xref: /openbmc/linux/drivers/ata/sata_mv.c (revision 68f436a80fc89faa474134edfe442d95528be17a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sata_mv.c - Marvell SATA support
4  *
5  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6  * Copyright 2005: EMC Corporation, all rights reserved.
7  * Copyright 2005 Red Hat, Inc.  All rights reserved.
8  *
9  * Originally written by Brett Russ.
10  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11  *
12  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13  */
14 
15 /*
16  * sata_mv TODO list:
17  *
18  * --> Develop a low-power-consumption strategy, and implement it.
19  *
20  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21  *
22  * --> [Experiment, Marvell value added] Is it possible to use target
23  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
24  *       creating LibATA target mode support would be very interesting.
25  *
26  *       Target mode, for those without docs, is the ability to directly
27  *       connect two SATA ports.
28  */
29 
30 /*
31  * 80x1-B2 errata PCI#11:
32  *
33  * Users of the 6041/6081 Rev.B2 chips (current is C0)
34  * should be careful to insert those cards only onto PCI-X bus #0,
35  * and only in device slots 0..7, not higher.  The chips may not
36  * work correctly otherwise  (note: this is a pretty rare condition).
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62 
63 #define DRV_NAME	"sata_mv"
64 #define DRV_VERSION	"1.28"
65 
66 /*
67  * module options
68  */
69 
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75 
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 		 "IRQ coalescing I/O count threshold (0..255)");
80 
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 		 "IRQ coalescing time threshold in usecs");
85 
86 enum {
87 	/* BAR's are enumerated in terms of pci_resource_start() terms */
88 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
89 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
90 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
91 
92 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
93 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
94 
95 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
97 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
98 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
99 
100 	MV_PCI_REG_BASE		= 0,
101 
102 	/*
103 	 * Per-chip ("all ports") interrupt coalescing feature.
104 	 * This is only for GEN_II / GEN_IIE hardware.
105 	 *
106 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 	 */
109 	COAL_REG_BASE		= 0x18000,
110 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
111 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
112 
113 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
114 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115 
116 	/*
117 	 * Registers for the (unused here) transaction coalescing feature:
118 	 */
119 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
120 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
121 
122 	SATAHC0_REG_BASE	= 0x20000,
123 	FLASH_CTL		= 0x1046c,
124 	GPIO_PORT_CTL		= 0x104f0,
125 	RESET_CFG		= 0x180d8,
126 
127 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
128 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
129 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
130 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
131 
132 	MV_MAX_Q_DEPTH		= 32,
133 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
134 
135 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 	 * CRPB needs alignment on a 256B boundary. Size == 256B
137 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 	 */
139 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
140 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
141 	MV_MAX_SG_CT		= 256,
142 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
143 
144 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 	MV_PORT_HC_SHIFT	= 2,
146 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
147 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
149 
150 	/* Host Flags */
151 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
152 
153 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154 
155 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156 
157 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159 
160 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
161 
162 	CRQB_FLAG_READ		= (1 << 0),
163 	CRQB_TAG_SHIFT		= 1,
164 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
165 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
166 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
167 	CRQB_CMD_ADDR_SHIFT	= 8,
168 	CRQB_CMD_CS		= (0x2 << 11),
169 	CRQB_CMD_LAST		= (1 << 15),
170 
171 	CRPB_FLAG_STATUS_SHIFT	= 8,
172 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
173 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
174 
175 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
176 
177 	/* PCI interface registers */
178 
179 	MV_PCI_COMMAND		= 0xc00,
180 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
181 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
182 
183 	PCI_MAIN_CMD_STS	= 0xd30,
184 	STOP_PCI_MASTER		= (1 << 2),
185 	PCI_MASTER_EMPTY	= (1 << 3),
186 	GLOB_SFT_RST		= (1 << 4),
187 
188 	MV_PCI_MODE		= 0xd00,
189 	MV_PCI_MODE_MASK	= 0x30,
190 
191 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
192 	MV_PCI_DISC_TIMER	= 0xd04,
193 	MV_PCI_MSI_TRIGGER	= 0xc38,
194 	MV_PCI_SERR_MASK	= 0xc28,
195 	MV_PCI_XBAR_TMOUT	= 0x1d04,
196 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
197 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
198 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
199 	MV_PCI_ERR_COMMAND	= 0x1d50,
200 
201 	PCI_IRQ_CAUSE		= 0x1d58,
202 	PCI_IRQ_MASK		= 0x1d5c,
203 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
204 
205 	PCIE_IRQ_CAUSE		= 0x1900,
206 	PCIE_IRQ_MASK		= 0x1910,
207 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
208 
209 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
211 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
212 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
213 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
214 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
215 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
216 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
217 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
218 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
219 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
220 	PCI_ERR			= (1 << 18),
221 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
222 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
223 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
224 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
225 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
226 	GPIO_INT		= (1 << 22),
227 	SELF_INT		= (1 << 23),
228 	TWSI_INT		= (1 << 24),
229 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
230 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
231 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
232 
233 	/* SATAHC registers */
234 	HC_CFG			= 0x00,
235 
236 	HC_IRQ_CAUSE		= 0x14,
237 	DMA_IRQ			= (1 << 0),	/* shift by port # */
238 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
239 	DEV_IRQ			= (1 << 8),	/* shift by port # */
240 
241 	/*
242 	 * Per-HC (Host-Controller) interrupt coalescing feature.
243 	 * This is present on all chip generations.
244 	 *
245 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 	 */
248 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
249 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
250 
251 	SOC_LED_CTRL		= 0x2c,
252 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
253 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
254 						/*  with dev activity LED */
255 
256 	/* Shadow block registers */
257 	SHD_BLK			= 0x100,
258 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
259 
260 	/* SATA registers */
261 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
262 	SATA_ACTIVE		= 0x350,
263 	FIS_IRQ_CAUSE		= 0x364,
264 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
265 
266 	LTMODE			= 0x30c,	/* requires read-after-write */
267 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
268 
269 	PHY_MODE2		= 0x330,
270 	PHY_MODE3		= 0x310,
271 
272 	PHY_MODE4		= 0x314,	/* requires read-after-write */
273 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
274 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
275 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
276 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
277 
278 	SATA_IFCTL		= 0x344,
279 	SATA_TESTCTL		= 0x348,
280 	SATA_IFSTAT		= 0x34c,
281 	VENDOR_UNIQUE_FIS	= 0x35c,
282 
283 	FISCFG			= 0x360,
284 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
285 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
286 
287 	PHY_MODE9_GEN2		= 0x398,
288 	PHY_MODE9_GEN1		= 0x39c,
289 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
290 
291 	MV5_PHY_MODE		= 0x74,
292 	MV5_LTMODE		= 0x30,
293 	MV5_PHY_CTL		= 0x0C,
294 	SATA_IFCFG		= 0x050,
295 	LP_PHY_CTL		= 0x058,
296 	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
297 	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
298 	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
299 	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
300 	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
301 
302 	MV_M2_PREAMP_MASK	= 0x7e0,
303 
304 	/* Port registers */
305 	EDMA_CFG		= 0,
306 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
307 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
308 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
309 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
310 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
311 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
312 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
313 
314 	EDMA_ERR_IRQ_CAUSE	= 0x8,
315 	EDMA_ERR_IRQ_MASK	= 0xc,
316 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
317 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
318 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
319 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
320 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
321 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
322 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
323 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
324 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
325 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
326 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
327 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
328 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
329 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
330 
331 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
332 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
333 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
334 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
335 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
336 
337 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
338 
339 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
340 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
341 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
342 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
343 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
344 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
345 
346 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
347 
348 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
349 	EDMA_ERR_OVERRUN_5	= (1 << 5),
350 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
351 
352 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
353 				  EDMA_ERR_LNK_CTRL_RX_1 |
354 				  EDMA_ERR_LNK_CTRL_RX_3 |
355 				  EDMA_ERR_LNK_CTRL_TX,
356 
357 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
358 				  EDMA_ERR_PRD_PAR |
359 				  EDMA_ERR_DEV_DCON |
360 				  EDMA_ERR_DEV_CON |
361 				  EDMA_ERR_SERR |
362 				  EDMA_ERR_SELF_DIS |
363 				  EDMA_ERR_CRQB_PAR |
364 				  EDMA_ERR_CRPB_PAR |
365 				  EDMA_ERR_INTRL_PAR |
366 				  EDMA_ERR_IORDY |
367 				  EDMA_ERR_LNK_CTRL_RX_2 |
368 				  EDMA_ERR_LNK_DATA_RX |
369 				  EDMA_ERR_LNK_DATA_TX |
370 				  EDMA_ERR_TRANS_PROTO,
371 
372 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
373 				  EDMA_ERR_PRD_PAR |
374 				  EDMA_ERR_DEV_DCON |
375 				  EDMA_ERR_DEV_CON |
376 				  EDMA_ERR_OVERRUN_5 |
377 				  EDMA_ERR_UNDERRUN_5 |
378 				  EDMA_ERR_SELF_DIS_5 |
379 				  EDMA_ERR_CRQB_PAR |
380 				  EDMA_ERR_CRPB_PAR |
381 				  EDMA_ERR_INTRL_PAR |
382 				  EDMA_ERR_IORDY,
383 
384 	EDMA_REQ_Q_BASE_HI	= 0x10,
385 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
386 
387 	EDMA_REQ_Q_OUT_PTR	= 0x18,
388 	EDMA_REQ_Q_PTR_SHIFT	= 5,
389 
390 	EDMA_RSP_Q_BASE_HI	= 0x1c,
391 	EDMA_RSP_Q_IN_PTR	= 0x20,
392 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
393 	EDMA_RSP_Q_PTR_SHIFT	= 3,
394 
395 	EDMA_CMD		= 0x28,		/* EDMA command register */
396 	EDMA_EN			= (1 << 0),	/* enable EDMA */
397 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
398 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
399 
400 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
401 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
402 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
403 
404 	EDMA_IORDY_TMOUT	= 0x34,
405 	EDMA_ARB_CFG		= 0x38,
406 
407 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
408 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
409 
410 	BMDMA_CMD		= 0x224,	/* bmdma command register */
411 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
412 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
413 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
414 
415 	/* Host private flags (hp_flags) */
416 	MV_HP_FLAG_MSI		= (1 << 0),
417 	MV_HP_ERRATA_50XXB0	= (1 << 1),
418 	MV_HP_ERRATA_50XXB2	= (1 << 2),
419 	MV_HP_ERRATA_60X1B2	= (1 << 3),
420 	MV_HP_ERRATA_60X1C0	= (1 << 4),
421 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
422 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
423 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
424 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
425 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
426 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
427 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
428 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
429 
430 	/* Port private flags (pp_flags) */
431 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
432 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
433 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
434 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
435 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
436 };
437 
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443 
444 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
446 
447 enum {
448 	/* DMA boundary 0xffff is required by the s/g splitting
449 	 * we need on /length/ in mv_fill-sg().
450 	 */
451 	MV_DMA_BOUNDARY		= 0xffffU,
452 
453 	/* mask of register bits containing lower 32 bits
454 	 * of EDMA request queue DMA address
455 	 */
456 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
457 
458 	/* ditto, for response queue */
459 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
460 };
461 
462 enum chip_type {
463 	chip_504x,
464 	chip_508x,
465 	chip_5080,
466 	chip_604x,
467 	chip_608x,
468 	chip_6042,
469 	chip_7042,
470 	chip_soc,
471 };
472 
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 	__le32			sg_addr;
476 	__le32			sg_addr_hi;
477 	__le16			ctrl_flags;
478 	__le16			ata_cmd[11];
479 };
480 
481 struct mv_crqb_iie {
482 	__le32			addr;
483 	__le32			addr_hi;
484 	__le32			flags;
485 	__le32			len;
486 	__le32			ata_cmd[4];
487 };
488 
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 	__le16			id;
492 	__le16			flags;
493 	__le32			tmstmp;
494 };
495 
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 	__le32			addr;
499 	__le32			flags_size;
500 	__le32			addr_hi;
501 	__le32			reserved;
502 };
503 
504 /*
505  * We keep a local cache of a few frequently accessed port
506  * registers here, to avoid having to read them (very slow)
507  * when switching between EDMA and non-EDMA modes.
508  */
509 struct mv_cached_regs {
510 	u32			fiscfg;
511 	u32			ltmode;
512 	u32			haltcond;
513 	u32			unknown_rsvd;
514 };
515 
516 struct mv_port_priv {
517 	struct mv_crqb		*crqb;
518 	dma_addr_t		crqb_dma;
519 	struct mv_crpb		*crpb;
520 	dma_addr_t		crpb_dma;
521 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
522 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
523 
524 	unsigned int		req_idx;
525 	unsigned int		resp_idx;
526 
527 	u32			pp_flags;
528 	struct mv_cached_regs	cached;
529 	unsigned int		delayed_eh_pmp_map;
530 };
531 
532 struct mv_port_signal {
533 	u32			amps;
534 	u32			pre;
535 };
536 
537 struct mv_host_priv {
538 	u32			hp_flags;
539 	unsigned int 		board_idx;
540 	u32			main_irq_mask;
541 	struct mv_port_signal	signal[8];
542 	const struct mv_hw_ops	*ops;
543 	int			n_ports;
544 	void __iomem		*base;
545 	void __iomem		*main_irq_cause_addr;
546 	void __iomem		*main_irq_mask_addr;
547 	u32			irq_cause_offset;
548 	u32			irq_mask_offset;
549 	u32			unmask_all_irqs;
550 
551 	/*
552 	 * Needed on some devices that require their clocks to be enabled.
553 	 * These are optional: if the platform device does not have any
554 	 * clocks, they won't be used.  Also, if the underlying hardware
555 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 	 * all the clock operations become no-ops (see clk.h).
557 	 */
558 	struct clk		*clk;
559 	struct clk              **port_clks;
560 	/*
561 	 * Some devices have a SATA PHY which can be enabled/disabled
562 	 * in order to save power. These are optional: if the platform
563 	 * devices does not have any phy, they won't be used.
564 	 */
565 	struct phy		**port_phys;
566 	/*
567 	 * These consistent DMA memory pools give us guaranteed
568 	 * alignment for hardware-accessed data structures,
569 	 * and less memory waste in accomplishing the alignment.
570 	 */
571 	struct dma_pool		*crqb_pool;
572 	struct dma_pool		*crpb_pool;
573 	struct dma_pool		*sg_tbl_pool;
574 };
575 
576 struct mv_hw_ops {
577 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 			   unsigned int port);
579 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 			   void __iomem *mmio);
582 	int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
583 			unsigned int n_hc);
584 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587 
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 			unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603 
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 			   unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 			   void __iomem *mmio);
609 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
610 			unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613 
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 			   unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 			   void __iomem *mmio);
619 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
620 			unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 				      void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 				      void __iomem *mmio);
626 static int mv_soc_reset_hc(struct ata_host *host,
627 				  void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 				      void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 				  void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 			     unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639 
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 				unsigned long deadline);
643 static int  mv_softreset(struct ata_link *link, unsigned int *class,
644 				unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 					struct mv_port_priv *pp);
648 
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8   mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656 
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658  * because we have to allow room for worst case splitting of
659  * PRDs for 64K boundaries in mv_fill_sg().
