). 703 * 704 * A side effect of the link creation is re-ordering of dpm_list and the 705 * devices_kset list by moving the consumer device and all devices depending 706 * on it to the ends of these lists (that does not happen to devices that have 707 * not been registered when this function is called). 708 * 709 * The supplier device is required to be registered when this function is called 710 * and NULL will be returned if that is not the case. The consumer device need 711 * not be registered, however. 712 */ 713 struct device_link *device_link_add(struct device *consumer, 714 struct device *supplier, u32 flags) 715 { 716 struct device_link *link; 717 718 if (!consumer || !supplier || consumer == supplier || 719 flags & ~DL_ADD_VALID_FLAGS || 720 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 721 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 722 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 723 DL_FLAG_AUTOREMOVE_SUPPLIER))) 724 return NULL; 725 726 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 727 if (pm_runtime_get_sync(supplier) < 0) { 728 pm_runtime_put_noidle(supplier); 729 return NULL; 730 } 731 } 732 733 if (!(flags & DL_FLAG_STATELESS)) 734 flags |= DL_FLAG_MANAGED; 735 736 if (flags & DL_FLAG_SYNC_STATE_ONLY && 737 !device_link_flag_is_sync_state_only(flags)) 738 return NULL; 739 740 device_links_write_lock(); 741 device_pm_lock(); 742 743 /* 744 * If the supplier has not been fully registered yet or there is a 745 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 746 * the supplier already in the graph, return NULL. If the link is a 747 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 748 * because it only affects sync_state() callbacks. 749 */ 750 if (!device_pm_initialized(supplier) 751 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 752 device_is_dependent(consumer, supplier))) { 753 link = NULL; 754 goto out; 755 } 756 757 /* 758 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 759 * So, only create it if the consumer hasn't probed yet. 760 */ 761 if (flags & DL_FLAG_SYNC_STATE_ONLY && 762 consumer->links.status != DL_DEV_NO_DRIVER && 763 consumer->links.status != DL_DEV_PROBING) { 764 link = NULL; 765 goto out; 766 } 767 768 /* 769 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 770 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 771 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 772 */ 773 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 774 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 775 776 list_for_each_entry(link, &supplier->links.consumers, s_node) { 777 if (link->consumer != consumer) 778 continue; 779 780 if (link->flags & DL_FLAG_INFERRED && 781 !(flags & DL_FLAG_INFERRED)) 782 link->flags &= ~DL_FLAG_INFERRED; 783 784 if (flags & DL_FLAG_PM_RUNTIME) { 785 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 786 pm_runtime_new_link(consumer); 787 link->flags |= DL_FLAG_PM_RUNTIME; 788 } 789 if (flags & DL_FLAG_RPM_ACTIVE) 790 refcount_inc(&link->rpm_active); 791 } 792 793 if (flags & DL_FLAG_STATELESS) { 794 kref_get(&link->kref); 795 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 796 !(link->flags & DL_FLAG_STATELESS)) { 797 link->flags |= DL_FLAG_STATELESS; 798 goto reorder; 799 } else { 800 link->flags |= DL_FLAG_STATELESS; 801 goto out; 802 } 803 } 804 805 /* 806 * If the life time of the link following from the new flags is 807 * longer than indicated by the flags of the existing link, 808 * update the existing link to stay around longer. 809 */ 810 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 811 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 812 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 813 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 814 } 815 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 816 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 817 DL_FLAG_AUTOREMOVE_SUPPLIER); 818 } 819 if (!(link->flags & DL_FLAG_MANAGED)) { 820 kref_get(&link->kref); 821 link->flags |= DL_FLAG_MANAGED; 822 device_link_init_status(link, consumer, supplier); 823 } 824 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 825 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 826 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 827 goto reorder; 828 } 829 830 goto out; 831 } 832 833 link = kzalloc(sizeof(*link), GFP_KERNEL); 834 if (!link) 835 goto out; 836 837 refcount_set(&link->rpm_active, 1); 838 839 get_device(supplier); 840 link->supplier = supplier; 841 INIT_LIST_HEAD(&link->s_node); 842 get_device(consumer); 843 link->consumer = consumer; 844 INIT_LIST_HEAD(&link->c_node); 845 link->flags = flags; 846 kref_init(&link->kref); 847 848 link->link_dev.class = &devlink_class; 849 device_set_pm_not_required(&link->link_dev); 850 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 851 dev_bus_name(supplier), dev_name(supplier), 852 dev_bus_name(consumer), dev_name(consumer)); 853 if (device_register(&link->link_dev)) { 854 put_device(&link->link_dev); 855 link = NULL; 856 goto out; 857 } 858 859 if (flags & DL_FLAG_PM_RUNTIME) { 860 if (flags & DL_FLAG_RPM_ACTIVE) 861 refcount_inc(&link->rpm_active); 862 863 pm_runtime_new_link(consumer); 864 } 865 866 /* Determine the initial link state. */ 867 if (flags & DL_FLAG_STATELESS) 868 link->status = DL_STATE_NONE; 869 else 870 device_link_init_status(link, consumer, supplier); 871 872 /* 873 * Some callers expect the link creation during consumer driver probe to 874 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 875 */ 876 if (link->status == DL_STATE_CONSUMER_PROBE && 877 flags & DL_FLAG_PM_RUNTIME) 878 pm_runtime_resume(supplier); 879 880 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 881 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 882 883 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 884 dev_dbg(consumer, 885 "Linked as a sync state only consumer to %s\n", 886 dev_name(supplier)); 887 goto out; 888 } 889 890 reorder: 891 /* 892 * Move the consumer and all of the devices depending on it to the end 893 * of dpm_list and the devices_kset list. 894 * 895 * It is necessary to hold dpm_list locked throughout all that or else 896 * we may end up suspending with a wrong ordering of it. 897 */ 898 device_reorder_to_tail(consumer, NULL); 899 900 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 901 902 out: 903 device_pm_unlock(); 904 device_links_write_unlock(); 905 906 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 907 pm_runtime_put(supplier); 908 909 return link; 910 } 911 EXPORT_SYMBOL_GPL(device_link_add); 912 913 static void __device_link_del(struct kref *kref) 914 { 915 struct device_link *link = container_of(kref, struct device_link, kref); 916 917 dev_dbg(link->consumer, "Dropping the link to %s\n", 918 dev_name(link->supplier)); 919 920 pm_runtime_drop_link(link); 921 922 device_link_remove_from_lists(link); 923 device_unregister(&link->link_dev); 924 } 925 926 static void device_link_put_kref(struct device_link *link) 927 { 928 if (link->flags & DL_FLAG_STATELESS) 929 kref_put(&link->kref, __device_link_del); 930 else if (!device_is_registered(link->consumer)) 931 __device_link_del(&link->kref); 932 else 933 WARN(1, "Unable to drop a managed device link reference\n"); 934 } 935 936 /** 937 * device_link_del - Delete a stateless link between two devices. 938 * @link: Device link to delete. 939 * 940 * The caller must ensure proper synchronization of this function with runtime 941 * PM. If the link was added multiple times, it needs to be deleted as often. 942 * Care is required for hotplugged devices: Their links are purged on removal 943 * and calling device_link_del() is then no longer allowed. 944 */ 945 void device_link_del(struct device_link *link) 946 { 947 device_links_write_lock(); 948 device_link_put_kref(link); 949 device_links_write_unlock(); 950 } 951 EXPORT_SYMBOL_GPL(device_link_del); 952 953 /** 954 * device_link_remove - Delete a stateless link between two devices. 955 * @consumer: Consumer end of the link. 956 * @supplier: Supplier end of the link. 957 * 958 * The caller must ensure proper synchronization of this function with runtime 959 * PM. 960 */ 961 void device_link_remove(void *consumer, struct device *supplier) 962 { 963 struct device_link *link; 964 965 if (WARN_ON(consumer == supplier)) 966 return; 967 968 device_links_write_lock(); 969 970 list_for_each_entry(link, &supplier->links.consumers, s_node) { 971 if (link->consumer == consumer) { 972 device_link_put_kref(link); 973 break; 974 } 975 } 976 977 device_links_write_unlock(); 978 } 979 EXPORT_SYMBOL_GPL(device_link_remove); 980 981 static void device_links_missing_supplier(struct device *dev) 982 { 983 struct device_link *link; 984 985 list_for_each_entry(link, &dev->links.suppliers, c_node) { 986 if (link->status != DL_STATE_CONSUMER_PROBE) 987 continue; 988 989 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 990 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 991 } else { 992 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 993 WRITE_ONCE(link->status, DL_STATE_DORMANT); 994 } 995 } 996 } 997 998 static bool dev_is_best_effort(struct device *dev) 999 { 1000 return (fw_devlink_best_effort && dev->can_match) || 1001 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1002 } 1003 1004 static struct fwnode_handle *fwnode_links_check_suppliers( 1005 struct fwnode_handle *fwnode) 1006 { 1007 struct fwnode_link *link; 1008 1009 if (!fwnode || fw_devlink_is_permissive()) 1010 return NULL; 1011 1012 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1013 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1014 return link->supplier; 1015 1016 return NULL; 1017 } 1018 1019 /** 1020 * device_links_check_suppliers - Check presence of supplier drivers. 1021 * @dev: Consumer device. 1022 * 1023 * Check links from this device to any suppliers. Walk the list of the device's 1024 * links to suppliers and see if all of them are available. If not, simply 1025 * return -EPROBE_DEFER. 1026 * 1027 * We need to guarantee that the supplier will not go away after the check has 1028 * been positive here. It only can go away in __device_release_driver() and 1029 * that function checks the device's links to consumers. This means we need to 1030 * mark the link as "consumer probe in progress" to make the supplier removal 1031 * wait for us to complete (or bad things may happen). 1032 * 1033 * Links without the DL_FLAG_MANAGED flag set are ignored. 1034 */ 1035 int device_links_check_suppliers(struct device *dev) 1036 { 1037 struct device_link *link; 1038 int ret = 0, fwnode_ret = 0; 1039 struct fwnode_handle *sup_fw; 1040 1041 /* 1042 * Device waiting for supplier to become available is not allowed to 1043 * probe. 1044 */ 1045 mutex_lock(&fwnode_link_lock); 1046 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1047 if (sup_fw) { 1048 if (!dev_is_best_effort(dev)) { 1049 fwnode_ret = -EPROBE_DEFER; 1050 dev_err_probe(dev, -EPROBE_DEFER, 1051 "wait for supplier %pfwf\n", sup_fw); 1052 } else { 1053 fwnode_ret = -EAGAIN; 1054 } 1055 } 1056 mutex_unlock(&fwnode_link_lock); 1057 if (fwnode_ret == -EPROBE_DEFER) 1058 return fwnode_ret; 1059 1060 device_links_write_lock(); 1061 1062 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1063 if (!(link->flags & DL_FLAG_MANAGED)) 1064 continue; 1065 1066 if (link->status != DL_STATE_AVAILABLE && 1067 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1068 1069 if (dev_is_best_effort(dev) && 1070 link->flags & DL_FLAG_INFERRED && 1071 !link->supplier->can_match) { 1072 ret = -EAGAIN; 1073 continue; 1074 } 1075 1076 device_links_missing_supplier(dev); 1077 dev_err_probe(dev, -EPROBE_DEFER, 1078 "supplier %s not ready\n", 1079 dev_name(link->supplier)); 1080 ret = -EPROBE_DEFER; 1081 break; 1082 } 1083 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1084 } 1085 dev->links.status = DL_DEV_PROBING; 1086 1087 device_links_write_unlock(); 1088 1089 return ret ? ret : fwnode_ret; 1090 } 1091 1092 /** 1093 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1094 * @dev: Device to call sync_state() on 1095 * @list: List head to queue the @dev on 1096 * 1097 * Queues a device for a sync_state() callback when the device links write lock 1098 * isn't held. This allows the sync_state() execution flow to use device links 1099 * APIs. The caller must ensure this function is called with 1100 * device_links_write_lock() held. 1101 * 1102 * This function does a get_device() to make sure the device is not freed while 1103 * on this list. 1104 * 1105 * So the caller must also ensure that device_links_flush_sync_list() is called 1106 * as soon as the caller releases device_links_write_lock(). This is necessary 1107 * to make sure the sync_state() is called in a timely fashion and the 1108 * put_device() is called on this device. 1109 */ 1110 static void __device_links_queue_sync_state(struct device *dev, 1111 struct list_head *list) 1112 { 1113 struct device_link *link; 1114 1115 if (!dev_has_sync_state(dev)) 1116 return; 1117 if (dev->state_synced) 1118 return; 1119 1120 list_for_each_entry(link, &dev->links.consumers, s_node) { 1121 if (!(link->flags & DL_FLAG_MANAGED)) 1122 continue; 1123 if (link->status != DL_STATE_ACTIVE) 1124 return; 1125 } 1126 1127 /* 1128 * Set the flag here to avoid adding the same device to a list more 1129 * than once. This can happen if new consumers get added to the device 1130 * and probed before the list is flushed. 1131 */ 1132 dev->state_synced = true; 1133 1134 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1135 return; 1136 1137 get_device(dev); 1138 list_add_tail(&dev->links.defer_sync, list); 1139 } 1140 1141 /** 1142 * device_links_flush_sync_list - Call sync_state() on a list of devices 1143 * @list: List of devices to call sync_state() on 1144 * @dont_lock_dev: Device for which lock is already held by the caller 1145 * 1146 * Calls sync_state() on all the devices that have been queued for it. This 1147 * function is used in conjunction with __device_links_queue_sync_state(). The 1148 * @dont_lock_dev parameter is useful when this function is called from a 1149 * context where a device lock is already held. 1150 */ 1151 static void device_links_flush_sync_list(struct list_head *list, 1152 struct device *dont_lock_dev) 1153 { 1154 struct device *dev, *tmp; 1155 1156 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1157 list_del_init(&dev->links.defer_sync); 1158 1159 if (dev != dont_lock_dev) 1160 device_lock(dev); 1161 1162 dev_sync_state(dev); 1163 1164 if (dev != dont_lock_dev) 1165 device_unlock(dev); 1166 1167 put_device(dev); 1168 } 1169 } 1170 1171 void device_links_supplier_sync_state_pause(void) 1172 { 1173 device_links_write_lock(); 1174 defer_sync_state_count++; 1175 device_links_write_unlock(); 1176 } 1177 1178 void device_links_supplier_sync_state_resume(void) 1179 { 1180 struct device *dev, *tmp; 1181 LIST_HEAD(sync_list); 1182 1183 device_links_write_lock(); 1184 if (!defer_sync_state_count) { 1185 WARN(true, "Unmatched sync_state pause/resume!"); 1186 goto out; 1187 } 1188 defer_sync_state_count--; 1189 if (defer_sync_state_count) 1190 goto out; 1191 1192 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1193 /* 1194 * Delete from deferred_sync list before queuing it to 1195 * sync_list because defer_sync is used for both lists. 1196 */ 1197 list_del_init(&dev->links.defer_sync); 1198 __device_links_queue_sync_state(dev, &sync_list); 1199 } 1200 out: 1201 device_links_write_unlock(); 1202 1203 device_links_flush_sync_list(&sync_list, NULL); 1204 } 1205 1206 static int sync_state_resume_initcall(void) 1207 { 1208 device_links_supplier_sync_state_resume(); 1209 return 0; 1210 } 1211 late_initcall(sync_state_resume_initcall); 1212 1213 static void __device_links_supplier_defer_sync(struct device *sup) 1214 { 1215 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1216 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1217 } 1218 1219 static void device_link_drop_managed(struct device_link *link) 1220 { 1221 link->flags &= ~DL_FLAG_MANAGED; 1222 WRITE_ONCE(link->status, DL_STATE_NONE); 1223 kref_put(&link->kref, __device_link_del); 1224 } 1225 1226 static ssize_t waiting_for_supplier_show(struct device *dev, 1227 struct device_attribute *attr, 1228 char *buf) 1229 { 1230 bool val; 1231 1232 device_lock(dev); 1233 mutex_lock(&fwnode_link_lock); 1234 val = !!fwnode_links_check_suppliers(dev->fwnode); 1235 mutex_unlock(&fwnode_link_lock); 1236 device_unlock(dev); 1237 return sysfs_emit(buf, "%u\n", val); 1238 } 1239 static DEVICE_ATTR_RO(waiting_for_supplier); 1240 1241 /** 1242 * device_links_force_bind - Prepares device to be force bound 1243 * @dev: Consumer device. 