1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/libata.h> 39 #include <linux/highmem.h> 40 41 #include "libata.h" 42 43 static struct workqueue_struct *ata_sff_wq; 44 45 const struct ata_port_operations ata_sff_port_ops = { 46 .inherits = &ata_base_port_ops, 47 48 .qc_prep = ata_noop_qc_prep, 49 .qc_issue = ata_sff_qc_issue, 50 .qc_fill_rtf = ata_sff_qc_fill_rtf, 51 52 .freeze = ata_sff_freeze, 53 .thaw = ata_sff_thaw, 54 .prereset = ata_sff_prereset, 55 .softreset = ata_sff_softreset, 56 .hardreset = sata_sff_hardreset, 57 .postreset = ata_sff_postreset, 58 .error_handler = ata_sff_error_handler, 59 60 .sff_dev_select = ata_sff_dev_select, 61 .sff_check_status = ata_sff_check_status, 62 .sff_tf_load = ata_sff_tf_load, 63 .sff_tf_read = ata_sff_tf_read, 64 .sff_exec_command = ata_sff_exec_command, 65 .sff_data_xfer = ata_sff_data_xfer, 66 .sff_drain_fifo = ata_sff_drain_fifo, 67 68 .lost_interrupt = ata_sff_lost_interrupt, 69 }; 70 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 71 72 /** 73 * ata_sff_check_status - Read device status reg & clear interrupt 74 * @ap: port where the device is 75 * 76 * Reads ATA taskfile status register for currently-selected device 77 * and return its value. This also clears pending interrupts 78 * from this device 79 * 80 * LOCKING: 81 * Inherited from caller. 82 */ 83 u8 ata_sff_check_status(struct ata_port *ap) 84 { 85 return ioread8(ap->ioaddr.status_addr); 86 } 87 EXPORT_SYMBOL_GPL(ata_sff_check_status); 88 89 /** 90 * ata_sff_altstatus - Read device alternate status reg 91 * @ap: port where the device is 92 * 93 * Reads ATA taskfile alternate status register for 94 * currently-selected device and return its value. 95 * 96 * Note: may NOT be used as the check_altstatus() entry in 97 * ata_port_operations. 98 * 99 * LOCKING: 100 * Inherited from caller. 101 */ 102 static u8 ata_sff_altstatus(struct ata_port *ap) 103 { 104 if (ap->ops->sff_check_altstatus) 105 return ap->ops->sff_check_altstatus(ap); 106 107 return ioread8(ap->ioaddr.altstatus_addr); 108 } 109 110 /** 111 * ata_sff_irq_status - Check if the device is busy 112 * @ap: port where the device is 113 * 114 * Determine if the port is currently busy. Uses altstatus 115 * if available in order to avoid clearing shared IRQ status 116 * when finding an IRQ source. Non ctl capable devices don't 117 * share interrupt lines fortunately for us. 118 * 119 * LOCKING: 120 * Inherited from caller. 121 */ 122 static u8 ata_sff_irq_status(struct ata_port *ap) 123 { 124 u8 status; 125 126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 127 status = ata_sff_altstatus(ap); 128 /* Not us: We are busy */ 129 if (status & ATA_BUSY) 130 return status; 131 } 132 /* Clear INTRQ latch */ 133 status = ap->ops->sff_check_status(ap); 134 return status; 135 } 136 137 /** 138 * ata_sff_sync - Flush writes 139 * @ap: Port to wait for. 140 * 141 * CAUTION: 142 * If we have an mmio device with no ctl and no altstatus 143 * method this will fail. No such devices are known to exist. 144 * 145 * LOCKING: 146 * Inherited from caller. 147 */ 148 149 static void ata_sff_sync(struct ata_port *ap) 150 { 151 if (ap->ops->sff_check_altstatus) 152 ap->ops->sff_check_altstatus(ap); 153 else if (ap->ioaddr.altstatus_addr) 154 ioread8(ap->ioaddr.altstatus_addr); 155 } 156 157 /** 158 * ata_sff_pause - Flush writes and wait 400nS 159 * @ap: Port to pause for. 160 * 161 * CAUTION: 162 * If we have an mmio device with no ctl and no altstatus 163 * method this will fail. No such devices are known to exist. 164 * 165 * LOCKING: 166 * Inherited from caller. 167 */ 168 169 void ata_sff_pause(struct ata_port *ap) 170 { 171 ata_sff_sync(ap); 172 ndelay(400); 173 } 174 EXPORT_SYMBOL_GPL(ata_sff_pause); 175 176 /** 177 * ata_sff_dma_pause - Pause before commencing DMA 178 * @ap: Port to pause for. 179 * 180 * Perform I/O fencing and ensure sufficient cycle delays occur 181 * for the HDMA1:0 transition 182 */ 183 184 void ata_sff_dma_pause(struct ata_port *ap) 185 { 186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 187 /* An altstatus read will cause the needed delay without 188 messing up the IRQ status */ 189 ata_sff_altstatus(ap); 190 return; 191 } 192 /* There are no DMA controllers without ctl. BUG here to ensure 193 we never violate the HDMA1:0 transition timing and risk 194 corruption. */ 195 BUG(); 196 } 197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 198 199 /** 200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 201 * @ap: port containing status register to be polled 202 * @tmout_pat: impatience timeout in msecs 203 * @tmout: overall timeout in msecs 204 * 205 * Sleep until ATA Status register bit BSY clears, 206 * or a timeout occurs. 207 * 208 * LOCKING: 209 * Kernel thread context (may sleep). 210 * 211 * RETURNS: 212 * 0 on success, -errno otherwise. 213 */ 214 int ata_sff_busy_sleep(struct ata_port *ap, 215 unsigned long tmout_pat, unsigned long tmout) 216 { 217 unsigned long timer_start, timeout; 218 u8 status; 219 220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 221 timer_start = jiffies; 222 timeout = ata_deadline(timer_start, tmout_pat); 223 while (status != 0xff && (status & ATA_BUSY) && 224 time_before(jiffies, timeout)) { 225 ata_msleep(ap, 50); 226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 227 } 228 229 if (status != 0xff && (status & ATA_BUSY)) 230 ata_port_printk(ap, KERN_WARNING, 231 "port is slow to respond, please be patient " 232 "(Status 0x%x)\n", status); 233 234 timeout = ata_deadline(timer_start, tmout); 235 while (status != 0xff && (status & ATA_BUSY) && 236 time_before(jiffies, timeout)) { 237 ata_msleep(ap, 50); 238 status = ap->ops->sff_check_status(ap); 239 } 240 241 if (status == 0xff) 242 return -ENODEV; 243 244 if (status & ATA_BUSY) { 245 ata_port_printk(ap, KERN_ERR, "port failed to respond " 246 "(%lu secs, Status 0x%x)\n", 247 DIV_ROUND_UP(tmout, 1000), status); 248 return -EBUSY; 249 } 250 251 return 0; 252 } 253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 254 255 static int ata_sff_check_ready(struct ata_link *link) 256 { 257 u8 status = link->ap->ops->sff_check_status(link->ap); 258 259 return ata_check_ready(status); 260 } 261 262 /** 263 * ata_sff_wait_ready - sleep until BSY clears, or timeout 264 * @link: SFF link to wait ready status for 265 * @deadline: deadline jiffies for the operation 266 * 267 * Sleep until ATA Status register bit BSY clears, or timeout 268 * occurs. 269 * 270 * LOCKING: 271 * Kernel thread context (may sleep). 272 * 273 * RETURNS: 274 * 0 on success, -errno otherwise. 275 */ 276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 277 { 278 return ata_wait_ready(link, deadline, ata_sff_check_ready); 279 } 280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 281 282 /** 283 * ata_sff_set_devctl - Write device control reg 284 * @ap: port where the device is 285 * @ctl: value to write 286 * 287 * Writes ATA taskfile device control register. 288 * 289 * Note: may NOT be used as the sff_set_devctl() entry in 290 * ata_port_operations. 291 * 292 * LOCKING: 293 * Inherited from caller. 294 */ 295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 296 { 297 if (ap->ops->sff_set_devctl) 298 ap->ops->sff_set_devctl(ap, ctl); 299 else 300 iowrite8(ctl, ap->ioaddr.ctl_addr); 301 } 302 303 /** 304 * ata_sff_dev_select - Select device 0/1 on ATA bus 305 * @ap: ATA channel to manipulate 306 * @device: ATA device (numbered from zero) to select 307 * 308 * Use the method defined in the ATA specification to 309 * make either device 0, or device 1, active on the 310 * ATA channel. Works with both PIO and MMIO. 311 * 312 * May be used as the dev_select() entry in ata_port_operations. 313 * 314 * LOCKING: 315 * caller. 316 */ 317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 318 { 319 u8 tmp; 320 321 if (device == 0) 322 tmp = ATA_DEVICE_OBS; 323 else 324 tmp = ATA_DEVICE_OBS | ATA_DEV1; 325 326 iowrite8(tmp, ap->ioaddr.device_addr); 327 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 328 } 329 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 330 331 /** 332 * ata_dev_select - Select device 0/1 on ATA bus 333 * @ap: ATA channel to manipulate 334 * @device: ATA device (numbered from zero) to select 335 * @wait: non-zero to wait for Status register BSY bit to clear 336 * @can_sleep: non-zero if context allows sleeping 337 * 338 * Use the method defined in the ATA specification to 339 * make either device 0, or device 1, active on the 340 * ATA channel. 341 * 342 * This is a high-level version of ata_sff_dev_select(), which 343 * additionally provides the services of inserting the proper 344 * pauses and status polling, where needed. 345 * 346 * LOCKING: 347 * caller. 348 */ 349 static void ata_dev_select(struct ata_port *ap, unsigned int device, 350 unsigned int wait, unsigned int can_sleep) 351 { 352 if (ata_msg_probe(ap)) 353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 354 "device %u, wait %u\n", device, wait); 355 356 if (wait) 357 ata_wait_idle(ap); 358 359 ap->ops->sff_dev_select(ap, device); 360 361 if (wait) { 362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 363 ata_msleep(ap, 150); 364 ata_wait_idle(ap); 365 } 366 } 367 368 /** 369 * ata_sff_irq_on - Enable interrupts on a port. 370 * @ap: Port on which interrupts are enabled. 