660  */
661 #ifdef CONFIG_PCI
662 static const struct scsi_host_template mv5_sht = {
663 	ATA_BASE_SHT(DRV_NAME),
664 	.sg_tablesize		= MV_MAX_SG_CT / 2,
665 	.dma_boundary		= MV_DMA_BOUNDARY,
666 };
667 #endif
668 static const struct scsi_host_template mv6_sht = {
669 	__ATA_BASE_SHT(DRV_NAME),
670 	.can_queue		= MV_MAX_Q_DEPTH - 1,
671 	.sg_tablesize		= MV_MAX_SG_CT / 2,
672 	.dma_boundary		= MV_DMA_BOUNDARY,
673 	.sdev_groups		= ata_ncq_sdev_groups,
674 	.change_queue_depth	= ata_scsi_change_queue_depth,
675 	.tag_alloc_policy	= BLK_TAG_ALLOC_RR,
676 	.slave_configure	= ata_scsi_slave_config
677 };
678 
679 static struct ata_port_operations mv5_ops = {
680 	.inherits		= &ata_sff_port_ops,
681 
682 	.lost_interrupt		= ATA_OP_NULL,
683 
684 	.qc_defer		= mv_qc_defer,
685 	.qc_prep		= mv_qc_prep,
686 	.qc_issue		= mv_qc_issue,
687 
688 	.freeze			= mv_eh_freeze,
689 	.thaw			= mv_eh_thaw,
690 	.hardreset		= mv_hardreset,
691 
692 	.scr_read		= mv5_scr_read,
693 	.scr_write		= mv5_scr_write,
694 
695 	.port_start		= mv_port_start,
696 	.port_stop		= mv_port_stop,
697 };
698 
699 static struct ata_port_operations mv6_ops = {
700 	.inherits		= &ata_bmdma_port_ops,
701 
702 	.lost_interrupt		= ATA_OP_NULL,
703 
704 	.qc_defer		= mv_qc_defer,
705 	.qc_prep		= mv_qc_prep,
706 	.qc_issue		= mv_qc_issue,
707 
708 	.dev_config             = mv6_dev_config,
709 
710 	.freeze			= mv_eh_freeze,
711 	.thaw			= mv_eh_thaw,
712 	.hardreset		= mv_hardreset,
713 	.softreset		= mv_softreset,
714 	.pmp_hardreset		= mv_pmp_hardreset,
715 	.pmp_softreset		= mv_softreset,
716 	.error_handler		= mv_pmp_error_handler,
717 
718 	.scr_read		= mv_scr_read,
719 	.scr_write		= mv_scr_write,
720 
721 	.sff_check_status	= mv_sff_check_status,
722 	.sff_irq_clear		= mv_sff_irq_clear,
723 	.check_atapi_dma	= mv_check_atapi_dma,
724 	.bmdma_setup		= mv_bmdma_setup,
725 	.bmdma_start		= mv_bmdma_start,
726 	.bmdma_stop		= mv_bmdma_stop,
727 	.bmdma_status		= mv_bmdma_status,
728 
729 	.port_start		= mv_port_start,
730 	.port_stop		= mv_port_stop,
731 };
732 
733 static struct ata_port_operations mv_iie_ops = {
734 	.inherits		= &mv6_ops,
735 	.dev_config		= ATA_OP_NULL,
736 	.qc_prep		= mv_qc_prep_iie,
737 };
738 
739 static const struct ata_port_info mv_port_info[] = {
740 	{  /* chip_504x */
741 		.flags		= MV_GEN_I_FLAGS,
742 		.pio_mask	= ATA_PIO4,
743 		.udma_mask	= ATA_UDMA6,
744 		.port_ops	= &mv5_ops,
745 	},
746 	{  /* chip_508x */
747 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748 		.pio_mask	= ATA_PIO4,
749 		.udma_mask	= ATA_UDMA6,
750 		.port_ops	= &mv5_ops,
751 	},
752 	{  /* chip_5080 */
753 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754 		.pio_mask	= ATA_PIO4,
755 		.udma_mask	= ATA_UDMA6,
756 		.port_ops	= &mv5_ops,
757 	},
758 	{  /* chip_604x */
759 		.flags		= MV_GEN_II_FLAGS,
760 		.pio_mask	= ATA_PIO4,
761 		.udma_mask	= ATA_UDMA6,
762 		.port_ops	= &mv6_ops,
763 	},
764 	{  /* chip_608x */
765 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766 		.pio_mask	= ATA_PIO4,
767 		.udma_mask	= ATA_UDMA6,
768 		.port_ops	= &mv6_ops,
769 	},
770 	{  /* chip_6042 */
771 		.flags		= MV_GEN_IIE_FLAGS,
772 		.pio_mask	= ATA_PIO4,
773 		.udma_mask	= ATA_UDMA6,
774 		.port_ops	= &mv_iie_ops,
775 	},
776 	{  /* chip_7042 */
777 		.flags		= MV_GEN_IIE_FLAGS,
778 		.pio_mask	= ATA_PIO4,
779 		.udma_mask	= ATA_UDMA6,
780 		.port_ops	= &mv_iie_ops,
781 	},
782 	{  /* chip_soc */
783 		.flags		= MV_GEN_IIE_FLAGS,
784 		.pio_mask	= ATA_PIO4,
785 		.udma_mask	= ATA_UDMA6,
786 		.port_ops	= &mv_iie_ops,
787 	},
788 };
789 
790 static const struct pci_device_id mv_pci_tbl[] = {
791 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
792 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
793 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
794 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
795 	/* RocketRAID 1720/174x have different identifiers */
796 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
797 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
798 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
799 
800 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
801 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
802 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
803 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
804 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
805 
806 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
807 
808 	/* Adaptec 1430SA */
809 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
810 
811 	/* Marvell 7042 support */
812 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
813 
814 	/* Highpoint RocketRAID PCIe series */
815 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
816 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
817 
818 	{ }			/* terminate list */
819 };
820 
821 static const struct mv_hw_ops mv5xxx_ops = {
822 	.phy_errata		= mv5_phy_errata,
823 	.enable_leds		= mv5_enable_leds,
824 	.read_preamp		= mv5_read_preamp,
825 	.reset_hc		= mv5_reset_hc,
826 	.reset_flash		= mv5_reset_flash,
827 	.reset_bus		= mv5_reset_bus,
828 };
829 
830 static const struct mv_hw_ops mv6xxx_ops = {
831 	.phy_errata		= mv6_phy_errata,
832 	.enable_leds		= mv6_enable_leds,
833 	.read_preamp		= mv6_read_preamp,
834 	.reset_hc		= mv6_reset_hc,
835 	.reset_flash		= mv6_reset_flash,
836 	.reset_bus		= mv_reset_pci_bus,
837 };
838 
839 static const struct mv_hw_ops mv_soc_ops = {
840 	.phy_errata		= mv6_phy_errata,
841 	.enable_leds		= mv_soc_enable_leds,
842 	.read_preamp		= mv_soc_read_preamp,
843 	.reset_hc		= mv_soc_reset_hc,
844 	.reset_flash		= mv_soc_reset_flash,
845 	.reset_bus		= mv_soc_reset_bus,
846 };
847 
848 static const struct mv_hw_ops mv_soc_65n_ops = {
849 	.phy_errata		= mv_soc_65n_phy_errata,
850 	.enable_leds		= mv_soc_enable_leds,
851 	.reset_hc		= mv_soc_reset_hc,
852 	.reset_flash		= mv_soc_reset_flash,
853 	.reset_bus		= mv_soc_reset_bus,
854 };
855 
856 /*
857  * Functions
858  */
859 
860 static inline void writelfl(unsigned long data, void __iomem *addr)
861 {
862 	writel(data, addr);
863 	(void) readl(addr);	/* flush to avoid PCI posted write */
864 }
865 
866 static inline unsigned int mv_hc_from_port(unsigned int port)
867 {
868 	return port >> MV_PORT_HC_SHIFT;
869 }
870 
871 static inline unsigned int mv_hardport_from_port(unsigned int port)
872 {
873 	return port & MV_PORT_MASK;
874 }
875 
876 /*
877  * Consolidate some rather tricky bit shift calculations.
878  * This is hot-path stuff, so not a function.
879  * Simple code, with two return values, so macro rather than inline.
880  *
881  * port is the sole input, in range 0..7.
882  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
883  * hardport is the other output, in range 0..3.
884  *
885  * Note that port and hardport may be the same variable in some cases.
886  */
887 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
888 {								\
889 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
890 	hardport = mv_hardport_from_port(port);			\
891 	shift   += hardport * 2;				\
892 }
893 
894 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
895 {
896 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
897 }
898 
899 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
900 						 unsigned int port)
901 {
902 	return mv_hc_base(base, mv_hc_from_port(port));
903 }
904 
905 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
906 {
907 	return  mv_hc_base_from_port(base, port) +
908 		MV_SATAHC_ARBTR_REG_SZ +
909 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
910 }
911 
912 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
913 {
914 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
915 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
916 
917 	return hc_mmio + ofs;
918 }
919 
920 static inline void __iomem *mv_host_base(struct ata_host *host)
921 {
922 	struct mv_host_priv *hpriv = host->private_data;
923 	return hpriv->base;
924 }
925 
926 static inline void __iomem *mv_ap_base(struct ata_port *ap)
927 {
928 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
929 }
930 
931 static inline int mv_get_hc_count(unsigned long port_flags)
932 {
933 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
934 }
935 
936 /**
937  *      mv_save_cached_regs - (re-)initialize cached port registers
938  *      @ap: the port whose registers we are caching
939  *
940  *	Initialize the local cache of port registers,
941  *	so that reading them over and over again can
942  *	be avoided on the hotter paths of this driver.
943  *	This saves a few microseconds each time we switch
944  *	to/from EDMA mode to perform (eg.) a drive cache flush.
945  */
946 static void mv_save_cached_regs(struct ata_port *ap)
947 {
948 	void __iomem *port_mmio = mv_ap_base(ap);
949 	struct mv_port_priv *pp = ap->private_data;
950 
951 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
952 	pp->cached.ltmode = readl(port_mmio + LTMODE);
953 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
954 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
955 }
956 
957 /**
958  *      mv_write_cached_reg - write to a cached port register
959  *      @addr: hardware address of the register
960  *      @old: pointer to cached value of the register
961  *      @new: new value for the register
962  *
963  *	Write a new value to a cached register,
964  *	but only if the value is different from before.
965  */
966 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
967 {
968 	if (new != *old) {
969 		unsigned long laddr;
970 		*old = new;
971 		/*
972 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
973 		 * Read-after-write is needed to prevent generating 64-bit
974 		 * write cycles on the PCI bus for SATA interface registers
975 		 * at offsets ending in 0x4 or 0xc.
976 		 *
977 		 * Looks like a lot of fuss, but it avoids an unnecessary
978 		 * +1 usec read-after-write delay for unaffected registers.
979 		 */
980 		laddr = (unsigned long)addr & 0xffff;
981 		if (laddr >= 0x300 && laddr <= 0x33c) {
982 			laddr &= 0x000f;
983 			if (laddr == 0x4 || laddr == 0xc) {
984 				writelfl(new, addr); /* read after write */
985 				return;
986 			}
987 		}
988 		writel(new, addr); /* unaffected by the errata */
989 	}
990 }
991 
992 static void mv_set_edma_ptrs(void __iomem *port_mmio,
993 			     struct mv_host_priv *hpriv,
994 			     struct mv_port_priv *pp)
995 {
996 	u32 index;
997 
998 	/*
999 	 * initialize request queue
1000 	 */
1001 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1002 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1003 
1004 	WARN_ON(pp->crqb_dma & 0x3ff);
1005 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1006 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1007 		 port_mmio + EDMA_REQ_Q_IN_PTR);
1008 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1009 
1010 	/*
1011 	 * initialize response queue
1012 	 */
1013 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1014 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1015 
1016 	WARN_ON(pp->crpb_dma & 0xff);
1017 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1018 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1019 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1020 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1021 }
1022 
1023 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1024 {
1025 	/*
1026 	 * When writing to the main_irq_mask in hardware,
1027 	 * we must ensure exclusivity between the interrupt coalescing bits
1028 	 * and the corresponding individual port DONE_IRQ bits.
1029 	 *
1030 	 * Note that this register is really an "IRQ enable" register,
1031 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1032 	 */
1033 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1034 		mask &= ~DONE_IRQ_0_3;
1035 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1036 		mask &= ~DONE_IRQ_4_7;
1037 	writelfl(mask, hpriv->main_irq_mask_addr);
1038 }
1039 
1040 static void mv_set_main_irq_mask(struct ata_host *host,
1041 				 u32 disable_bits, u32 enable_bits)
1042 {
1043 	struct mv_host_priv *hpriv = host->private_data;
1044 	u32 old_mask, new_mask;
1045 
1046 	old_mask = hpriv->main_irq_mask;
1047 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1048 	if (new_mask != old_mask) {
1049 		hpriv->main_irq_mask = new_mask;
1050 		mv_write_main_irq_mask(new_mask, hpriv);
1051 	}
1052 }
1053 
1054 static void mv_enable_port_irqs(struct ata_port *ap,
1055 				     unsigned int port_bits)
1056 {
1057 	unsigned int shift, hardport, port = ap->port_no;
1058 	u32 disable_bits, enable_bits;
1059 
1060 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1061 
1062 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1063 	enable_bits  = port_bits << shift;
1064 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1065 }
1066 
1067 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1068 					  void __iomem *port_mmio,
1069 					  unsigned int port_irqs)
1070 {
1071 	struct mv_host_priv *hpriv = ap->host->private_data;
1072 	int hardport = mv_hardport_from_port(ap->port_no);
1073 	void __iomem *hc_mmio = mv_hc_base_from_port(
1074 				mv_host_base(ap->host), ap->port_no);
1075 	u32 hc_irq_cause;
1076 
1077 	/* clear EDMA event indicators, if any */
1078 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1079 
1080 	/* clear pending irq events */
1081 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1082 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1083 
1084 	/* clear FIS IRQ Cause */
1085 	if (IS_GEN_IIE(hpriv))
1086 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1087 
1088 	mv_enable_port_irqs(ap, port_irqs);
1089 }
1090 
1091 static void mv_set_irq_coalescing(struct ata_host *host,
1092 				  unsigned int count, unsigned int usecs)
1093 {
1094 	struct mv_host_priv *hpriv = host->private_data;
1095 	void __iomem *mmio = hpriv->base, *hc_mmio;
1096 	u32 coal_enable = 0;
1097 	unsigned long flags;
1098 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1099 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1100 							ALL_PORTS_COAL_DONE;
1101 
1102 	/* Disable IRQ coalescing if either threshold is zero */
1103 	if (!usecs || !count) {
1104 		clks = count = 0;
1105 	} else {
1106 		/* Respect maximum limits of the hardware */
1107 		clks = usecs * COAL_CLOCKS_PER_USEC;
1108 		if (clks > MAX_COAL_TIME_THRESHOLD)
1109 			clks = MAX_COAL_TIME_THRESHOLD;
1110 		if (count > MAX_COAL_IO_COUNT)
1111 			count = MAX_COAL_IO_COUNT;
1112 	}
1113 
1114 	spin_lock_irqsave(&host->lock, flags);
1115 	mv_set_main_irq_mask(host, coal_disable, 0);
1116 
1117 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1118 		/*
1119 		 * GEN_II/GEN_IIE with dual host controllers:
1120 		 * one set of global thresholds for the entire chip.
1121 		 */
1122 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1123 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1124 		/* clear leftover coal IRQ bit */
1125 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1126 		if (count)
1127 			coal_enable = ALL_PORTS_COAL_DONE;
1128 		clks = count = 0; /* force clearing of regular regs below */
1129 	}
1130 
1131 	/*
1132 	 * All chips: independent thresholds for each HC on the chip.
1133 	 */
1134 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1135 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1136 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1137 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1138 	if (count)
1139 		coal_enable |= PORTS_0_3_COAL_DONE;
1140 	if (is_dual_hc) {
1141 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1142 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1143 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1144 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1145 		if (count)
1146 			coal_enable |= PORTS_4_7_COAL_DONE;
1147 	}
1148 
1149 	mv_set_main_irq_mask(host, 0, coal_enable);
1150 	spin_unlock_irqrestore(&host->lock, flags);
1151 }
1152 
1153 /*
1154  *      mv_start_edma - Enable eDMA engine
1155  *      @pp: port private data
1156  *
1157  *      Verify the local cache of the eDMA state is accurate with a
1158  *      WARN_ON.
1159  *
1160  *      LOCKING:
1161  *      Inherited from caller.
1162  */
1163 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1164 			 struct mv_port_priv *pp, u8 protocol)
1165 {
1166 	int want_ncq = (protocol == ATA_PROT_NCQ);
1167 
1168 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1169 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1170 		if (want_ncq != using_ncq)
1171 			mv_stop_edma(ap);
1172 	}
1173 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1174 		struct mv_host_priv *hpriv = ap->host->private_data;
1175 
1176 		mv_edma_cfg(ap, want_ncq, 1);
1177 
1178 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1179 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1180 
1181 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1182 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1183 	}
1184 }
1185 
1186 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1187 {
1188 	void __iomem *port_mmio = mv_ap_base(ap);
1189 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1190 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1191 	int i;
1192 
1193 	/*
1194 	 * Wait for the EDMA engine to finish transactions in progress.
1195 	 * No idea what a good "timeout" value might be, but measurements
1196 	 * indicate that it often requires hundreds of microseconds
1197 	 * with two drives in-use.  So we use the 15msec value above
1198 	 * as a rough guess at what even more drives might require.
1199 	 */
1200 	for (i = 0; i < timeout; ++i) {
1201 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1202 		if ((edma_stat & empty_idle) == empty_idle)
1203 			break;
1204 		udelay(per_loop);
1205 	}
1206 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1207 }
1208 
1209 /**
1210  *      mv_stop_edma_engine - Disable eDMA engine
1211  *      @port_mmio: io base address
1212  *
1213  *      LOCKING:
1214  *      Inherited from caller.