1244 * 1245 * device_bind_driver() force binds a device to a driver without calling any 1246 * driver probe functions. So the consumer really isn't going to wait for any 1247 * supplier before it's bound to the driver. We still want the device link 1248 * states to be sensible when this happens. 1249 * 1250 * In preparation for device_bind_driver(), this function goes through each 1251 * supplier device links and checks if the supplier is bound. If it is, then 1252 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1253 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1254 */ 1255 void device_links_force_bind(struct device *dev) 1256 { 1257 struct device_link *link, *ln; 1258 1259 device_links_write_lock(); 1260 1261 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1262 if (!(link->flags & DL_FLAG_MANAGED)) 1263 continue; 1264 1265 if (link->status != DL_STATE_AVAILABLE) { 1266 device_link_drop_managed(link); 1267 continue; 1268 } 1269 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1270 } 1271 dev->links.status = DL_DEV_PROBING; 1272 1273 device_links_write_unlock(); 1274 } 1275 1276 /** 1277 * device_links_driver_bound - Update device links after probing its driver. 1278 * @dev: Device to update the links for. 1279 * 1280 * The probe has been successful, so update links from this device to any 1281 * consumers by changing their status to "available". 1282 * 1283 * Also change the status of @dev's links to suppliers to "active". 1284 * 1285 * Links without the DL_FLAG_MANAGED flag set are ignored. 1286 */ 1287 void device_links_driver_bound(struct device *dev) 1288 { 1289 struct device_link *link, *ln; 1290 LIST_HEAD(sync_list); 1291 1292 /* 1293 * If a device binds successfully, it's expected to have created all 1294 * the device links it needs to or make new device links as it needs 1295 * them. So, fw_devlink no longer needs to create device links to any 1296 * of the device's suppliers. 1297 * 1298 * Also, if a child firmware node of this bound device is not added as a 1299 * device by now, assume it is never going to be added. Make this bound 1300 * device the fallback supplier to the dangling consumers of the child 1301 * firmware node because this bound device is probably implementing the 1302 * child firmware node functionality and we don't want the dangling 1303 * consumers to defer probe indefinitely waiting for a device for the 1304 * child firmware node. 1305 */ 1306 if (dev->fwnode && dev->fwnode->dev == dev) { 1307 struct fwnode_handle *child; 1308 fwnode_links_purge_suppliers(dev->fwnode); 1309 mutex_lock(&fwnode_link_lock); 1310 fwnode_for_each_available_child_node(dev->fwnode, child) 1311 __fw_devlink_pickup_dangling_consumers(child, 1312 dev->fwnode); 1313 __fw_devlink_link_to_consumers(dev); 1314 mutex_unlock(&fwnode_link_lock); 1315 } 1316 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1317 1318 device_links_write_lock(); 1319 1320 list_for_each_entry(link, &dev->links.consumers, s_node) { 1321 if (!(link->flags & DL_FLAG_MANAGED)) 1322 continue; 1323 1324 /* 1325 * Links created during consumer probe may be in the "consumer 1326 * probe" state to start with if the supplier is still probing 1327 * when they are created and they may become "active" if the 1328 * consumer probe returns first. Skip them here. 1329 */ 1330 if (link->status == DL_STATE_CONSUMER_PROBE || 1331 link->status == DL_STATE_ACTIVE) 1332 continue; 1333 1334 WARN_ON(link->status != DL_STATE_DORMANT); 1335 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1336 1337 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1338 driver_deferred_probe_add(link->consumer); 1339 } 1340 1341 if (defer_sync_state_count) 1342 __device_links_supplier_defer_sync(dev); 1343 else 1344 __device_links_queue_sync_state(dev, &sync_list); 1345 1346 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1347 struct device *supplier; 1348 1349 if (!(link->flags & DL_FLAG_MANAGED)) 1350 continue; 1351 1352 supplier = link->supplier; 1353 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1354 /* 1355 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1356 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1357 * save to drop the managed link completely. 1358 */ 1359 device_link_drop_managed(link); 1360 } else if (dev_is_best_effort(dev) && 1361 link->flags & DL_FLAG_INFERRED && 1362 link->status != DL_STATE_CONSUMER_PROBE && 1363 !link->supplier->can_match) { 1364 /* 1365 * When dev_is_best_effort() is true, we ignore device 1366 * links to suppliers that don't have a driver. If the 1367 * consumer device still managed to probe, there's no 1368 * point in maintaining a device link in a weird state 1369 * (consumer probed before supplier). So delete it. 1370 */ 1371 device_link_drop_managed(link); 1372 } else { 1373 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1374 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1375 } 1376 1377 /* 1378 * This needs to be done even for the deleted 1379 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1380 * device link that was preventing the supplier from getting a 1381 * sync_state() call. 1382 */ 1383 if (defer_sync_state_count) 1384 __device_links_supplier_defer_sync(supplier); 1385 else 1386 __device_links_queue_sync_state(supplier, &sync_list); 1387 } 1388 1389 dev->links.status = DL_DEV_DRIVER_BOUND; 1390 1391 device_links_write_unlock(); 1392 1393 device_links_flush_sync_list(&sync_list, dev); 1394 } 1395 1396 /** 1397 * __device_links_no_driver - Update links of a device without a driver. 1398 * @dev: Device without a drvier. 1399 * 1400 * Delete all non-persistent links from this device to any suppliers. 1401 * 1402 * Persistent links stay around, but their status is changed to "available", 1403 * unless they already are in the "supplier unbind in progress" state in which 1404 * case they need not be updated. 1405 * 1406 * Links without the DL_FLAG_MANAGED flag set are ignored. 1407 */ 1408 static void __device_links_no_driver(struct device *dev) 1409 { 1410 struct device_link *link, *ln; 1411 1412 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1413 if (!(link->flags & DL_FLAG_MANAGED)) 1414 continue; 1415 1416 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1417 device_link_drop_managed(link); 1418 continue; 1419 } 1420 1421 if (link->status != DL_STATE_CONSUMER_PROBE && 1422 link->status != DL_STATE_ACTIVE) 1423 continue; 1424 1425 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1426 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1427 } else { 1428 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1429 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1430 } 1431 } 1432 1433 dev->links.status = DL_DEV_NO_DRIVER; 1434 } 1435 1436 /** 1437 * device_links_no_driver - Update links after failing driver probe. 1438 * @dev: Device whose driver has just failed to probe. 1439 * 1440 * Clean up leftover links to consumers for @dev and invoke 1441 * %__device_links_no_driver() to update links to suppliers for it as 1442 * appropriate. 1443 * 1444 * Links without the DL_FLAG_MANAGED flag set are ignored. 1445 */ 1446 void device_links_no_driver(struct device *dev) 1447 { 1448 struct device_link *link; 1449 1450 device_links_write_lock(); 1451 1452 list_for_each_entry(link, &dev->links.consumers, s_node) { 1453 if (!(link->flags & DL_FLAG_MANAGED)) 1454 continue; 1455 1456 /* 1457 * The probe has failed, so if the status of the link is 1458 * "consumer probe" or "active", it must have been added by 1459 * a probing consumer while this device was still probing. 1460 * Change its state to "dormant", as it represents a valid 1461 * relationship, but it is not functionally meaningful. 1462 */ 1463 if (link->status == DL_STATE_CONSUMER_PROBE || 1464 link->status == DL_STATE_ACTIVE) 1465 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1466 } 1467 1468 __device_links_no_driver(dev); 1469 1470 device_links_write_unlock(); 1471 } 1472 1473 /** 1474 * device_links_driver_cleanup - Update links after driver removal. 1475 * @dev: Device whose driver has just gone away. 1476 * 1477 * Update links to consumers for @dev by changing their status to "dormant" and 1478 * invoke %__device_links_no_driver() to update links to suppliers for it as 1479 * appropriate. 1480 * 1481 * Links without the DL_FLAG_MANAGED flag set are ignored. 1482 */ 1483 void device_links_driver_cleanup(struct device *dev) 1484 { 1485 struct device_link *link, *ln; 1486 1487 device_links_write_lock(); 1488 1489 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1490 if (!(link->flags & DL_FLAG_MANAGED)) 1491 continue; 1492 1493 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1494 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1495 1496 /* 1497 * autoremove the links between this @dev and its consumer 1498 * devices that are not active, i.e. where the link state 1499 * has moved to DL_STATE_SUPPLIER_UNBIND. 1500 */ 1501 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1502 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1503 device_link_drop_managed(link); 1504 1505 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1506 } 1507 1508 list_del_init(&dev->links.defer_sync); 1509 __device_links_no_driver(dev); 1510 1511 device_links_write_unlock(); 1512 } 1513 1514 /** 1515 * device_links_busy - Check if there are any busy links to consumers. 1516 * @dev: Device to check. 1517 * 1518 * Check each consumer of the device and return 'true' if its link's status 1519 * is one of "consumer probe" or "active" (meaning that the given consumer is 1520 * probing right now or its driver is present). Otherwise, change the link 1521 * state to "supplier unbind" to prevent the consumer from being probed 1522 * successfully going forward. 1523 * 1524 * Return 'false' if there are no probing or active consumers. 1525 * 1526 * Links without the DL_FLAG_MANAGED flag set are ignored. 1527 */ 1528 bool device_links_busy(struct device *dev) 1529 { 1530 struct device_link *link; 1531 bool ret = false; 1532 1533 device_links_write_lock(); 1534 1535 list_for_each_entry(link, &dev->links.consumers, s_node) { 1536 if (!(link->flags & DL_FLAG_MANAGED)) 1537 continue; 1538 1539 if (link->status == DL_STATE_CONSUMER_PROBE 1540 || link->status == DL_STATE_ACTIVE) { 1541 ret = true; 1542 break; 1543 } 1544 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1545 } 1546 1547 dev->links.status = DL_DEV_UNBINDING; 1548 1549 device_links_write_unlock(); 1550 return ret; 1551 } 1552 1553 /** 1554 * device_links_unbind_consumers - Force unbind consumers of the given device. 1555 * @dev: Device to unbind the consumers of. 1556 * 1557 * Walk the list of links to consumers for @dev and if any of them is in the 1558 * "consumer probe" state, wait for all device probes in progress to complete 1559 * and start over. 1560 * 1561 * If that's not the case, change the status of the link to "supplier unbind" 1562 * and check if the link was in the "active" state. If so, force the consumer 1563 * driver to unbind and start over (the consumer will not re-probe as we have 1564 * changed the state of the link already). 1565 * 1566 * Links without the DL_FLAG_MANAGED flag set are ignored. 1567 */ 1568 void device_links_unbind_consumers(struct device *dev) 1569 { 1570 struct device_link *link; 1571 1572 start: 1573 device_links_write_lock(); 1574 1575 list_for_each_entry(link, &dev->links.consumers, s_node) { 1576 enum device_link_state status; 1577 1578 if (!(link->flags & DL_FLAG_MANAGED) || 1579 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1580 continue; 1581 1582 status = link->status; 1583 if (status == DL_STATE_CONSUMER_PROBE) { 1584 device_links_write_unlock(); 1585 1586 wait_for_device_probe(); 1587 goto start; 1588 } 1589 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1590 if (status == DL_STATE_ACTIVE) { 1591 struct device *consumer = link->consumer; 1592 1593 get_device(consumer); 1594 1595 device_links_write_unlock(); 1596 1597 device_release_driver_internal(consumer, NULL, 1598 consumer->parent); 1599 put_device(consumer); 1600 goto start; 1601 } 1602 } 1603 1604 device_links_write_unlock(); 1605 } 1606 1607 /** 1608 * device_links_purge - Delete existing links to other devices. 1609 * @dev: Target device. 1610 */ 1611 static void device_links_purge(struct device *dev) 1612 { 1613 struct device_link *link, *ln; 1614 1615 if (dev->class == &devlink_class) 1616 return; 1617 1618 /* 1619 * Delete all of the remaining links from this device to any other 1620 * devices (either consumers or suppliers). 1621 */ 1622 device_links_write_lock(); 1623 1624 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1625 WARN_ON(link->status == DL_STATE_ACTIVE); 1626 __device_link_del(&link->kref); 1627 } 1628 1629 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1630 WARN_ON(link->status != DL_STATE_DORMANT && 1631 link->status != DL_STATE_NONE); 1632 __device_link_del(&link->kref); 1633 } 1634 1635 device_links_write_unlock(); 1636 } 1637 1638 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1639 DL_FLAG_SYNC_STATE_ONLY) 1640 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1641 DL_FLAG_AUTOPROBE_CONSUMER) 1642 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1643 DL_FLAG_PM_RUNTIME) 1644 1645 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1646 static int __init fw_devlink_setup(char *arg) 1647 { 1648 if (!arg) 1649 return -EINVAL; 1650 1651 if (strcmp(arg, "off") == 0) { 1652 fw_devlink_flags = 0; 1653 } else if (strcmp(arg, "permissive") == 0) { 1654 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1655 } else if (strcmp(arg, "on") == 0) { 1656 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1657 } else if (strcmp(arg, "rpm") == 0) { 1658 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1659 } 1660 return 0; 1661 } 1662 early_param("fw_devlink", fw_devlink_setup); 1663 1664 static bool fw_devlink_strict; 1665 static int __init fw_devlink_strict_setup(char *arg) 1666 { 1667 return kstrtobool(arg, &fw_devlink_strict); 1668 } 1669 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1670 1671 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1672 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1673 1674 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1675 static int fw_devlink_sync_state; 1676 #else 1677 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1678 #endif 1679 1680 static int __init fw_devlink_sync_state_setup(char *arg) 1681 { 1682 if (!arg) 1683 return -EINVAL; 1684 1685 if (strcmp(arg, "strict") == 0) { 1686 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1687 return 0; 1688 } else if (strcmp(arg, "timeout") == 0) { 1689 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1690 return 0; 1691 } 1692 return -EINVAL; 1693 } 1694 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1695 1696 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1697 { 1698 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1699 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1700 1701 return fw_devlink_flags; 1702 } 1703 1704 static bool fw_devlink_is_permissive(void) 1705 { 1706 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1707 } 1708 1709 bool fw_devlink_is_strict(void) 1710 { 1711 return fw_devlink_strict && !fw_devlink_is_permissive(); 1712 } 1713 1714 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1715 { 1716 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1717 return; 1718 1719 fwnode_call_int_op(fwnode, add_links); 1720 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1721 } 1722 1723 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1724 { 1725 struct fwnode_handle *child = NULL; 1726 1727 fw_devlink_parse_fwnode(fwnode); 1728 1729 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1730 fw_devlink_parse_fwtree(child); 1731 } 1732 1733 static void fw_devlink_relax_link(struct device_link *link) 1734 { 1735 if (!(link->flags & DL_FLAG_INFERRED)) 1736 return; 1737 1738 if (device_link_flag_is_sync_state_only(link->flags)) 1739 return; 1740 1741 pm_runtime_drop_link(link); 1742 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1743 dev_dbg(link->consumer, "Relaxing link with %s\n", 1744 dev_name(link->supplier)); 1745 } 1746 1747 static int fw_devlink_no_driver(struct device *dev, void *data) 1748 { 1749 struct device_link *link = to_devlink(dev); 1750 1751 if (!link->supplier->can_match) 1752 fw_devlink_relax_link(link); 1753 1754 return 0; 1755 } 1756 1757 void fw_devlink_drivers_done(void) 1758 { 1759 fw_devlink_drv_reg_done = true; 1760 device_links_write_lock(); 1761 class_for_each_device(&devlink_class, NULL, NULL, 1762 fw_devlink_no_driver); 1763 device_links_write_unlock(); 1764 } 1765 1766 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1767 { 1768 struct device_link *link = to_devlink(dev); 1769 struct device *sup = link->supplier; 1770 1771 if (!