371 * 372 * Enable interrupts on a legacy IDE device using MMIO or PIO, 373 * wait for idle, clear any pending interrupts. 374 * 375 * Note: may NOT be used as the sff_irq_on() entry in 376 * ata_port_operations. 377 * 378 * LOCKING: 379 * Inherited from caller. 380 */ 381 void ata_sff_irq_on(struct ata_port *ap) 382 { 383 struct ata_ioports *ioaddr = &ap->ioaddr; 384 385 if (ap->ops->sff_irq_on) { 386 ap->ops->sff_irq_on(ap); 387 return; 388 } 389 390 ap->ctl &= ~ATA_NIEN; 391 ap->last_ctl = ap->ctl; 392 393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 394 ata_sff_set_devctl(ap, ap->ctl); 395 ata_wait_idle(ap); 396 397 if (ap->ops->sff_irq_clear) 398 ap->ops->sff_irq_clear(ap); 399 } 400 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 401 402 /** 403 * ata_sff_tf_load - send taskfile registers to host controller 404 * @ap: Port to which output is sent 405 * @tf: ATA taskfile register set 406 * 407 * Outputs ATA taskfile to standard ATA host controller. 408 * 409 * LOCKING: 410 * Inherited from caller. 411 */ 412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 413 { 414 struct ata_ioports *ioaddr = &ap->ioaddr; 415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 416 417 if (tf->ctl != ap->last_ctl) { 418 if (ioaddr->ctl_addr) 419 iowrite8(tf->ctl, ioaddr->ctl_addr); 420 ap->last_ctl = tf->ctl; 421 ata_wait_idle(ap); 422 } 423 424 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 425 WARN_ON_ONCE(!ioaddr->ctl_addr); 426 iowrite8(tf->hob_feature, ioaddr->feature_addr); 427 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 428 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 429 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 430 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 431 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 432 tf->hob_feature, 433 tf->hob_nsect, 434 tf->hob_lbal, 435 tf->hob_lbam, 436 tf->hob_lbah); 437 } 438 439 if (is_addr) { 440 iowrite8(tf->feature, ioaddr->feature_addr); 441 iowrite8(tf->nsect, ioaddr->nsect_addr); 442 iowrite8(tf->lbal, ioaddr->lbal_addr); 443 iowrite8(tf->lbam, ioaddr->lbam_addr); 444 iowrite8(tf->lbah, ioaddr->lbah_addr); 445 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 446 tf->feature, 447 tf->nsect, 448 tf->lbal, 449 tf->lbam, 450 tf->lbah); 451 } 452 453 if (tf->flags & ATA_TFLAG_DEVICE) { 454 iowrite8(tf->device, ioaddr->device_addr); 455 VPRINTK("device 0x%X\n", tf->device); 456 } 457 458 ata_wait_idle(ap); 459 } 460 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 461 462 /** 463 * ata_sff_tf_read - input device's ATA taskfile shadow registers 464 * @ap: Port from which input is read 465 * @tf: ATA taskfile register set for storing input 466 * 467 * Reads ATA taskfile registers for currently-selected device 468 * into @tf. Assumes the device has a fully SFF compliant task file 469 * layout and behaviour. If you device does not (eg has a different 470 * status method) then you will need to provide a replacement tf_read 471 * 472 * LOCKING: 473 * Inherited from caller. 474 */ 475 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 476 { 477 struct ata_ioports *ioaddr = &ap->ioaddr; 478 479 tf->command = ata_sff_check_status(ap); 480 tf->feature = ioread8(ioaddr->error_addr); 481 tf->nsect = ioread8(ioaddr->nsect_addr); 482 tf->lbal = ioread8(ioaddr->lbal_addr); 483 tf->lbam = ioread8(ioaddr->lbam_addr); 484 tf->lbah = ioread8(ioaddr->lbah_addr); 485 tf->device = ioread8(ioaddr->device_addr); 486 487 if (tf->flags & ATA_TFLAG_LBA48) { 488 if (likely(ioaddr->ctl_addr)) { 489 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 490 tf->hob_feature = ioread8(ioaddr->error_addr); 491 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 492 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 493 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 494 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 495 iowrite8(tf->ctl, ioaddr->ctl_addr); 496 ap->last_ctl = tf->ctl; 497 } else 498 WARN_ON_ONCE(1); 499 } 500 } 501 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 502 503 /** 504 * ata_sff_exec_command - issue ATA command to host controller 505 * @ap: port to which command is being issued 506 * @tf: ATA taskfile register set 507 * 508 * Issues ATA command, with proper synchronization with interrupt 509 * handler / other threads. 510 * 511 * LOCKING: 512 * spin_lock_irqsave(host lock) 513 */ 514 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 515 { 516 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 517 518 iowrite8(tf->command, ap->ioaddr.command_addr); 519 ata_sff_pause(ap); 520 } 521 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 522 523 /** 524 * ata_tf_to_host - issue ATA taskfile to host controller 525 * @ap: port to which command is being issued 526 * @tf: ATA taskfile register set 527 * 528 * Issues ATA taskfile register set to ATA host controller, 529 * with proper synchronization with interrupt handler and 530 * other threads. 531 * 532 * LOCKING: 533 * spin_lock_irqsave(host lock) 534 */ 535 static inline void ata_tf_to_host(struct ata_port *ap, 536 const struct ata_taskfile *tf) 537 { 538 ap->ops->sff_tf_load(ap, tf); 539 ap->ops->sff_exec_command(ap, tf); 540 } 541 542 /** 543 * ata_sff_data_xfer - Transfer data by PIO 544 * @dev: device to target 545 * @buf: data buffer 546 * @buflen: buffer length 547 * @rw: read/write 548 * 549 * Transfer data from/to the device data register by PIO. 550 * 551 * LOCKING: 552 * Inherited from caller. 553 * 554 * RETURNS: 555 * Bytes consumed. 556 */ 557 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 558 unsigned int buflen, int rw) 559 { 560 struct ata_port *ap = dev->link->ap; 561 void __iomem *data_addr = ap->ioaddr.data_addr; 562 unsigned int words = buflen >> 1; 563 564 /* Transfer multiple of 2 bytes */ 565 if (rw == READ) 566 ioread16_rep(data_addr, buf, words); 567 else 568 iowrite16_rep(data_addr, buf, words); 569 570 /* Transfer trailing byte, if any. */ 571 if (unlikely(buflen & 0x01)) { 572 unsigned char pad[2]; 573 574 /* Point buf to the tail of buffer */ 575 buf += buflen - 1; 576 577 /* 578 * Use io*16_rep() accessors here as well to avoid pointlessly 579 * swapping bytes to and from on the big endian machines... 580 */ 581 if (rw == READ) { 582 ioread16_rep(data_addr, pad, 1); 583 *buf = pad[0]; 584 } else { 585 pad[0] = *buf; 586 iowrite16_rep(data_addr, pad, 1); 587 } 588 words++; 589 } 590 591 return words << 1; 592 } 593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 594 595 /** 596 * ata_sff_data_xfer32 - Transfer data by PIO 597 * @dev: device to target 598 * @buf: data buffer 599 * @buflen: buffer length 600 * @rw: read/write 601 * 602 * Transfer data from/to the device data register by PIO using 32bit 603 * I/O operations. 604 * 605 * LOCKING: 606 * Inherited from caller. 607 * 608 * RETURNS: 609 * Bytes consumed. 610 */ 611 612 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 613 unsigned int buflen, int rw) 614 { 615 struct ata_port *ap = dev->link->ap; 616 void __iomem *data_addr = ap->ioaddr.data_addr; 617 unsigned int words = buflen >> 2; 618 int slop = buflen & 3; 619 620 if (!(ap->pflags & ATA_PFLAG_PIO32)) 621 return ata_sff_data_xfer(dev, buf, buflen, rw); 622 623 /* Transfer multiple of 4 bytes */ 624 if (rw == READ) 625 ioread32_rep(data_addr, buf, words); 626 else 627 iowrite32_rep(data_addr, buf, words); 628 629 /* Transfer trailing bytes, if any */ 630 if (unlikely(slop)) { 631 unsigned char pad[4]; 632 633 /* Point buf to the tail of buffer */ 634 buf += buflen - slop; 635 636 /* 637 * Use io*_rep() accessors here as well to avoid pointlessly 638 * swapping bytes to and from on the big endian machines... 639 */ 640 if (rw == READ) { 641 if (slop < 3) 642 ioread16_rep(data_addr, pad, 1); 643 else 644 ioread32_rep(data_addr, pad, 1); 645 memcpy(buf, pad, slop); 646 } else { 647 memcpy(pad, buf, slop); 648 if (slop < 3) 649 iowrite16_rep(data_addr, pad, 1); 650 else 651 iowrite32_rep(data_addr, pad, 1); 652 } 653 } 654 return (buflen + 1) & ~1; 655 } 656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 657 658 /** 659 * ata_sff_data_xfer_noirq - Transfer data by PIO 660 * @dev: device to target 661 * @buf: data buffer 662 * @buflen: buffer length 663 * @rw: read/write 664 * 665 * Transfer data from/to the device data register by PIO. Do the 666 * transfer with interrupts disabled. 667 * 668 * LOCKING: 669 * Inherited from caller. 670 * 671 * RETURNS: 672 * Bytes consumed. 673 */ 674 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 675 unsigned int buflen, int rw) 676 { 677 unsigned long flags; 678 unsigned int consumed; 679 680 local_irq_save(flags); 681 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 682 local_irq_restore(flags); 683 684 return consumed; 685 } 686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 687 688 /** 689 * ata_pio_sector - Transfer a sector of data. 690 * @qc: Command on going 691 * 692 * Transfer qc->sect_size bytes of data from/to the ATA device. 