1215  */
1216 static int mv_stop_edma_engine(void __iomem *port_mmio)
1217 {
1218 	int i;
1219 
1220 	/* Disable eDMA.  The disable bit auto clears. */
1221 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1222 
1223 	/* Wait for the chip to confirm eDMA is off. */
1224 	for (i = 10000; i > 0; i--) {
1225 		u32 reg = readl(port_mmio + EDMA_CMD);
1226 		if (!(reg & EDMA_EN))
1227 			return 0;
1228 		udelay(10);
1229 	}
1230 	return -EIO;
1231 }
1232 
1233 static int mv_stop_edma(struct ata_port *ap)
1234 {
1235 	void __iomem *port_mmio = mv_ap_base(ap);
1236 	struct mv_port_priv *pp = ap->private_data;
1237 	int err = 0;
1238 
1239 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1240 		return 0;
1241 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1242 	mv_wait_for_edma_empty_idle(ap);
1243 	if (mv_stop_edma_engine(port_mmio)) {
1244 		ata_port_err(ap, "Unable to stop eDMA\n");
1245 		err = -EIO;
1246 	}
1247 	mv_edma_cfg(ap, 0, 0);
1248 	return err;
1249 }
1250 
1251 static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
1252 {
1253 	int b, w, o;
1254 	unsigned char linebuf[38];
1255 
1256 	for (b = 0; b < bytes; ) {
1257 		for (w = 0, o = 0; b < bytes && w < 4; w++) {
1258 			o += snprintf(linebuf + o, sizeof(linebuf) - o,
1259 				      "%08x ", readl(start + b));
1260 			b += sizeof(u32);
1261 		}
1262 		dev_dbg(dev, "%s: %p: %s\n",
1263 			__func__, start + b, linebuf);
1264 	}
1265 }
1266 
1267 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1268 {
1269 	int b, w, o;
1270 	u32 dw = 0;
1271 	unsigned char linebuf[38];
1272 
1273 	for (b = 0; b < bytes; ) {
1274 		for (w = 0, o = 0; b < bytes && w < 4; w++) {
1275 			(void) pci_read_config_dword(pdev, b, &dw);
1276 			o += snprintf(linebuf + o, sizeof(linebuf) - o,
1277 				      "%08x ", dw);
1278 			b += sizeof(u32);
1279 		}
1280 		dev_dbg(&pdev->dev, "%s: %02x: %s\n",
1281 			__func__, b, linebuf);
1282 	}
1283 }
1284 
1285 static void mv_dump_all_regs(void __iomem *mmio_base,
1286 			     struct pci_dev *pdev)
1287 {
1288 	void __iomem *hc_base;
1289 	void __iomem *port_base;
1290 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1291 
1292 	start_hc = start_port = 0;
1293 	num_ports = 8;		/* should be benign for 4 port devs */
1294 	num_hcs = 2;
1295 	dev_dbg(&pdev->dev,
1296 		"%s: All registers for port(s) %u-%u:\n", __func__,
1297 		start_port, num_ports > 1 ? num_ports - 1 : start_port);
1298 
1299 	dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
1300 	mv_dump_pci_cfg(pdev, 0x68);
1301 
1302 	dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
1303 	mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
1304 	mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
1305 	mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
1306 	mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
1307 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1308 		hc_base = mv_hc_base(mmio_base, hc);
1309 		dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
1310 		mv_dump_mem(&pdev->dev, hc_base, 0x1c);
1311 	}
1312 	for (p = start_port; p < start_port + num_ports; p++) {
1313 		port_base = mv_port_base(mmio_base, p);
1314 		dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
1315 		mv_dump_mem(&pdev->dev, port_base, 0x54);
1316 		dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
1317 		mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
1318 	}
1319 }
1320 
1321 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1322 {
1323 	unsigned int ofs;
1324 
1325 	switch (sc_reg_in) {
1326 	case SCR_STATUS:
1327 	case SCR_CONTROL:
1328 	case SCR_ERROR:
1329 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1330 		break;
1331 	case SCR_ACTIVE:
1332 		ofs = SATA_ACTIVE;   /* active is not with the others */
1333 		break;
1334 	default:
1335 		ofs = 0xffffffffU;
1336 		break;
1337 	}
1338 	return ofs;
1339 }
1340 
1341 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1342 {
1343 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1344 
1345 	if (ofs != 0xffffffffU) {
1346 		*val = readl(mv_ap_base(link->ap) + ofs);
1347 		return 0;
1348 	} else
1349 		return -EINVAL;
1350 }
1351 
1352 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1353 {
1354 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1355 
1356 	if (ofs != 0xffffffffU) {
1357 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1358 		struct mv_host_priv *hpriv = link->ap->host->private_data;
1359 		if (sc_reg_in == SCR_CONTROL) {
1360 			/*
1361 			 * Workaround for 88SX60x1 FEr SATA#26:
1362 			 *
1363 			 * COMRESETs have to take care not to accidentally
1364 			 * put the drive to sleep when writing SCR_CONTROL.
1365 			 * Setting bits 12..15 prevents this problem.
1366 			 *
1367 			 * So if we see an outbound COMMRESET, set those bits.
1368 			 * Ditto for the followup write that clears the reset.
1369 			 *
1370 			 * The proprietary driver does this for
1371 			 * all chip versions, and so do we.
1372 			 */
1373 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1374 				val |= 0xf000;
1375 
1376 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1377 				void __iomem *lp_phy_addr =
1378 					mv_ap_base(link->ap) + LP_PHY_CTL;
1379 				/*
1380 				 * Set PHY speed according to SControl speed.
1381 				 */
1382 				u32 lp_phy_val =
1383 					LP_PHY_CTL_PIN_PU_PLL |
1384 					LP_PHY_CTL_PIN_PU_RX  |
1385 					LP_PHY_CTL_PIN_PU_TX;
1386 
1387 				if ((val & 0xf0) != 0x10)
1388 					lp_phy_val |=
1389 						LP_PHY_CTL_GEN_TX_3G |
1390 						LP_PHY_CTL_GEN_RX_3G;
1391 
1392 				writelfl(lp_phy_val, lp_phy_addr);
1393 			}
1394 		}
1395 		writelfl(val, addr);
1396 		return 0;
1397 	} else
1398 		return -EINVAL;
1399 }
1400 
1401 static void mv6_dev_config(struct ata_device *adev)
1402 {
1403 	/*
1404 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1405 	 *
1406 	 * Gen-II does not support NCQ over a port multiplier
1407 	 *  (no FIS-based switching).
1408 	 */
1409 	if (adev->flags & ATA_DFLAG_NCQ) {
1410 		if (sata_pmp_attached(adev->link->ap)) {
1411 			adev->flags &= ~ATA_DFLAG_NCQ;
1412 			ata_dev_info(adev,
1413 				"NCQ disabled for command-based switching\n");
1414 		}
1415 	}
1416 }
1417 
1418 static int mv_qc_defer(struct ata_queued_cmd *qc)
1419 {
1420 	struct ata_link *link = qc->dev->link;
1421 	struct ata_port *ap = link->ap;
1422 	struct mv_port_priv *pp = ap->private_data;
1423 
1424 	/*
1425 	 * Don't allow new commands if we're in a delayed EH state
1426 	 * for NCQ and/or FIS-based switching.
1427 	 */
1428 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1429 		return ATA_DEFER_PORT;
1430 
1431 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1432 	 * can run concurrently.
1433 	 * set excl_link when we want to send a PIO command in DMA mode
1434 	 * or a non-NCQ command in NCQ mode.
1435 	 * When we receive a command from that link, and there are no
1436 	 * outstanding commands, mark a flag to clear excl_link and let
1437 	 * the command go through.
1438 	 */
1439 	if (unlikely(ap->excl_link)) {
1440 		if (link == ap->excl_link) {
1441 			if (ap->nr_active_links)
1442 				return ATA_DEFER_PORT;
1443 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1444 			return 0;
1445 		} else
1446 			return ATA_DEFER_PORT;
1447 	}
1448 
1449 	/*
1450 	 * If the port is completely idle, then allow the new qc.
1451 	 */
1452 	if (ap->nr_active_links == 0)
1453 		return 0;
1454 
1455 	/*
1456 	 * The port is operating in host queuing mode (EDMA) with NCQ
1457 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1458 	 * queueing multiple DMA commands but libata core currently
1459 	 * doesn't allow it.
1460 	 */
1461 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1462 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1463 		if (ata_is_ncq(qc->tf.protocol))
1464 			return 0;
1465 		else {
1466 			ap->excl_link = link;
1467 			return ATA_DEFER_PORT;
1468 		}
1469 	}
1470 
1471 	return ATA_DEFER_PORT;
1472 }
1473 
1474 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1475 {
1476 	struct mv_port_priv *pp = ap->private_data;
1477 	void __iomem *port_mmio;
1478 
1479 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1480 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1481 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1482 
1483 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1484 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1485 
1486 	if (want_fbs) {
1487 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1488 		ltmode = *old_ltmode | LTMODE_BIT8;
1489 		if (want_ncq)
1490 			haltcond &= ~EDMA_ERR_DEV;
1491 		else
1492 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1493 	} else {
1494 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1495 	}
1496 
1497 	port_mmio = mv_ap_base(ap);
1498 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1499 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1500 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1501 }
1502 
1503 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1504 {
1505 	struct mv_host_priv *hpriv = ap->host->private_data;
1506 	u32 old, new;
1507 
1508 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1509 	old = readl(hpriv->base + GPIO_PORT_CTL);
1510 	if (want_ncq)
1511 		new = old | (1 << 22);
1512 	else
1513 		new = old & ~(1 << 22);
1514 	if (new != old)
1515 		writel(new, hpriv->base + GPIO_PORT_CTL);
1516 }
1517 
1518 /*
1519  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1520  *	@ap: Port being initialized
1521  *
1522  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1523  *
1524  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1525  *	of basic DMA on the GEN_IIE versions of the chips.
1526  *
1527  *	This bit survives EDMA resets, and must be set for basic DMA
1528  *	to function, and should be cleared when EDMA is active.
1529  */
1530 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1531 {
1532 	struct mv_port_priv *pp = ap->private_data;
1533 	u32 new, *old = &pp->cached.unknown_rsvd;
1534 
1535 	if (enable_bmdma)
1536 		new = *old | 1;
1537 	else
1538 		new = *old & ~1;
1539 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1540 }
1541 
1542 /*
1543  * SOC chips have an issue whereby the HDD LEDs don't always blink
1544  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1545  * of the SOC takes care of it, generating a steady blink rate when
1546  * any drive on the chip is active.
1547  *
1548  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1549  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1550  *
1551  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1552  * LED operation works then, and provides better (more accurate) feedback.
1553  *
1554  * Note that this code assumes that an SOC never has more than one HC onboard.
1555  */
1556 static void mv_soc_led_blink_enable(struct ata_port *ap)
1557 {
1558 	struct ata_host *host = ap->host;
1559 	struct mv_host_priv *hpriv = host->private_data;
1560 	void __iomem *hc_mmio;
1561 	u32 led_ctrl;
1562 
1563 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1564 		return;
1565 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1566 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1569 }
1570 
1571 static void mv_soc_led_blink_disable(struct ata_port *ap)
1572 {
1573 	struct ata_host *host = ap->host;
1574 	struct mv_host_priv *hpriv = host->private_data;
1575 	void __iomem *hc_mmio;
1576 	u32 led_ctrl;
1577 	unsigned int port;
1578 
1579 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1580 		return;
1581 
1582 	/* disable led-blink only if no ports are using NCQ */
1583 	for (port = 0; port < hpriv->n_ports; port++) {
1584 		struct ata_port *this_ap = host->ports[port];
1585 		struct mv_port_priv *pp = this_ap->private_data;
1586 
1587 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1588 			return;
1589 	}
1590 
1591 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1592 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1593 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1594 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1595 }
1596 
1597 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1598 {
1599 	u32 cfg;
1600 	struct mv_port_priv *pp    = ap->private_data;
1601 	struct mv_host_priv *hpriv = ap->host->private_data;
1602 	void __iomem *port_mmio    = mv_ap_base(ap);
1603 
1604 	/* set up non-NCQ EDMA configuration */
1605 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1606 	pp->pp_flags &=
1607 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1608 
1609 	if (IS_GEN_I(hpriv))
1610 		cfg |= (1 << 8);	/* enab config burst size mask */
1611 
1612 	else if (IS_GEN_II(hpriv)) {
1613 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1614 		mv_60x1_errata_sata25(ap, want_ncq);
1615 
1616 	} else if (IS_GEN_IIE(hpriv)) {
1617 		int want_fbs = sata_pmp_attached(ap);
1618 		/*
1619 		 * Possible future enhancement:
1620 		 *
1621 		 * The chip can use FBS with non-NCQ, if we allow it,
1622 		 * But first we need to have the error handling in place
1623 		 * for this mode (datasheet section 7.3.15.4.2.3).
1624 		 * So disallow non-NCQ FBS for now.
1625 		 */
1626 		want_fbs &= want_ncq;
1627 
1628 		mv_config_fbs(ap, want_ncq, want_fbs);
1629 
1630 		if (want_fbs) {
1631 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1632 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1633 		}
1634 
1635 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1636 		if (want_edma) {
1637 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1638 			if (!IS_SOC(hpriv))
1639 				cfg |= (1 << 18); /* enab early completion */
1640 		}
1641 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1642 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1643 		mv_bmdma_enable_iie(ap, !want_edma);
1644 
1645 		if (IS_SOC(hpriv)) {
1646 			if (want_ncq)
1647 				mv_soc_led_blink_enable(ap);
1648 			else
1649 				mv_soc_led_blink_disable(ap);
1650 		}
1651 	}
1652 
1653 	if (want_ncq) {
1654 		cfg |= EDMA_CFG_NCQ;
1655 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1656 	}
1657 
1658 	writelfl(cfg, port_mmio + EDMA_CFG);
1659 }
1660 
1661 static void mv_port_free_dma_mem(struct ata_port *ap)
1662 {
1663 	struct mv_host_priv *hpriv = ap->host->private_data;
1664 	struct mv_port_priv *pp = ap->private_data;
1665 	int tag;
1666 
1667 	if (pp->crqb) {
1668 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1669 		pp->crqb = NULL;
1670 	}
1671 	if (pp->crpb) {
1672 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1673 		pp->crpb = NULL;
1674 	}
1675 	/*
1676 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1677 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1678 	 */
1679 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1680 		if (pp->sg_tbl[tag]) {
1681 			if (tag == 0 || !IS_GEN_I(hpriv))
1682 				dma_pool_free(hpriv->sg_tbl_pool,
1683 					      pp->sg_tbl[tag],
1684 					      pp->sg_tbl_dma[tag]);
1685 			pp->sg_tbl[tag] = NULL;
1686 		}
1687 	}
1688 }
1689 
1690 /**
1691  *      mv_port_start - Port specific init/start routine.
1692  *      @ap: ATA channel to manipulate
1693  *
1694  *      Allocate and point to DMA memory, init port private memory,
1695  *      zero indices.
1696  *
1697  *      LOCKING:
1698  *      Inherited from caller.
1699  */
1700 static int mv_port_start(struct ata_port *ap)
1701 {
1702 	struct device *dev = ap->host->dev;
1703 	struct mv_host_priv *hpriv = ap->host->private_data;
1704 	struct mv_port_priv *pp;
1705 	unsigned long flags;
1706 	int tag;
1707 
1708 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1709 	if (!pp)
1710 		return -ENOMEM;
1711 	ap->private_data = pp;
1712 
1713 	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1714 	if (!pp->crqb)
1715 		return -ENOMEM;
1716 
1717 	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1718 	if (!pp->crpb)
1719 		goto out_port_free_dma_mem;
1720 
1721 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1722 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1723 		ap->flags |= ATA_FLAG_AN;
1724 	/*
1725 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1726 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1727 	 */
1728 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1729 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1730 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1731 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1732 			if (!pp->sg_tbl[tag])
1733 				goto out_port_free_dma_mem;
1734 		} else {
1735 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1736 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1737 		}
1738 	}
1739 
1740 	spin_lock_irqsave(ap->lock, flags);
1741 	mv_save_cached_regs(ap);
1742 	mv_edma_cfg(ap, 0, 0);
1743 	spin_unlock_irqrestore(ap->lock, flags);
1744 
1745 	return 0;
1746 
1747 out_port_free_dma_mem:
1748 	mv_port_free_dma_mem(ap);
1749 	return -ENOMEM;
1750 }
1751 
1752 /**
1753  *      mv_port_stop - Port specific cleanup/stop routine.
1754  *      @ap: ATA channel to manipulate
1755  *
1756  *      Stop DMA, cleanup port memory.
1757  *
1758  *      LOCKING:
1759  *      This routine uses the host lock to protect the DMA stop.
1760  */
1761 static void mv_port_stop(struct ata_port *ap)
1762 {
1763 	unsigned long flags;
1764 
1765 	spin_lock_irqsave(ap->lock, flags);
1766 	mv_stop_edma(ap);
1767 	mv_enable_port_irqs(ap, 0);
1768 	spin_unlock_irqrestore(ap->lock, flags);
1769 	mv_port_free_dma_mem(ap);
1770 }
1771 
1772 /**
1773  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1774  *      @qc: queued command whose SG list to source from
1775  *
1776  *      Populate the SG list and mark the last entry.
1777  *
1778  *      LOCKING:
1779  *      Inherited from caller.