(link->flags & DL_FLAG_MANAGED) || 1772 link->status == DL_STATE_ACTIVE || sup->state_synced || 1773 !dev_has_sync_state(sup)) 1774 return 0; 1775 1776 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1777 dev_warn(sup, "sync_state() pending due to %s\n", 1778 dev_name(link->consumer)); 1779 return 0; 1780 } 1781 1782 if (!list_empty(&sup->links.defer_sync)) 1783 return 0; 1784 1785 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1786 sup->state_synced = true; 1787 get_device(sup); 1788 list_add_tail(&sup->links.defer_sync, data); 1789 1790 return 0; 1791 } 1792 1793 void fw_devlink_probing_done(void) 1794 { 1795 LIST_HEAD(sync_list); 1796 1797 device_links_write_lock(); 1798 class_for_each_device(&devlink_class, NULL, &sync_list, 1799 fw_devlink_dev_sync_state); 1800 device_links_write_unlock(); 1801 device_links_flush_sync_list(&sync_list, NULL); 1802 } 1803 1804 /** 1805 * wait_for_init_devices_probe - Try to probe any device needed for init 1806 * 1807 * Some devices might need to be probed and bound successfully before the kernel 1808 * boot sequence can finish and move on to init/userspace. For example, a 1809 * network interface might need to be bound to be able to mount a NFS rootfs. 1810 * 1811 * With fw_devlink=on by default, some of these devices might be blocked from 1812 * probing because they are waiting on a optional supplier that doesn't have a 1813 * driver. While fw_devlink will eventually identify such devices and unblock 1814 * the probing automatically, it might be too late by the time it unblocks the 1815 * probing of devices. For example, the IP4 autoconfig might timeout before 1816 * fw_devlink unblocks probing of the network interface. 1817 * 1818 * This function is available to temporarily try and probe all devices that have 1819 * a driver even if some of their suppliers haven't been added or don't have 1820 * drivers. 1821 * 1822 * The drivers can then decide which of the suppliers are optional vs mandatory 1823 * and probe the device if possible. By the time this function returns, all such 1824 * "best effort" probes are guaranteed to be completed. If a device successfully 1825 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1826 * device where the supplier hasn't yet probed successfully because they have to 1827 * be optional dependencies. 1828 * 1829 * Any devices that didn't successfully probe go back to being treated as if 1830 * this function was never called. 1831 * 1832 * This also means that some devices that aren't needed for init and could have 1833 * waited for their optional supplier to probe (when the supplier's module is 1834 * loaded later on) would end up probing prematurely with limited functionality. 1835 * So call this function only when boot would fail without it. 1836 */ 1837 void __init wait_for_init_devices_probe(void) 1838 { 1839 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1840 return; 1841 1842 /* 1843 * Wait for all ongoing probes to finish so that the "best effort" is 1844 * only applied to devices that can't probe otherwise. 1845 */ 1846 wait_for_device_probe(); 1847 1848 pr_info("Trying to probe devices needed for running init ...\n"); 1849 fw_devlink_best_effort = true; 1850 driver_deferred_probe_trigger(); 1851 1852 /* 1853 * Wait for all "best effort" probes to finish before going back to 1854 * normal enforcement. 1855 */ 1856 wait_for_device_probe(); 1857 fw_devlink_best_effort = false; 1858 } 1859 1860 static void fw_devlink_unblock_consumers(struct device *dev) 1861 { 1862 struct device_link *link; 1863 1864 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1865 return; 1866 1867 device_links_write_lock(); 1868 list_for_each_entry(link, &dev->links.consumers, s_node) 1869 fw_devlink_relax_link(link); 1870 device_links_write_unlock(); 1871 } 1872 1873 1874 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1875 { 1876 struct device *dev; 1877 bool ret; 1878 1879 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1880 return false; 1881 1882 dev = get_dev_from_fwnode(fwnode); 1883 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1884 put_device(dev); 1885 1886 return ret; 1887 } 1888 1889 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1890 { 1891 struct fwnode_handle *parent; 1892 1893 fwnode_for_each_parent_node(fwnode, parent) { 1894 if (fwnode_init_without_drv(parent)) { 1895 fwnode_handle_put(parent); 1896 return true; 1897 } 1898 } 1899 1900 return false; 1901 } 1902 1903 /** 1904 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1905 * @con: Potential consumer device. 1906 * @sup_handle: Potential supplier's fwnode. 1907 * 1908 * Needs to be called with fwnode_lock and device link lock held. 1909 * 1910 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1911 * depend on @con. This function can detect multiple cyles between @sup_handle 1912 * and @con. When such dependency cycles are found, convert all device links 1913 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1914 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1915 * converted into a device link in the future, they are created as 1916 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1917 * fw_devlink=permissive just between the devices in the cycle. We need to do 1918 * this because, at this point, fw_devlink can't tell which of these 1919 * dependencies is not a real dependency. 1920 * 1921 * Return true if one or more cycles were found. Otherwise, return false. 1922 */ 1923 static bool __fw_devlink_relax_cycles(struct device *con, 1924 struct fwnode_handle *sup_handle) 1925 { 1926 struct device *sup_dev = NULL, *par_dev = NULL; 1927 struct fwnode_link *link; 1928 struct device_link *dev_link; 1929 bool ret = false; 1930 1931 if (!sup_handle) 1932 return false; 1933 1934 /* 1935 * We aren't trying to find all cycles. Just a cycle between con and 1936 * sup_handle. 1937 */ 1938 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1939 return false; 1940 1941 sup_handle->flags |= FWNODE_FLAG_VISITED; 1942 1943 sup_dev = get_dev_from_fwnode(sup_handle); 1944 1945 /* Termination condition. */ 1946 if (sup_dev == con) { 1947 ret = true; 1948 goto out; 1949 } 1950 1951 /* 1952 * If sup_dev is bound to a driver and @con hasn't started binding to a 1953 * driver, sup_dev can't be a consumer of @con. So, no need to check 1954 * further. 1955 */ 1956 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1957 con->links.status == DL_DEV_NO_DRIVER) { 1958 ret = false; 1959 goto out; 1960 } 1961 1962 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1963 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1964 __fwnode_link_cycle(link); 1965 ret = true; 1966 } 1967 } 1968 1969 /* 1970 * Give priority to device parent over fwnode parent to account for any 1971 * quirks in how fwnodes are converted to devices. 1972 */ 1973 if (sup_dev) 1974 par_dev = get_device(sup_dev->parent); 1975 else 1976 par_dev = fwnode_get_next_parent_dev(sup_handle); 1977 1978 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1979 ret = true; 1980 1981 if (!sup_dev) 1982 goto out; 1983 1984 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 1985 /* 1986 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 1987 * such due to a cycle. 1988 */ 1989 if (device_link_flag_is_sync_state_only(dev_link->flags) && 1990 !(dev_link->flags & DL_FLAG_CYCLE)) 1991 continue; 1992 1993 if (__fw_devlink_relax_cycles(con, 1994 dev_link->supplier->fwnode)) { 1995 fw_devlink_relax_link(dev_link); 1996 dev_link->flags |= DL_FLAG_CYCLE; 1997 ret = true; 1998 } 1999 } 2000 2001 out: 2002 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2003 put_device(sup_dev); 2004 put_device(par_dev); 2005 return ret; 2006 } 2007 2008 /** 2009 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2010 * @con: consumer device for the device link 2011 * @sup_handle: fwnode handle of supplier 2012 * @link: fwnode link that's being converted to a device link 2013 * 2014 * This function will try to create a device link between the consumer device 2015 * @con and the supplier device represented by @sup_handle. 2016 * 2017 * The supplier has to be provided as a fwnode because incorrect cycles in 2018 * fwnode links can sometimes cause the supplier device to never be created. 2019 * This function detects such cases and returns an error if it cannot create a 2020 * device link from the consumer to a missing supplier. 2021 * 2022 * Returns, 2023 * 0 on successfully creating a device link 2024 * -EINVAL if the device link cannot be created as expected 2025 * -EAGAIN if the device link cannot be created right now, but it may be 2026 * possible to do that in the future 2027 */ 2028 static int fw_devlink_create_devlink(struct device *con, 2029 struct fwnode_handle *sup_handle, 2030 struct fwnode_link *link) 2031 { 2032 struct device *sup_dev; 2033 int ret = 0; 2034 u32 flags; 2035 2036 if (con->fwnode == link->consumer) 2037 flags = fw_devlink_get_flags(link->flags); 2038 else 2039 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2040 2041 /* 2042 * In some cases, a device P might also be a supplier to its child node 2043 * C. However, this would defer the probe of C until the probe of P 2044 * completes successfully. This is perfectly fine in the device driver 2045 * model. device_add() doesn't guarantee probe completion of the device 2046 * by the time it returns. 2047 * 2048 * However, there are a few drivers that assume C will finish probing 2049 * as soon as it's added and before P finishes probing. So, we provide 2050 * a flag to let fw_devlink know not to delay the probe of C until the 2051 * probe of P completes successfully. 2052 * 2053 * When such a flag is set, we can't create device links where P is the 2054 * supplier of C as that would delay the probe of C. 2055 */ 2056 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2057 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2058 return -EINVAL; 2059 2060 /* 2061 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2062 * So cycle detection isn't necessary and shouldn't be done. 2063 */ 2064 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) { 2065 device_links_write_lock(); 2066 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2067 __fwnode_link_cycle(link); 2068 flags = fw_devlink_get_flags(link->flags); 2069 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2070 sup_handle); 2071 } 2072 device_links_write_unlock(); 2073 } 2074 2075 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2076 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2077 else 2078 sup_dev = get_dev_from_fwnode(sup_handle); 2079 2080 if (sup_dev) { 2081 /* 2082 * If it's one of those drivers that don't actually bind to 2083 * their device using driver core, then don't wait on this 2084 * supplier device indefinitely. 2085 */ 2086 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2087 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2088 dev_dbg(con, 2089 "Not linking %pfwf - dev might never probe\n", 2090 sup_handle); 2091 ret = -EINVAL; 2092 goto out; 2093 } 2094 2095 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2096 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2097 flags, dev_name(sup_dev)); 2098 ret = -EINVAL; 2099 } 2100 2101 goto out; 2102 } 2103 2104 /* 2105 * Supplier or supplier's ancestor already initialized without a struct 2106 * device or being probed by a driver. 2107 */ 2108 if (fwnode_init_without_drv(sup_handle) || 2109 fwnode_ancestor_init_without_drv(sup_handle)) { 2110 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2111 sup_handle); 2112 return -EINVAL; 2113 } 2114 2115 ret = -EAGAIN; 2116 out: 2117 put_device(sup_dev); 2118 return ret; 2119 } 2120 2121 /** 2122 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2123 * @dev: Device that needs to be linked to its consumers 2124 * 2125 * This function looks at all the consumer fwnodes of @dev and creates device 2126 * links between the consumer device and @dev (supplier). 2127 * 2128 * If the consumer device has not been added yet, then this function creates a 2129 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2130 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2131 * sync_state() callback before the real consumer device gets to be added and 2132 * then probed. 2133 * 2134 * Once device links are created from the real consumer to @dev (supplier), the 2135 * fwnode links are deleted. 2136 */ 2137 static void __fw_devlink_link_to_consumers(struct device *dev) 2138 { 2139 struct fwnode_handle *fwnode = dev->fwnode; 2140 struct fwnode_link *link, *tmp; 2141 2142 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2143 struct device *con_dev; 2144 bool own_link = true; 2145 int ret; 2146 2147 con_dev = get_dev_from_fwnode(link->consumer); 2148 /* 2149 * If consumer device is not available yet, make a "proxy" 2150 * SYNC_STATE_ONLY link from the consumer's parent device to 2151 * the supplier device. This is necessary to make sure the 2152 * supplier doesn't get a sync_state() callback before the real 2153 * consumer can create a device link to the supplier. 2154 * 2155 * This proxy link step is needed to handle the case where the 2156 * consumer's parent device is added before the supplier. 2157 */ 2158 if (!con_dev) { 2159 con_dev = fwnode_get_next_parent_dev(link->consumer); 2160 /* 2161 * However, if the consumer's parent device is also the 2162 * parent of the supplier, don't create a 2163 * consumer-supplier link from the parent to its child 2164 * device. Such a dependency is impossible. 2165 */ 2166 if (con_dev && 2167 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2168 put_device(con_dev); 2169 con_dev = NULL; 2170 } else { 2171 own_link = false; 2172 } 2173 } 2174 2175 if (!con_dev) 2176 continue; 2177 2178 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2179 put_device(con_dev); 2180 if (!own_link || ret == -EAGAIN) 2181 continue; 2182 2183 __fwnode_link_del(link); 2184 } 2185 } 2186 2187 /** 2188 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2189 * @dev: The consumer device that needs to be linked to its suppliers 2190 * @fwnode: Root of the fwnode tree that is used to create device links 2191 * 2192 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2193 * @fwnode and creates device links between @dev (consumer) and all the 2194 * supplier devices of the entire fwnode tree at @fwnode. 2195 * 2196 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2197 * and the real suppliers of @dev. Once these device links are created, the 2198 * fwnode links are deleted. 2199 * 2200 * In addition, it also looks at all the suppliers of the entire fwnode tree 2201 * because some of the child devices of @dev that have not been added yet 2202 * (because @dev hasn't probed) might already have their suppliers added to 2203 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2204 * @dev (consumer) and these suppliers to make sure they don't execute their 2205 * sync_state() callbacks before these child devices have a chance to create 2206 * their device links. The fwnode links that correspond to the child devices 2207 * aren't delete because they are needed later to create the device links 2208 * between the real consumer and supplier devices. 2209 */ 2210 static void __fw_devlink_link_to_suppliers(struct device *dev, 2211 struct fwnode_handle *fwnode) 2212 { 2213 bool own_link = (dev->fwnode == fwnode); 2214 struct fwnode_link *link, *tmp; 2215 struct fwnode_handle *child = NULL; 2216 2217 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2218 int ret; 2219 struct fwnode_handle *sup = link->supplier; 2220 2221 ret = fw_devlink_create_devlink(dev, sup, link); 2222 if (!own_link || ret == -EAGAIN) 2223 continue; 2224 2225 __fwnode_link_del(link); 2226 } 2227 2228 /* 2229 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2230 * all the descendants. This proxy link step is needed to handle the 2231 * case where the supplier is added before the consumer's parent device 2232 * (@dev). 