693 * 694 * LOCKING: 695 * Inherited from caller. 696 */ 697 static void ata_pio_sector(struct ata_queued_cmd *qc) 698 { 699 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 700 struct ata_port *ap = qc->ap; 701 struct page *page; 702 unsigned int offset; 703 unsigned char *buf; 704 705 if (qc->curbytes == qc->nbytes - qc->sect_size) 706 ap->hsm_task_state = HSM_ST_LAST; 707 708 page = sg_page(qc->cursg); 709 offset = qc->cursg->offset + qc->cursg_ofs; 710 711 /* get the current page and offset */ 712 page = nth_page(page, (offset >> PAGE_SHIFT)); 713 offset %= PAGE_SIZE; 714 715 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 716 717 if (PageHighMem(page)) { 718 unsigned long flags; 719 720 /* FIXME: use a bounce buffer */ 721 local_irq_save(flags); 722 buf = kmap_atomic(page, KM_IRQ0); 723 724 /* do the actual data transfer */ 725 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 726 do_write); 727 728 kunmap_atomic(buf, KM_IRQ0); 729 local_irq_restore(flags); 730 } else { 731 buf = page_address(page); 732 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 733 do_write); 734 } 735 736 if (!do_write && !PageSlab(page)) 737 flush_dcache_page(page); 738 739 qc->curbytes += qc->sect_size; 740 qc->cursg_ofs += qc->sect_size; 741 742 if (qc->cursg_ofs == qc->cursg->length) { 743 qc->cursg = sg_next(qc->cursg); 744 qc->cursg_ofs = 0; 745 } 746 } 747 748 /** 749 * ata_pio_sectors - Transfer one or many sectors. 750 * @qc: Command on going 751 * 752 * Transfer one or many sectors of data from/to the 753 * ATA device for the DRQ request. 754 * 755 * LOCKING: 756 * Inherited from caller. 757 */ 758 static void ata_pio_sectors(struct ata_queued_cmd *qc) 759 { 760 if (is_multi_taskfile(&qc->tf)) { 761 /* READ/WRITE MULTIPLE */ 762 unsigned int nsect; 763 764 WARN_ON_ONCE(qc->dev->multi_count == 0); 765 766 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 767 qc->dev->multi_count); 768 while (nsect--) 769 ata_pio_sector(qc); 770 } else 771 ata_pio_sector(qc); 772 773 ata_sff_sync(qc->ap); /* flush */ 774 } 775 776 /** 777 * atapi_send_cdb - Write CDB bytes to hardware 778 * @ap: Port to which ATAPI device is attached. 779 * @qc: Taskfile currently active 780 * 781 * When device has indicated its readiness to accept 782 * a CDB, this function is called. Send the CDB. 783 * 784 * LOCKING: 785 * caller. 786 */ 787 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 788 { 789 /* send SCSI cdb */ 790 DPRINTK("send cdb\n"); 791 WARN_ON_ONCE(qc->dev->cdb_len < 12); 792 793 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 794 ata_sff_sync(ap); 795 /* FIXME: If the CDB is for DMA do we need to do the transition delay 796 or is bmdma_start guaranteed to do it ? */ 797 switch (qc->tf.protocol) { 798 case ATAPI_PROT_PIO: 799 ap->hsm_task_state = HSM_ST; 800 break; 801 case ATAPI_PROT_NODATA: 802 ap->hsm_task_state = HSM_ST_LAST; 803 break; 804 #ifdef CONFIG_ATA_BMDMA 805 case ATAPI_PROT_DMA: 806 ap->hsm_task_state = HSM_ST_LAST; 807 /* initiate bmdma */ 808 ap->ops->bmdma_start(qc); 809 break; 810 #endif /* CONFIG_ATA_BMDMA */ 811 default: 812 BUG(); 813 } 814 } 815 816 /** 817 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 818 * @qc: Command on going 819 * @bytes: number of bytes 820 * 821 * Transfer Transfer data from/to the ATAPI device. 822 * 823 * LOCKING: 824 * Inherited from caller. 825 * 826 */ 827 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 828 { 829 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 830 struct ata_port *ap = qc->ap; 831 struct ata_device *dev = qc->dev; 832 struct ata_eh_info *ehi = &dev->link->eh_info; 833 struct scatterlist *sg; 834 struct page *page; 835 unsigned char *buf; 836 unsigned int offset, count, consumed; 837 838 next_sg: 839 sg = qc->cursg; 840 if (unlikely(!sg)) { 841 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 842 "buf=%u cur=%u bytes=%u", 843 qc->nbytes, qc->curbytes, bytes); 844 return -1; 845 } 846 847 page = sg_page(sg); 848 offset = sg->offset + qc->cursg_ofs; 849 850 /* get the current page and offset */ 851 page = nth_page(page, (offset >> PAGE_SHIFT)); 852 offset %= PAGE_SIZE; 853 854 /* don't overrun current sg */ 855 count = min(sg->length - qc->cursg_ofs, bytes); 856 857 /* don't cross page boundaries */ 858 count = min(count, (unsigned int)PAGE_SIZE - offset); 859 860 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 861 862 if (PageHighMem(page)) { 863 unsigned long flags; 864 865 /* FIXME: use bounce buffer */ 866 local_irq_save(flags); 867 buf = kmap_atomic(page, KM_IRQ0); 868 869 /* do the actual data transfer */ 870 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 871 count, rw); 872 873 kunmap_atomic(buf, KM_IRQ0); 874 local_irq_restore(flags); 875 } else { 876 buf = page_address(page); 877 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 878 count, rw); 879 } 880 881 bytes -= min(bytes, consumed); 882 qc->curbytes += count; 883 qc->cursg_ofs += count; 884 885 if (qc->cursg_ofs == sg->length) { 886 qc->cursg = sg_next(qc->cursg); 887 qc->cursg_ofs = 0; 888 } 889 890 /* 891 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 892 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 893 * check correctly as it doesn't know if it is the last request being 894 * made. Somebody should implement a proper sanity check. 895 */ 896 if (bytes) 897 goto next_sg; 898 return 0; 899 } 900 901 /** 902 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 903 * @qc: Command on going 904 * 905 * Transfer Transfer data from/to the ATAPI device. 906 * 907 * LOCKING: 908 * Inherited from caller. 909 */ 910 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 911 { 912 struct ata_port *ap = qc->ap; 913 struct ata_device *dev = qc->dev; 914 struct ata_eh_info *ehi = &dev->link->eh_info; 915 unsigned int ireason, bc_lo, bc_hi, bytes; 916 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 917 918 /* Abuse qc->result_tf for temp storage of intermediate TF 919 * here to save some kernel stack usage. 920 * For normal completion, qc->result_tf is not relevant. For 921 * error, qc->result_tf is later overwritten by ata_qc_complete(). 922 * So, the correctness of qc->result_tf is not affected. 923 */ 924 ap->ops->sff_tf_read(ap, &qc->result_tf); 925 ireason = qc->result_tf.nsect; 926 bc_lo = qc->result_tf.lbam; 927 bc_hi = qc->result_tf.lbah; 928 bytes = (bc_hi << 8) | bc_lo; 929 930 /* shall be cleared to zero, indicating xfer of data */ 931 if (unlikely(ireason & (1 << 0))) 932 goto atapi_check; 933 934 /* make sure transfer direction matches expected */ 935 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 936 if (unlikely(do_write != i_write)) 937 goto atapi_check; 938 939 if (unlikely(!bytes)) 940 goto atapi_check; 941 942 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 943 944 if (unlikely(__atapi_pio_bytes(qc, bytes))) 945 goto err_out; 946 ata_sff_sync(ap); /* flush */ 947 948 return; 949 950 atapi_check: 951 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 952 ireason, bytes); 953 err_out: 954 qc->err_mask |= AC_ERR_HSM; 955 ap->hsm_task_state = HSM_ST_ERR; 956 } 957 958 /** 959 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 960 * @ap: the target ata_port 961 * @qc: qc on going 962 * 963 * RETURNS: 964 * 1 if ok in workqueue, 0 otherwise. 965 */ 966 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 967 struct ata_queued_cmd *qc) 968 { 969 if (qc->tf.flags & ATA_TFLAG_POLLING) 970 return 1; 971 972 if (ap->hsm_task_state == HSM_ST_FIRST) { 973 if (qc->tf.protocol == ATA_PROT_PIO && 974 (qc->tf.flags & ATA_TFLAG_WRITE)) 975 return 1; 976 977 if (ata_is_atapi(qc->tf.protocol) && 978 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 979 return 1; 980 } 981 982 return 0; 983 } 984 985 /** 986 * ata_hsm_qc_complete - finish a qc running on standard HSM 987 * @qc: Command to complete 988 * @in_wq: 1 if called from workqueue, 0 otherwise 989 * 990 * Finish @qc which is running on standard HSM. 991 * 992 * LOCKING: 993 * If @in_wq is zero, spin_lock_irqsave(host lock). 994 * Otherwise, none on entry and grabs host lock. 995 */ 996 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 997 { 998 struct ata_port *ap = qc->ap; 999 unsigned long flags; 1000 1001 if (ap->ops->error_handler) { 1002 if (in_wq) { 1003 spin_lock_irqsave(ap->lock, flags); 1004 1005 /* EH might have kicked in while host lock is 1006 * released. 1007 */ 1008 qc = ata_qc_from_tag(ap, qc->tag); 1009 if (qc) { 1010 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1011 ata_sff_irq_on(ap); 1012 ata_qc_complete(qc); 1013 } else 1014 ata_port_freeze(ap); 1015 } 1016 1017 spin_unlock_irqrestore(ap->lock, flags); 1018 } else { 1019 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1020 ata_qc_complete(qc); 1021 else 1022 ata_port_freeze(ap); 1023 } 1024 } else { 1025 if (in_wq) { 1026 spin_lock_irqsave(ap->lock, flags); 1027 ata_sff_irq_on(ap); 1028 ata_qc_complete(qc); 1029 spin_unlock_irqrestore(ap->lock, flags); 1030 } else 1031 ata_qc_complete(qc); 1032 } 1033 } 1034 1035 /** 1036 * ata_sff_hsm_move - move the HSM to the next state. 