1780  */
1781 static void mv_fill_sg(struct ata_queued_cmd *qc)
1782 {
1783 	struct mv_port_priv *pp = qc->ap->private_data;
1784 	struct scatterlist *sg;
1785 	struct mv_sg *mv_sg, *last_sg = NULL;
1786 	unsigned int si;
1787 
1788 	mv_sg = pp->sg_tbl[qc->hw_tag];
1789 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1790 		dma_addr_t addr = sg_dma_address(sg);
1791 		u32 sg_len = sg_dma_len(sg);
1792 
1793 		while (sg_len) {
1794 			u32 offset = addr & 0xffff;
1795 			u32 len = sg_len;
1796 
1797 			if (offset + len > 0x10000)
1798 				len = 0x10000 - offset;
1799 
1800 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1801 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1802 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1803 			mv_sg->reserved = 0;
1804 
1805 			sg_len -= len;
1806 			addr += len;
1807 
1808 			last_sg = mv_sg;
1809 			mv_sg++;
1810 		}
1811 	}
1812 
1813 	if (likely(last_sg))
1814 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1815 	mb(); /* ensure data structure is visible to the chipset */
1816 }
1817 
1818 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1819 {
1820 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1821 		(last ? CRQB_CMD_LAST : 0);
1822 	*cmdw = cpu_to_le16(tmp);
1823 }
1824 
1825 /**
1826  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1827  *	@ap: Port associated with this ATA transaction.
1828  *
1829  *	We need this only for ATAPI bmdma transactions,
1830  *	as otherwise we experience spurious interrupts
1831  *	after libata-sff handles the bmdma interrupts.
1832  */
1833 static void mv_sff_irq_clear(struct ata_port *ap)
1834 {
1835 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1836 }
1837 
1838 /**
1839  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1840  *	@qc: queued command to check for chipset/DMA compatibility.
1841  *
1842  *	The bmdma engines cannot handle speculative data sizes
1843  *	(bytecount under/over flow).  So only allow DMA for
1844  *	data transfer commands with known data sizes.
1845  *
1846  *	LOCKING:
1847  *	Inherited from caller.
1848  */
1849 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1850 {
1851 	struct scsi_cmnd *scmd = qc->scsicmd;
1852 
1853 	if (scmd) {
1854 		switch (scmd->cmnd[0]) {
1855 		case READ_6:
1856 		case READ_10:
1857 		case READ_12:
1858 		case WRITE_6:
1859 		case WRITE_10:
1860 		case WRITE_12:
1861 		case GPCMD_READ_CD:
1862 		case GPCMD_SEND_DVD_STRUCTURE:
1863 		case GPCMD_SEND_CUE_SHEET:
1864 			return 0; /* DMA is safe */
1865 		}
1866 	}
1867 	return -EOPNOTSUPP; /* use PIO instead */
1868 }
1869 
1870 /**
1871  *	mv_bmdma_setup - Set up BMDMA transaction
1872  *	@qc: queued command to prepare DMA for.
1873  *
1874  *	LOCKING:
1875  *	Inherited from caller.
1876  */
1877 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1878 {
1879 	struct ata_port *ap = qc->ap;
1880 	void __iomem *port_mmio = mv_ap_base(ap);
1881 	struct mv_port_priv *pp = ap->private_data;
1882 
1883 	mv_fill_sg(qc);
1884 
1885 	/* clear all DMA cmd bits */
1886 	writel(0, port_mmio + BMDMA_CMD);
1887 
1888 	/* load PRD table addr. */
1889 	writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1890 		port_mmio + BMDMA_PRD_HIGH);
1891 	writelfl(pp->sg_tbl_dma[qc->hw_tag],
1892 		port_mmio + BMDMA_PRD_LOW);
1893 
1894 	/* issue r/w command */
1895 	ap->ops->sff_exec_command(ap, &qc->tf);
1896 }
1897 
1898 /**
1899  *	mv_bmdma_start - Start a BMDMA transaction
1900  *	@qc: queued command to start DMA on.
1901  *
1902  *	LOCKING:
1903  *	Inherited from caller.
1904  */
1905 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1906 {
1907 	struct ata_port *ap = qc->ap;
1908 	void __iomem *port_mmio = mv_ap_base(ap);
1909 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1910 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1911 
1912 	/* start host DMA transaction */
1913 	writelfl(cmd, port_mmio + BMDMA_CMD);
1914 }
1915 
1916 /**
1917  *	mv_bmdma_stop_ap - Stop BMDMA transfer
1918  *	@ap: port to stop
1919  *
1920  *	Clears the ATA_DMA_START flag in the bmdma control register
1921  *
1922  *	LOCKING:
1923  *	Inherited from caller.
1924  */
1925 static void mv_bmdma_stop_ap(struct ata_port *ap)
1926 {
1927 	void __iomem *port_mmio = mv_ap_base(ap);
1928 	u32 cmd;
1929 
1930 	/* clear start/stop bit */
1931 	cmd = readl(port_mmio + BMDMA_CMD);
1932 	if (cmd & ATA_DMA_START) {
1933 		cmd &= ~ATA_DMA_START;
1934 		writelfl(cmd, port_mmio + BMDMA_CMD);
1935 
1936 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1937 		ata_sff_dma_pause(ap);
1938 	}
1939 }
1940 
1941 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1942 {
1943 	mv_bmdma_stop_ap(qc->ap);
1944 }
1945 
1946 /**
1947  *	mv_bmdma_status - Read BMDMA status
1948  *	@ap: port for which to retrieve DMA status.
1949  *
1950  *	Read and return equivalent of the sff BMDMA status register.
1951  *
1952  *	LOCKING:
1953  *	Inherited from caller.
1954  */
1955 static u8 mv_bmdma_status(struct ata_port *ap)
1956 {
1957 	void __iomem *port_mmio = mv_ap_base(ap);
1958 	u32 reg, status;
1959 
1960 	/*
1961 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1962 	 * and the ATA_DMA_INTR bit doesn't exist.
1963 	 */
1964 	reg = readl(port_mmio + BMDMA_STATUS);
1965 	if (reg & ATA_DMA_ACTIVE)
1966 		status = ATA_DMA_ACTIVE;
1967 	else if (reg & ATA_DMA_ERR)
1968 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1969 	else {
1970 		/*
1971 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1972 		 * this does _not_ mean the device is "done".
1973 		 * So we should not yet be signalling ATA_DMA_INTR
1974 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1975 		 */
1976 		mv_bmdma_stop_ap(ap);
1977 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1978 			status = 0;
1979 		else
1980 			status = ATA_DMA_INTR;
1981 	}
1982 	return status;
1983 }
1984 
1985 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1986 {
1987 	struct ata_taskfile *tf = &qc->tf;
1988 	/*
1989 	 * Workaround for 88SX60x1 FEr SATA#24.
1990 	 *
1991 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1992 	 * Note that READs are unaffected.
1993 	 *
1994 	 * It's not clear if this errata really means "4K bytes",
1995 	 * or if it always happens for multi_count > 7
1996 	 * regardless of device sector_size.
1997 	 *
1998 	 * So, for safety, any write with multi_count > 7
1999 	 * gets converted here into a regular PIO write instead:
2000 	 */
2001 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2002 		if (qc->dev->multi_count > 7) {
2003 			switch (tf->command) {
2004 			case ATA_CMD_WRITE_MULTI:
2005 				tf->command = ATA_CMD_PIO_WRITE;
2006 				break;
2007 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
2008 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2009 				fallthrough;
2010 			case ATA_CMD_WRITE_MULTI_EXT:
2011 				tf->command = ATA_CMD_PIO_WRITE_EXT;
2012 				break;
2013 			}
2014 		}
2015 	}
2016 }
2017 
2018 /**
2019  *      mv_qc_prep - Host specific command preparation.
2020  *      @qc: queued command to prepare
2021  *
2022  *      This routine simply redirects to the general purpose routine
2023  *      if command is not DMA.  Else, it handles prep of the CRQB
2024  *      (command request block), does some sanity checking, and calls
2025  *      the SG load routine.
2026  *
2027  *      LOCKING:
2028  *      Inherited from caller.
2029  */
2030 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2031 {
2032 	struct ata_port *ap = qc->ap;
2033 	struct mv_port_priv *pp = ap->private_data;
2034 	__le16 *cw;
2035 	struct ata_taskfile *tf = &qc->tf;
2036 	u16 flags = 0;
2037 	unsigned in_index;
2038 
2039 	switch (tf->protocol) {
2040 	case ATA_PROT_DMA:
2041 		if (tf->command == ATA_CMD_DSM)
2042 			return AC_ERR_OK;
2043 		fallthrough;
2044 	case ATA_PROT_NCQ:
2045 		break;	/* continue below */
2046 	case ATA_PROT_PIO:
2047 		mv_rw_multi_errata_sata24(qc);
2048 		return AC_ERR_OK;
2049 	default:
2050 		return AC_ERR_OK;
2051 	}
2052 
2053 	/* Fill in command request block
2054 	 */
2055 	if (!(tf->flags & ATA_TFLAG_WRITE))
2056 		flags |= CRQB_FLAG_READ;
2057 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2058 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2059 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2060 
2061 	/* get current queue index from software */
2062 	in_index = pp->req_idx;
2063 
2064 	pp->crqb[in_index].sg_addr =
2065 		cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2066 	pp->crqb[in_index].sg_addr_hi =
2067 		cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2068 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2069 
2070 	cw = &pp->crqb[in_index].ata_cmd[0];
2071 
2072 	/* Sadly, the CRQB cannot accommodate all registers--there are
2073 	 * only 11 bytes...so we must pick and choose required
2074 	 * registers based on the command.  So, we drop feature and
2075 	 * hob_feature for [RW] DMA commands, but they are needed for
2076 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2077 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2078 	 */
2079 	switch (tf->command) {
2080 	case ATA_CMD_READ:
2081 	case ATA_CMD_READ_EXT:
2082 	case ATA_CMD_WRITE:
2083 	case ATA_CMD_WRITE_EXT:
2084 	case ATA_CMD_WRITE_FUA_EXT:
2085 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2086 		break;
2087 	case ATA_CMD_FPDMA_READ:
2088 	case ATA_CMD_FPDMA_WRITE:
2089 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2090 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2091 		break;
2092 	default:
2093 		/* The only other commands EDMA supports in non-queued and
2094 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2095 		 * of which are defined/used by Linux.  If we get here, this
2096 		 * driver needs work.
2097 		 */
2098 		ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2099 				tf->command);
2100 		return AC_ERR_INVALID;
2101 	}
2102 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2103 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2104 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2105 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2106 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2107 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2108 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2109 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2110 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2111 
2112 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2113 		return AC_ERR_OK;
2114 	mv_fill_sg(qc);
2115 
2116 	return AC_ERR_OK;
2117 }
2118 
2119 /**
2120  *      mv_qc_prep_iie - Host specific command preparation.
2121  *      @qc: queued command to prepare
2122  *
2123  *      This routine simply redirects to the general purpose routine
2124  *      if command is not DMA.  Else, it handles prep of the CRQB
2125  *      (command request block), does some sanity checking, and calls
2126  *      the SG load routine.
2127  *
2128  *      LOCKING:
2129  *      Inherited from caller.
2130  */
2131 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2132 {
2133 	struct ata_port *ap = qc->ap;
2134 	struct mv_port_priv *pp = ap->private_data;
2135 	struct mv_crqb_iie *crqb;
2136 	struct ata_taskfile *tf = &qc->tf;
2137 	unsigned in_index;
2138 	u32 flags = 0;
2139 
2140 	if ((tf->protocol != ATA_PROT_DMA) &&
2141 	    (tf->protocol != ATA_PROT_NCQ))
2142 		return AC_ERR_OK;
2143 	if (tf->command == ATA_CMD_DSM)
2144 		return AC_ERR_OK;  /* use bmdma for this */
2145 
2146 	/* Fill in Gen IIE command request block */
2147 	if (!(tf->flags & ATA_TFLAG_WRITE))
2148 		flags |= CRQB_FLAG_READ;
2149 
2150 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2151 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2152 	flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2153 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2154 
2155 	/* get current queue index from software */
2156 	in_index = pp->req_idx;
2157 
2158 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2159 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2160 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2161 	crqb->flags = cpu_to_le32(flags);
2162 
2163 	crqb->ata_cmd[0] = cpu_to_le32(
2164 			(tf->command << 16) |
2165 			(tf->feature << 24)
2166 		);
2167 	crqb->ata_cmd[1] = cpu_to_le32(
2168 			(tf->lbal << 0) |
2169 			(tf->lbam << 8) |
2170 			(tf->lbah << 16) |
2171 			(tf->device << 24)
2172 		);
2173 	crqb->ata_cmd[2] = cpu_to_le32(
2174 			(tf->hob_lbal << 0) |
2175 			(tf->hob_lbam << 8) |
2176 			(tf->hob_lbah << 16) |
2177 			(tf->hob_feature << 24)
2178 		);
2179 	crqb->ata_cmd[3] = cpu_to_le32(
2180 			(tf->nsect << 0) |
2181 			(tf->hob_nsect << 8)
2182 		);
2183 
2184 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2185 		return AC_ERR_OK;
2186 	mv_fill_sg(qc);
2187 
2188 	return AC_ERR_OK;
2189 }
2190 
2191 /**
2192  *	mv_sff_check_status - fetch device status, if valid
2193  *	@ap: ATA port to fetch status from
2194  *
2195  *	When using command issue via mv_qc_issue_fis(),
2196  *	the initial ATA_BUSY state does not show up in the
2197  *	ATA status (shadow) register.  This can confuse libata!
2198  *
2199  *	So we have a hook here to fake ATA_BUSY for that situation,
2200  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2201  *
2202  *	The rest of the time, it simply returns the ATA status register.
2203  */
2204 static u8 mv_sff_check_status(struct ata_port *ap)
2205 {
2206 	u8 stat = ioread8(ap->ioaddr.status_addr);
2207 	struct mv_port_priv *pp = ap->private_data;
2208 
2209 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2210 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2211 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2212 		else
2213 			stat = ATA_BUSY;
2214 	}
2215 	return stat;
2216 }
2217 
2218 /**
2219  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2220  *	@ap: ATA port to send a FIS
2221  *	@fis: fis to be sent
2222  *	@nwords: number of 32-bit words in the fis
2223  */
2224 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2225 {
2226 	void __iomem *port_mmio = mv_ap_base(ap);
2227 	u32 ifctl, old_ifctl, ifstat;
2228 	int i, timeout = 200, final_word = nwords - 1;
2229 
2230 	/* Initiate FIS transmission mode */
2231 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2232 	ifctl = 0x100 | (old_ifctl & 0xf);
2233 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2234 
2235 	/* Send all words of the FIS except for the final word */
2236 	for (i = 0; i < final_word; ++i)
2237 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2238 
2239 	/* Flag end-of-transmission, and then send the final word */
2240 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2241 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2242 
2243 	/*
2244 	 * Wait for FIS transmission to complete.
2245 	 * This typically takes just a single iteration.
2246 	 */
2247 	do {
2248 		ifstat = readl(port_mmio + SATA_IFSTAT);
2249 	} while (!(ifstat & 0x1000) && --timeout);
2250 
2251 	/* Restore original port configuration */
2252 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2253 
2254 	/* See if it worked */
2255 	if ((ifstat & 0x3000) != 0x1000) {
2256 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2257 			      __func__, ifstat);
2258 		return AC_ERR_OTHER;
2259 	}
2260 	return 0;
2261 }
2262 
2263 /**
2264  *	mv_qc_issue_fis - Issue a command directly as a FIS
2265  *	@qc: queued command to start
2266  *
2267  *	Note that the ATA shadow registers are not updated
2268  *	after command issue, so the device will appear "READY"
2269  *	if polled, even while it is BUSY processing the command.
2270  *
2271  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2272  *
2273  *	Note: we don't get updated shadow regs on *completion*
2274  *	of non-data commands. So avoid sending them via this function,
2275  *	as they will appear to have completed immediately.
2276  *
2277  *	GEN_IIE has special registers that we could get the result tf from,
2278  *	but earlier chipsets do not.  For now, we ignore those registers.
2279  */
2280 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2281 {
2282 	struct ata_port *ap = qc->ap;
2283 	struct mv_port_priv *pp = ap->private_data;
2284 	struct ata_link *link = qc->dev->link;
2285 	u32 fis[5];
2286 	int err = 0;
2287 
2288 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2289 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2290 	if (err)
2291 		return err;
2292 
2293 	switch (qc->tf.protocol) {
2294 	case ATAPI_PROT_PIO:
2295 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2296 		fallthrough;
2297 	case ATAPI_PROT_NODATA:
2298 		ap->hsm_task_state = HSM_ST_FIRST;
2299 		break;
2300 	case ATA_PROT_PIO:
2301 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2302 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2303 			ap->hsm_task_state = HSM_ST_FIRST;
2304 		else
2305 			ap->hsm_task_state = HSM_ST;
2306 		break;
2307 	default:
2308 		ap->hsm_task_state = HSM_ST_LAST;
2309 		break;
2310 	}
2311 
2312 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2313 		ata_sff_queue_pio_task(link, 0);
2314 	return 0;
2315 }
2316 
2317 /**
2318  *      mv_qc_issue - Initiate a command to the host
2319  *      @qc: queued command to start
2320  *
2321  *      This routine simply redirects to the general purpose routine
2322  *      if command is not DMA.  Else, it sanity checks our local
2323  *      caches of the request producer/consumer indices then enables
2324  *      DMA and bumps the request producer index.