2233 */ 2234 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2235 __fw_devlink_link_to_suppliers(dev, child); 2236 } 2237 2238 static void fw_devlink_link_device(struct device *dev) 2239 { 2240 struct fwnode_handle *fwnode = dev->fwnode; 2241 2242 if (!fw_devlink_flags) 2243 return; 2244 2245 fw_devlink_parse_fwtree(fwnode); 2246 2247 mutex_lock(&fwnode_link_lock); 2248 __fw_devlink_link_to_consumers(dev); 2249 __fw_devlink_link_to_suppliers(dev, fwnode); 2250 mutex_unlock(&fwnode_link_lock); 2251 } 2252 2253 /* Device links support end. */ 2254 2255 int (*platform_notify)(struct device *dev) = NULL; 2256 int (*platform_notify_remove)(struct device *dev) = NULL; 2257 static struct kobject *dev_kobj; 2258 2259 /* /sys/dev/char */ 2260 static struct kobject *sysfs_dev_char_kobj; 2261 2262 /* /sys/dev/block */ 2263 static struct kobject *sysfs_dev_block_kobj; 2264 2265 static DEFINE_MUTEX(device_hotplug_lock); 2266 2267 void lock_device_hotplug(void) 2268 { 2269 mutex_lock(&device_hotplug_lock); 2270 } 2271 2272 void unlock_device_hotplug(void) 2273 { 2274 mutex_unlock(&device_hotplug_lock); 2275 } 2276 2277 int lock_device_hotplug_sysfs(void) 2278 { 2279 if (mutex_trylock(&device_hotplug_lock)) 2280 return 0; 2281 2282 /* Avoid busy looping (5 ms of sleep should do). */ 2283 msleep(5); 2284 return restart_syscall(); 2285 } 2286 2287 #ifdef CONFIG_BLOCK 2288 static inline int device_is_not_partition(struct device *dev) 2289 { 2290 return !(dev->type == &part_type); 2291 } 2292 #else 2293 static inline int device_is_not_partition(struct device *dev) 2294 { 2295 return 1; 2296 } 2297 #endif 2298 2299 static void device_platform_notify(struct device *dev) 2300 { 2301 acpi_device_notify(dev); 2302 2303 software_node_notify(dev); 2304 2305 if (platform_notify) 2306 platform_notify(dev); 2307 } 2308 2309 static void device_platform_notify_remove(struct device *dev) 2310 { 2311 if (platform_notify_remove) 2312 platform_notify_remove(dev); 2313 2314 software_node_notify_remove(dev); 2315 2316 acpi_device_notify_remove(dev); 2317 } 2318 2319 /** 2320 * dev_driver_string - Return a device's driver name, if at all possible 2321 * @dev: struct device to get the name of 2322 * 2323 * Will return the device's driver's name if it is bound to a device. If 2324 * the device is not bound to a driver, it will return the name of the bus 2325 * it is attached to. If it is not attached to a bus either, an empty 2326 * string will be returned. 2327 */ 2328 const char *dev_driver_string(const struct device *dev) 2329 { 2330 struct device_driver *drv; 2331 2332 /* dev->driver can change to NULL underneath us because of unbinding, 2333 * so be careful about accessing it. dev->bus and dev->class should 2334 * never change once they are set, so they don't need special care. 2335 */ 2336 drv = READ_ONCE(dev->driver); 2337 return drv ? drv->name : dev_bus_name(dev); 2338 } 2339 EXPORT_SYMBOL(dev_driver_string); 2340 2341 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2342 2343 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2344 char *buf) 2345 { 2346 struct device_attribute *dev_attr = to_dev_attr(attr); 2347 struct device *dev = kobj_to_dev(kobj); 2348 ssize_t ret = -EIO; 2349 2350 if (dev_attr->show) 2351 ret = dev_attr->show(dev, dev_attr, buf); 2352 if (ret >= (ssize_t)PAGE_SIZE) { 2353 printk("dev_attr_show: %pS returned bad count\n", 2354 dev_attr->show); 2355 } 2356 return ret; 2357 } 2358 2359 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2360 const char *buf, size_t count) 2361 { 2362 struct device_attribute *dev_attr = to_dev_attr(attr); 2363 struct device *dev = kobj_to_dev(kobj); 2364 ssize_t ret = -EIO; 2365 2366 if (dev_attr->store) 2367 ret = dev_attr->store(dev, dev_attr, buf, count); 2368 return ret; 2369 } 2370 2371 static const struct sysfs_ops dev_sysfs_ops = { 2372 .show = dev_attr_show, 2373 .store = dev_attr_store, 2374 }; 2375 2376 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2377 2378 ssize_t device_store_ulong(struct device *dev, 2379 struct device_attribute *attr, 2380 const char *buf, size_t size) 2381 { 2382 struct dev_ext_attribute *ea = to_ext_attr(attr); 2383 int ret; 2384 unsigned long new; 2385 2386 ret = kstrtoul(buf, 0, &new); 2387 if (ret) 2388 return ret; 2389 *(unsigned long *)(ea->var) = new; 2390 /* Always return full write size even if we didn't consume all */ 2391 return size; 2392 } 2393 EXPORT_SYMBOL_GPL(device_store_ulong); 2394 2395 ssize_t device_show_ulong(struct device *dev, 2396 struct device_attribute *attr, 2397 char *buf) 2398 { 2399 struct dev_ext_attribute *ea = to_ext_attr(attr); 2400 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2401 } 2402 EXPORT_SYMBOL_GPL(device_show_ulong); 2403 2404 ssize_t device_store_int(struct device *dev, 2405 struct device_attribute *attr, 2406 const char *buf, size_t size) 2407 { 2408 struct dev_ext_attribute *ea = to_ext_attr(attr); 2409 int ret; 2410 long new; 2411 2412 ret = kstrtol(buf, 0, &new); 2413 if (ret) 2414 return ret; 2415 2416 if (new > INT_MAX || new < INT_MIN) 2417 return -EINVAL; 2418 *(int *)(ea->var) = new; 2419 /* Always return full write size even if we didn't consume all */ 2420 return size; 2421 } 2422 EXPORT_SYMBOL_GPL(device_store_int); 2423 2424 ssize_t device_show_int(struct device *dev, 2425 struct device_attribute *attr, 2426 char *buf) 2427 { 2428 struct dev_ext_attribute *ea = to_ext_attr(attr); 2429 2430 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2431 } 2432 EXPORT_SYMBOL_GPL(device_show_int); 2433 2434 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2435 const char *buf, size_t size) 2436 { 2437 struct dev_ext_attribute *ea = to_ext_attr(attr); 2438 2439 if (kstrtobool(buf, ea->var) < 0) 2440 return -EINVAL; 2441 2442 return size; 2443 } 2444 EXPORT_SYMBOL_GPL(device_store_bool); 2445 2446 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2447 char *buf) 2448 { 2449 struct dev_ext_attribute *ea = to_ext_attr(attr); 2450 2451 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2452 } 2453 EXPORT_SYMBOL_GPL(device_show_bool); 2454 2455 /** 2456 * device_release - free device structure. 2457 * @kobj: device's kobject. 2458 * 2459 * This is called once the reference count for the object 2460 * reaches 0. We forward the call to the device's release 2461 * method, which should handle actually freeing the structure. 2462 */ 2463 static void device_release(struct kobject *kobj) 2464 { 2465 struct device *dev = kobj_to_dev(kobj); 2466 struct device_private *p = dev->p; 2467 2468 /* 2469 * Some platform devices are driven without driver attached 2470 * and managed resources may have been acquired. Make sure 2471 * all resources are released. 2472 * 2473 * Drivers still can add resources into device after device 2474 * is deleted but alive, so release devres here to avoid 2475 * possible memory leak. 2476 */ 2477 devres_release_all(dev); 2478 2479 kfree(dev->dma_range_map); 2480 2481 if (dev->release) 2482 dev->release(dev); 2483 else if (dev->type && dev->type->release) 2484 dev->type->release(dev); 2485 else if (dev->class && dev->class->dev_release) 2486 dev->class->dev_release(dev); 2487 else 2488 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2489 dev_name(dev)); 2490 kfree(p); 2491 } 2492 2493 static const void *device_namespace(const struct kobject *kobj) 2494 { 2495 const struct device *dev = kobj_to_dev(kobj); 2496 const void *ns = NULL; 2497 2498 if (dev->class && dev->class->ns_type) 2499 ns = dev->class->namespace(dev); 2500 2501 return ns; 2502 } 2503 2504 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2505 { 2506 const struct device *dev = kobj_to_dev(kobj); 2507 2508 if (dev->class && dev->class->get_ownership) 2509 dev->class->get_ownership(dev, uid, gid); 2510 } 2511 2512 static const struct kobj_type device_ktype = { 2513 .release = device_release, 2514 .sysfs_ops = &dev_sysfs_ops, 2515 .namespace = device_namespace, 2516 .get_ownership = device_get_ownership, 2517 }; 2518 2519 2520 static int dev_uevent_filter(const struct kobject *kobj) 2521 { 2522 const struct kobj_type *ktype = get_ktype(kobj); 2523 2524 if (ktype == &device_ktype) { 2525 const struct device *dev = kobj_to_dev(kobj); 2526 if (dev->bus) 2527 return 1; 2528 if (dev->class) 2529 return 1; 2530 } 2531 return 0; 2532 } 2533 2534 static const char *dev_uevent_name(const struct kobject *kobj) 2535 { 2536 const struct device *dev = kobj_to_dev(kobj); 2537 2538 if (dev->bus) 2539 return dev->bus->name; 2540 if (dev->class) 2541 return dev->class->name; 2542 return NULL; 2543 } 2544 2545 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2546 { 2547 const struct device *dev = kobj_to_dev(kobj); 2548 int retval = 0; 2549 2550 /* add device node properties if present */ 2551 if (MAJOR(dev->devt)) { 2552 const char *tmp; 2553 const char *name; 2554 umode_t mode = 0; 2555 kuid_t uid = GLOBAL_ROOT_UID; 2556 kgid_t gid = GLOBAL_ROOT_GID; 2557 2558 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2559 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2560 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2561 if (name) { 2562 add_uevent_var(env, "DEVNAME=%s", name); 2563 if (mode) 2564 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2565 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2566 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2567 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2568 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2569 kfree(tmp); 2570 } 2571 } 2572 2573 if (dev->type && dev->type->name) 2574 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2575 2576 if (dev->driver) 2577 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2578 2579 /* Add common DT information about the device */ 2580 of_device_uevent(dev, env); 2581 2582 /* have the bus specific function add its stuff */ 2583 if (dev->bus && dev->bus->uevent) { 2584 retval = dev->bus->uevent(dev, env); 2585 if (retval) 2586 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2587 dev_name(dev), __func__, retval); 2588 } 2589 2590 /* have the class specific function add its stuff */ 2591 if (dev->class && dev->class->dev_uevent) { 2592 retval = dev->class->dev_uevent(dev, env); 2593 if (retval) 2594 pr_debug("device: '%s': %s: class uevent() " 2595 "returned %d\n", dev_name(dev), 2596 __func__, retval); 2597 } 2598 2599 /* have the device type specific function add its stuff */ 2600 if (dev->type && dev->type->uevent) { 2601 retval = dev->type->uevent(dev, env); 2602 if (retval) 2603 pr_debug("device: '%s': %s: dev_type uevent() " 2604 "returned %d\n", dev_name(dev), 2605 __func__, retval); 2606 } 2607 2608 return retval; 2609 } 2610 2611 static const struct kset_uevent_ops device_uevent_ops = { 2612 .filter = dev_uevent_filter, 2613 .name = dev_uevent_name, 2614 .uevent = dev_uevent, 2615 }; 2616 2617 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2618 char *buf) 2619 { 2620 struct kobject *top_kobj; 2621 struct kset *kset; 2622 struct kobj_uevent_env *env = NULL; 2623 int i; 2624 int len = 0; 2625 int retval; 2626 2627 /* search the kset, the device belongs to */ 2628 top_kobj = &dev->kobj; 2629 while (!top_kobj->kset && top_kobj->parent) 2630 top_kobj = top_kobj->parent; 2631 if (!top_kobj->kset) 2632 goto out; 2633 2634 kset = top_kobj->kset; 2635 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2636 goto out; 2637 2638 /* respect filter */ 2639 if (kset->uevent_ops && kset->uevent_ops->filter) 2640 if (!kset->uevent_ops->filter(&dev->kobj)) 2641 goto out; 2642 2643 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2644 if (!env) 2645 return -ENOMEM; 2646 2647 /* let the kset specific function add its keys */ 2648 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2649 if (retval) 2650 goto out; 2651 2652 /* copy keys to file */ 2653 for (i = 0; i < env->envp_idx; i++) 2654 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2655 out: 2656 kfree(env); 2657 return len; 2658 } 2659 2660 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2661 const char *buf, size_t count) 2662 { 2663 int rc; 2664 2665 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2666 2667 if (rc) { 2668 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2669 return rc; 2670 } 2671 2672 return count; 2673 } 2674 static DEVICE_ATTR_RW(uevent); 2675 2676 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2677 char *buf) 2678 { 2679 bool val; 2680 2681 device_lock(dev); 2682 val = !dev->offline; 2683 device_unlock(dev); 2684 return sysfs_emit(buf, "%u\n", val); 2685 } 2686 2687 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2688 const char *buf, size_t count) 2689 { 2690 bool val; 2691 int ret; 2692 2693 ret = kstrtobool(buf, &val); 2694 if (ret < 0) 2695 return ret; 2696 2697 ret = lock_device_hotplug_sysfs(); 2698 if (ret) 2699 return ret; 2700 2701 ret = val ? device_online(dev) : device_offline(dev); 2702 unlock_device_hotplug(); 2703 return ret < 0 ? ret : count; 2704 } 2705 static DEVICE_ATTR_RW(online); 2706 2707 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2708 char *buf) 2709 { 2710 const char *loc; 2711 2712 switch (dev->removable) { 2713 case DEVICE_REMOVABLE: 2714 loc = "removable"; 2715 break; 2716 case DEVICE_FIXED: 2717 loc = "fixed"; 2718 break; 2719 default: 2720 loc = "unknown"; 2721 } 2722 return sysfs_emit(buf, "%s\n", loc); 2723 } 2724 static DEVICE_ATTR_RO(removable); 2725 2726 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2727 { 2728 return sysfs_create_groups(&dev->kobj, groups); 2729 } 2730 EXPORT_SYMBOL_GPL(device_add_groups); 2731 2732 void device_remove_groups(struct device *dev, 2733 const struct attribute_group **groups) 2734 { 2735 sysfs_remove_groups(&dev->kobj, groups); 2736 } 2737 EXPORT_SYMBOL_GPL(device_remove_groups); 2738 2739 union device_attr_group_devres { 2740 const struct attribute_group *group; 2741 const struct attribute_group **groups; 2742 }; 2743 2744 static void devm_attr_group_remove(struct device *dev, void *res) 2745 { 2746 union device_attr_group_devres *devres = res; 2747 const struct attribute_group *group = devres->group; 2748 2749 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2750 sysfs_remove_group(&dev->kobj, group); 2751 } 2752 2753 static void devm_attr_groups_remove(struct device *dev, void *res) 2754 { 2755 union device_attr_group_devres *devres = res; 2756 const struct attribute_group **groups = devres->groups; 2757 2758 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2759 sysfs_remove_groups(&dev->kobj, groups); 2760 } 2761 2762 /** 2763 * devm_device_add_group - given a device, create a managed attribute group 2764 * @dev: The device to create the group for 2765 * @grp: The attribute group to create 2766 * 2767 * This function creates a group for the first time. It will explicitly 2768 * warn and error if any of the attribute files being created already exist. 2769 * 2770 * Returns 0 on success or error code on failure. 2771 */ 2772 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2773 { 2774 union device_attr_group_devres *devres; 2775 int error; 2776 2777 devres = devres_alloc(devm_attr_group_remove, 2778 sizeof(*devres), GFP_KERNEL); 2779 if (!devres) 2780 return -ENOMEM; 2781 2782 error = sysfs_create_group(&dev->kobj, grp); 2783 if (error) { 2784 devres_free(devres); 2785 return error; 2786 } 2787 2788 devres->group = grp; 2789 devres_add(dev, devres); 2790 return 0; 2791 } 2792 EXPORT_SYMBOL_GPL(devm_device_add_group); 2793 2794 /** 2795 * devm_device_add_groups - create a bunch of managed attribute groups 2796 * @dev: The device to create the group for 2797 * @groups: The attribute groups to create, NULL terminated 2798 * 2799 * This function creates a bunch of managed attribute groups. If an error 2800 * occurs when creating a group, all previously created groups will be 2801 * removed, unwinding everything back to the original state when this 2802 * function was called. It will explicitly warn and error if any of the 2803 * attribute files being created already exist. 2804 * 2805 * Returns 0 on success or error code from sysfs_create_group on failure. 