1037 * @ap: the target ata_port 1038 * @qc: qc on going 1039 * @status: current device status 1040 * @in_wq: 1 if called from workqueue, 0 otherwise 1041 * 1042 * RETURNS: 1043 * 1 when poll next status needed, 0 otherwise. 1044 */ 1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1046 u8 status, int in_wq) 1047 { 1048 struct ata_link *link = qc->dev->link; 1049 struct ata_eh_info *ehi = &link->eh_info; 1050 unsigned long flags = 0; 1051 int poll_next; 1052 1053 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1054 1055 /* Make sure ata_sff_qc_issue() does not throw things 1056 * like DMA polling into the workqueue. Notice that 1057 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1058 */ 1059 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1060 1061 fsm_start: 1062 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1063 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1064 1065 switch (ap->hsm_task_state) { 1066 case HSM_ST_FIRST: 1067 /* Send first data block or PACKET CDB */ 1068 1069 /* If polling, we will stay in the work queue after 1070 * sending the data. Otherwise, interrupt handler 1071 * takes over after sending the data. 1072 */ 1073 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1074 1075 /* check device status */ 1076 if (unlikely((status & ATA_DRQ) == 0)) { 1077 /* handle BSY=0, DRQ=0 as error */ 1078 if (likely(status & (ATA_ERR | ATA_DF))) 1079 /* device stops HSM for abort/error */ 1080 qc->err_mask |= AC_ERR_DEV; 1081 else { 1082 /* HSM violation. Let EH handle this */ 1083 ata_ehi_push_desc(ehi, 1084 "ST_FIRST: !(DRQ|ERR|DF)"); 1085 qc->err_mask |= AC_ERR_HSM; 1086 } 1087 1088 ap->hsm_task_state = HSM_ST_ERR; 1089 goto fsm_start; 1090 } 1091 1092 /* Device should not ask for data transfer (DRQ=1) 1093 * when it finds something wrong. 1094 * We ignore DRQ here and stop the HSM by 1095 * changing hsm_task_state to HSM_ST_ERR and 1096 * let the EH abort the command or reset the device. 1097 */ 1098 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1099 /* Some ATAPI tape drives forget to clear the ERR bit 1100 * when doing the next command (mostly request sense). 1101 * We ignore ERR here to workaround and proceed sending 1102 * the CDB. 1103 */ 1104 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1105 ata_ehi_push_desc(ehi, "ST_FIRST: " 1106 "DRQ=1 with device error, " 1107 "dev_stat 0x%X", status); 1108 qc->err_mask |= AC_ERR_HSM; 1109 ap->hsm_task_state = HSM_ST_ERR; 1110 goto fsm_start; 1111 } 1112 } 1113 1114 /* Send the CDB (atapi) or the first data block (ata pio out). 1115 * During the state transition, interrupt handler shouldn't 1116 * be invoked before the data transfer is complete and 1117 * hsm_task_state is changed. Hence, the following locking. 1118 */ 1119 if (in_wq) 1120 spin_lock_irqsave(ap->lock, flags); 1121 1122 if (qc->tf.protocol == ATA_PROT_PIO) { 1123 /* PIO data out protocol. 1124 * send first data block. 1125 */ 1126 1127 /* ata_pio_sectors() might change the state 1128 * to HSM_ST_LAST. so, the state is changed here 1129 * before ata_pio_sectors(). 1130 */ 1131 ap->hsm_task_state = HSM_ST; 1132 ata_pio_sectors(qc); 1133 } else 1134 /* send CDB */ 1135 atapi_send_cdb(ap, qc); 1136 1137 if (in_wq) 1138 spin_unlock_irqrestore(ap->lock, flags); 1139 1140 /* if polling, ata_sff_pio_task() handles the rest. 1141 * otherwise, interrupt handler takes over from here. 1142 */ 1143 break; 1144 1145 case HSM_ST: 1146 /* complete command or read/write the data register */ 1147 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1148 /* ATAPI PIO protocol */ 1149 if ((status & ATA_DRQ) == 0) { 1150 /* No more data to transfer or device error. 1151 * Device error will be tagged in HSM_ST_LAST. 1152 */ 1153 ap->hsm_task_state = HSM_ST_LAST; 1154 goto fsm_start; 1155 } 1156 1157 /* Device should not ask for data transfer (DRQ=1) 1158 * when it finds something wrong. 1159 * We ignore DRQ here and stop the HSM by 1160 * changing hsm_task_state to HSM_ST_ERR and 1161 * let the EH abort the command or reset the device. 1162 */ 1163 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1164 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1165 "DRQ=1 with device error, " 1166 "dev_stat 0x%X", status); 1167 qc->err_mask |= AC_ERR_HSM; 1168 ap->hsm_task_state = HSM_ST_ERR; 1169 goto fsm_start; 1170 } 1171 1172 atapi_pio_bytes(qc); 1173 1174 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1175 /* bad ireason reported by device */ 1176 goto fsm_start; 1177 1178 } else { 1179 /* ATA PIO protocol */ 1180 if (unlikely((status & ATA_DRQ) == 0)) { 1181 /* handle BSY=0, DRQ=0 as error */ 1182 if (likely(status & (ATA_ERR | ATA_DF))) { 1183 /* device stops HSM for abort/error */ 1184 qc->err_mask |= AC_ERR_DEV; 1185 1186 /* If diagnostic failed and this is 1187 * IDENTIFY, it's likely a phantom 1188 * device. Mark hint. 1189 */ 1190 if (qc->dev->horkage & 1191 ATA_HORKAGE_DIAGNOSTIC) 1192 qc->err_mask |= 1193 AC_ERR_NODEV_HINT; 1194 } else { 1195 /* HSM violation. Let EH handle this. 1196 * Phantom devices also trigger this 1197 * condition. Mark hint. 1198 */ 1199 ata_ehi_push_desc(ehi, "ST-ATA: " 1200 "DRQ=0 without device error, " 1201 "dev_stat 0x%X", status); 1202 qc->err_mask |= AC_ERR_HSM | 1203 AC_ERR_NODEV_HINT; 1204 } 1205 1206 ap->hsm_task_state = HSM_ST_ERR; 1207 goto fsm_start; 1208 } 1209 1210 /* For PIO reads, some devices may ask for 1211 * data transfer (DRQ=1) alone with ERR=1. 1212 * We respect DRQ here and transfer one 1213 * block of junk data before changing the 1214 * hsm_task_state to HSM_ST_ERR. 1215 * 1216 * For PIO writes, ERR=1 DRQ=1 doesn't make 1217 * sense since the data block has been 1218 * transferred to the device. 1219 */ 1220 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1221 /* data might be corrputed */ 1222 qc->err_mask |= AC_ERR_DEV; 1223 1224 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1225 ata_pio_sectors(qc); 1226 status = ata_wait_idle(ap); 1227 } 1228 1229 if (status & (ATA_BUSY | ATA_DRQ)) { 1230 ata_ehi_push_desc(ehi, "ST-ATA: " 1231 "BUSY|DRQ persists on ERR|DF, " 1232 "dev_stat 0x%X", status); 1233 qc->err_mask |= AC_ERR_HSM; 1234 } 1235 1236 /* There are oddball controllers with 1237 * status register stuck at 0x7f and 1238 * lbal/m/h at zero which makes it 1239 * pass all other presence detection 1240 * mechanisms we have. Set NODEV_HINT 1241 * for it. Kernel bz#7241. 1242 */ 1243 if (status == 0x7f) 1244 qc->err_mask |= AC_ERR_NODEV_HINT; 1245 1246 /* ata_pio_sectors() might change the 1247 * state to HSM_ST_LAST. so, the state 1248 * is changed after ata_pio_sectors(). 1249 */ 1250 ap->hsm_task_state = HSM_ST_ERR; 1251 goto fsm_start; 1252 } 1253 1254 ata_pio_sectors(qc); 1255 1256 if (ap->hsm_task_state == HSM_ST_LAST && 1257 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1258 /* all data read */ 1259 status = ata_wait_idle(ap); 1260 goto fsm_start; 1261 } 1262 } 1263 1264 poll_next = 1; 1265 break; 1266 1267 case HSM_ST_LAST: 1268 if (unlikely(!ata_ok(status))) { 1269 qc->err_mask |= __ac_err_mask(status); 1270 ap->hsm_task_state = HSM_ST_ERR; 1271 goto fsm_start; 1272 } 1273 1274 /* no more data to transfer */ 1275 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1276 ap->print_id, qc->dev->devno, status); 1277 1278 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1279 1280 ap->hsm_task_state = HSM_ST_IDLE; 1281 1282 /* complete taskfile transaction */ 1283 ata_hsm_qc_complete(qc, in_wq); 1284 1285 poll_next = 0; 1286 break; 1287 1288 case HSM_ST_ERR: 1289 ap->hsm_task_state = HSM_ST_IDLE; 1290 1291 /* complete taskfile transaction */ 1292 ata_hsm_qc_complete(qc, in_wq); 1293 1294 poll_next = 0; 1295 break; 1296 default: 1297 poll_next = 0; 1298 BUG(); 1299 } 1300 1301 return poll_next; 1302 } 1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1304 1305 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1306 { 1307 struct ata_port *ap = link->ap; 1308 1309 WARN_ON((ap->sff_pio_task_link != NULL) && 1310 (ap->sff_pio_task_link != link)); 1311 ap->sff_pio_task_link = link; 1312 1313 /* may fail if ata_sff_flush_pio_task() in progress */ 1314 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task, 1315 msecs_to_jiffies(delay)); 1316 } 1317 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1318 1319 void ata_sff_flush_pio_task(struct ata_port *ap) 1320 { 1321 DPRINTK("ENTER\n"); 1322 1323 cancel_rearming_delayed_work(&ap->sff_pio_task); 1324 ap->hsm_task_state = HSM_ST_IDLE; 1325 1326 if (ata_msg_ctl(ap)) 1327 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1328 } 1329 1330 static void ata_sff_pio_task(struct work_struct *work) 1331 { 1332 struct ata_port *ap = 1333 container_of(work, struct ata_port, sff_pio_task.work); 1334 struct ata_link *link = ap->sff_pio_task_link; 1335 struct ata_queued_cmd *qc; 1336 u8 status; 1337 int poll_next; 1338 1339 BUG_ON(ap->sff_pio_task_link == NULL); 1340 /* qc can be NULL if timeout occurred */ 1341 qc = ata_qc_from_tag(ap, link->active_tag); 1342 if (!qc) { 1343 ap->sff_pio_task_link = NULL; 1344 return; 1345 } 1346 1347 fsm_start: 1348 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1349 1350 /* 1351 * This is purely heuristic. This is a fast path. 1352 * Sometimes when we enter, BSY will be cleared in 1353 * a chk-status or two. If not, the drive is probably seeking 1354 * or something. Snooze for a couple msecs, then 1355 * chk-status again. If still busy, queue delayed work. 1356 */ 1357 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1358 if (status & ATA_BUSY) { 1359 ata_msleep(ap, 2); 1360 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1361 if (status & ATA_BUSY) { 1362 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1363 return; 1364 } 1365 } 1366 1367 /* 1368 * hsm_move() may trigger another command to be processed. 