2325  *
2326  *      LOCKING:
2327  *      Inherited from caller.
2328  */
2329 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2330 {
2331 	static int limit_warnings = 10;
2332 	struct ata_port *ap = qc->ap;
2333 	void __iomem *port_mmio = mv_ap_base(ap);
2334 	struct mv_port_priv *pp = ap->private_data;
2335 	u32 in_index;
2336 	unsigned int port_irqs;
2337 
2338 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2339 
2340 	switch (qc->tf.protocol) {
2341 	case ATA_PROT_DMA:
2342 		if (qc->tf.command == ATA_CMD_DSM) {
2343 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2344 				return AC_ERR_OTHER;
2345 			break;  /* use bmdma for this */
2346 		}
2347 		fallthrough;
2348 	case ATA_PROT_NCQ:
2349 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2350 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2351 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2352 
2353 		/* Write the request in pointer to kick the EDMA to life */
2354 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2355 					port_mmio + EDMA_REQ_Q_IN_PTR);
2356 		return 0;
2357 
2358 	case ATA_PROT_PIO:
2359 		/*
2360 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2361 		 *
2362 		 * Someday, we might implement special polling workarounds
2363 		 * for these, but it all seems rather unnecessary since we
2364 		 * normally use only DMA for commands which transfer more
2365 		 * than a single block of data.
2366 		 *
2367 		 * Much of the time, this could just work regardless.
2368 		 * So for now, just log the incident, and allow the attempt.
2369 		 */
2370 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2371 			--limit_warnings;
2372 			ata_link_warn(qc->dev->link, DRV_NAME
2373 				      ": attempting PIO w/multiple DRQ: "
2374 				      "this may fail due to h/w errata\n");
2375 		}
2376 		fallthrough;
2377 	case ATA_PROT_NODATA:
2378 	case ATAPI_PROT_PIO:
2379 	case ATAPI_PROT_NODATA:
2380 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2381 			qc->tf.flags |= ATA_TFLAG_POLLING;
2382 		break;
2383 	}
2384 
2385 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2386 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2387 	else
2388 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2389 
2390 	/*
2391 	 * We're about to send a non-EDMA capable command to the
2392 	 * port.  Turn off EDMA so there won't be problems accessing
2393 	 * shadow block, etc registers.
2394 	 */
2395 	mv_stop_edma(ap);
2396 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2397 	mv_pmp_select(ap, qc->dev->link->pmp);
2398 
2399 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2400 		struct mv_host_priv *hpriv = ap->host->private_data;
2401 		/*
2402 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2403 		 *
2404 		 * After any NCQ error, the READ_LOG_EXT command
2405 		 * from libata-eh *must* use mv_qc_issue_fis().
2406 		 * Otherwise it might fail, due to chip errata.
2407 		 *
2408 		 * Rather than special-case it, we'll just *always*
2409 		 * use this method here for READ_LOG_EXT, making for
2410 		 * easier testing.
2411 		 */
2412 		if (IS_GEN_II(hpriv))
2413 			return mv_qc_issue_fis(qc);
2414 	}
2415 	return ata_bmdma_qc_issue(qc);
2416 }
2417 
2418 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2419 {
2420 	struct mv_port_priv *pp = ap->private_data;
2421 	struct ata_queued_cmd *qc;
2422 
2423 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2424 		return NULL;
2425 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2426 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2427 		return qc;
2428 	return NULL;
2429 }
2430 
2431 static void mv_pmp_error_handler(struct ata_port *ap)
2432 {
2433 	unsigned int pmp, pmp_map;
2434 	struct mv_port_priv *pp = ap->private_data;
2435 
2436 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2437 		/*
2438 		 * Perform NCQ error analysis on failed PMPs
2439 		 * before we freeze the port entirely.
2440 		 *
2441 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2442 		 */
2443 		pmp_map = pp->delayed_eh_pmp_map;
2444 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2445 		for (pmp = 0; pmp_map != 0; pmp++) {
2446 			unsigned int this_pmp = (1 << pmp);
2447 			if (pmp_map & this_pmp) {
2448 				struct ata_link *link = &ap->pmp_link[pmp];
2449 				pmp_map &= ~this_pmp;
2450 				ata_eh_analyze_ncq_error(link);
2451 			}
2452 		}
2453 		ata_port_freeze(ap);
2454 	}
2455 	sata_pmp_error_handler(ap);
2456 }
2457 
2458 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2459 {
2460 	void __iomem *port_mmio = mv_ap_base(ap);
2461 
2462 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2463 }
2464 
2465 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2466 {
2467 	unsigned int pmp;
2468 
2469 	/*
2470 	 * Initialize EH info for PMPs which saw device errors
2471 	 */
2472 	for (pmp = 0; pmp_map != 0; pmp++) {
2473 		unsigned int this_pmp = (1 << pmp);
2474 		if (pmp_map & this_pmp) {
2475 			struct ata_link *link = &ap->pmp_link[pmp];
2476 			struct ata_eh_info *ehi = &link->eh_info;
2477 
2478 			pmp_map &= ~this_pmp;
2479 			ata_ehi_clear_desc(ehi);
2480 			ata_ehi_push_desc(ehi, "dev err");
2481 			ehi->err_mask |= AC_ERR_DEV;
2482 			ehi->action |= ATA_EH_RESET;
2483 			ata_link_abort(link);
2484 		}
2485 	}
2486 }
2487 
2488 static int mv_req_q_empty(struct ata_port *ap)
2489 {
2490 	void __iomem *port_mmio = mv_ap_base(ap);
2491 	u32 in_ptr, out_ptr;
2492 
2493 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2494 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2495 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2496 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2497 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2498 }
2499 
2500 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2501 {
2502 	struct mv_port_priv *pp = ap->private_data;
2503 	int failed_links;
2504 	unsigned int old_map, new_map;
2505 
2506 	/*
2507 	 * Device error during FBS+NCQ operation:
2508 	 *
2509 	 * Set a port flag to prevent further I/O being enqueued.
2510 	 * Leave the EDMA running to drain outstanding commands from this port.
2511 	 * Perform the post-mortem/EH only when all responses are complete.
2512 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2513 	 */
2514 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2515 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2516 		pp->delayed_eh_pmp_map = 0;
2517 	}
2518 	old_map = pp->delayed_eh_pmp_map;
2519 	new_map = old_map | mv_get_err_pmp_map(ap);
2520 
2521 	if (old_map != new_map) {
2522 		pp->delayed_eh_pmp_map = new_map;
2523 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2524 	}
2525 	failed_links = hweight16(new_map);
2526 
2527 	ata_port_info(ap,
2528 		      "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2529 		      __func__, pp->delayed_eh_pmp_map,
2530 		      ap->qc_active, failed_links,
2531 		      ap->nr_active_links);
2532 
2533 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2534 		mv_process_crpb_entries(ap, pp);
2535 		mv_stop_edma(ap);
2536 		mv_eh_freeze(ap);
2537 		ata_port_info(ap, "%s: done\n", __func__);
2538 		return 1;	/* handled */
2539 	}
2540 	ata_port_info(ap, "%s: waiting\n", __func__);
2541 	return 1;	/* handled */
2542 }
2543 
2544 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2545 {
2546 	/*
2547 	 * Possible future enhancement:
2548 	 *
2549 	 * FBS+non-NCQ operation is not yet implemented.
2550 	 * See related notes in mv_edma_cfg().
2551 	 *
2552 	 * Device error during FBS+non-NCQ operation:
2553 	 *
2554 	 * We need to snapshot the shadow registers for each failed command.
2555 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2556 	 */
2557 	return 0;	/* not handled */
2558 }
2559 
2560 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2561 {
2562 	struct mv_port_priv *pp = ap->private_data;
2563 
2564 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2565 		return 0;	/* EDMA was not active: not handled */
2566 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2567 		return 0;	/* FBS was not active: not handled */
2568 
2569 	if (!(edma_err_cause & EDMA_ERR_DEV))
2570 		return 0;	/* non DEV error: not handled */
2571 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2572 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2573 		return 0;	/* other problems: not handled */
2574 
2575 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2576 		/*
2577 		 * EDMA should NOT have self-disabled for this case.
2578 		 * If it did, then something is wrong elsewhere,
2579 		 * and we cannot handle it here.
2580 		 */
2581 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2582 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2583 				      __func__, edma_err_cause, pp->pp_flags);
2584 			return 0; /* not handled */
2585 		}
2586 		return mv_handle_fbs_ncq_dev_err(ap);
2587 	} else {
2588 		/*
2589 		 * EDMA should have self-disabled for this case.
2590 		 * If it did not, then something is wrong elsewhere,
2591 		 * and we cannot handle it here.
2592 		 */
2593 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2594 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2595 				      __func__, edma_err_cause, pp->pp_flags);
2596 			return 0; /* not handled */
2597 		}
2598 		return mv_handle_fbs_non_ncq_dev_err(ap);
2599 	}
2600 	return 0;	/* not handled */
2601 }
2602 
2603 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2604 {
2605 	struct ata_eh_info *ehi = &ap->link.eh_info;
2606 	char *when = "idle";
2607 
2608 	ata_ehi_clear_desc(ehi);
2609 	if (edma_was_enabled) {
2610 		when = "EDMA enabled";
2611 	} else {
2612 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2613 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2614 			when = "polling";
2615 	}
2616 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2617 	ehi->err_mask |= AC_ERR_OTHER;
2618 	ehi->action   |= ATA_EH_RESET;
2619 	ata_port_freeze(ap);
2620 }
2621 
2622 /**
2623  *      mv_err_intr - Handle error interrupts on the port
2624  *      @ap: ATA channel to manipulate
2625  *
2626  *      Most cases require a full reset of the chip's state machine,
2627  *      which also performs a COMRESET.
2628  *      Also, if the port disabled DMA, update our cached copy to match.
2629  *
2630  *      LOCKING:
2631  *      Inherited from caller.
2632  */
2633 static void mv_err_intr(struct ata_port *ap)
2634 {
2635 	void __iomem *port_mmio = mv_ap_base(ap);
2636 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2637 	u32 fis_cause = 0;
2638 	struct mv_port_priv *pp = ap->private_data;
2639 	struct mv_host_priv *hpriv = ap->host->private_data;
2640 	unsigned int action = 0, err_mask = 0;
2641 	struct ata_eh_info *ehi = &ap->link.eh_info;
2642 	struct ata_queued_cmd *qc;
2643 	int abort = 0;
2644 
2645 	/*
2646 	 * Read and clear the SError and err_cause bits.
2647 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2648 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2649 	 */
2650 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2651 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2652 
2653 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2654 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2655 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2656 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2657 	}
2658 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2659 
2660 	if (edma_err_cause & EDMA_ERR_DEV) {
2661 		/*
2662 		 * Device errors during FIS-based switching operation
2663 		 * require special handling.
2664 		 */
2665 		if (mv_handle_dev_err(ap, edma_err_cause))
2666 			return;
2667 	}
2668 
2669 	qc = mv_get_active_qc(ap);
2670 	ata_ehi_clear_desc(ehi);
2671 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2672 			  edma_err_cause, pp->pp_flags);
2673 
2674 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2675 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2676 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2677 			u32 ec = edma_err_cause &
2678 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2679 			sata_async_notification(ap);
2680 			if (!ec)
2681 				return; /* Just an AN; no need for the nukes */
2682 			ata_ehi_push_desc(ehi, "SDB notify");
2683 		}
2684 	}
2685 	/*
2686 	 * All generations share these EDMA error cause bits:
2687 	 */
2688 	if (edma_err_cause & EDMA_ERR_DEV) {
2689 		err_mask |= AC_ERR_DEV;
2690 		action |= ATA_EH_RESET;
2691 		ata_ehi_push_desc(ehi, "dev error");
2692 	}
2693 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2694 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2695 			EDMA_ERR_INTRL_PAR)) {
2696 		err_mask |= AC_ERR_ATA_BUS;
2697 		action |= ATA_EH_RESET;
2698 		ata_ehi_push_desc(ehi, "parity error");
2699 	}
2700 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2701 		ata_ehi_hotplugged(ehi);
2702 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2703 			"dev disconnect" : "dev connect");
2704 		action |= ATA_EH_RESET;
2705 	}
2706 
2707 	/*
2708 	 * Gen-I has a different SELF_DIS bit,
2709 	 * different FREEZE bits, and no SERR bit:
2710 	 */
2711 	if (IS_GEN_I(hpriv)) {
2712 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2713 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2714 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2715 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2716 		}
2717 	} else {
2718 		eh_freeze_mask = EDMA_EH_FREEZE;
2719 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2720 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2722 		}
2723 		if (edma_err_cause & EDMA_ERR_SERR) {
2724 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2725 			err_mask |= AC_ERR_ATA_BUS;
2726 			action |= ATA_EH_RESET;
2727 		}
2728 	}
2729 
2730 	if (!err_mask) {
2731 		err_mask = AC_ERR_OTHER;
2732 		action |= ATA_EH_RESET;
2733 	}
2734 
2735 	ehi->serror |= serr;
2736 	ehi->action |= action;
2737 
2738 	if (qc)
2739 		qc->err_mask |= err_mask;
2740 	else
2741 		ehi->err_mask |= err_mask;
2742 
2743 	if (err_mask == AC_ERR_DEV) {
2744 		/*
2745 		 * Cannot do ata_port_freeze() here,
2746 		 * because it would kill PIO access,
2747 		 * which is needed for further diagnosis.
2748 		 */
2749 		mv_eh_freeze(ap);
2750 		abort = 1;
2751 	} else if (edma_err_cause & eh_freeze_mask) {
2752 		/*
2753 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2754 		 */
2755 		ata_port_freeze(ap);
2756 	} else {
2757 		abort = 1;
2758 	}
2759 
2760 	if (abort) {
2761 		if (qc)
2762 			ata_link_abort(qc->dev->link);
2763 		else
2764 			ata_port_abort(ap);
2765 	}
2766 }
2767 
2768 static bool mv_process_crpb_response(struct ata_port *ap,
2769 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2770 {
2771 	u8 ata_status;
2772 	u16 edma_status = le16_to_cpu(response->flags);
2773 
2774 	/*
2775 	 * edma_status from a response queue entry:
2776 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2777 	 *   MSB is saved ATA status from command completion.
2778 	 */
2779 	if (!ncq_enabled) {
2780 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2781 		if (err_cause) {
2782 			/*
2783 			 * Error will be seen/handled by
2784 			 * mv_err_intr().  So do nothing at all here.
2785 			 */
2786 			return false;
2787 		}
2788 	}
2789 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2790 	if (!ac_err_mask(ata_status))
2791 		return true;
2792 	/* else: leave it for mv_err_intr() */
2793 	return false;
2794 }
2795 
2796 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2797 {
2798 	void __iomem *port_mmio = mv_ap_base(ap);
2799 	struct mv_host_priv *hpriv = ap->host->private_data;
2800 	u32 in_index;
2801 	bool work_done = false;
2802 	u32 done_mask = 0;
2803 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2804 
2805 	/* Get the hardware queue position index */
2806 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2807 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2808 
2809 	/* Process new responses from since the last time we looked */
2810 	while (in_index != pp->resp_idx) {
2811 		unsigned int tag;
2812 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2813 
2814 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2815 
2816 		if (IS_GEN_I(hpriv)) {
2817 			/* 50xx: no NCQ, only one command active at a time */
2818 			tag = ap->link.active_tag;
2819 		} else {
2820 			/* Gen II/IIE: get command tag from CRPB entry */
2821 			tag = le16_to_cpu(response->id) & 0x1f;
2822 		}
2823 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2824 			done_mask |= 1 << tag;
2825 		work_done = true;
2826 	}
2827 
2828 	if (work_done) {
2829 		ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2830 
2831 		/* Update the software queue position index in hardware */
2832 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2833 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2834 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2835 	}
2836 }
2837 
2838 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2839 {
2840 	struct mv_port_priv *pp;
2841 	int edma_was_enabled;
2842 
2843 	/*
2844 	 * Grab a snapshot of the EDMA_EN flag setting,
2845 	 * so that we have a consistent view for this port,
2846 	 * even if something we call of our routines changes it.
2847 	 */
2848 	pp = ap->private_data;
2849 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2850 	/*
2851 	 * Process completed CRPB response(s) before other events.
2852 	 */
2853 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2854 		mv_process_crpb_entries(ap, pp);
2855 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2856 			mv_handle_fbs_ncq_dev_err(ap);
2857 	}
2858 	/*
2859 	 * Handle chip-reported errors, or continue on to handle PIO.