2806 */ 2807 int devm_device_add_groups(struct device *dev, 2808 const struct attribute_group **groups) 2809 { 2810 union device_attr_group_devres *devres; 2811 int error; 2812 2813 devres = devres_alloc(devm_attr_groups_remove, 2814 sizeof(*devres), GFP_KERNEL); 2815 if (!devres) 2816 return -ENOMEM; 2817 2818 error = sysfs_create_groups(&dev->kobj, groups); 2819 if (error) { 2820 devres_free(devres); 2821 return error; 2822 } 2823 2824 devres->groups = groups; 2825 devres_add(dev, devres); 2826 return 0; 2827 } 2828 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2829 2830 static int device_add_attrs(struct device *dev) 2831 { 2832 const struct class *class = dev->class; 2833 const struct device_type *type = dev->type; 2834 int error; 2835 2836 if (class) { 2837 error = device_add_groups(dev, class->dev_groups); 2838 if (error) 2839 return error; 2840 } 2841 2842 if (type) { 2843 error = device_add_groups(dev, type->groups); 2844 if (error) 2845 goto err_remove_class_groups; 2846 } 2847 2848 error = device_add_groups(dev, dev->groups); 2849 if (error) 2850 goto err_remove_type_groups; 2851 2852 if (device_supports_offline(dev) && !dev->offline_disabled) { 2853 error = device_create_file(dev, &dev_attr_online); 2854 if (error) 2855 goto err_remove_dev_groups; 2856 } 2857 2858 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2859 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2860 if (error) 2861 goto err_remove_dev_online; 2862 } 2863 2864 if (dev_removable_is_valid(dev)) { 2865 error = device_create_file(dev, &dev_attr_removable); 2866 if (error) 2867 goto err_remove_dev_waiting_for_supplier; 2868 } 2869 2870 if (dev_add_physical_location(dev)) { 2871 error = device_add_group(dev, 2872 &dev_attr_physical_location_group); 2873 if (error) 2874 goto err_remove_dev_removable; 2875 } 2876 2877 return 0; 2878 2879 err_remove_dev_removable: 2880 device_remove_file(dev, &dev_attr_removable); 2881 err_remove_dev_waiting_for_supplier: 2882 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2883 err_remove_dev_online: 2884 device_remove_file(dev, &dev_attr_online); 2885 err_remove_dev_groups: 2886 device_remove_groups(dev, dev->groups); 2887 err_remove_type_groups: 2888 if (type) 2889 device_remove_groups(dev, type->groups); 2890 err_remove_class_groups: 2891 if (class) 2892 device_remove_groups(dev, class->dev_groups); 2893 2894 return error; 2895 } 2896 2897 static void device_remove_attrs(struct device *dev) 2898 { 2899 const struct class *class = dev->class; 2900 const struct device_type *type = dev->type; 2901 2902 if (dev->physical_location) { 2903 device_remove_group(dev, &dev_attr_physical_location_group); 2904 kfree(dev->physical_location); 2905 } 2906 2907 device_remove_file(dev, &dev_attr_removable); 2908 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2909 device_remove_file(dev, &dev_attr_online); 2910 device_remove_groups(dev, dev->groups); 2911 2912 if (type) 2913 device_remove_groups(dev, type->groups); 2914 2915 if (class) 2916 device_remove_groups(dev, class->dev_groups); 2917 } 2918 2919 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2920 char *buf) 2921 { 2922 return print_dev_t(buf, dev->devt); 2923 } 2924 static DEVICE_ATTR_RO(dev); 2925 2926 /* /sys/devices/ */ 2927 struct kset *devices_kset; 2928 2929 /** 2930 * devices_kset_move_before - Move device in the devices_kset's list. 2931 * @deva: Device to move. 2932 * @devb: Device @deva should come before. 2933 */ 2934 static void devices_kset_move_before(struct device *deva, struct device *devb) 2935 { 2936 if (!devices_kset) 2937 return; 2938 pr_debug("devices_kset: Moving %s before %s\n", 2939 dev_name(deva), dev_name(devb)); 2940 spin_lock(&devices_kset->list_lock); 2941 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2942 spin_unlock(&devices_kset->list_lock); 2943 } 2944 2945 /** 2946 * devices_kset_move_after - Move device in the devices_kset's list. 2947 * @deva: Device to move 2948 * @devb: Device @deva should come after. 2949 */ 2950 static void devices_kset_move_after(struct device *deva, struct device *devb) 2951 { 2952 if (!devices_kset) 2953 return; 2954 pr_debug("devices_kset: Moving %s after %s\n", 2955 dev_name(deva), dev_name(devb)); 2956 spin_lock(&devices_kset->list_lock); 2957 list_move(&deva->kobj.entry, &devb->kobj.entry); 2958 spin_unlock(&devices_kset->list_lock); 2959 } 2960 2961 /** 2962 * devices_kset_move_last - move the device to the end of devices_kset's list. 2963 * @dev: device to move 2964 */ 2965 void devices_kset_move_last(struct device *dev) 2966 { 2967 if (!devices_kset) 2968 return; 2969 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2970 spin_lock(&devices_kset->list_lock); 2971 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2972 spin_unlock(&devices_kset->list_lock); 2973 } 2974 2975 /** 2976 * device_create_file - create sysfs attribute file for device. 2977 * @dev: device. 2978 * @attr: device attribute descriptor. 2979 */ 2980 int device_create_file(struct device *dev, 2981 const struct device_attribute *attr) 2982 { 2983 int error = 0; 2984 2985 if (dev) { 2986 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2987 "Attribute %s: write permission without 'store'\n", 2988 attr->attr.name); 2989 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2990 "Attribute %s: read permission without 'show'\n", 2991 attr->attr.name); 2992 error = sysfs_create_file(&dev->kobj, &attr->attr); 2993 } 2994 2995 return error; 2996 } 2997 EXPORT_SYMBOL_GPL(device_create_file); 2998 2999 /** 3000 * device_remove_file - remove sysfs attribute file. 3001 * @dev: device. 3002 * @attr: device attribute descriptor. 3003 */ 3004 void device_remove_file(struct device *dev, 3005 const struct device_attribute *attr) 3006 { 3007 if (dev) 3008 sysfs_remove_file(&dev->kobj, &attr->attr); 3009 } 3010 EXPORT_SYMBOL_GPL(device_remove_file); 3011 3012 /** 3013 * device_remove_file_self - remove sysfs attribute file from its own method. 3014 * @dev: device. 3015 * @attr: device attribute descriptor. 3016 * 3017 * See kernfs_remove_self() for details. 3018 */ 3019 bool device_remove_file_self(struct device *dev, 3020 const struct device_attribute *attr) 3021 { 3022 if (dev) 3023 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3024 else 3025 return false; 3026 } 3027 EXPORT_SYMBOL_GPL(device_remove_file_self); 3028 3029 /** 3030 * device_create_bin_file - create sysfs binary attribute file for device. 3031 * @dev: device. 3032 * @attr: device binary attribute descriptor. 3033 */ 3034 int device_create_bin_file(struct device *dev, 3035 const struct bin_attribute *attr) 3036 { 3037 int error = -EINVAL; 3038 if (dev) 3039 error = sysfs_create_bin_file(&dev->kobj, attr); 3040 return error; 3041 } 3042 EXPORT_SYMBOL_GPL(device_create_bin_file); 3043 3044 /** 3045 * device_remove_bin_file - remove sysfs binary attribute file 3046 * @dev: device. 3047 * @attr: device binary attribute descriptor. 3048 */ 3049 void device_remove_bin_file(struct device *dev, 3050 const struct bin_attribute *attr) 3051 { 3052 if (dev) 3053 sysfs_remove_bin_file(&dev->kobj, attr); 3054 } 3055 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3056 3057 static void klist_children_get(struct klist_node *n) 3058 { 3059 struct device_private *p = to_device_private_parent(n); 3060 struct device *dev = p->device; 3061 3062 get_device(dev); 3063 } 3064 3065 static void klist_children_put(struct klist_node *n) 3066 { 3067 struct device_private *p = to_device_private_parent(n); 3068 struct device *dev = p->device; 3069 3070 put_device(dev); 3071 } 3072 3073 /** 3074 * device_initialize - init device structure. 3075 * @dev: device. 3076 * 3077 * This prepares the device for use by other layers by initializing 3078 * its fields. 3079 * It is the first half of device_register(), if called by 3080 * that function, though it can also be called separately, so one 3081 * may use @dev's fields. In particular, get_device()/put_device() 3082 * may be used for reference counting of @dev after calling this 3083 * function. 3084 * 3085 * All fields in @dev must be initialized by the caller to 0, except 3086 * for those explicitly set to some other value. The simplest 3087 * approach is to use kzalloc() to allocate the structure containing 3088 * @dev. 3089 * 3090 * NOTE: Use put_device() to give up your reference instead of freeing 3091 * @dev directly once you have called this function. 3092 */ 3093 void device_initialize(struct device *dev) 3094 { 3095 dev->kobj.kset = devices_kset; 3096 kobject_init(&dev->kobj, &device_ktype); 3097 INIT_LIST_HEAD(&dev->dma_pools); 3098 mutex_init(&dev->mutex); 3099 lockdep_set_novalidate_class(&dev->mutex); 3100 spin_lock_init(&dev->devres_lock); 3101 INIT_LIST_HEAD(&dev->devres_head); 3102 device_pm_init(dev); 3103 set_dev_node(dev, NUMA_NO_NODE); 3104 INIT_LIST_HEAD(&dev->links.consumers); 3105 INIT_LIST_HEAD(&dev->links.suppliers); 3106 INIT_LIST_HEAD(&dev->links.defer_sync); 3107 dev->links.status = DL_DEV_NO_DRIVER; 3108 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3109 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3110 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3111 dev->dma_coherent = dma_default_coherent; 3112 #endif 3113 swiotlb_dev_init(dev); 3114 } 3115 EXPORT_SYMBOL_GPL(device_initialize); 3116 3117 struct kobject *virtual_device_parent(struct device *dev) 3118 { 3119 static struct kobject *virtual_dir = NULL; 3120 3121 if (!virtual_dir) 3122 virtual_dir = kobject_create_and_add("virtual", 3123 &devices_kset->kobj); 3124 3125 return virtual_dir; 3126 } 3127 3128 struct class_dir { 3129 struct kobject kobj; 3130 const struct class *class; 3131 }; 3132 3133 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3134 3135 static void class_dir_release(struct kobject *kobj) 3136 { 3137 struct class_dir *dir = to_class_dir(kobj); 3138 kfree(dir); 3139 } 3140 3141 static const 3142 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3143 { 3144 const struct class_dir *dir = to_class_dir(kobj); 3145 return dir->class->ns_type; 3146 } 3147 3148 static const struct kobj_type class_dir_ktype = { 3149 .release = class_dir_release, 3150 .sysfs_ops = &kobj_sysfs_ops, 3151 .child_ns_type = class_dir_child_ns_type 3152 }; 3153 3154 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3155 struct kobject *parent_kobj) 3156 { 3157 struct class_dir *dir; 3158 int retval; 3159 3160 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3161 if (!dir) 3162 return ERR_PTR(-ENOMEM); 3163 3164 dir->class = sp->class; 3165 kobject_init(&dir->kobj, &class_dir_ktype); 3166 3167 dir->kobj.kset = &sp->glue_dirs; 3168 3169 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3170 if (retval < 0) { 3171 kobject_put(&dir->kobj); 3172 return ERR_PTR(retval); 3173 } 3174 return &dir->kobj; 3175 } 3176 3177 static DEFINE_MUTEX(gdp_mutex); 3178 3179 static struct kobject *get_device_parent(struct device *dev, 3180 struct device *parent) 3181 { 3182 struct subsys_private *sp = class_to_subsys(dev->class); 3183 struct kobject *kobj = NULL; 3184 3185 if (sp) { 3186 struct kobject *parent_kobj; 3187 struct kobject *k; 3188 3189 /* 3190 * If we have no parent, we live in "virtual". 3191 * Class-devices with a non class-device as parent, live 3192 * in a "glue" directory to prevent namespace collisions. 3193 */ 3194 if (parent == NULL) 3195 parent_kobj = virtual_device_parent(dev); 3196 else if (parent->class && !dev->class->ns_type) { 3197 subsys_put(sp); 3198 return &parent->kobj; 3199 } else { 3200 parent_kobj = &parent->kobj; 3201 } 3202 3203 mutex_lock(&gdp_mutex); 3204 3205 /* find our class-directory at the parent and reference it */ 3206 spin_lock(&sp->glue_dirs.list_lock); 3207 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3208 if (k->parent == parent_kobj) { 3209 kobj = kobject_get(k); 3210 break; 3211 } 3212 spin_unlock(&sp->glue_dirs.list_lock); 3213 if (kobj) { 3214 mutex_unlock(&gdp_mutex); 3215 subsys_put(sp); 3216 return kobj; 3217 } 3218 3219 /* or create a new class-directory at the parent device */ 3220 k = class_dir_create_and_add(sp, parent_kobj); 3221 /* do not emit an uevent for this simple "glue" directory */ 3222 mutex_unlock(&gdp_mutex); 3223 subsys_put(sp); 3224 return k; 3225 } 3226 3227 /* subsystems can specify a default root directory for their devices */ 3228 if (!parent && dev->bus) { 3229 struct device *dev_root = bus_get_dev_root(dev->bus); 3230 3231 if (dev_root) { 3232 kobj = &dev_root->kobj; 3233 put_device(dev_root); 3234 return kobj; 3235 } 3236 } 3237 3238 if (parent) 3239 return &parent->kobj; 3240 return NULL; 3241 } 3242 3243 static inline bool live_in_glue_dir(struct kobject *kobj, 3244 struct device *dev) 3245 { 3246 struct subsys_private *sp; 3247 bool retval; 3248 3249 if (!kobj || !dev->class) 3250 return false; 3251 3252 sp = class_to_subsys(dev->class); 3253 if (!sp) 3254 return false; 3255 3256 if (kobj->kset == &sp->glue_dirs) 3257 retval = true; 3258 else 3259 retval = false; 3260 3261 subsys_put(sp); 3262 return retval; 3263 } 3264 3265 static inline struct kobject *get_glue_dir(struct device *dev) 3266 { 3267 return dev->kobj.parent; 3268 } 3269 3270 /** 3271 * kobject_has_children - Returns whether a kobject has children. 3272 * @kobj: the object to test 3273 * 3274 * This will return whether a kobject has other kobjects as children. 3275 * 3276 * It does NOT account for the presence of attribute files, only sub 3277 * directories. It also assumes there is no concurrent addition or 3278 * removal of such children, and thus relies on external locking. 3279 */ 3280 static inline bool kobject_has_children(struct kobject *kobj) 3281 { 3282 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3283 3284 return kobj->sd && kobj->sd->dir.subdirs; 3285 } 3286 3287 /* 3288 * make sure cleaning up dir as the last step, we need to make 3289 * sure .release handler of kobject is run with holding the 3290 * global lock 3291 */ 3292 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3293 { 3294 unsigned int ref; 3295 3296 /* see if we live in a "glue" directory */ 3297 if (!live_in_glue_dir(glue_dir, dev)) 3298 return; 3299 3300 mutex_lock(&gdp_mutex); 3301 /** 3302 * There is a race condition between removing glue directory 3303 * and adding a new device under the glue directory. 3304 * 3305 * CPU1: CPU2: 3306 * 3307 * device_add() 3308 * get_device_parent() 3309 * class_dir_create_and_add() 3310 * kobject_add_internal() 3311 * create_dir() // create glue_dir 3312 * 3313 * device_add() 3314 * get_device_parent() 3315 * kobject_get() // get glue_dir 3316 * 3317 * device_del() 3318 * cleanup_glue_dir() 3319 * kobject_del(glue_dir) 3320 * 3321 * kobject_add() 3322 * kobject_add_internal() 3323 * create_dir() // in glue_dir 3324 * sysfs_create_dir_ns() 3325 * kernfs_create_dir_ns(sd) 3326 * 3327 * sysfs_remove_dir() // glue_dir->sd=NULL 3328 * sysfs_put() // free glue_dir->sd 3329 * 3330 * // sd is freed 3331 * kernfs_new_node(sd) 3332 * kernfs_get(glue_dir) 3333 * kernfs_add_one() 3334 * kernfs_put() 3335 * 3336 * Before CPU1 remove last child device under glue dir, if CPU2 add 3337 * a new device under glue dir, the glue_dir kobject reference count 3338 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3339 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3340 * and sysfs_put(). This result in glue_dir->sd is freed. 3341 * 3342 * Then the CPU2 will see a stale "empty" but still potentially used 3343 * glue dir around in kernfs_new_node(). 3344 * 3345 * In order to avoid this happening, we also should make sure that 3346 * kernfs_node for glue_dir is released in CPU1 only when refcount 3347 * for glue_dir kobj is 1. 3348 */ 3349 ref = kref_read(&glue_dir->kref); 3350 if (!kobject_has_children(glue_dir) && !--ref) 3351 kobject_del(glue_dir); 3352 kobject_put(glue_dir); 3353 mutex_unlock(&gdp_mutex); 3354 } 3355 3356 static int device_add_class_symlinks(struct device *dev) 3357 { 3358 struct device_node *of_node = dev_of_node(dev); 3359 struct subsys_private *sp; 3360 int error; 3361 3362 if (of_node) { 3363 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3364 if (error) 3365 dev_warn(dev, "Error %d creating of_node link\n",error); 3366 /* An error here doesn't warrant bringing down the device */ 3367 } 3368 3369 sp = class_to_subsys(dev->class); 3370 if (!sp) 3371 return 0; 3372 3373 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3374 if (error) 3375 goto out_devnode; 3376 3377 if (dev->parent && device_is_not_partition(dev)) { 3378 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3379 "device"); 3380 if (error) 3381 goto out_subsys; 3382 } 3383 3384 /* link in the class directory pointing to the device */ 3385 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3386 if (error) 3387 goto out_device; 3388 goto exit; 3389 3390 out_device: 3391 sysfs_remove_link(&dev->kobj, "device"); 3392 out_subsys: 3393 sysfs_remove_link(&dev->kobj, "subsystem"); 3394 out_devnode: 3395 sysfs_remove_link(&dev->kobj, "of_node"); 3396 exit: 3397 subsys_put(sp); 3398 return error; 3399 } 3400 3401 static void device_remove_class_symlinks(struct device *dev) 3402 { 3403 struct subsys_private *sp = class_to_subsys(dev->class); 3404 3405 if (dev_of_node(dev)) 3406 sysfs_remove_link(&dev->kobj, "of_node"); 3407 3408 if (!sp) 3409 return; 3410 3411 if (dev->parent && device_is_not_partition(dev)) 3412 sysfs_remove_link(&dev->kobj, "device"); 3413 sysfs_remove_link(&dev->kobj, "subsystem"); 3414 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3415 subsys_put(sp); 3416 } 3417 3418 /** 3419 * dev_set_name - set a device name 3420 * @dev: device 3421 * @fmt: format string for the device's name 3422 */ 3423 int dev_set_name(struct device *dev, const char *fmt, ...) 