1369 * clean the link beforehand. 1370 */ 1371 ap->sff_pio_task_link = NULL; 1372 /* move the HSM */ 1373 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1374 1375 /* another command or interrupt handler 1376 * may be running at this point. 1377 */ 1378 if (poll_next) 1379 goto fsm_start; 1380 } 1381 1382 /** 1383 * ata_sff_qc_issue - issue taskfile to a SFF controller 1384 * @qc: command to issue to device 1385 * 1386 * This function issues a PIO or NODATA command to a SFF 1387 * controller. 1388 * 1389 * LOCKING: 1390 * spin_lock_irqsave(host lock) 1391 * 1392 * RETURNS: 1393 * Zero on success, AC_ERR_* mask on failure 1394 */ 1395 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1396 { 1397 struct ata_port *ap = qc->ap; 1398 struct ata_link *link = qc->dev->link; 1399 1400 /* Use polling pio if the LLD doesn't handle 1401 * interrupt driven pio and atapi CDB interrupt. 1402 */ 1403 if (ap->flags & ATA_FLAG_PIO_POLLING) 1404 qc->tf.flags |= ATA_TFLAG_POLLING; 1405 1406 /* select the device */ 1407 ata_dev_select(ap, qc->dev->devno, 1, 0); 1408 1409 /* start the command */ 1410 switch (qc->tf.protocol) { 1411 case ATA_PROT_NODATA: 1412 if (qc->tf.flags & ATA_TFLAG_POLLING) 1413 ata_qc_set_polling(qc); 1414 1415 ata_tf_to_host(ap, &qc->tf); 1416 ap->hsm_task_state = HSM_ST_LAST; 1417 1418 if (qc->tf.flags & ATA_TFLAG_POLLING) 1419 ata_sff_queue_pio_task(link, 0); 1420 1421 break; 1422 1423 case ATA_PROT_PIO: 1424 if (qc->tf.flags & ATA_TFLAG_POLLING) 1425 ata_qc_set_polling(qc); 1426 1427 ata_tf_to_host(ap, &qc->tf); 1428 1429 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1430 /* PIO data out protocol */ 1431 ap->hsm_task_state = HSM_ST_FIRST; 1432 ata_sff_queue_pio_task(link, 0); 1433 1434 /* always send first data block using the 1435 * ata_sff_pio_task() codepath. 1436 */ 1437 } else { 1438 /* PIO data in protocol */ 1439 ap->hsm_task_state = HSM_ST; 1440 1441 if (qc->tf.flags & ATA_TFLAG_POLLING) 1442 ata_sff_queue_pio_task(link, 0); 1443 1444 /* if polling, ata_sff_pio_task() handles the 1445 * rest. otherwise, interrupt handler takes 1446 * over from here. 1447 */ 1448 } 1449 1450 break; 1451 1452 case ATAPI_PROT_PIO: 1453 case ATAPI_PROT_NODATA: 1454 if (qc->tf.flags & ATA_TFLAG_POLLING) 1455 ata_qc_set_polling(qc); 1456 1457 ata_tf_to_host(ap, &qc->tf); 1458 1459 ap->hsm_task_state = HSM_ST_FIRST; 1460 1461 /* send cdb by polling if no cdb interrupt */ 1462 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1463 (qc->tf.flags & ATA_TFLAG_POLLING)) 1464 ata_sff_queue_pio_task(link, 0); 1465 break; 1466 1467 default: 1468 WARN_ON_ONCE(1); 1469 return AC_ERR_SYSTEM; 1470 } 1471 1472 return 0; 1473 } 1474 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1475 1476 /** 1477 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1478 * @qc: qc to fill result TF for 1479 * 1480 * @qc is finished and result TF needs to be filled. Fill it 1481 * using ->sff_tf_read. 1482 * 1483 * LOCKING: 1484 * spin_lock_irqsave(host lock) 1485 * 1486 * RETURNS: 1487 * true indicating that result TF is successfully filled. 1488 */ 1489 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1490 { 1491 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1492 return true; 1493 } 1494 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1495 1496 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1497 { 1498 ap->stats.idle_irq++; 1499 1500 #ifdef ATA_IRQ_TRAP 1501 if ((ap->stats.idle_irq % 1000) == 0) { 1502 ap->ops->sff_check_status(ap); 1503 if (ap->ops->sff_irq_clear) 1504 ap->ops->sff_irq_clear(ap); 1505 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1506 return 1; 1507 } 1508 #endif 1509 return 0; /* irq not handled */ 1510 } 1511 1512 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1513 struct ata_queued_cmd *qc, 1514 bool hsmv_on_idle) 1515 { 1516 u8 status; 1517 1518 VPRINTK("ata%u: protocol %d task_state %d\n", 1519 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1520 1521 /* Check whether we are expecting interrupt in this state */ 1522 switch (ap->hsm_task_state) { 1523 case HSM_ST_FIRST: 1524 /* Some pre-ATAPI-4 devices assert INTRQ 1525 * at this state when ready to receive CDB. 1526 */ 1527 1528 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1529 * The flag was turned on only for atapi devices. No 1530 * need to check ata_is_atapi(qc->tf.protocol) again. 1531 */ 1532 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1533 return ata_sff_idle_irq(ap); 1534 break; 1535 case HSM_ST: 1536 case HSM_ST_LAST: 1537 break; 1538 default: 1539 return ata_sff_idle_irq(ap); 1540 } 1541 1542 /* check main status, clearing INTRQ if needed */ 1543 status = ata_sff_irq_status(ap); 1544 if (status & ATA_BUSY) { 1545 if (hsmv_on_idle) { 1546 /* BMDMA engine is already stopped, we're screwed */ 1547 qc->err_mask |= AC_ERR_HSM; 1548 ap->hsm_task_state = HSM_ST_ERR; 1549 } else 1550 return ata_sff_idle_irq(ap); 1551 } 1552 1553 /* clear irq events */ 1554 if (ap->ops->sff_irq_clear) 1555 ap->ops->sff_irq_clear(ap); 1556 1557 ata_sff_hsm_move(ap, qc, status, 0); 1558 1559 return 1; /* irq handled */ 1560 } 1561 1562 /** 1563 * ata_sff_port_intr - Handle SFF port interrupt 1564 * @ap: Port on which interrupt arrived (possibly...) 1565 * @qc: Taskfile currently active in engine 1566 * 1567 * Handle port interrupt for given queued command. 1568 * 1569 * LOCKING: 1570 * spin_lock_irqsave(host lock) 1571 * 1572 * RETURNS: 1573 * One if interrupt was handled, zero if not (shared irq). 1574 */ 1575 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1576 { 1577 return __ata_sff_port_intr(ap, qc, false); 1578 } 1579 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1580 1581 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1582 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1583 { 1584 struct ata_host *host = dev_instance; 1585 bool retried = false; 1586 unsigned int i; 1587 unsigned int handled, idle, polling; 1588 unsigned long flags; 1589 1590 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1591 spin_lock_irqsave(&host->lock, flags); 1592 1593 retry: 1594 handled = idle = polling = 0; 1595 for (i = 0; i < host->n_ports; i++) { 1596 struct ata_port *ap = host->ports[i]; 1597 struct ata_queued_cmd *qc; 1598 1599 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1600 if (qc) { 1601 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1602 handled |= port_intr(ap, qc); 1603 else 1604 polling |= 1 << i; 1605 } else 1606 idle |= 1 << i; 1607 } 1608 1609 /* 1610 * If no port was expecting IRQ but the controller is actually 1611 * asserting IRQ line, nobody cared will ensue. Check IRQ 1612 * pending status if available and clear spurious IRQ. 1613 */ 1614 if (!handled && !retried) { 1615 bool retry = false; 1616 1617 for (i = 0; i < host->n_ports; i++) { 1618 struct ata_port *ap = host->ports[i]; 1619 1620 if (polling & (1 << i)) 1621 continue; 1622 1623 if (!ap->ops->sff_irq_check || 1624 !ap->ops->sff_irq_check(ap)) 1625 continue; 1626 1627 if (idle & (1 << i)) { 1628 ap->ops->sff_check_status(ap); 1629 if (ap->ops->sff_irq_clear) 1630 ap->ops->sff_irq_clear(ap); 1631 } else { 1632 /* clear INTRQ and check if BUSY cleared */ 1633 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1634 retry |= true; 1635 /* 1636 * With command in flight, we can't do 1637 * sff_irq_clear() w/o racing with completion. 1638 */ 1639 } 1640 } 1641 1642 if (retry) { 1643 retried = true; 1644 goto retry; 1645 } 1646 } 1647 1648 spin_unlock_irqrestore(&host->lock, flags); 1649 1650 return IRQ_RETVAL(handled); 1651 } 1652 1653 /** 1654 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1655 * @irq: irq line (unused) 1656 * @dev_instance: pointer to our ata_host information structure 1657 * 1658 * Default interrupt handler for PCI IDE devices. Calls 1659 * ata_sff_port_intr() for each port that is not disabled. 1660 * 1661 * LOCKING: 1662 * Obtains host lock during operation. 1663 * 1664 * RETURNS: 1665 * IRQ_NONE or IRQ_HANDLED. 