2860 	 */
2861 	if (unlikely(port_cause & ERR_IRQ)) {
2862 		mv_err_intr(ap);
2863 	} else if (!edma_was_enabled) {
2864 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2865 		if (qc)
2866 			ata_bmdma_port_intr(ap, qc);
2867 		else
2868 			mv_unexpected_intr(ap, edma_was_enabled);
2869 	}
2870 }
2871 
2872 /**
2873  *      mv_host_intr - Handle all interrupts on the given host controller
2874  *      @host: host specific structure
2875  *      @main_irq_cause: Main interrupt cause register for the chip.
2876  *
2877  *      LOCKING:
2878  *      Inherited from caller.
2879  */
2880 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2881 {
2882 	struct mv_host_priv *hpriv = host->private_data;
2883 	void __iomem *mmio = hpriv->base, *hc_mmio;
2884 	unsigned int handled = 0, port;
2885 
2886 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2887 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2888 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2889 
2890 	for (port = 0; port < hpriv->n_ports; port++) {
2891 		struct ata_port *ap = host->ports[port];
2892 		unsigned int p, shift, hardport, port_cause;
2893 
2894 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2895 		/*
2896 		 * Each hc within the host has its own hc_irq_cause register,
2897 		 * where the interrupting ports bits get ack'd.
2898 		 */
2899 		if (hardport == 0) {	/* first port on this hc ? */
2900 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2901 			u32 port_mask, ack_irqs;
2902 			/*
2903 			 * Skip this entire hc if nothing pending for any ports
2904 			 */
2905 			if (!hc_cause) {
2906 				port += MV_PORTS_PER_HC - 1;
2907 				continue;
2908 			}
2909 			/*
2910 			 * We don't need/want to read the hc_irq_cause register,
2911 			 * because doing so hurts performance, and
2912 			 * main_irq_cause already gives us everything we need.
2913 			 *
2914 			 * But we do have to *write* to the hc_irq_cause to ack
2915 			 * the ports that we are handling this time through.
2916 			 *
2917 			 * This requires that we create a bitmap for those
2918 			 * ports which interrupted us, and use that bitmap
2919 			 * to ack (only) those ports via hc_irq_cause.
2920 			 */
2921 			ack_irqs = 0;
2922 			if (hc_cause & PORTS_0_3_COAL_DONE)
2923 				ack_irqs = HC_COAL_IRQ;
2924 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2925 				if ((port + p) >= hpriv->n_ports)
2926 					break;
2927 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2928 				if (hc_cause & port_mask)
2929 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2930 			}
2931 			hc_mmio = mv_hc_base_from_port(mmio, port);
2932 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2933 			handled = 1;
2934 		}
2935 		/*
2936 		 * Handle interrupts signalled for this port:
2937 		 */
2938 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2939 		if (port_cause)
2940 			mv_port_intr(ap, port_cause);
2941 	}
2942 	return handled;
2943 }
2944 
2945 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2946 {
2947 	struct mv_host_priv *hpriv = host->private_data;
2948 	struct ata_port *ap;
2949 	struct ata_queued_cmd *qc;
2950 	struct ata_eh_info *ehi;
2951 	unsigned int i, err_mask, printed = 0;
2952 	u32 err_cause;
2953 
2954 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2955 
2956 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2957 
2958 	dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
2959 	mv_dump_all_regs(mmio, to_pci_dev(host->dev));
2960 
2961 	writelfl(0, mmio + hpriv->irq_cause_offset);
2962 
2963 	for (i = 0; i < host->n_ports; i++) {
2964 		ap = host->ports[i];
2965 		if (!ata_link_offline(&ap->link)) {
2966 			ehi = &ap->link.eh_info;
2967 			ata_ehi_clear_desc(ehi);
2968 			if (!printed++)
2969 				ata_ehi_push_desc(ehi,
2970 					"PCI err cause 0x%08x", err_cause);
2971 			err_mask = AC_ERR_HOST_BUS;
2972 			ehi->action = ATA_EH_RESET;
2973 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2974 			if (qc)
2975 				qc->err_mask |= err_mask;
2976 			else
2977 				ehi->err_mask |= err_mask;
2978 
2979 			ata_port_freeze(ap);
2980 		}
2981 	}
2982 	return 1;	/* handled */
2983 }
2984 
2985 /**
2986  *      mv_interrupt - Main interrupt event handler
2987  *      @irq: unused
2988  *      @dev_instance: private data; in this case the host structure
2989  *
2990  *      Read the read only register to determine if any host
2991  *      controllers have pending interrupts.  If so, call lower level
2992  *      routine to handle.  Also check for PCI errors which are only
2993  *      reported here.
2994  *
2995  *      LOCKING:
2996  *      This routine holds the host lock while processing pending
2997  *      interrupts.
2998  */
2999 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3000 {
3001 	struct ata_host *host = dev_instance;
3002 	struct mv_host_priv *hpriv = host->private_data;
3003 	unsigned int handled = 0;
3004 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3005 	u32 main_irq_cause, pending_irqs;
3006 
3007 	spin_lock(&host->lock);
3008 
3009 	/* for MSI:  block new interrupts while in here */
3010 	if (using_msi)
3011 		mv_write_main_irq_mask(0, hpriv);
3012 
3013 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
3014 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3015 	/*
3016 	 * Deal with cases where we either have nothing pending, or have read
3017 	 * a bogus register value which can indicate HW removal or PCI fault.
3018 	 */
3019 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3020 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3021 			handled = mv_pci_error(host, hpriv->base);
3022 		else
3023 			handled = mv_host_intr(host, pending_irqs);
3024 	}
3025 
3026 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3027 	if (using_msi)
3028 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3029 
3030 	spin_unlock(&host->lock);
3031 
3032 	return IRQ_RETVAL(handled);
3033 }
3034 
3035 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3036 {
3037 	unsigned int ofs;
3038 
3039 	switch (sc_reg_in) {
3040 	case SCR_STATUS:
3041 	case SCR_ERROR:
3042 	case SCR_CONTROL:
3043 		ofs = sc_reg_in * sizeof(u32);
3044 		break;
3045 	default:
3046 		ofs = 0xffffffffU;
3047 		break;
3048 	}
3049 	return ofs;
3050 }
3051 
3052 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3053 {
3054 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3055 	void __iomem *mmio = hpriv->base;
3056 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3057 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3058 
3059 	if (ofs != 0xffffffffU) {
3060 		*val = readl(addr + ofs);
3061 		return 0;
3062 	} else
3063 		return -EINVAL;
3064 }
3065 
3066 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3067 {
3068 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3069 	void __iomem *mmio = hpriv->base;
3070 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3071 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3072 
3073 	if (ofs != 0xffffffffU) {
3074 		writelfl(val, addr + ofs);
3075 		return 0;
3076 	} else
3077 		return -EINVAL;
3078 }
3079 
3080 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3081 {
3082 	struct pci_dev *pdev = to_pci_dev(host->dev);
3083 	int early_5080;
3084 
3085 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3086 
3087 	if (!early_5080) {
3088 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3089 		tmp |= (1 << 0);
3090 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3091 	}
3092 
3093 	mv_reset_pci_bus(host, mmio);
3094 }
3095 
3096 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3097 {
3098 	writel(0x0fcfffff, mmio + FLASH_CTL);
3099 }
3100 
3101 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3102 			   void __iomem *mmio)
3103 {
3104 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3105 	u32 tmp;
3106 
3107 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3108 
3109 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3110 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3111 }
3112 
3113 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3114 {
3115 	u32 tmp;
3116 
3117 	writel(0, mmio + GPIO_PORT_CTL);
3118 
3119 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3120 
3121 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3122 	tmp |= ~(1 << 0);
3123 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3124 }
3125 
3126 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3127 			   unsigned int port)
3128 {
3129 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3130 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3131 	u32 tmp;
3132 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3133 
3134 	if (fix_apm_sq) {
3135 		tmp = readl(phy_mmio + MV5_LTMODE);
3136 		tmp |= (1 << 19);
3137 		writel(tmp, phy_mmio + MV5_LTMODE);
3138 
3139 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3140 		tmp &= ~0x3;
3141 		tmp |= 0x1;
3142 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3143 	}
3144 
3145 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3146 	tmp &= ~mask;
3147 	tmp |= hpriv->signal[port].pre;
3148 	tmp |= hpriv->signal[port].amps;
3149 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3150 }
3151 
3152 
3153 #undef ZERO
3154 #define ZERO(reg) writel(0, port_mmio + (reg))
3155 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3156 			     unsigned int port)
3157 {
3158 	void __iomem *port_mmio = mv_port_base(mmio, port);
3159 
3160 	mv_reset_channel(hpriv, mmio, port);
3161 
3162 	ZERO(0x028);	/* command */
3163 	writel(0x11f, port_mmio + EDMA_CFG);
3164 	ZERO(0x004);	/* timer */
3165 	ZERO(0x008);	/* irq err cause */
3166 	ZERO(0x00c);	/* irq err mask */
3167 	ZERO(0x010);	/* rq bah */
3168 	ZERO(0x014);	/* rq inp */
3169 	ZERO(0x018);	/* rq outp */
3170 	ZERO(0x01c);	/* respq bah */
3171 	ZERO(0x024);	/* respq outp */
3172 	ZERO(0x020);	/* respq inp */
3173 	ZERO(0x02c);	/* test control */
3174 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3175 }
3176 #undef ZERO
3177 
3178 #define ZERO(reg) writel(0, hc_mmio + (reg))
3179 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3180 			unsigned int hc)
3181 {
3182 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3183 	u32 tmp;
3184 
3185 	ZERO(0x00c);
3186 	ZERO(0x010);
3187 	ZERO(0x014);
3188 	ZERO(0x018);
3189 
3190 	tmp = readl(hc_mmio + 0x20);
3191 	tmp &= 0x1c1c1c1c;
3192 	tmp |= 0x03030303;
3193 	writel(tmp, hc_mmio + 0x20);
3194 }
3195 #undef ZERO
3196 
3197 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
3198 			unsigned int n_hc)
3199 {
3200 	struct mv_host_priv *hpriv = host->private_data;
3201 	unsigned int hc, port;
3202 
3203 	for (hc = 0; hc < n_hc; hc++) {
3204 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3205 			mv5_reset_hc_port(hpriv, mmio,
3206 					  (hc * MV_PORTS_PER_HC) + port);
3207 
3208 		mv5_reset_one_hc(hpriv, mmio, hc);
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 #undef ZERO
3215 #define ZERO(reg) writel(0, mmio + (reg))
3216 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3217 {
3218 	struct mv_host_priv *hpriv = host->private_data;
3219 	u32 tmp;
3220 
3221 	tmp = readl(mmio + MV_PCI_MODE);
3222 	tmp &= 0xff00ffff;
3223 	writel(tmp, mmio + MV_PCI_MODE);
3224 
3225 	ZERO(MV_PCI_DISC_TIMER);
3226 	ZERO(MV_PCI_MSI_TRIGGER);
3227 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3228 	ZERO(MV_PCI_SERR_MASK);
3229 	ZERO(hpriv->irq_cause_offset);
3230 	ZERO(hpriv->irq_mask_offset);
3231 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3232 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3233 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3234 	ZERO(MV_PCI_ERR_COMMAND);
3235 }
3236 #undef ZERO
3237 
3238 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3239 {
3240 	u32 tmp;
3241 
3242 	mv5_reset_flash(hpriv, mmio);
3243 
3244 	tmp = readl(mmio + GPIO_PORT_CTL);
3245 	tmp &= 0x3;
3246 	tmp |= (1 << 5) | (1 << 6);
3247 	writel(tmp, mmio + GPIO_PORT_CTL);
3248 }
3249 
3250 /*
3251  *      mv6_reset_hc - Perform the 6xxx global soft reset
3252  *      @mmio: base address of the HBA
3253  *
3254  *      This routine only applies to 6xxx parts.
3255  *
3256  *      LOCKING:
3257  *      Inherited from caller.
3258  */
3259 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
3260 			unsigned int n_hc)
3261 {
3262 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3263 	int i, rc = 0;
3264 	u32 t;
3265 
3266 	/* Following procedure defined in PCI "main command and status
3267 	 * register" table.
3268 	 */
3269 	t = readl(reg);
3270 	writel(t | STOP_PCI_MASTER, reg);
3271 
3272 	for (i = 0; i < 1000; i++) {
3273 		udelay(1);
3274 		t = readl(reg);
3275 		if (PCI_MASTER_EMPTY & t)
3276 			break;
3277 	}
3278 	if (!(PCI_MASTER_EMPTY & t)) {
3279 		dev_err(host->dev, "PCI master won't flush\n");
3280 		rc = 1;
3281 		goto done;
3282 	}
3283 
3284 	/* set reset */
3285 	i = 5;
3286 	do {
3287 		writel(t | GLOB_SFT_RST, reg);
3288 		t = readl(reg);
3289 		udelay(1);
3290 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3291 
3292 	if (!(GLOB_SFT_RST & t)) {
3293 		dev_err(host->dev, "can't set global reset\n");
3294 		rc = 1;
3295 		goto done;
3296 	}
3297 
3298 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3299 	i = 5;
3300 	do {
3301 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3302 		t = readl(reg);
3303 		udelay(1);
3304 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3305 
3306 	if (GLOB_SFT_RST & t) {
3307 		dev_err(host->dev, "can't clear global reset\n");
3308 		rc = 1;
3309 	}
3310 done:
3311 	return rc;
3312 }
3313 
3314 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3315 			   void __iomem *mmio)
3316 {
3317 	void __iomem *port_mmio;
3318 	u32 tmp;
3319 
3320 	tmp = readl(mmio + RESET_CFG);
3321 	if ((tmp & (1 << 0)) == 0) {
3322 		hpriv->signal[idx].amps = 0x7 << 8;
3323 		hpriv->signal[idx].pre = 0x1 << 5;
3324 		return;
3325 	}
3326 
3327 	port_mmio = mv_port_base(mmio, idx);
3328 	tmp = readl(port_mmio + PHY_MODE2);
3329 
3330 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3331 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3332 }
3333 
3334 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3335 {
3336 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3337 }
3338 
3339 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3340 			   unsigned int port)
3341 {
3342 	void __iomem *port_mmio = mv_port_base(mmio, port);
3343 
3344 	u32 hp_flags = hpriv->hp_flags;
3345 	int fix_phy_mode2 =
3346 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3347 	int fix_phy_mode4 =
3348 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3349 	u32 m2, m3;
3350 
3351 	if (fix_phy_mode2) {
3352 		m2 = readl(port_mmio + PHY_MODE2);
3353 		m2 &= ~(1 << 16);
3354 		m2 |= (1 << 31);
3355 		writel(m2, port_mmio + PHY_MODE2);
3356 
3357 		udelay(200);
3358 
3359 		m2 = readl(port_mmio + PHY_MODE2);
3360 		m2 &= ~((1 << 16) | (1 << 31));
3361 		writel(m2, port_mmio + PHY_MODE2);
3362 
3363 		udelay(200);
3364 	}
3365 
3366 	/*
3367 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3368 	 * Achieves better receiver noise performance than the h/w default:
3369 	 */
3370 	m3 = readl(port_mmio + PHY_MODE3);
3371 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3372 
3373 	/* Guideline 88F5182 (GL# SATA-S11) */
3374 	if (IS_SOC(hpriv))
3375 		m3 &= ~0x1c;
3376 
3377 	if (fix_phy_mode4) {
3378 		u32 m4 = readl(port_mmio + PHY_MODE4);
3379 		/*
3380 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3381 		 * For earlier chipsets, force only the internal config field
3382 		 *  (workaround for errata FEr SATA#10 part 1).