3424 { 3425 va_list vargs; 3426 int err; 3427 3428 va_start(vargs, fmt); 3429 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3430 va_end(vargs); 3431 return err; 3432 } 3433 EXPORT_SYMBOL_GPL(dev_set_name); 3434 3435 /* select a /sys/dev/ directory for the device */ 3436 static struct kobject *device_to_dev_kobj(struct device *dev) 3437 { 3438 if (is_blockdev(dev)) 3439 return sysfs_dev_block_kobj; 3440 else 3441 return sysfs_dev_char_kobj; 3442 } 3443 3444 static int device_create_sys_dev_entry(struct device *dev) 3445 { 3446 struct kobject *kobj = device_to_dev_kobj(dev); 3447 int error = 0; 3448 char devt_str[15]; 3449 3450 if (kobj) { 3451 format_dev_t(devt_str, dev->devt); 3452 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3453 } 3454 3455 return error; 3456 } 3457 3458 static void device_remove_sys_dev_entry(struct device *dev) 3459 { 3460 struct kobject *kobj = device_to_dev_kobj(dev); 3461 char devt_str[15]; 3462 3463 if (kobj) { 3464 format_dev_t(devt_str, dev->devt); 3465 sysfs_remove_link(kobj, devt_str); 3466 } 3467 } 3468 3469 static int device_private_init(struct device *dev) 3470 { 3471 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3472 if (!dev->p) 3473 return -ENOMEM; 3474 dev->p->device = dev; 3475 klist_init(&dev->p->klist_children, klist_children_get, 3476 klist_children_put); 3477 INIT_LIST_HEAD(&dev->p->deferred_probe); 3478 return 0; 3479 } 3480 3481 /** 3482 * device_add - add device to device hierarchy. 3483 * @dev: device. 3484 * 3485 * This is part 2 of device_register(), though may be called 3486 * separately _iff_ device_initialize() has been called separately. 3487 * 3488 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3489 * to the global and sibling lists for the device, then 3490 * adds it to the other relevant subsystems of the driver model. 3491 * 3492 * Do not call this routine or device_register() more than once for 3493 * any device structure. The driver model core is not designed to work 3494 * with devices that get unregistered and then spring back to life. 3495 * (Among other things, it's very hard to guarantee that all references 3496 * to the previous incarnation of @dev have been dropped.) Allocate 3497 * and register a fresh new struct device instead. 3498 * 3499 * NOTE: _Never_ directly free @dev after calling this function, even 3500 * if it returned an error! Always use put_device() to give up your 3501 * reference instead. 3502 * 3503 * Rule of thumb is: if device_add() succeeds, you should call 3504 * device_del() when you want to get rid of it. If device_add() has 3505 * *not* succeeded, use *only* put_device() to drop the reference 3506 * count. 3507 */ 3508 int device_add(struct device *dev) 3509 { 3510 struct subsys_private *sp; 3511 struct device *parent; 3512 struct kobject *kobj; 3513 struct class_interface *class_intf; 3514 int error = -EINVAL; 3515 struct kobject *glue_dir = NULL; 3516 3517 dev = get_device(dev); 3518 if (!dev) 3519 goto done; 3520 3521 if (!dev->p) { 3522 error = device_private_init(dev); 3523 if (error) 3524 goto done; 3525 } 3526 3527 /* 3528 * for statically allocated devices, which should all be converted 3529 * some day, we need to initialize the name. We prevent reading back 3530 * the name, and force the use of dev_name() 3531 */ 3532 if (dev->init_name) { 3533 error = dev_set_name(dev, "%s", dev->init_name); 3534 dev->init_name = NULL; 3535 } 3536 3537 if (dev_name(dev)) 3538 error = 0; 3539 /* subsystems can specify simple device enumeration */ 3540 else if (dev->bus && dev->bus->dev_name) 3541 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3542 else 3543 error = -EINVAL; 3544 if (error) 3545 goto name_error; 3546 3547 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3548 3549 parent = get_device(dev->parent); 3550 kobj = get_device_parent(dev, parent); 3551 if (IS_ERR(kobj)) { 3552 error = PTR_ERR(kobj); 3553 goto parent_error; 3554 } 3555 if (kobj) 3556 dev->kobj.parent = kobj; 3557 3558 /* use parent numa_node */ 3559 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3560 set_dev_node(dev, dev_to_node(parent)); 3561 3562 /* first, register with generic layer. */ 3563 /* we require the name to be set before, and pass NULL */ 3564 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3565 if (error) { 3566 glue_dir = kobj; 3567 goto Error; 3568 } 3569 3570 /* notify platform of device entry */ 3571 device_platform_notify(dev); 3572 3573 error = device_create_file(dev, &dev_attr_uevent); 3574 if (error) 3575 goto attrError; 3576 3577 error = device_add_class_symlinks(dev); 3578 if (error) 3579 goto SymlinkError; 3580 error = device_add_attrs(dev); 3581 if (error) 3582 goto AttrsError; 3583 error = bus_add_device(dev); 3584 if (error) 3585 goto BusError; 3586 error = dpm_sysfs_add(dev); 3587 if (error) 3588 goto DPMError; 3589 device_pm_add(dev); 3590 3591 if (MAJOR(dev->devt)) { 3592 error = device_create_file(dev, &dev_attr_dev); 3593 if (error) 3594 goto DevAttrError; 3595 3596 error = device_create_sys_dev_entry(dev); 3597 if (error) 3598 goto SysEntryError; 3599 3600 devtmpfs_create_node(dev); 3601 } 3602 3603 /* Notify clients of device addition. This call must come 3604 * after dpm_sysfs_add() and before kobject_uevent(). 3605 */ 3606 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3607 kobject_uevent(&dev->kobj, KOBJ_ADD); 3608 3609 /* 3610 * Check if any of the other devices (consumers) have been waiting for 3611 * this device (supplier) to be added so that they can create a device 3612 * link to it. 3613 * 3614 * This needs to happen after device_pm_add() because device_link_add() 3615 * requires the supplier be registered before it's called. 3616 * 3617 * But this also needs to happen before bus_probe_device() to make sure 3618 * waiting consumers can link to it before the driver is bound to the 3619 * device and the driver sync_state callback is called for this device. 3620 */ 3621 if (dev->fwnode && !dev->fwnode->dev) { 3622 dev->fwnode->dev = dev; 3623 fw_devlink_link_device(dev); 3624 } 3625 3626 bus_probe_device(dev); 3627 3628 /* 3629 * If all driver registration is done and a newly added device doesn't 3630 * match with any driver, don't block its consumers from probing in 3631 * case the consumer device is able to operate without this supplier. 3632 */ 3633 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3634 fw_devlink_unblock_consumers(dev); 3635 3636 if (parent) 3637 klist_add_tail(&dev->p->knode_parent, 3638 &parent->p->klist_children); 3639 3640 sp = class_to_subsys(dev->class); 3641 if (sp) { 3642 mutex_lock(&sp->mutex); 3643 /* tie the class to the device */ 3644 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3645 3646 /* notify any interfaces that the device is here */ 3647 list_for_each_entry(class_intf, &sp->interfaces, node) 3648 if (class_intf->add_dev) 3649 class_intf->add_dev(dev); 3650 mutex_unlock(&sp->mutex); 3651 subsys_put(sp); 3652 } 3653 done: 3654 put_device(dev); 3655 return error; 3656 SysEntryError: 3657 if (MAJOR(dev->devt)) 3658 device_remove_file(dev, &dev_attr_dev); 3659 DevAttrError: 3660 device_pm_remove(dev); 3661 dpm_sysfs_remove(dev); 3662 DPMError: 3663 dev->driver = NULL; 3664 bus_remove_device(dev); 3665 BusError: 3666 device_remove_attrs(dev); 3667 AttrsError: 3668 device_remove_class_symlinks(dev); 3669 SymlinkError: 3670 device_remove_file(dev, &dev_attr_uevent); 3671 attrError: 3672 device_platform_notify_remove(dev); 3673 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3674 glue_dir = get_glue_dir(dev); 3675 kobject_del(&dev->kobj); 3676 Error: 3677 cleanup_glue_dir(dev, glue_dir); 3678 parent_error: 3679 put_device(parent); 3680 name_error: 3681 kfree(dev->p); 3682 dev->p = NULL; 3683 goto done; 3684 } 3685 EXPORT_SYMBOL_GPL(device_add); 3686 3687 /** 3688 * device_register - register a device with the system. 3689 * @dev: pointer to the device structure 3690 * 3691 * This happens in two clean steps - initialize the device 3692 * and add it to the system. The two steps can be called 3693 * separately, but this is the easiest and most common. 3694 * I.e. you should only call the two helpers separately if 3695 * have a clearly defined need to use and refcount the device 3696 * before it is added to the hierarchy. 3697 * 3698 * For more information, see the kerneldoc for device_initialize() 3699 * and device_add(). 3700 * 3701 * NOTE: _Never_ directly free @dev after calling this function, even 3702 * if it returned an error! Always use put_device() to give up the 3703 * reference initialized in this function instead. 3704 */ 3705 int device_register(struct device *dev) 3706 { 3707 device_initialize(dev); 3708 return device_add(dev); 3709 } 3710 EXPORT_SYMBOL_GPL(device_register); 3711 3712 /** 3713 * get_device - increment reference count for device. 3714 * @dev: device. 3715 * 3716 * This simply forwards the call to kobject_get(), though 3717 * we do take care to provide for the case that we get a NULL 3718 * pointer passed in. 3719 */ 3720 struct device *get_device(struct device *dev) 3721 { 3722 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3723 } 3724 EXPORT_SYMBOL_GPL(get_device); 3725 3726 /** 3727 * put_device - decrement reference count. 3728 * @dev: device in question. 3729 */ 3730 void put_device(struct device *dev) 3731 { 3732 /* might_sleep(); */ 3733 if (dev) 3734 kobject_put(&dev->kobj); 3735 } 3736 EXPORT_SYMBOL_GPL(put_device); 3737 3738 bool kill_device(struct device *dev) 3739 { 3740 /* 3741 * Require the device lock and set the "dead" flag to guarantee that 3742 * the update behavior is consistent with the other bitfields near 3743 * it and that we cannot have an asynchronous probe routine trying 3744 * to run while we are tearing out the bus/class/sysfs from 3745 * underneath the device. 3746 */ 3747 device_lock_assert(dev); 3748 3749 if (dev->p->dead) 3750 return false; 3751 dev->p->dead = true; 3752 return true; 3753 } 3754 EXPORT_SYMBOL_GPL(kill_device); 3755 3756 /** 3757 * device_del - delete device from system. 3758 * @dev: device. 3759 * 3760 * This is the first part of the device unregistration 3761 * sequence. This removes the device from the lists we control 3762 * from here, has it removed from the other driver model 3763 * subsystems it was added to in device_add(), and removes it 3764 * from the kobject hierarchy. 3765 * 3766 * NOTE: this should be called manually _iff_ device_add() was 3767 * also called manually. 3768 */ 3769 void device_del(struct device *dev) 3770 { 3771 struct subsys_private *sp; 3772 struct device *parent = dev->parent; 3773 struct kobject *glue_dir = NULL; 3774 struct class_interface *class_intf; 3775 unsigned int noio_flag; 3776 3777 device_lock(dev); 3778 kill_device(dev); 3779 device_unlock(dev); 3780 3781 if (dev->fwnode && dev->fwnode->dev == dev) 3782 dev->fwnode->dev = NULL; 3783 3784 /* Notify clients of device removal. This call must come 3785 * before dpm_sysfs_remove(). 3786 */ 3787 noio_flag = memalloc_noio_save(); 3788 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3789 3790 dpm_sysfs_remove(dev); 3791 if (parent) 3792 klist_del(&dev->p->knode_parent); 3793 if (MAJOR(dev->devt)) { 3794 devtmpfs_delete_node(dev); 3795 device_remove_sys_dev_entry(dev); 3796 device_remove_file(dev, &dev_attr_dev); 3797 } 3798 3799 sp = class_to_subsys(dev->class); 3800 if (sp) { 3801 device_remove_class_symlinks(dev); 3802 3803 mutex_lock(&sp->mutex); 3804 /* notify any interfaces that the device is now gone */ 3805 list_for_each_entry(class_intf, &sp->interfaces, node) 3806 if (class_intf->remove_dev) 3807 class_intf->remove_dev(dev); 3808 /* remove the device from the class list */ 3809 klist_del(&dev->p->knode_class); 3810 mutex_unlock(&sp->mutex); 3811 subsys_put(sp); 3812 } 3813 device_remove_file(dev, &dev_attr_uevent); 3814 device_remove_attrs(dev); 3815 bus_remove_device(dev); 3816 device_pm_remove(dev); 3817 driver_deferred_probe_del(dev); 3818 device_platform_notify_remove(dev); 3819 device_links_purge(dev); 3820 3821 /* 3822 * If a device does not have a driver attached, we need to clean 3823 * up any managed resources. We do this in device_release(), but 3824 * it's never called (and we leak the device) if a managed 3825 * resource holds a reference to the device. So release all 3826 * managed resources here, like we do in driver_detach(). We 3827 * still need to do so again in device_release() in case someone 3828 * adds a new resource after this point, though. 3829 */ 3830 devres_release_all(dev); 3831 3832 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3833 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3834 glue_dir = get_glue_dir(dev); 3835 kobject_del(&dev->kobj); 3836 cleanup_glue_dir(dev, glue_dir); 3837 memalloc_noio_restore(noio_flag); 3838 put_device(parent); 3839 } 3840 EXPORT_SYMBOL_GPL(device_del); 3841 3842 /** 3843 * device_unregister - unregister device from system. 3844 * @dev: device going away. 3845 * 3846 * We do this in two parts, like we do device_register(). First, 3847 * we remove it from all the subsystems with device_del(), then 3848 * we decrement the reference count via put_device(). If that 3849 * is the final reference count, the device will be cleaned up 3850 * via device_release() above. Otherwise, the structure will 3851 * stick around until the final reference to the device is dropped. 3852 */ 3853 void device_unregister(struct device *dev) 3854 { 3855 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3856 device_del(dev); 3857 put_device(dev); 3858 } 3859 EXPORT_SYMBOL_GPL(device_unregister); 3860 3861 static struct device *prev_device(struct klist_iter *i) 3862 { 3863 struct klist_node *n = klist_prev(i); 3864 struct device *dev = NULL; 3865 struct device_private *p; 3866 3867 if (n) { 3868 p = to_device_private_parent(n); 3869 dev = p->device; 3870 } 3871 return dev; 3872 } 3873 3874 static struct device *next_device(struct klist_iter *i) 3875 { 3876 struct klist_node *n = klist_next(i); 3877 struct device *dev = NULL; 3878 struct device_private *p; 3879 3880 if (n) { 3881 p = to_device_private_parent(n); 3882 dev = p->device; 3883 } 3884 return dev; 3885 } 3886 3887 /** 3888 * device_get_devnode - path of device node file 3889 * @dev: device 3890 * @mode: returned file access mode 3891 * @uid: returned file owner 3892 * @gid: returned file group 3893 * @tmp: possibly allocated string 3894 * 3895 * Return the relative path of a possible device node. 3896 * Non-default names may need to allocate a memory to compose 3897 * a name. This memory is returned in tmp and needs to be 3898 * freed by the caller. 3899 */ 3900 const char *device_get_devnode(const struct device *dev, 3901 umode_t *mode, kuid_t *uid, kgid_t *gid, 3902 const char **tmp) 3903 { 3904 char *s; 3905 3906 *tmp = NULL; 3907 3908 /* the device type may provide a specific name */ 3909 if (dev->type && dev->type->devnode) 3910 *tmp = dev->type->devnode(dev, mode, uid, gid); 3911 if (*tmp) 3912 return *tmp; 3913 3914 /* the class may provide a specific name */ 3915 if (dev->class && dev->class->devnode) 3916 *tmp = dev->class->devnode(dev, mode); 3917 if (*tmp) 3918 return *tmp; 3919 3920 /* return name without allocation, tmp == NULL */ 3921 if (strchr(dev_name(dev), '!') == NULL) 3922 return dev_name(dev); 3923 3924 /* replace '!' in the name with '/' */ 3925 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3926 if (!s) 3927 return NULL; 3928 return *tmp = s; 3929 } 3930 3931 /** 3932 * device_for_each_child - device child iterator. 3933 * @parent: parent struct device. 3934 * @fn: function to be called for each device. 3935 * @data: data for the callback. 3936 * 3937 * Iterate over @parent's child devices, and call @fn for each, 3938 * passing it @data. 3939 * 3940 * We check the return of @fn each time. If it returns anything 3941 * other than 0, we break out and return that value. 3942 */ 3943 int device_for_each_child(struct device *parent, void *data, 3944 int (*fn)(struct device *dev, void *data)) 3945 { 3946 struct klist_iter i; 3947 struct device *child; 3948 int error = 0; 3949 3950 if (!parent->p) 3951 return 0; 3952 3953 klist_iter_init(&parent->p->klist_children, &i); 3954 while (!error && (child = next_device(&i))) 3955 error = fn(child, data); 3956 klist_iter_exit(&i); 3957 return error; 3958 } 3959 EXPORT_SYMBOL_GPL(device_for_each_child); 3960 3961 /** 3962 * device_for_each_child_reverse - device child iterator in reversed order. 3963 * @parent: parent struct device. 3964 * @fn: function to be called for each device. 3965 * @data: data for the callback. 3966 * 3967 * Iterate over @parent's child devices, and call @fn for each, 3968 * passing it @data. 3969 * 3970 * We check the return of @fn each time. If it returns anything 3971 * other than 0, we break out and return that value. 