1666 */ 1667 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1668 { 1669 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1670 } 1671 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1672 1673 /** 1674 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1675 * @ap: port that appears to have timed out 1676 * 1677 * Called from the libata error handlers when the core code suspects 1678 * an interrupt has been lost. If it has complete anything we can and 1679 * then return. Interface must support altstatus for this faster 1680 * recovery to occur. 1681 * 1682 * Locking: 1683 * Caller holds host lock 1684 */ 1685 1686 void ata_sff_lost_interrupt(struct ata_port *ap) 1687 { 1688 u8 status; 1689 struct ata_queued_cmd *qc; 1690 1691 /* Only one outstanding command per SFF channel */ 1692 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1693 /* We cannot lose an interrupt on a non-existent or polled command */ 1694 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1695 return; 1696 /* See if the controller thinks it is still busy - if so the command 1697 isn't a lost IRQ but is still in progress */ 1698 status = ata_sff_altstatus(ap); 1699 if (status & ATA_BUSY) 1700 return; 1701 1702 /* There was a command running, we are no longer busy and we have 1703 no interrupt. */ 1704 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", 1705 status); 1706 /* Run the host interrupt logic as if the interrupt had not been 1707 lost */ 1708 ata_sff_port_intr(ap, qc); 1709 } 1710 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1711 1712 /** 1713 * ata_sff_freeze - Freeze SFF controller port 1714 * @ap: port to freeze 1715 * 1716 * Freeze SFF controller port. 1717 * 1718 * LOCKING: 1719 * Inherited from caller. 1720 */ 1721 void ata_sff_freeze(struct ata_port *ap) 1722 { 1723 ap->ctl |= ATA_NIEN; 1724 ap->last_ctl = ap->ctl; 1725 1726 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1727 ata_sff_set_devctl(ap, ap->ctl); 1728 1729 /* Under certain circumstances, some controllers raise IRQ on 1730 * ATA_NIEN manipulation. Also, many controllers fail to mask 1731 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1732 */ 1733 ap->ops->sff_check_status(ap); 1734 1735 if (ap->ops->sff_irq_clear) 1736 ap->ops->sff_irq_clear(ap); 1737 } 1738 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1739 1740 /** 1741 * ata_sff_thaw - Thaw SFF controller port 1742 * @ap: port to thaw 1743 * 1744 * Thaw SFF controller port. 1745 * 1746 * LOCKING: 1747 * Inherited from caller. 1748 */ 1749 void ata_sff_thaw(struct ata_port *ap) 1750 { 1751 /* clear & re-enable interrupts */ 1752 ap->ops->sff_check_status(ap); 1753 if (ap->ops->sff_irq_clear) 1754 ap->ops->sff_irq_clear(ap); 1755 ata_sff_irq_on(ap); 1756 } 1757 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1758 1759 /** 1760 * ata_sff_prereset - prepare SFF link for reset 1761 * @link: SFF link to be reset 1762 * @deadline: deadline jiffies for the operation 1763 * 1764 * SFF link @link is about to be reset. Initialize it. It first 1765 * calls ata_std_prereset() and wait for !BSY if the port is 1766 * being softreset. 1767 * 1768 * LOCKING: 1769 * Kernel thread context (may sleep) 1770 * 1771 * RETURNS: 1772 * 0 on success, -errno otherwise. 1773 */ 1774 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1775 { 1776 struct ata_eh_context *ehc = &link->eh_context; 1777 int rc; 1778 1779 rc = ata_std_prereset(link, deadline); 1780 if (rc) 1781 return rc; 1782 1783 /* if we're about to do hardreset, nothing more to do */ 1784 if (ehc->i.action & ATA_EH_HARDRESET) 1785 return 0; 1786 1787 /* wait for !BSY if we don't know that no device is attached */ 1788 if (!ata_link_offline(link)) { 1789 rc = ata_sff_wait_ready(link, deadline); 1790 if (rc && rc != -ENODEV) { 1791 ata_link_printk(link, KERN_WARNING, "device not ready " 1792 "(errno=%d), forcing hardreset\n", rc); 1793 ehc->i.action |= ATA_EH_HARDRESET; 1794 } 1795 } 1796 1797 return 0; 1798 } 1799 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1800 1801 /** 1802 * ata_devchk - PATA device presence detection 1803 * @ap: ATA channel to examine 1804 * @device: Device to examine (starting at zero) 1805 * 1806 * This technique was originally described in 1807 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1808 * later found its way into the ATA/ATAPI spec. 1809 * 1810 * Write a pattern to the ATA shadow registers, 1811 * and if a device is present, it will respond by 1812 * correctly storing and echoing back the 1813 * ATA shadow register contents. 1814 * 1815 * LOCKING: 1816 * caller. 1817 */ 1818 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1819 { 1820 struct ata_ioports *ioaddr = &ap->ioaddr; 1821 u8 nsect, lbal; 1822 1823 ap->ops->sff_dev_select(ap, device); 1824 1825 iowrite8(0x55, ioaddr->nsect_addr); 1826 iowrite8(0xaa, ioaddr->lbal_addr); 1827 1828 iowrite8(0xaa, ioaddr->nsect_addr); 1829 iowrite8(0x55, ioaddr->lbal_addr); 1830 1831 iowrite8(0x55, ioaddr->nsect_addr); 1832 iowrite8(0xaa, ioaddr->lbal_addr); 1833 1834 nsect = ioread8(ioaddr->nsect_addr); 1835 lbal = ioread8(ioaddr->lbal_addr); 1836 1837 if ((nsect == 0x55) && (lbal == 0xaa)) 1838 return 1; /* we found a device */ 1839 1840 return 0; /* nothing found */ 1841 } 1842 1843 /** 1844 * ata_sff_dev_classify - Parse returned ATA device signature 1845 * @dev: ATA device to classify (starting at zero) 1846 * @present: device seems present 1847 * @r_err: Value of error register on completion 1848 * 1849 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1850 * an ATA/ATAPI-defined set of values is placed in the ATA 1851 * shadow registers, indicating the results of device detection 1852 * and diagnostics. 1853 * 1854 * Select the ATA device, and read the values from the ATA shadow 1855 * registers. Then parse according to the Error register value, 1856 * and the spec-defined values examined by ata_dev_classify(). 1857 * 1858 * LOCKING: 1859 * caller. 1860 * 1861 * RETURNS: 1862 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1863 */ 1864 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1865 u8 *r_err) 1866 { 1867 struct ata_port *ap = dev->link->ap; 1868 struct ata_taskfile tf; 1869 unsigned int class; 1870 u8 err; 1871 1872 ap->ops->sff_dev_select(ap, dev->devno); 1873 1874 memset(&tf, 0, sizeof(tf)); 1875 1876 ap->ops->sff_tf_read(ap, &tf); 1877 err = tf.feature; 1878 if (r_err) 1879 *r_err = err; 1880 1881 /* see if device passed diags: continue and warn later */ 1882 if (err == 0) 1883 /* diagnostic fail : do nothing _YET_ */ 1884 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1885 else if (err == 1) 1886 /* do nothing */ ; 1887 else if ((dev->devno == 0) && (err == 0x81)) 1888 /* do nothing */ ; 1889 else 1890 return ATA_DEV_NONE; 1891 1892 /* determine if device is ATA or ATAPI */ 1893 class = ata_dev_classify(&tf); 1894 1895 if (class == ATA_DEV_UNKNOWN) { 1896 /* If the device failed diagnostic, it's likely to 1897 * have reported incorrect device signature too. 1898 * Assume ATA device if the device seems present but 1899 * device signature is invalid with diagnostic 1900 * failure. 1901 */ 1902 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1903 class = ATA_DEV_ATA; 1904 else 1905 class = ATA_DEV_NONE; 1906 } else if ((class == ATA_DEV_ATA) && 1907 (ap->ops->sff_check_status(ap) == 0)) 1908 class = ATA_DEV_NONE; 1909 1910 return class; 1911 } 1912 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1913 1914 /** 1915 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1916 * @link: SFF link which is just reset 1917 * @devmask: mask of present devices 1918 * @deadline: deadline jiffies for the operation 1919 * 1920 * Wait devices attached to SFF @link to become ready after 1921 * reset. It contains preceding 150ms wait to avoid accessing TF 1922 * status register too early. 1923 * 1924 * LOCKING: 1925 * Kernel thread context (may sleep). 1926 * 1927 * RETURNS: 1928 * 0 on success, -ENODEV if some or all of devices in @devmask 1929 * don't seem to exist. -errno on other errors. 1930 */ 1931 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1932 unsigned long deadline) 1933 { 1934 struct ata_port *ap = link->ap; 1935 struct ata_ioports *ioaddr = &ap->ioaddr; 1936 unsigned int dev0 = devmask & (1 << 0); 1937 unsigned int dev1 = devmask & (1 << 1); 1938 int rc, ret = 0; 1939 1940 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1941 1942 /* always check readiness of the master device */ 1943 rc = ata_sff_wait_ready(link, deadline); 1944 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1945 * and TF status is 0xff, bail out on it too. 1946 */ 1947 if (rc) 1948 return rc; 1949 1950 /* if device 1 was found in ata_devchk, wait for register 1951 * access briefly, then wait for BSY to clear. 1952 */ 1953 if (dev1) { 1954 int i; 1955 1956 ap->ops->sff_dev_select(ap, 1); 1957 1958 /* Wait for register access. Some ATAPI devices fail 1959 * to set nsect/lbal after reset, so don't waste too 1960 * much time on it. We're gonna wait for !BSY anyway. 