3383 		 */
3384 		if (IS_GEN_IIE(hpriv))
3385 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3386 		else
3387 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3388 		writel(m4, port_mmio + PHY_MODE4);
3389 	}
3390 	/*
3391 	 * Workaround for 60x1-B2 errata SATA#13:
3392 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3393 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3394 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3395 	 */
3396 	writel(m3, port_mmio + PHY_MODE3);
3397 
3398 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3399 	m2 = readl(port_mmio + PHY_MODE2);
3400 
3401 	m2 &= ~MV_M2_PREAMP_MASK;
3402 	m2 |= hpriv->signal[port].amps;
3403 	m2 |= hpriv->signal[port].pre;
3404 	m2 &= ~(1 << 16);
3405 
3406 	/* according to mvSata 3.6.1, some IIE values are fixed */
3407 	if (IS_GEN_IIE(hpriv)) {
3408 		m2 &= ~0xC30FF01F;
3409 		m2 |= 0x0000900F;
3410 	}
3411 
3412 	writel(m2, port_mmio + PHY_MODE2);
3413 }
3414 
3415 /* TODO: use the generic LED interface to configure the SATA Presence */
3416 /* & Acitivy LEDs on the board */
3417 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3418 				      void __iomem *mmio)
3419 {
3420 	return;
3421 }
3422 
3423 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3424 			   void __iomem *mmio)
3425 {
3426 	void __iomem *port_mmio;
3427 	u32 tmp;
3428 
3429 	port_mmio = mv_port_base(mmio, idx);
3430 	tmp = readl(port_mmio + PHY_MODE2);
3431 
3432 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3433 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3434 }
3435 
3436 #undef ZERO
3437 #define ZERO(reg) writel(0, port_mmio + (reg))
3438 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3439 					void __iomem *mmio, unsigned int port)
3440 {
3441 	void __iomem *port_mmio = mv_port_base(mmio, port);
3442 
3443 	mv_reset_channel(hpriv, mmio, port);
3444 
3445 	ZERO(0x028);		/* command */
3446 	writel(0x101f, port_mmio + EDMA_CFG);
3447 	ZERO(0x004);		/* timer */
3448 	ZERO(0x008);		/* irq err cause */
3449 	ZERO(0x00c);		/* irq err mask */
3450 	ZERO(0x010);		/* rq bah */
3451 	ZERO(0x014);		/* rq inp */
3452 	ZERO(0x018);		/* rq outp */
3453 	ZERO(0x01c);		/* respq bah */
3454 	ZERO(0x024);		/* respq outp */
3455 	ZERO(0x020);		/* respq inp */
3456 	ZERO(0x02c);		/* test control */
3457 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3458 }
3459 
3460 #undef ZERO
3461 
3462 #define ZERO(reg) writel(0, hc_mmio + (reg))
3463 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3464 				       void __iomem *mmio)
3465 {
3466 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3467 
3468 	ZERO(0x00c);
3469 	ZERO(0x010);
3470 	ZERO(0x014);
3471 
3472 }
3473 
3474 #undef ZERO
3475 
3476 static int mv_soc_reset_hc(struct ata_host *host,
3477 				  void __iomem *mmio, unsigned int n_hc)
3478 {
3479 	struct mv_host_priv *hpriv = host->private_data;
3480 	unsigned int port;
3481 
3482 	for (port = 0; port < hpriv->n_ports; port++)
3483 		mv_soc_reset_hc_port(hpriv, mmio, port);
3484 
3485 	mv_soc_reset_one_hc(hpriv, mmio);
3486 
3487 	return 0;
3488 }
3489 
3490 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3491 				      void __iomem *mmio)
3492 {
3493 	return;
3494 }
3495 
3496 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3497 {
3498 	return;
3499 }
3500 
3501 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3502 				  void __iomem *mmio, unsigned int port)
3503 {
3504 	void __iomem *port_mmio = mv_port_base(mmio, port);
3505 	u32	reg;
3506 
3507 	reg = readl(port_mmio + PHY_MODE3);
3508 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3509 	reg |= (0x1 << 27);
3510 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3511 	reg |= (0x1 << 29);
3512 	writel(reg, port_mmio + PHY_MODE3);
3513 
3514 	reg = readl(port_mmio + PHY_MODE4);
3515 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3516 	reg |= (0x1 << 16);
3517 	writel(reg, port_mmio + PHY_MODE4);
3518 
3519 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3520 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3521 	reg |= 0x8;
3522 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3523 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3524 
3525 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3526 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3527 	reg |= 0x8;
3528 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3529 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3530 }
3531 
3532 /*
3533  *	soc_is_65 - check if the soc is 65 nano device
3534  *
3535  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3536  *	register, this register should contain non-zero value and it exists only
3537  *	in the 65 nano devices, when reading it from older devices we get 0.
3538  */
3539 static bool soc_is_65n(struct mv_host_priv *hpriv)
3540 {
3541 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3542 
3543 	if (readl(port0_mmio + PHYCFG_OFS))
3544 		return true;
3545 	return false;
3546 }
3547 
3548 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3549 {
3550 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3551 
3552 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3553 	if (want_gen2i)
3554 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3555 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3556 }
3557 
3558 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3559 			     unsigned int port_no)
3560 {
3561 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3562 
3563 	/*
3564 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3565 	 * (but doesn't say what the problem might be).  So we first try
3566 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3567 	 */
3568 	mv_stop_edma_engine(port_mmio);
3569 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3570 
3571 	if (!IS_GEN_I(hpriv)) {
3572 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3573 		mv_setup_ifcfg(port_mmio, 1);
3574 	}
3575 	/*
3576 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3577 	 * link, and physical layers.  It resets all SATA interface registers
3578 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3579 	 */
3580 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3581 	udelay(25);	/* allow reset propagation */
3582 	writelfl(0, port_mmio + EDMA_CMD);
3583 
3584 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3585 
3586 	if (IS_GEN_I(hpriv))
3587 		usleep_range(500, 1000);
3588 }
3589 
3590 static void mv_pmp_select(struct ata_port *ap, int pmp)
3591 {
3592 	if (sata_pmp_supported(ap)) {
3593 		void __iomem *port_mmio = mv_ap_base(ap);
3594 		u32 reg = readl(port_mmio + SATA_IFCTL);
3595 		int old = reg & 0xf;
3596 
3597 		if (old != pmp) {
3598 			reg = (reg & ~0xf) | pmp;
3599 			writelfl(reg, port_mmio + SATA_IFCTL);
3600 		}
3601 	}
3602 }
3603 
3604 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3605 				unsigned long deadline)
3606 {
3607 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3608 	return sata_std_hardreset(link, class, deadline);
3609 }
3610 
3611 static int mv_softreset(struct ata_link *link, unsigned int *class,
3612 				unsigned long deadline)
3613 {
3614 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3615 	return ata_sff_softreset(link, class, deadline);
3616 }
3617 
3618 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3619 			unsigned long deadline)
3620 {
3621 	struct ata_port *ap = link->ap;
3622 	struct mv_host_priv *hpriv = ap->host->private_data;
3623 	struct mv_port_priv *pp = ap->private_data;
3624 	void __iomem *mmio = hpriv->base;
3625 	int rc, attempts = 0, extra = 0;
3626 	u32 sstatus;
3627 	bool online;
3628 
3629 	mv_reset_channel(hpriv, mmio, ap->port_no);
3630 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3631 	pp->pp_flags &=
3632 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3633 
3634 	/* Workaround for errata FEr SATA#10 (part 2) */
3635 	do {
3636 		const unsigned long *timing =
3637 				sata_ehc_deb_timing(&link->eh_context);
3638 
3639 		rc = sata_link_hardreset(link, timing, deadline + extra,
3640 					 &online, NULL);
3641 		rc = online ? -EAGAIN : rc;
3642 		if (rc)
3643 			return rc;
3644 		sata_scr_read(link, SCR_STATUS, &sstatus);
3645 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3646 			/* Force 1.5gb/s link speed and try again */
3647 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3648 			if (time_after(jiffies + HZ, deadline))
3649 				extra = HZ; /* only extend it once, max */
3650 		}
3651 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3652 	mv_save_cached_regs(ap);
3653 	mv_edma_cfg(ap, 0, 0);
3654 
3655 	return rc;
3656 }
3657 
3658 static void mv_eh_freeze(struct ata_port *ap)
3659 {
3660 	mv_stop_edma(ap);
3661 	mv_enable_port_irqs(ap, 0);
3662 }
3663 
3664 static void mv_eh_thaw(struct ata_port *ap)
3665 {
3666 	struct mv_host_priv *hpriv = ap->host->private_data;
3667 	unsigned int port = ap->port_no;
3668 	unsigned int hardport = mv_hardport_from_port(port);
3669 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3670 	void __iomem *port_mmio = mv_ap_base(ap);
3671 	u32 hc_irq_cause;
3672 
3673 	/* clear EDMA errors on this port */
3674 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3675 
3676 	/* clear pending irq events */
3677 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3678 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3679 
3680 	mv_enable_port_irqs(ap, ERR_IRQ);
3681 }
3682 
3683 /**
3684  *      mv_port_init - Perform some early initialization on a single port.
3685  *      @port: libata data structure storing shadow register addresses
3686  *      @port_mmio: base address of the port
3687  *
3688  *      Initialize shadow register mmio addresses, clear outstanding
3689  *      interrupts on the port, and unmask interrupts for the future
3690  *      start of the port.
3691  *
3692  *      LOCKING:
3693  *      Inherited from caller.
3694  */
3695 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3696 {
3697 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3698 
3699 	/* PIO related setup
3700 	 */
3701 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3702 	port->error_addr =
3703 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3704 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3705 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3706 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3707 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3708 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3709 	port->status_addr =
3710 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3711 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3712 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3713 
3714 	/* Clear any currently outstanding port interrupt conditions */
3715 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3716 	writelfl(readl(serr), serr);
3717 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3718 
3719 	/* unmask all non-transient EDMA error interrupts */
3720 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3721 }
3722 
3723 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3724 {
3725 	struct mv_host_priv *hpriv = host->private_data;
3726 	void __iomem *mmio = hpriv->base;
3727 	u32 reg;
3728 
3729 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3730 		return 0;	/* not PCI-X capable */
3731 	reg = readl(mmio + MV_PCI_MODE);
3732 	if ((reg & MV_PCI_MODE_MASK) == 0)
3733 		return 0;	/* conventional PCI mode */
3734 	return 1;	/* chip is in PCI-X mode */
3735 }
3736 
3737 static int mv_pci_cut_through_okay(struct ata_host *host)
3738 {
3739 	struct mv_host_priv *hpriv = host->private_data;
3740 	void __iomem *mmio = hpriv->base;
3741 	u32 reg;
3742 
3743 	if (!mv_in_pcix_mode(host)) {
3744 		reg = readl(mmio + MV_PCI_COMMAND);
3745 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3746 			return 0; /* not okay */
3747 	}
3748 	return 1; /* okay */
3749 }
3750 
3751 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3752 {
3753 	struct mv_host_priv *hpriv = host->private_data;
3754 	void __iomem *mmio = hpriv->base;
3755 
3756 	/* workaround for 60x1-B2 errata PCI#7 */
3757 	if (mv_in_pcix_mode(host)) {
3758 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3759 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3760 	}
3761 }
3762 
3763 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3764 {
3765 	struct pci_dev *pdev = to_pci_dev(host->dev);
3766 	struct mv_host_priv *hpriv = host->private_data;
3767 	u32 hp_flags = hpriv->hp_flags;
3768 
3769 	switch (board_idx) {
3770 	case chip_5080:
3771 		hpriv->ops = &mv5xxx_ops;
3772 		hp_flags |= MV_HP_GEN_I;
3773 
3774 		switch (pdev->revision) {
3775 		case 0x1:
3776 			hp_flags |= MV_HP_ERRATA_50XXB0;
3777 			break;
3778 		case 0x3:
3779 			hp_flags |= MV_HP_ERRATA_50XXB2;
3780 			break;
3781 		default:
3782 			dev_warn(&pdev->dev,
3783 				 "Applying 50XXB2 workarounds to unknown rev\n");
3784 			hp_flags |= MV_HP_ERRATA_50XXB2;
3785 			break;
3786 		}
3787 		break;
3788 
3789 	case chip_504x:
3790 	case chip_508x:
3791 		hpriv->ops = &mv5xxx_ops;
3792 		hp_flags |= MV_HP_GEN_I;
3793 
3794 		switch (pdev->revision) {
3795 		case 0x0:
3796 			hp_flags |= MV_HP_ERRATA_50XXB0;
3797 			break;
3798 		case 0x3:
3799 			hp_flags |= MV_HP_ERRATA_50XXB2;
3800 			break;
3801 		default:
3802 			dev_warn(&pdev->dev,
3803 				 "Applying B2 workarounds to unknown rev\n");
3804 			hp_flags |= MV_HP_ERRATA_50XXB2;
3805 			break;
3806 		}
3807 		break;
3808 
3809 	case chip_604x:
3810 	case chip_608x:
3811 		hpriv->ops = &mv6xxx_ops;
3812 		hp_flags |= MV_HP_GEN_II;
3813 
3814 		switch (pdev->revision) {
3815 		case 0x7:
3816 			mv_60x1b2_errata_pci7(host);
3817 			hp_flags |= MV_HP_ERRATA_60X1B2;
3818 			break;
3819 		case 0x9:
3820 			hp_flags |= MV_HP_ERRATA_60X1C0;
3821 			break;
3822 		default:
3823 			dev_warn(&pdev->dev,
3824 				 "Applying B2 workarounds to unknown rev\n");
3825 			hp_flags |= MV_HP_ERRATA_60X1B2;
3826 			break;
3827 		}
3828 		break;
3829 
3830 	case chip_7042:
3831 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3832 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3833 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3834 		{
3835 			/*
3836 			 * Highpoint RocketRAID PCIe 23xx series cards:
3837 			 *
3838 			 * Unconfigured drives are treated as "Legacy"
3839 			 * by the BIOS, and it overwrites sector 8 with
3840 			 * a "Lgcy" metadata block prior to Linux boot.
3841 			 *
3842 			 * Configured drives (RAID or JBOD) leave sector 8
3843 			 * alone, but instead overwrite a high numbered
3844 			 * sector for the RAID metadata.  This sector can
3845 			 * be determined exactly, by truncating the physical
3846 			 * drive capacity to a nice even GB value.
3847 			 *
3848 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3849 			 *
3850 			 * Warn the user, lest they think we're just buggy.
3851 			 */
3852 			dev_warn(&pdev->dev, "Highpoint RocketRAID"
3853 				" BIOS CORRUPTS DATA on all attached drives,"
3854 				" regardless of if/how they are configured."
3855 				" BEWARE!\n");
3856 			dev_warn(&pdev->dev, "For data safety, do not"
3857 				" use sectors 8-9 on \"Legacy\" drives,"
3858 				" and avoid the final two gigabytes on"
3859 				" all RocketRAID BIOS initialized drives.\n");
3860 		}
3861 		fallthrough;
3862 	case chip_6042:
3863 		hpriv->ops = &mv6xxx_ops;
3864 		hp_flags |= MV_HP_GEN_IIE;
3865 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3866 			hp_flags |= MV_HP_CUT_THROUGH;
3867 
3868 		switch (pdev->revision) {
3869 		case 0x2: /* Rev.B0: the first/only public release */
3870 			hp_flags |= MV_HP_ERRATA_60X1C0;
3871 			break;
3872 		default:
3873 			dev_warn(&pdev->dev,
3874 				 "Applying 60X1C0 workarounds to unknown rev\n");
3875 			hp_flags |= MV_HP_ERRATA_60X1C0;
3876 			break;
3877 		}
3878 		break;
3879 	case chip_soc:
3880 		if (soc_is_65n(hpriv))
3881 			hpriv->ops = &mv_soc_65n_ops;
3882 		else
3883 			hpriv->ops = &mv_soc_ops;
3884 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3885 			MV_HP_ERRATA_60X1C0;
3886 		break;
3887 
3888 	default:
3889 		dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3890 		return -EINVAL;
3891 	}
3892 
3893 	hpriv->hp_flags = hp_flags;
3894 	if (hp_flags & MV_HP_PCIE) {
3895 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3896 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3897 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3898 	} else {
3899 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3900 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3901 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3902 	}
3903 
3904 	return 0;
3905 }
3906 
3907 /**
3908  *      mv_init_host - Perform some early initialization of the host.
3909  *	@host: ATA host to initialize
3910  *
3911  *      If possible, do an early global reset of the host.  Then do
3912  *      our port init and clear/unmask all/relevant host interrupts.
3913  *
3914  *      LOCKING:
3915  *      Inherited from caller.
3916  */
3917 static int mv_init_host(struct ata_host *host)
3918 {
3919 	int rc = 0, n_hc, port, hc;
3920 	struct mv_host_priv *hpriv = host->private_data;
3921 	void __iomem *mmio = hpriv->base;
3922 
3923 	rc = mv_chip_id(host, hpriv->board_idx);
3924 	if (rc)
3925 		goto done;
3926 
3927 	if (IS_SOC(hpriv)) {
3928 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3929 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3930 	} else {
3931 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3932 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3933 	}
3934 
3935 	/* initialize shadow irq mask with register's value */
3936 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3937 
3938 	/* global interrupt mask: 0 == mask everything */
3939 	mv_set_main_irq_mask(host, ~0, 0);
3940 
3941 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3942 
3943 	for (port = 0; port < host->n_ports; port++)
3944 		if (hpriv->ops->read_preamp)
3945 			hpriv->ops->read_preamp(hpriv, port, mmio);
3946 
3947 	rc = hpriv->ops->reset_hc(host, mmio, n_hc);
3948 	if (rc)
3949 		goto done;
3950 
3951 	hpriv->ops->reset_flash(hpriv, mmio);
3952 	hpriv->ops->reset_bus(host, mmio);
3953 	hpriv->ops->enable_leds(hpriv, mmio);
3954 
3955 	for (port = 0; port < host->n_ports; port++) {
3956 		struct ata_port *ap = host->ports[port];
3957 		void __iomem *port_mmio = mv_port_base(mmio, port);
3958 
3959 		mv_port_init(&ap->ioaddr, port_mmio);
3960 	}
3961 
3962 	for (hc = 0; hc < n_hc; hc++) {
3963 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3964 
3965 		dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
3966 			"(before clear)=0x%08x\n", hc,
3967 			readl(hc_mmio + HC_CFG),
3968 			readl(hc_mmio + HC_IRQ_CAUSE));
3969 
3970 		/* Clear any currently outstanding hc interrupt conditions */
3971 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3972 	}
3973 
3974 	if (!IS_SOC(hpriv)) {
3975 		/* Clear any currently outstanding host interrupt conditions */
3976 		writelfl(0, mmio + hpriv->irq_cause_offset);
3977 
3978 		/* and unmask interrupt generation for host regs */
3979 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3980 	}
3981 
3982 	/*
3983 	 * enable only global host interrupts for now.