3972 */ 3973 int device_for_each_child_reverse(struct device *parent, void *data, 3974 int (*fn)(struct device *dev, void *data)) 3975 { 3976 struct klist_iter i; 3977 struct device *child; 3978 int error = 0; 3979 3980 if (!parent->p) 3981 return 0; 3982 3983 klist_iter_init(&parent->p->klist_children, &i); 3984 while ((child = prev_device(&i)) && !error) 3985 error = fn(child, data); 3986 klist_iter_exit(&i); 3987 return error; 3988 } 3989 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3990 3991 /** 3992 * device_find_child - device iterator for locating a particular device. 3993 * @parent: parent struct device 3994 * @match: Callback function to check device 3995 * @data: Data to pass to match function 3996 * 3997 * This is similar to the device_for_each_child() function above, but it 3998 * returns a reference to a device that is 'found' for later use, as 3999 * determined by the @match callback. 4000 * 4001 * The callback should return 0 if the device doesn't match and non-zero 4002 * if it does. If the callback returns non-zero and a reference to the 4003 * current device can be obtained, this function will return to the caller 4004 * and not iterate over any more devices. 4005 * 4006 * NOTE: you will need to drop the reference with put_device() after use. 4007 */ 4008 struct device *device_find_child(struct device *parent, void *data, 4009 int (*match)(struct device *dev, void *data)) 4010 { 4011 struct klist_iter i; 4012 struct device *child; 4013 4014 if (!parent) 4015 return NULL; 4016 4017 klist_iter_init(&parent->p->klist_children, &i); 4018 while ((child = next_device(&i))) 4019 if (match(child, data) && get_device(child)) 4020 break; 4021 klist_iter_exit(&i); 4022 return child; 4023 } 4024 EXPORT_SYMBOL_GPL(device_find_child); 4025 4026 /** 4027 * device_find_child_by_name - device iterator for locating a child device. 4028 * @parent: parent struct device 4029 * @name: name of the child device 4030 * 4031 * This is similar to the device_find_child() function above, but it 4032 * returns a reference to a device that has the name @name. 4033 * 4034 * NOTE: you will need to drop the reference with put_device() after use. 4035 */ 4036 struct device *device_find_child_by_name(struct device *parent, 4037 const char *name) 4038 { 4039 struct klist_iter i; 4040 struct device *child; 4041 4042 if (!parent) 4043 return NULL; 4044 4045 klist_iter_init(&parent->p->klist_children, &i); 4046 while ((child = next_device(&i))) 4047 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4048 break; 4049 klist_iter_exit(&i); 4050 return child; 4051 } 4052 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4053 4054 static int match_any(struct device *dev, void *unused) 4055 { 4056 return 1; 4057 } 4058 4059 /** 4060 * device_find_any_child - device iterator for locating a child device, if any. 4061 * @parent: parent struct device 4062 * 4063 * This is similar to the device_find_child() function above, but it 4064 * returns a reference to a child device, if any. 4065 * 4066 * NOTE: you will need to drop the reference with put_device() after use. 4067 */ 4068 struct device *device_find_any_child(struct device *parent) 4069 { 4070 return device_find_child(parent, NULL, match_any); 4071 } 4072 EXPORT_SYMBOL_GPL(device_find_any_child); 4073 4074 int __init devices_init(void) 4075 { 4076 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4077 if (!devices_kset) 4078 return -ENOMEM; 4079 dev_kobj = kobject_create_and_add("dev", NULL); 4080 if (!dev_kobj) 4081 goto dev_kobj_err; 4082 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4083 if (!sysfs_dev_block_kobj) 4084 goto block_kobj_err; 4085 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4086 if (!sysfs_dev_char_kobj) 4087 goto char_kobj_err; 4088 4089 return 0; 4090 4091 char_kobj_err: 4092 kobject_put(sysfs_dev_block_kobj); 4093 block_kobj_err: 4094 kobject_put(dev_kobj); 4095 dev_kobj_err: 4096 kset_unregister(devices_kset); 4097 return -ENOMEM; 4098 } 4099 4100 static int device_check_offline(struct device *dev, void *not_used) 4101 { 4102 int ret; 4103 4104 ret = device_for_each_child(dev, NULL, device_check_offline); 4105 if (ret) 4106 return ret; 4107 4108 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4109 } 4110 4111 /** 4112 * device_offline - Prepare the device for hot-removal. 4113 * @dev: Device to be put offline. 4114 * 4115 * Execute the device bus type's .offline() callback, if present, to prepare 4116 * the device for a subsequent hot-removal. If that succeeds, the device must 4117 * not be used until either it is removed or its bus type's .online() callback 4118 * is executed. 4119 * 4120 * Call under device_hotplug_lock. 4121 */ 4122 int device_offline(struct device *dev) 4123 { 4124 int ret; 4125 4126 if (dev->offline_disabled) 4127 return -EPERM; 4128 4129 ret = device_for_each_child(dev, NULL, device_check_offline); 4130 if (ret) 4131 return ret; 4132 4133 device_lock(dev); 4134 if (device_supports_offline(dev)) { 4135 if (dev->offline) { 4136 ret = 1; 4137 } else { 4138 ret = dev->bus->offline(dev); 4139 if (!ret) { 4140 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4141 dev->offline = true; 4142 } 4143 } 4144 } 4145 device_unlock(dev); 4146 4147 return ret; 4148 } 4149 4150 /** 4151 * device_online - Put the device back online after successful device_offline(). 4152 * @dev: Device to be put back online. 4153 * 4154 * If device_offline() has been successfully executed for @dev, but the device 4155 * has not been removed subsequently, execute its bus type's .online() callback 4156 * to indicate that the device can be used again. 4157 * 4158 * Call under device_hotplug_lock. 4159 */ 4160 int device_online(struct device *dev) 4161 { 4162 int ret = 0; 4163 4164 device_lock(dev); 4165 if (device_supports_offline(dev)) { 4166 if (dev->offline) { 4167 ret = dev->bus->online(dev); 4168 if (!ret) { 4169 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4170 dev->offline = false; 4171 } 4172 } else { 4173 ret = 1; 4174 } 4175 } 4176 device_unlock(dev); 4177 4178 return ret; 4179 } 4180 4181 struct root_device { 4182 struct device dev; 4183 struct module *owner; 4184 }; 4185 4186 static inline struct root_device *to_root_device(struct device *d) 4187 { 4188 return container_of(d, struct root_device, dev); 4189 } 4190 4191 static void root_device_release(struct device *dev) 4192 { 4193 kfree(to_root_device(dev)); 4194 } 4195 4196 /** 4197 * __root_device_register - allocate and register a root device 4198 * @name: root device name 4199 * @owner: owner module of the root device, usually THIS_MODULE 4200 * 4201 * This function allocates a root device and registers it 4202 * using device_register(). In order to free the returned 4203 * device, use root_device_unregister(). 4204 * 4205 * Root devices are dummy devices which allow other devices 4206 * to be grouped under /sys/devices. Use this function to 4207 * allocate a root device and then use it as the parent of 4208 * any device which should appear under /sys/devices/{name} 4209 * 4210 * The /sys/devices/{name} directory will also contain a 4211 * 'module' symlink which points to the @owner directory 4212 * in sysfs. 4213 * 4214 * Returns &struct device pointer on success, or ERR_PTR() on error. 4215 * 4216 * Note: You probably want to use root_device_register(). 4217 */ 4218 struct device *__root_device_register(const char *name, struct module *owner) 4219 { 4220 struct root_device *root; 4221 int err = -ENOMEM; 4222 4223 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4224 if (!root) 4225 return ERR_PTR(err); 4226 4227 err = dev_set_name(&root->dev, "%s", name); 4228 if (err) { 4229 kfree(root); 4230 return ERR_PTR(err); 4231 } 4232 4233 root->dev.release = root_device_release; 4234 4235 err = device_register(&root->dev); 4236 if (err) { 4237 put_device(&root->dev); 4238 return ERR_PTR(err); 4239 } 4240 4241 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4242 if (owner) { 4243 struct module_kobject *mk = &owner->mkobj; 4244 4245 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4246 if (err) { 4247 device_unregister(&root->dev); 4248 return ERR_PTR(err); 4249 } 4250 root->owner = owner; 4251 } 4252 #endif 4253 4254 return &root->dev; 4255 } 4256 EXPORT_SYMBOL_GPL(__root_device_register); 4257 4258 /** 4259 * root_device_unregister - unregister and free a root device 4260 * @dev: device going away 4261 * 4262 * This function unregisters and cleans up a device that was created by 4263 * root_device_register(). 4264 */ 4265 void root_device_unregister(struct device *dev) 4266 { 4267 struct root_device *root = to_root_device(dev); 4268 4269 if (root->owner) 4270 sysfs_remove_link(&root->dev.kobj, "module"); 4271 4272 device_unregister(dev); 4273 } 4274 EXPORT_SYMBOL_GPL(root_device_unregister); 4275 4276 4277 static void device_create_release(struct device *dev) 4278 { 4279 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4280 kfree(dev); 4281 } 4282 4283 static __printf(6, 0) struct device * 4284 device_create_groups_vargs(const struct class *class, struct device *parent, 4285 dev_t devt, void *drvdata, 4286 const struct attribute_group **groups, 4287 const char *fmt, va_list args) 4288 { 4289 struct device *dev = NULL; 4290 int retval = -ENODEV; 4291 4292 if (IS_ERR_OR_NULL(class)) 4293 goto error; 4294 4295 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4296 if (!dev) { 4297 retval = -ENOMEM; 4298 goto error; 4299 } 4300 4301 device_initialize(dev); 4302 dev->devt = devt; 4303 dev->class = class; 4304 dev->parent = parent; 4305 dev->groups = groups; 4306 dev->release = device_create_release; 4307 dev_set_drvdata(dev, drvdata); 4308 4309 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4310 if (retval) 4311 goto error; 4312 4313 retval = device_add(dev); 4314 if (retval) 4315 goto error; 4316 4317 return dev; 4318 4319 error: 4320 put_device(dev); 4321 return ERR_PTR(retval); 4322 } 4323 4324 /** 4325 * device_create - creates a device and registers it with sysfs 4326 * @class: pointer to the struct class that this device should be registered to 4327 * @parent: pointer to the parent struct device of this new device, if any 4328 * @devt: the dev_t for the char device to be added 4329 * @drvdata: the data to be added to the device for callbacks 4330 * @fmt: string for the device's name 4331 * 4332 * This function can be used by char device classes. A struct device 4333 * will be created in sysfs, registered to the specified class. 4334 * 4335 * A "dev" file will be created, showing the dev_t for the device, if 4336 * the dev_t is not 0,0. 4337 * If a pointer to a parent struct device is passed in, the newly created 4338 * struct device will be a child of that device in sysfs. 4339 * The pointer to the struct device will be returned from the call. 4340 * Any further sysfs files that might be required can be created using this 4341 * pointer. 4342 * 4343 * Returns &struct device pointer on success, or ERR_PTR() on error. 4344 */ 4345 struct device *device_create(const struct class *class, struct device *parent, 4346 dev_t devt, void *drvdata, const char *fmt, ...) 4347 { 4348 va_list vargs; 4349 struct device *dev; 4350 4351 va_start(vargs, fmt); 4352 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4353 fmt, vargs); 4354 va_end(vargs); 4355 return dev; 4356 } 4357 EXPORT_SYMBOL_GPL(device_create); 4358 4359 /** 4360 * device_create_with_groups - creates a device and registers it with sysfs 4361 * @class: pointer to the struct class that this device should be registered to 4362 * @parent: pointer to the parent struct device of this new device, if any 4363 * @devt: the dev_t for the char device to be added 4364 * @drvdata: the data to be added to the device for callbacks 4365 * @groups: NULL-terminated list of attribute groups to be created 4366 * @fmt: string for the device's name 4367 * 4368 * This function can be used by char device classes. A struct device 4369 * will be created in sysfs, registered to the specified class. 4370 * Additional attributes specified in the groups parameter will also 4371 * be created automatically. 4372 * 4373 * A "dev" file will be created, showing the dev_t for the device, if 4374 * the dev_t is not 0,0. 4375 * If a pointer to a parent struct device is passed in, the newly created 4376 * struct device will be a child of that device in sysfs. 4377 * The pointer to the struct device will be returned from the call. 4378 * Any further sysfs files that might be required can be created using this 4379 * pointer. 4380 * 4381 * Returns &struct device pointer on success, or ERR_PTR() on error. 4382 */ 4383 struct device *device_create_with_groups(const struct class *class, 4384 struct device *parent, dev_t devt, 4385 void *drvdata, 4386 const struct attribute_group **groups, 4387 const char *fmt, ...) 4388 { 4389 va_list vargs; 4390 struct device *dev; 4391 4392 va_start(vargs, fmt); 4393 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4394 fmt, vargs); 4395 va_end(vargs); 4396 return dev; 4397 } 4398 EXPORT_SYMBOL_GPL(device_create_with_groups); 4399 4400 /** 4401 * device_destroy - removes a device that was created with device_create() 4402 * @class: pointer to the struct class that this device was registered with 4403 * @devt: the dev_t of the device that was previously registered 4404 * 4405 * This call unregisters and cleans up a device that was created with a 4406 * call to device_create(). 4407 */ 4408 void device_destroy(const struct class *class, dev_t devt) 4409 { 4410 struct device *dev; 4411 4412 dev = class_find_device_by_devt(class, devt); 4413 if (dev) { 4414 put_device(dev); 4415 device_unregister(dev); 4416 } 4417 } 4418 EXPORT_SYMBOL_GPL(device_destroy); 4419 4420 /** 4421 * device_rename - renames a device 4422 * @dev: the pointer to the struct device to be renamed 4423 * @new_name: the new name of the device 4424 * 4425 * It is the responsibility of the caller to provide mutual 4426 * exclusion between two different calls of device_rename 4427 * on the same device to ensure that new_name is valid and 4428 * won't conflict with other devices. 4429 * 4430 * Note: given that some subsystems (networking and infiniband) use this 4431 * function, with no immediate plans for this to change, we cannot assume or 4432 * require that this function not be called at all. 4433 * 4434 * However, if you're writing new code, do not call this function. The following 4435 * text from Kay Sievers offers some insight: 4436 * 4437 * Renaming devices is racy at many levels, symlinks and other stuff are not 4438 * replaced atomically, and you get a "move" uevent, but it's not easy to 4439 * connect the event to the old and new device. Device nodes are not renamed at 4440 * all, there isn't even support for that in the kernel now. 4441 * 4442 * In the meantime, during renaming, your target name might be taken by another 4443 * driver, creating conflicts. Or the old name is taken directly after you 4444 * renamed it -- then you get events for the same DEVPATH, before you even see 4445 * the "move" event. It's just a mess, and nothing new should ever rely on 4446 * kernel device renaming. Besides that, it's not even implemented now for 4447 * other things than (driver-core wise very simple) network devices. 