1961 */ 1962 for (i = 0; i < 2; i++) { 1963 u8 nsect, lbal; 1964 1965 nsect = ioread8(ioaddr->nsect_addr); 1966 lbal = ioread8(ioaddr->lbal_addr); 1967 if ((nsect == 1) && (lbal == 1)) 1968 break; 1969 ata_msleep(ap, 50); /* give drive a breather */ 1970 } 1971 1972 rc = ata_sff_wait_ready(link, deadline); 1973 if (rc) { 1974 if (rc != -ENODEV) 1975 return rc; 1976 ret = rc; 1977 } 1978 } 1979 1980 /* is all this really necessary? */ 1981 ap->ops->sff_dev_select(ap, 0); 1982 if (dev1) 1983 ap->ops->sff_dev_select(ap, 1); 1984 if (dev0) 1985 ap->ops->sff_dev_select(ap, 0); 1986 1987 return ret; 1988 } 1989 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1990 1991 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1992 unsigned long deadline) 1993 { 1994 struct ata_ioports *ioaddr = &ap->ioaddr; 1995 1996 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1997 1998 /* software reset. causes dev0 to be selected */ 1999 iowrite8(ap->ctl, ioaddr->ctl_addr); 2000 udelay(20); /* FIXME: flush */ 2001 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2002 udelay(20); /* FIXME: flush */ 2003 iowrite8(ap->ctl, ioaddr->ctl_addr); 2004 ap->last_ctl = ap->ctl; 2005 2006 /* wait the port to become ready */ 2007 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2008 } 2009 2010 /** 2011 * ata_sff_softreset - reset host port via ATA SRST 2012 * @link: ATA link to reset 2013 * @classes: resulting classes of attached devices 2014 * @deadline: deadline jiffies for the operation 2015 * 2016 * Reset host port using ATA SRST. 2017 * 2018 * LOCKING: 2019 * Kernel thread context (may sleep) 2020 * 2021 * RETURNS: 2022 * 0 on success, -errno otherwise. 2023 */ 2024 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2025 unsigned long deadline) 2026 { 2027 struct ata_port *ap = link->ap; 2028 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2029 unsigned int devmask = 0; 2030 int rc; 2031 u8 err; 2032 2033 DPRINTK("ENTER\n"); 2034 2035 /* determine if device 0/1 are present */ 2036 if (ata_devchk(ap, 0)) 2037 devmask |= (1 << 0); 2038 if (slave_possible && ata_devchk(ap, 1)) 2039 devmask |= (1 << 1); 2040 2041 /* select device 0 again */ 2042 ap->ops->sff_dev_select(ap, 0); 2043 2044 /* issue bus reset */ 2045 DPRINTK("about to softreset, devmask=%x\n", devmask); 2046 rc = ata_bus_softreset(ap, devmask, deadline); 2047 /* if link is occupied, -ENODEV too is an error */ 2048 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2049 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2050 return rc; 2051 } 2052 2053 /* determine by signature whether we have ATA or ATAPI devices */ 2054 classes[0] = ata_sff_dev_classify(&link->device[0], 2055 devmask & (1 << 0), &err); 2056 if (slave_possible && err != 0x81) 2057 classes[1] = ata_sff_dev_classify(&link->device[1], 2058 devmask & (1 << 1), &err); 2059 2060 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2061 return 0; 2062 } 2063 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2064 2065 /** 2066 * sata_sff_hardreset - reset host port via SATA phy reset 2067 * @link: link to reset 2068 * @class: resulting class of attached device 2069 * @deadline: deadline jiffies for the operation 2070 * 2071 * SATA phy-reset host port using DET bits of SControl register, 2072 * wait for !BSY and classify the attached device. 2073 * 2074 * LOCKING: 2075 * Kernel thread context (may sleep) 2076 * 2077 * RETURNS: 2078 * 0 on success, -errno otherwise. 2079 */ 2080 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2081 unsigned long deadline) 2082 { 2083 struct ata_eh_context *ehc = &link->eh_context; 2084 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2085 bool online; 2086 int rc; 2087 2088 rc = sata_link_hardreset(link, timing, deadline, &online, 2089 ata_sff_check_ready); 2090 if (online) 2091 *class = ata_sff_dev_classify(link->device, 1, NULL); 2092 2093 DPRINTK("EXIT, class=%u\n", *class); 2094 return rc; 2095 } 2096 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2097 2098 /** 2099 * ata_sff_postreset - SFF postreset callback 2100 * @link: the target SFF ata_link 2101 * @classes: classes of attached devices 2102 * 2103 * This function is invoked after a successful reset. It first 2104 * calls ata_std_postreset() and performs SFF specific postreset 2105 * processing. 2106 * 2107 * LOCKING: 2108 * Kernel thread context (may sleep) 2109 */ 2110 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2111 { 2112 struct ata_port *ap = link->ap; 2113 2114 ata_std_postreset(link, classes); 2115 2116 /* is double-select really necessary? */ 2117 if (classes[0] != ATA_DEV_NONE) 2118 ap->ops->sff_dev_select(ap, 1); 2119 if (classes[1] != ATA_DEV_NONE) 2120 ap->ops->sff_dev_select(ap, 0); 2121 2122 /* bail out if no device is present */ 2123 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2124 DPRINTK("EXIT, no device\n"); 2125 return; 2126 } 2127 2128 /* set up device control */ 2129 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2130 ata_sff_set_devctl(ap, ap->ctl); 2131 ap->last_ctl = ap->ctl; 2132 } 2133 } 2134 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2135 2136 /** 2137 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2138 * @qc: command 2139 * 2140 * Drain the FIFO and device of any stuck data following a command 2141 * failing to complete. In some cases this is necessary before a 2142 * reset will recover the device. 2143 * 2144 */ 2145 2146 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2147 { 2148 int count; 2149 struct ata_port *ap; 2150 2151 /* We only need to flush incoming data when a command was running */ 2152 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2153 return; 2154 2155 ap = qc->ap; 2156 /* Drain up to 64K of data before we give up this recovery method */ 2157 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2158 && count < 65536; count += 2) 2159 ioread16(ap->ioaddr.data_addr); 2160 2161 /* Can become DEBUG later */ 2162 if (count) 2163 ata_port_printk(ap, KERN_DEBUG, 2164 "drained %d bytes to clear DRQ.\n", count); 2165 2166 } 2167 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2168 2169 /** 2170 * ata_sff_error_handler - Stock error handler for SFF controller 2171 * @ap: port to handle error for 2172 * 2173 * Stock error handler for SFF controller. It can handle both 2174 * PATA and SATA controllers. Many controllers should be able to 2175 * use this EH as-is or with some added handling before and 2176 * after. 2177 * 2178 * LOCKING: 2179 * Kernel thread context (may sleep) 2180 */ 2181 void ata_sff_error_handler(struct ata_port *ap) 2182 { 2183 ata_reset_fn_t softreset = ap->ops->softreset; 2184 ata_reset_fn_t hardreset = ap->ops->hardreset; 2185 struct ata_queued_cmd *qc; 2186 unsigned long flags; 2187 2188 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2189 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2190 qc = NULL; 2191 2192 spin_lock_irqsave(ap->lock, flags); 2193 2194 /* 2195 * We *MUST* do FIFO draining before we issue a reset as 2196 * several devices helpfully clear their internal state and 2197 * will lock solid if we touch the data port post reset. Pass 2198 * qc in case anyone wants to do different PIO/DMA recovery or 2199 * has per command fixups 2200 */ 2201 if (ap->ops->sff_drain_fifo) 2202 ap->ops->sff_drain_fifo(qc); 2203 2204 spin_unlock_irqrestore(ap->lock, flags); 2205 2206 /* ignore ata_sff_softreset if ctl isn't accessible */ 2207 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2208 softreset = NULL; 2209 2210 /* ignore built-in hardresets if SCR access is not available */ 2211 if ((hardreset == sata_std_hardreset || 2212 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2213 hardreset = NULL; 2214 2215 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2216 ap->ops->postreset); 2217 } 2218 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2219 2220 /** 2221 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2222 * @ioaddr: IO address structure to be initialized 2223 * 2224 * Utility function which initializes data_addr, error_addr, 2225 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2226 * device_addr, status_addr, and command_addr to standard offsets 2227 * relative to cmd_addr. 2228 * 2229 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2230 */ 2231 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2232 { 2233 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2234 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2235 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2236 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2237 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2238 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2239 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2240 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2241 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2242 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2243 } 2244 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2245 2246 #ifdef CONFIG_PCI 2247 2248 static int ata_resources_present(struct pci_dev *pdev, int port) 2249 { 2250 int i; 2251 2252 /* Check the PCI resources for this channel are enabled */ 2253 port = port * 2; 2254 for (i = 0; i < 2; i++) { 2255 if (pci_resource_start(pdev, port + i) == 0 || 2256 pci_resource_len(pdev, port + i) == 0) 2257 return 0; 2258 } 2259 return 1; 2260 } 2261 2262 /** 2263 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2264 * @host: target ATA host 2265 * 2266 * Acquire native PCI ATA resources for @host and initialize the 2267 * first two ports of @host accordingly. Ports marked dummy are 2268 * skipped and allocation failure makes the port dummy. 