3984 	 * The per-port interrupts get done later as ports are set up.
3985 	 */
3986 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3987 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3988 				    irq_coalescing_usecs);
3989 done:
3990 	return rc;
3991 }
3992 
3993 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3994 {
3995 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3996 							     MV_CRQB_Q_SZ, 0);
3997 	if (!hpriv->crqb_pool)
3998 		return -ENOMEM;
3999 
4000 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4001 							     MV_CRPB_Q_SZ, 0);
4002 	if (!hpriv->crpb_pool)
4003 		return -ENOMEM;
4004 
4005 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4006 							     MV_SG_TBL_SZ, 0);
4007 	if (!hpriv->sg_tbl_pool)
4008 		return -ENOMEM;
4009 
4010 	return 0;
4011 }
4012 
4013 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4014 				 const struct mbus_dram_target_info *dram)
4015 {
4016 	int i;
4017 
4018 	for (i = 0; i < 4; i++) {
4019 		writel(0, hpriv->base + WINDOW_CTRL(i));
4020 		writel(0, hpriv->base + WINDOW_BASE(i));
4021 	}
4022 
4023 	for (i = 0; i < dram->num_cs; i++) {
4024 		const struct mbus_dram_window *cs = dram->cs + i;
4025 
4026 		writel(((cs->size - 1) & 0xffff0000) |
4027 			(cs->mbus_attr << 8) |
4028 			(dram->mbus_dram_target_id << 4) | 1,
4029 			hpriv->base + WINDOW_CTRL(i));
4030 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4031 	}
4032 }
4033 
4034 /**
4035  *      mv_platform_probe - handle a positive probe of an soc Marvell
4036  *      host
4037  *      @pdev: platform device found
4038  *
4039  *      LOCKING:
4040  *      Inherited from caller.
4041  */
4042 static int mv_platform_probe(struct platform_device *pdev)
4043 {
4044 	const struct mv_sata_platform_data *mv_platform_data;
4045 	const struct mbus_dram_target_info *dram;
4046 	const struct ata_port_info *ppi[] =
4047 	    { &mv_port_info[chip_soc], NULL };
4048 	struct ata_host *host;
4049 	struct mv_host_priv *hpriv;
4050 	struct resource *res;
4051 	int n_ports = 0, irq = 0;
4052 	int rc;
4053 	int port;
4054 
4055 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4056 
4057 	/*
4058 	 * Simple resource validation ..
4059 	 */
4060 	if (unlikely(pdev->num_resources != 1)) {
4061 		dev_err(&pdev->dev, "invalid number of resources\n");
4062 		return -EINVAL;
4063 	}
4064 
4065 	/*
4066 	 * Get the register base first
4067 	 */
4068 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4069 	if (res == NULL)
4070 		return -EINVAL;
4071 
4072 	/* allocate host */
4073 	if (pdev->dev.of_node) {
4074 		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4075 					   &n_ports);
4076 		if (rc) {
4077 			dev_err(&pdev->dev,
4078 				"error parsing nr-ports property: %d\n", rc);
4079 			return rc;
4080 		}
4081 
4082 		if (n_ports <= 0) {
4083 			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4084 				n_ports);
4085 			return -EINVAL;
4086 		}
4087 
4088 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4089 	} else {
4090 		mv_platform_data = dev_get_platdata(&pdev->dev);
4091 		n_ports = mv_platform_data->n_ports;
4092 		irq = platform_get_irq(pdev, 0);
4093 	}
4094 	if (irq < 0)
4095 		return irq;
4096 	if (!irq)
4097 		return -EINVAL;
4098 
4099 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4100 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4101 
4102 	if (!host || !hpriv)
4103 		return -ENOMEM;
4104 	hpriv->port_clks = devm_kcalloc(&pdev->dev,
4105 					n_ports, sizeof(struct clk *),
4106 					GFP_KERNEL);
4107 	if (!hpriv->port_clks)
4108 		return -ENOMEM;
4109 	hpriv->port_phys = devm_kcalloc(&pdev->dev,
4110 					n_ports, sizeof(struct phy *),
4111 					GFP_KERNEL);
4112 	if (!hpriv->port_phys)
4113 		return -ENOMEM;
4114 	host->private_data = hpriv;
4115 	hpriv->board_idx = chip_soc;
4116 
4117 	host->iomap = NULL;
4118 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4119 				   resource_size(res));
4120 	if (!hpriv->base)
4121 		return -ENOMEM;
4122 
4123 	hpriv->base -= SATAHC0_REG_BASE;
4124 
4125 	hpriv->clk = clk_get(&pdev->dev, NULL);
4126 	if (IS_ERR(hpriv->clk))
4127 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4128 	else
4129 		clk_prepare_enable(hpriv->clk);
4130 
4131 	for (port = 0; port < n_ports; port++) {
4132 		char port_number[16];
4133 		sprintf(port_number, "%d", port);
4134 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4135 		if (!IS_ERR(hpriv->port_clks[port]))
4136 			clk_prepare_enable(hpriv->port_clks[port]);
4137 
4138 		sprintf(port_number, "port%d", port);
4139 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4140 							       port_number);
4141 		if (IS_ERR(hpriv->port_phys[port])) {
4142 			rc = PTR_ERR(hpriv->port_phys[port]);
4143 			hpriv->port_phys[port] = NULL;
4144 			if (rc != -EPROBE_DEFER)
4145 				dev_warn(&pdev->dev, "error getting phy %d", rc);
4146 
4147 			/* Cleanup only the initialized ports */
4148 			hpriv->n_ports = port;
4149 			goto err;
4150 		} else
4151 			phy_power_on(hpriv->port_phys[port]);
4152 	}
4153 
4154 	/* All the ports have been initialized */
4155 	hpriv->n_ports = n_ports;
4156 
4157 	/*
4158 	 * (Re-)program MBUS remapping windows if we are asked to.
4159 	 */
4160 	dram = mv_mbus_dram_info();
4161 	if (dram)
4162 		mv_conf_mbus_windows(hpriv, dram);
4163 
4164 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4165 	if (rc)
4166 		goto err;
4167 
4168 	/*
4169 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4170 	 * updated in the LP_PHY_CTL register.
4171 	 */
4172 	if (pdev->dev.of_node &&
4173 		of_device_is_compatible(pdev->dev.of_node,
4174 					"marvell,armada-370-sata"))
4175 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4176 
4177 	/* initialize adapter */
4178 	rc = mv_init_host(host);
4179 	if (rc)
4180 		goto err;
4181 
4182 	dev_info(&pdev->dev, "slots %u ports %d\n",
4183 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4184 
4185 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4186 	if (!rc)
4187 		return 0;
4188 
4189 err:
4190 	if (!IS_ERR(hpriv->clk)) {
4191 		clk_disable_unprepare(hpriv->clk);
4192 		clk_put(hpriv->clk);
4193 	}
4194 	for (port = 0; port < hpriv->n_ports; port++) {
4195 		if (!IS_ERR(hpriv->port_clks[port])) {
4196 			clk_disable_unprepare(hpriv->port_clks[port]);
4197 			clk_put(hpriv->port_clks[port]);
4198 		}
4199 		phy_power_off(hpriv->port_phys[port]);
4200 	}
4201 
4202 	return rc;
4203 }
4204 
4205 /*
4206  *
4207  *      mv_platform_remove    -       unplug a platform interface
4208  *      @pdev: platform device
4209  *
4210  *      A platform bus SATA device has been unplugged. Perform the needed
4211  *      cleanup. Also called on module unload for any active devices.
4212  */
4213 static int mv_platform_remove(struct platform_device *pdev)
4214 {
4215 	struct ata_host *host = platform_get_drvdata(pdev);
4216 	struct mv_host_priv *hpriv = host->private_data;
4217 	int port;
4218 	ata_host_detach(host);
4219 
4220 	if (!IS_ERR(hpriv->clk)) {
4221 		clk_disable_unprepare(hpriv->clk);
4222 		clk_put(hpriv->clk);
4223 	}
4224 	for (port = 0; port < host->n_ports; port++) {
4225 		if (!IS_ERR(hpriv->port_clks[port])) {
4226 			clk_disable_unprepare(hpriv->port_clks[port]);
4227 			clk_put(hpriv->port_clks[port]);
4228 		}
4229 		phy_power_off(hpriv->port_phys[port]);
4230 	}
4231 	return 0;
4232 }
4233 
4234 #ifdef CONFIG_PM_SLEEP
4235 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4236 {
4237 	struct ata_host *host = platform_get_drvdata(pdev);
4238 
4239 	if (host)
4240 		ata_host_suspend(host, state);
4241 	return 0;
4242 }
4243 
4244 static int mv_platform_resume(struct platform_device *pdev)
4245 {
4246 	struct ata_host *host = platform_get_drvdata(pdev);
4247 	const struct mbus_dram_target_info *dram;
4248 	int ret;
4249 
4250 	if (host) {
4251 		struct mv_host_priv *hpriv = host->private_data;
4252 
4253 		/*
4254 		 * (Re-)program MBUS remapping windows if we are asked to.
4255 		 */
4256 		dram = mv_mbus_dram_info();
4257 		if (dram)
4258 			mv_conf_mbus_windows(hpriv, dram);
4259 
4260 		/* initialize adapter */
4261 		ret = mv_init_host(host);
4262 		if (ret) {
4263 			dev_err(&pdev->dev, "Error during HW init\n");
4264 			return ret;
4265 		}
4266 		ata_host_resume(host);
4267 	}
4268 
4269 	return 0;
4270 }
4271 #else
4272 #define mv_platform_suspend NULL
4273 #define mv_platform_resume NULL
4274 #endif
4275 
4276 #ifdef CONFIG_OF
4277 static const struct of_device_id mv_sata_dt_ids[] = {
4278 	{ .compatible = "marvell,armada-370-sata", },
4279 	{ .compatible = "marvell,orion-sata", },
4280 	{ /* sentinel */ }
4281 };
4282 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4283 #endif
4284 
4285 static struct platform_driver mv_platform_driver = {
4286 	.probe		= mv_platform_probe,
4287 	.remove		= mv_platform_remove,
4288 	.suspend	= mv_platform_suspend,
4289 	.resume		= mv_platform_resume,
4290 	.driver		= {
4291 		.name = DRV_NAME,
4292 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4293 	},
4294 };
4295 
4296 
4297 #ifdef CONFIG_PCI
4298 static int mv_pci_init_one(struct pci_dev *pdev,
4299 			   const struct pci_device_id *ent);
4300 #ifdef CONFIG_PM_SLEEP
4301 static int mv_pci_device_resume(struct pci_dev *pdev);
4302 #endif
4303 
4304 
4305 static struct pci_driver mv_pci_driver = {
4306 	.name			= DRV_NAME,
4307 	.id_table		= mv_pci_tbl,
4308 	.probe			= mv_pci_init_one,
4309 	.remove			= ata_pci_remove_one,
4310 #ifdef CONFIG_PM_SLEEP
4311 	.suspend		= ata_pci_device_suspend,
4312 	.resume			= mv_pci_device_resume,
4313 #endif
4314 
4315 };
4316 
4317 /**
4318  *      mv_print_info - Dump key info to kernel log for perusal.
4319  *      @host: ATA host to print info about
4320  *
4321  *      FIXME: complete this.
4322  *
4323  *      LOCKING:
4324  *      Inherited from caller.
4325  */
4326 static void mv_print_info(struct ata_host *host)
4327 {
4328 	struct pci_dev *pdev = to_pci_dev(host->dev);
4329 	struct mv_host_priv *hpriv = host->private_data;
4330 	u8 scc;
4331 	const char *scc_s, *gen;
4332 
4333 	/* Use this to determine the HW stepping of the chip so we know
4334 	 * what errata to workaround
4335 	 */
4336 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4337 	if (scc == 0)
4338 		scc_s = "SCSI";
4339 	else if (scc == 0x01)
4340 		scc_s = "RAID";
4341 	else
4342 		scc_s = "?";
4343 
4344 	if (IS_GEN_I(hpriv))
4345 		gen = "I";
4346 	else if (IS_GEN_II(hpriv))
4347 		gen = "II";
4348 	else if (IS_GEN_IIE(hpriv))
4349 		gen = "IIE";
4350 	else
4351 		gen = "?";
4352 
4353 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4354 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4355 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4356 }
4357 
4358 /**
4359  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4360  *      @pdev: PCI device found
4361  *      @ent: PCI device ID entry for the matched host
4362  *
4363  *      LOCKING:
4364  *      Inherited from caller.
4365  */
4366 static int mv_pci_init_one(struct pci_dev *pdev,
4367 			   const struct pci_device_id *ent)
4368 {
4369 	unsigned int board_idx = (unsigned int)ent->driver_data;
4370 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4371 	struct ata_host *host;
4372 	struct mv_host_priv *hpriv;
4373 	int n_ports, port, rc;
4374 
4375 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4376 
4377 	/* allocate host */
4378 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4379 
4380 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4381 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4382 	if (!host || !hpriv)
4383 		return -ENOMEM;
4384 	host->private_data = hpriv;
4385 	hpriv->n_ports = n_ports;
4386 	hpriv->board_idx = board_idx;
4387 
4388 	/* acquire resources */
4389 	rc = pcim_enable_device(pdev);
4390 	if (rc)
4391 		return rc;
4392 
4393 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4394 	if (rc == -EBUSY)
4395 		pcim_pin_device(pdev);
4396 	if (rc)
4397 		return rc;
4398 	host->iomap = pcim_iomap_table(pdev);
4399 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4400 
4401 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4402 	if (rc) {
4403 		dev_err(&pdev->dev, "DMA enable failed\n");
4404 		return rc;
4405 	}
4406 
4407 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4408 	if (rc)
4409 		return rc;
4410 
4411 	for (port = 0; port < host->n_ports; port++) {
4412 		struct ata_port *ap = host->ports[port];
4413 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4414 		unsigned int offset = port_mmio - hpriv->base;
4415 
4416 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4417 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4418 	}
4419 
4420 	/* initialize adapter */
4421 	rc = mv_init_host(host);
4422 	if (rc)
4423 		return rc;
4424 
4425 	/* Enable message-switched interrupts, if requested */
4426 	if (msi && pci_enable_msi(pdev) == 0)
4427 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4428 
4429 	mv_dump_pci_cfg(pdev, 0x68);
4430 	mv_print_info(host);
4431 
4432 	pci_set_master(pdev);
4433 	pci_try_set_mwi(pdev);
4434 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4435 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4436 }
4437 
4438 #ifdef CONFIG_PM_SLEEP
4439 static int mv_pci_device_resume(struct pci_dev *pdev)
4440 {
4441 	struct ata_host *host = pci_get_drvdata(pdev);
4442 	int rc;
4443 
4444 	rc = ata_pci_device_do_resume(pdev);
4445 	if (rc)
4446 		return rc;
4447 
4448 	/* initialize adapter */
4449 	rc = mv_init_host(host);
4450 	if (rc)
4451 		return rc;
4452 
4453 	ata_host_resume(host);
4454 
4455 	return 0;
4456 }
4457 #endif
4458 #endif
4459 
4460 static int __init mv_init(void)
4461 {
4462 	int rc = -ENODEV;
4463 #ifdef CONFIG_PCI
4464 	rc = pci_register_driver(&mv_pci_driver);
4465 	if (rc < 0)
4466 		return rc;
4467 #endif
4468 	rc = platform_driver_register(&mv_platform_driver);
4469 
4470 #ifdef CONFIG_PCI
4471 	if (rc < 0)
4472 		pci_unregister_driver(&mv_pci_driver);
4473 #endif
4474 	return rc;
4475 }
4476 
4477 static void __exit mv_exit(void)
4478 {
4479 #ifdef CONFIG_PCI
4480 	pci_unregister_driver(&mv_pci_driver);
4481 #endif
4482 	platform_driver_unregister(&mv_platform_driver);
4483 }
4484 
4485 MODULE_AUTHOR("Brett Russ");
4486 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4487 MODULE_LICENSE("GPL v2");
4488 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4489 MODULE_VERSION(DRV_VERSION);
4490 MODULE_ALIAS("platform:" DRV_NAME);
4491 
4492 module_init(mv_init);
4493 module_exit(mv_exit);
4494