4448 * 4449 * Make up a "real" name in the driver before you register anything, or add 4450 * some other attributes for userspace to find the device, or use udev to add 4451 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4452 * don't even want to get into that and try to implement the missing pieces in 4453 * the core. We really have other pieces to fix in the driver core mess. :) 4454 */ 4455 int device_rename(struct device *dev, const char *new_name) 4456 { 4457 struct kobject *kobj = &dev->kobj; 4458 char *old_device_name = NULL; 4459 int error; 4460 4461 dev = get_device(dev); 4462 if (!dev) 4463 return -EINVAL; 4464 4465 dev_dbg(dev, "renaming to %s\n", new_name); 4466 4467 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4468 if (!old_device_name) { 4469 error = -ENOMEM; 4470 goto out; 4471 } 4472 4473 if (dev->class) { 4474 struct subsys_private *sp = class_to_subsys(dev->class); 4475 4476 if (!sp) { 4477 error = -EINVAL; 4478 goto out; 4479 } 4480 4481 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4482 new_name, kobject_namespace(kobj)); 4483 subsys_put(sp); 4484 if (error) 4485 goto out; 4486 } 4487 4488 error = kobject_rename(kobj, new_name); 4489 if (error) 4490 goto out; 4491 4492 out: 4493 put_device(dev); 4494 4495 kfree(old_device_name); 4496 4497 return error; 4498 } 4499 EXPORT_SYMBOL_GPL(device_rename); 4500 4501 static int device_move_class_links(struct device *dev, 4502 struct device *old_parent, 4503 struct device *new_parent) 4504 { 4505 int error = 0; 4506 4507 if (old_parent) 4508 sysfs_remove_link(&dev->kobj, "device"); 4509 if (new_parent) 4510 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4511 "device"); 4512 return error; 4513 } 4514 4515 /** 4516 * device_move - moves a device to a new parent 4517 * @dev: the pointer to the struct device to be moved 4518 * @new_parent: the new parent of the device (can be NULL) 4519 * @dpm_order: how to reorder the dpm_list 4520 */ 4521 int device_move(struct device *dev, struct device *new_parent, 4522 enum dpm_order dpm_order) 4523 { 4524 int error; 4525 struct device *old_parent; 4526 struct kobject *new_parent_kobj; 4527 4528 dev = get_device(dev); 4529 if (!dev) 4530 return -EINVAL; 4531 4532 device_pm_lock(); 4533 new_parent = get_device(new_parent); 4534 new_parent_kobj = get_device_parent(dev, new_parent); 4535 if (IS_ERR(new_parent_kobj)) { 4536 error = PTR_ERR(new_parent_kobj); 4537 put_device(new_parent); 4538 goto out; 4539 } 4540 4541 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4542 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4543 error = kobject_move(&dev->kobj, new_parent_kobj); 4544 if (error) { 4545 cleanup_glue_dir(dev, new_parent_kobj); 4546 put_device(new_parent); 4547 goto out; 4548 } 4549 old_parent = dev->parent; 4550 dev->parent = new_parent; 4551 if (old_parent) 4552 klist_remove(&dev->p->knode_parent); 4553 if (new_parent) { 4554 klist_add_tail(&dev->p->knode_parent, 4555 &new_parent->p->klist_children); 4556 set_dev_node(dev, dev_to_node(new_parent)); 4557 } 4558 4559 if (dev->class) { 4560 error = device_move_class_links(dev, old_parent, new_parent); 4561 if (error) { 4562 /* We ignore errors on cleanup since we're hosed anyway... */ 4563 device_move_class_links(dev, new_parent, old_parent); 4564 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4565 if (new_parent) 4566 klist_remove(&dev->p->knode_parent); 4567 dev->parent = old_parent; 4568 if (old_parent) { 4569 klist_add_tail(&dev->p->knode_parent, 4570 &old_parent->p->klist_children); 4571 set_dev_node(dev, dev_to_node(old_parent)); 4572 } 4573 } 4574 cleanup_glue_dir(dev, new_parent_kobj); 4575 put_device(new_parent); 4576 goto out; 4577 } 4578 } 4579 switch (dpm_order) { 4580 case DPM_ORDER_NONE: 4581 break; 4582 case DPM_ORDER_DEV_AFTER_PARENT: 4583 device_pm_move_after(dev, new_parent); 4584 devices_kset_move_after(dev, new_parent); 4585 break; 4586 case DPM_ORDER_PARENT_BEFORE_DEV: 4587 device_pm_move_before(new_parent, dev); 4588 devices_kset_move_before(new_parent, dev); 4589 break; 4590 case DPM_ORDER_DEV_LAST: 4591 device_pm_move_last(dev); 4592 devices_kset_move_last(dev); 4593 break; 4594 } 4595 4596 put_device(old_parent); 4597 out: 4598 device_pm_unlock(); 4599 put_device(dev); 4600 return error; 4601 } 4602 EXPORT_SYMBOL_GPL(device_move); 4603 4604 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4605 kgid_t kgid) 4606 { 4607 struct kobject *kobj = &dev->kobj; 4608 const struct class *class = dev->class; 4609 const struct device_type *type = dev->type; 4610 int error; 4611 4612 if (class) { 4613 /* 4614 * Change the device groups of the device class for @dev to 4615 * @kuid/@kgid. 4616 */ 4617 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4618 kgid); 4619 if (error) 4620 return error; 4621 } 4622 4623 if (type) { 4624 /* 4625 * Change the device groups of the device type for @dev to 4626 * @kuid/@kgid. 4627 */ 4628 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4629 kgid); 4630 if (error) 4631 return error; 4632 } 4633 4634 /* Change the device groups of @dev to @kuid/@kgid. */ 4635 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4636 if (error) 4637 return error; 4638 4639 if (device_supports_offline(dev) && !dev->offline_disabled) { 4640 /* Change online device attributes of @dev to @kuid/@kgid. */ 4641 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4642 kuid, kgid); 4643 if (error) 4644 return error; 4645 } 4646 4647 return 0; 4648 } 4649 4650 /** 4651 * device_change_owner - change the owner of an existing device. 4652 * @dev: device. 4653 * @kuid: new owner's kuid 4654 * @kgid: new owner's kgid 4655 * 4656 * This changes the owner of @dev and its corresponding sysfs entries to 4657 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4658 * core. 4659 * 4660 * Returns 0 on success or error code on failure. 4661 */ 4662 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4663 { 4664 int error; 4665 struct kobject *kobj = &dev->kobj; 4666 struct subsys_private *sp; 4667 4668 dev = get_device(dev); 4669 if (!dev) 4670 return -EINVAL; 4671 4672 /* 4673 * Change the kobject and the default attributes and groups of the 4674 * ktype associated with it to @kuid/@kgid. 4675 */ 4676 error = sysfs_change_owner(kobj, kuid, kgid); 4677 if (error) 4678 goto out; 4679 4680 /* 4681 * Change the uevent file for @dev to the new owner. The uevent file 4682 * was created in a separate step when @dev got added and we mirror 4683 * that step here. 4684 */ 4685 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4686 kgid); 4687 if (error) 4688 goto out; 4689 4690 /* 4691 * Change the device groups, the device groups associated with the 4692 * device class, and the groups associated with the device type of @dev 4693 * to @kuid/@kgid. 4694 */ 4695 error = device_attrs_change_owner(dev, kuid, kgid); 4696 if (error) 4697 goto out; 4698 4699 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4700 if (error) 4701 goto out; 4702 4703 /* 4704 * Change the owner of the symlink located in the class directory of 4705 * the device class associated with @dev which points to the actual 4706 * directory entry for @dev to @kuid/@kgid. This ensures that the 4707 * symlink shows the same permissions as its target. 4708 */ 4709 sp = class_to_subsys(dev->class); 4710 if (!sp) { 4711 error = -EINVAL; 4712 goto out; 4713 } 4714 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4715 subsys_put(sp); 4716 4717 out: 4718 put_device(dev); 4719 return error; 4720 } 4721 EXPORT_SYMBOL_GPL(device_change_owner); 4722 4723 /** 4724 * device_shutdown - call ->shutdown() on each device to shutdown. 4725 */ 4726 void device_shutdown(void) 4727 { 4728 struct device *dev, *parent; 4729 4730 wait_for_device_probe(); 4731 device_block_probing(); 4732 4733 cpufreq_suspend(); 4734 4735 spin_lock(&devices_kset->list_lock); 4736 /* 4737 * Walk the devices list backward, shutting down each in turn. 4738 * Beware that device unplug events may also start pulling 4739 * devices offline, even as the system is shutting down. 4740 */ 4741 while (!list_empty(&devices_kset->list)) { 4742 dev = list_entry(devices_kset->list.prev, struct device, 4743 kobj.entry); 4744 4745 /* 4746 * hold reference count of device's parent to 4747 * prevent it from being freed because parent's 4748 * lock is to be held 4749 */ 4750 parent = get_device(dev->parent); 4751 get_device(dev); 4752 /* 4753 * Make sure the device is off the kset list, in the 4754 * event that dev->*->shutdown() doesn't remove it. 4755 */ 4756 list_del_init(&dev->kobj.entry); 4757 spin_unlock(&devices_kset->list_lock); 4758 4759 /* hold lock to avoid race with probe/release */ 4760 if (parent) 4761 device_lock(parent); 4762 device_lock(dev); 4763 4764 /* Don't allow any more runtime suspends */ 4765 pm_runtime_get_noresume(dev); 4766 pm_runtime_barrier(dev); 4767 4768 if (dev->class && dev->class->shutdown_pre) { 4769 if (initcall_debug) 4770 dev_info(dev, "shutdown_pre\n"); 4771 dev->class->shutdown_pre(dev); 4772 } 4773 if (dev->bus && dev->bus->shutdown) { 4774 if (initcall_debug) 4775 dev_info(dev, "shutdown\n"); 4776 dev->bus->shutdown(dev); 4777 } else if (dev->driver && dev->driver->shutdown) { 4778 if (initcall_debug) 4779 dev_info(dev, "shutdown\n"); 4780 dev->driver->shutdown(dev); 4781 } 4782 4783 device_unlock(dev); 4784 if (parent) 4785 device_unlock(parent); 4786 4787 put_device(dev); 4788 put_device(parent); 4789 4790 spin_lock(&devices_kset->list_lock); 4791 } 4792 spin_unlock(&devices_kset->list_lock); 4793 } 4794 4795 /* 4796 * Device logging functions 4797 */ 4798 4799 #ifdef CONFIG_PRINTK 4800 static void 4801 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4802 { 4803 const char *subsys; 4804 4805 memset(dev_info, 0, sizeof(*dev_info)); 4806 4807 if (dev->class) 4808 subsys = dev->class->name; 4809 else if (dev->bus) 4810 subsys = dev->bus->name; 4811 else 4812 return; 4813 4814 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4815 4816 /* 4817 * Add device identifier DEVICE=: 4818 * b12:8 block dev_t 4819 * c127:3 char dev_t 4820 * n8 netdev ifindex 4821 * +sound:card0 subsystem:devname 4822 */ 4823 if (MAJOR(dev->devt)) { 4824 char c; 4825 4826 if (strcmp(subsys, "block") == 0) 4827 c = 'b'; 4828 else 4829 c = 'c'; 4830 4831 snprintf(dev_info->device, sizeof(dev_info->device), 4832 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4833 } else if (strcmp(subsys, "net") == 0) { 4834 struct net_device *net = to_net_dev(dev); 4835 4836 snprintf(dev_info->device, sizeof(dev_info->device), 4837 "n%u", net->ifindex); 4838 } else { 4839 snprintf(dev_info->device, sizeof(dev_info->device), 4840 "+%s:%s", subsys, dev_name(dev)); 4841 } 4842 } 4843 4844 int dev_vprintk_emit(int level, const struct device *dev, 4845 const char *fmt, va_list args) 4846 { 4847 struct dev_printk_info dev_info; 4848 4849 set_dev_info(dev, &dev_info); 4850 4851 return vprintk_emit(0, level, &dev_info, fmt, args); 4852 } 4853 EXPORT_SYMBOL(dev_vprintk_emit); 4854 4855 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4856 { 4857 va_list args; 4858 int r; 4859 4860 va_start(args, fmt); 4861 4862 r = dev_vprintk_emit(level, dev, fmt, args); 4863 4864 va_end(args); 4865 4866 return r; 4867 } 4868 EXPORT_SYMBOL(dev_printk_emit); 4869 4870 static void __dev_printk(const char *level, const struct device *dev, 4871 struct va_format *vaf) 4872 { 4873 if (dev) 4874 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4875 dev_driver_string(dev), dev_name(dev), vaf); 4876 else 4877 printk("%s(NULL device *): %pV", level, vaf); 4878 } 4879 4880 void _dev_printk(const char *level, const struct device *dev, 4881 const char *fmt, ...) 4882 { 4883 struct va_format vaf; 4884 va_list args; 4885 4886 va_start(args, fmt); 4887 4888 vaf.fmt = fmt; 4889 vaf.va = &args; 4890 4891 __dev_printk(level, dev, &vaf); 4892 4893 va_end(args); 4894 } 4895 EXPORT_SYMBOL(_dev_printk); 4896 4897 #define define_dev_printk_level(func, kern_level) \ 4898 void func(const struct device *dev, const char *fmt, ...) \ 4899 { \ 4900 struct va_format vaf; \ 4901 va_list args; \ 4902 \ 4903 va_start(args, fmt); \ 4904 \ 4905 vaf.fmt = fmt; \ 4906 vaf.va = &args; \ 4907 \ 4908 __dev_printk(kern_level, dev, &vaf); \ 4909 \ 4910 va_end(args); \ 4911 } \ 4912 EXPORT_SYMBOL(func); 4913 4914 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4915 define_dev_printk_level(_dev_alert, KERN_ALERT); 4916 define_dev_printk_level(_dev_crit, KERN_CRIT); 4917 define_dev_printk_level(_dev_err, KERN_ERR); 4918 define_dev_printk_level(_dev_warn, KERN_WARNING); 4919 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4920 define_dev_printk_level(_dev_info, KERN_INFO); 4921 4922 #endif 4923 4924 /** 4925 * dev_err_probe - probe error check and log helper 4926 * @dev: the pointer to the struct device 4927 * @err: error value to test 4928 * @fmt: printf-style format string 4929 * @...: arguments as specified in the format string 4930 * 4931 * This helper implements common pattern present in probe functions for error 4932 * checking: print debug or error message depending if the error value is 4933 * -EPROBE_DEFER and propagate error upwards. 4934 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4935 * checked later by reading devices_deferred debugfs attribute. 4936 * It replaces code sequence:: 4937 * 4938 * if (err != -EPROBE_DEFER) 4939 * dev_err(dev, ...); 4940 * else 4941 * dev_dbg(dev, ...); 4942 * return err; 4943 * 4944 * with:: 4945 * 4946 * return dev_err_probe(dev, err, ...); 4947 * 4948 * Note that it is deemed acceptable to use this function for error 4949 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4950 * The benefit compared to a normal dev_err() is the standardized format 4951 * of the error code and the fact that the error code is returned. 4952 * 4953 * Returns @err. 4954 * 4955 */ 4956 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4957 { 4958 struct va_format vaf; 4959 va_list args; 4960 4961 va_start(args, fmt); 4962 vaf.fmt = fmt; 4963 vaf.va = &args; 4964 4965 if (err != -EPROBE_DEFER) { 4966 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4967 } else { 4968 device_set_deferred_probe_reason(dev, &vaf); 4969 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4970 } 4971 4972 va_end(args); 4973 4974 return err; 4975 } 4976 EXPORT_SYMBOL_GPL(dev_err_probe); 4977 4978 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4979 { 4980 return fwnode && !IS_ERR(fwnode->secondary); 4981 } 4982 4983 /** 4984 * set_primary_fwnode - Change the primary firmware node of a given device. 4985 * @dev: Device to handle. 4986 * @fwnode: New primary firmware node of the device. 4987 * 4988 * Set the device's firmware node pointer to @fwnode, but if a secondary 4989 * firmware node of the device is present, preserve it. 4990 * 4991 * Valid fwnode cases are: 4992 * - primary --> secondary --> -ENODEV 4993 * - primary --> NULL 4994 * - secondary --> -ENODEV 4995 * - NULL 4996 */ 4997 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4998 { 4999 struct device *parent = dev->parent; 5000 struct fwnode_handle *fn = dev->fwnode; 5001 5002 if (fwnode) { 5003 if (fwnode_is_primary(fn)) 5004 fn = fn->secondary; 5005 5006 if (fn) { 5007 WARN_ON(fwnode->secondary); 5008 fwnode->secondary = fn; 5009 } 5010 dev->fwnode = fwnode; 5011 } else { 5012 if (fwnode_is_primary(fn)) { 5013 dev->fwnode = fn->secondary; 5014 5015 /* Skip nullifying fn->secondary if the primary is shared */ 5016 if (parent && fn == parent->fwnode) 5017 return; 5018 5019 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5020 fn->secondary = NULL; 5021 } else { 5022 dev->fwnode = NULL; 5023 } 5024 } 5025 } 5026 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5027 5028 /** 5029 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5030 * @dev: Device to handle. 5031 * @fwnode: New secondary firmware node of the device. 5032 * 5033 * If a primary firmware node of the device is present, set its secondary 5034 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5035 * @fwnode. 5036 */ 5037 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5038 { 5039 if (fwnode) 5040 fwnode->secondary = ERR_PTR(-ENODEV); 5041 5042 if (fwnode_is_primary(dev->fwnode)) 5043 dev->fwnode->secondary = fwnode; 5044 else 5045 dev->fwnode = fwnode; 5046 } 5047 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5048 5049 /** 5050 * device_set_of_node_from_dev - reuse device-tree node of another device 5051 * @dev: device whose device-tree node is being set 5052 * @dev2: device whose device-tree node is being reused 5053 * 5054 * Takes another reference to the new device-tree node after first dropping 5055 * any reference held to the old node. 5056 */ 5057 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5058 { 5059 of_node_put(dev->of_node); 5060 dev->of_node = of_node_get(dev2->of_node); 5061 dev->of_node_reused = true; 5062 } 5063 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5064 5065 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5066 { 5067 dev->fwnode = fwnode; 5068 dev->of_node = to_of_node(fwnode); 5069 } 5070 EXPORT_SYMBOL_GPL(device_set_node); 5071 5072 int device_match_name(struct device *dev, const void *name) 5073 { 5074 return sysfs_streq(dev_name(dev), name); 5075 } 5076 EXPORT_SYMBOL_GPL(device_match_name); 5077 5078 int device_match_of_node(struct device *dev, const void *np) 5079 { 5080 return dev->of_node == np; 5081 } 5082 EXPORT_SYMBOL_GPL(device_match_of_node); 5083 5084 int device_match_fwnode(struct device *dev, const void *fwnode) 5085 { 5086 return dev_fwnode(dev) == fwnode; 5087 } 5088 EXPORT_SYMBOL_GPL(device_match_fwnode); 5089 5090 int device_match_devt(struct device *dev, const void *pdevt) 5091 { 5092 return dev->devt == *(dev_t *)pdevt; 5093 } 5094 EXPORT_SYMBOL_GPL(device_match_devt); 5095 5096 int device_match_acpi_dev(struct device *dev, const void *adev) 5097 { 5098 return ACPI_COMPANION(dev) == adev; 5099 } 5100 EXPORT_SYMBOL(device_match_acpi_dev); 5101 5102 int device_match_acpi_handle(struct device *dev, const void *handle) 5103 { 5104 return ACPI_HANDLE(dev) == handle; 5105 } 5106 EXPORT_SYMBOL(device_match_acpi_handle); 5107 5108 int device_match_any(struct device *dev, const void *unused) 5109 { 5110 return 1; 5111 } 5112 EXPORT_SYMBOL_GPL(device_match_any); 5113