2269 * 2270 * Note that native PCI resources are valid even for legacy hosts 2271 * as we fix up pdev resources array early in boot, so this 2272 * function can be used for both native and legacy SFF hosts. 2273 * 2274 * LOCKING: 2275 * Inherited from calling layer (may sleep). 2276 * 2277 * RETURNS: 2278 * 0 if at least one port is initialized, -ENODEV if no port is 2279 * available. 2280 */ 2281 int ata_pci_sff_init_host(struct ata_host *host) 2282 { 2283 struct device *gdev = host->dev; 2284 struct pci_dev *pdev = to_pci_dev(gdev); 2285 unsigned int mask = 0; 2286 int i, rc; 2287 2288 /* request, iomap BARs and init port addresses accordingly */ 2289 for (i = 0; i < 2; i++) { 2290 struct ata_port *ap = host->ports[i]; 2291 int base = i * 2; 2292 void __iomem * const *iomap; 2293 2294 if (ata_port_is_dummy(ap)) 2295 continue; 2296 2297 /* Discard disabled ports. Some controllers show 2298 * their unused channels this way. Disabled ports are 2299 * made dummy. 2300 */ 2301 if (!ata_resources_present(pdev, i)) { 2302 ap->ops = &ata_dummy_port_ops; 2303 continue; 2304 } 2305 2306 rc = pcim_iomap_regions(pdev, 0x3 << base, 2307 dev_driver_string(gdev)); 2308 if (rc) { 2309 dev_printk(KERN_WARNING, gdev, 2310 "failed to request/iomap BARs for port %d " 2311 "(errno=%d)\n", i, rc); 2312 if (rc == -EBUSY) 2313 pcim_pin_device(pdev); 2314 ap->ops = &ata_dummy_port_ops; 2315 continue; 2316 } 2317 host->iomap = iomap = pcim_iomap_table(pdev); 2318 2319 ap->ioaddr.cmd_addr = iomap[base]; 2320 ap->ioaddr.altstatus_addr = 2321 ap->ioaddr.ctl_addr = (void __iomem *) 2322 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2323 ata_sff_std_ports(&ap->ioaddr); 2324 2325 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2326 (unsigned long long)pci_resource_start(pdev, base), 2327 (unsigned long long)pci_resource_start(pdev, base + 1)); 2328 2329 mask |= 1 << i; 2330 } 2331 2332 if (!mask) { 2333 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2334 return -ENODEV; 2335 } 2336 2337 return 0; 2338 } 2339 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2340 2341 /** 2342 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2343 * @pdev: target PCI device 2344 * @ppi: array of port_info, must be enough for two ports 2345 * @r_host: out argument for the initialized ATA host 2346 * 2347 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2348 * all PCI resources and initialize it accordingly in one go. 2349 * 2350 * LOCKING: 2351 * Inherited from calling layer (may sleep). 2352 * 2353 * RETURNS: 2354 * 0 on success, -errno otherwise. 2355 */ 2356 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2357 const struct ata_port_info * const *ppi, 2358 struct ata_host **r_host) 2359 { 2360 struct ata_host *host; 2361 int rc; 2362 2363 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2364 return -ENOMEM; 2365 2366 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2367 if (!host) { 2368 dev_printk(KERN_ERR, &pdev->dev, 2369 "failed to allocate ATA host\n"); 2370 rc = -ENOMEM; 2371 goto err_out; 2372 } 2373 2374 rc = ata_pci_sff_init_host(host); 2375 if (rc) 2376 goto err_out; 2377 2378 devres_remove_group(&pdev->dev, NULL); 2379 *r_host = host; 2380 return 0; 2381 2382 err_out: 2383 devres_release_group(&pdev->dev, NULL); 2384 return rc; 2385 } 2386 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2387 2388 /** 2389 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2390 * @host: target SFF ATA host 2391 * @irq_handler: irq_handler used when requesting IRQ(s) 2392 * @sht: scsi_host_template to use when registering the host 2393 * 2394 * This is the counterpart of ata_host_activate() for SFF ATA 2395 * hosts. This separate helper is necessary because SFF hosts 2396 * use two separate interrupts in legacy mode. 2397 * 2398 * LOCKING: 2399 * Inherited from calling layer (may sleep). 2400 * 2401 * RETURNS: 2402 * 0 on success, -errno otherwise. 2403 */ 2404 int ata_pci_sff_activate_host(struct ata_host *host, 2405 irq_handler_t irq_handler, 2406 struct scsi_host_template *sht) 2407 { 2408 struct device *dev = host->dev; 2409 struct pci_dev *pdev = to_pci_dev(dev); 2410 const char *drv_name = dev_driver_string(host->dev); 2411 int legacy_mode = 0, rc; 2412 2413 rc = ata_host_start(host); 2414 if (rc) 2415 return rc; 2416 2417 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2418 u8 tmp8, mask; 2419 2420 /* TODO: What if one channel is in native mode ... */ 2421 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2422 mask = (1 << 2) | (1 << 0); 2423 if ((tmp8 & mask) != mask) 2424 legacy_mode = 1; 2425 #if defined(CONFIG_NO_ATA_LEGACY) 2426 /* Some platforms with PCI limits cannot address compat 2427 port space. In that case we punt if their firmware has 2428 left a device in compatibility mode */ 2429 if (legacy_mode) { 2430 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2431 return -EOPNOTSUPP; 2432 } 2433 #endif 2434 } 2435 2436 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2437 return -ENOMEM; 2438 2439 if (!legacy_mode && pdev->irq) { 2440 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2441 IRQF_SHARED, drv_name, host); 2442 if (rc) 2443 goto out; 2444 2445 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2446 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2447 } else if (legacy_mode) { 2448 if (!ata_port_is_dummy(host->ports[0])) { 2449 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2450 irq_handler, IRQF_SHARED, 2451 drv_name, host); 2452 if (rc) 2453 goto out; 2454 2455 ata_port_desc(host->ports[0], "irq %d", 2456 ATA_PRIMARY_IRQ(pdev)); 2457 } 2458 2459 if (!ata_port_is_dummy(host->ports[1])) { 2460 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2461 irq_handler, IRQF_SHARED, 2462 drv_name, host); 2463 if (rc) 2464 goto out; 2465 2466 ata_port_desc(host->ports[1], "irq %d", 2467 ATA_SECONDARY_IRQ(pdev)); 2468 } 2469 } 2470 2471 rc = ata_host_register(host, sht); 2472 out: 2473 if (rc == 0) 2474 devres_remove_group(dev, NULL); 2475 else 2476 devres_release_group(dev, NULL); 2477 2478 return rc; 2479 } 2480 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2481 2482 static const struct ata_port_info *ata_sff_find_valid_pi( 2483 const struct ata_port_info * const *ppi) 2484 { 2485 int i; 2486 2487 /* look up the first valid port_info */ 2488 for (i = 0; i < 2 && ppi[i]; i++) 2489 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2490 return ppi[i]; 2491 2492 return NULL; 2493 } 2494 2495 /** 2496 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2497 * @pdev: Controller to be initialized 2498 * @ppi: array of port_info, must be enough for two ports 2499 * @sht: scsi_host_template to use when registering the host 2500 * @host_priv: host private_data 2501 * @hflag: host flags 2502 * 2503 * This is a helper function which can be called from a driver's 2504 * xxx_init_one() probe function if the hardware uses traditional 2505 * IDE taskfile registers and is PIO only. 2506 * 2507 * ASSUMPTION: 2508 * Nobody makes a single channel controller that appears solely as 2509 * the secondary legacy port on PCI. 2510 * 2511 * LOCKING: 2512 * Inherited from PCI layer (may sleep). 2513 * 2514 * RETURNS: 2515 * Zero on success, negative on errno-based value on error. 2516 */ 2517 int ata_pci_sff_init_one(struct pci_dev *pdev, 2518 const struct ata_port_info * const *ppi, 2519 struct scsi_host_template *sht, void *host_priv, int hflag) 2520 { 2521 struct device *dev = &pdev->dev; 2522 const struct ata_port_info *pi; 2523 struct ata_host *host = NULL; 2524 int rc; 2525 2526 DPRINTK("ENTER\n"); 2527 2528 pi = ata_sff_find_valid_pi(ppi); 2529 if (!pi) { 2530 dev_printk(KERN_ERR, &pdev->dev, 2531 "no valid port_info specified\n"); 2532 return -EINVAL; 2533 } 2534 2535 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2536 return -ENOMEM; 2537 2538 rc = pcim_enable_device(pdev); 2539 if (rc) 2540 goto out; 2541 2542 /* prepare and activate SFF host */ 2543 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2544 if (rc) 2545 goto out; 2546 host->private_data = host_priv; 2547 host->flags |= hflag; 2548 2549 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2550 out: 2551 if (rc == 0) 2552 devres_remove_group(&pdev->dev, NULL); 2553 else 2554 devres_release_group(&pdev->dev, NULL); 2555 2556 return rc; 2557 } 2558 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2559 2560 #endif /* CONFIG_PCI */ 2561 2562 /* 2563 * BMDMA support 2564 */ 2565 2566 #ifdef CONFIG_ATA_BMDMA 2567 2568 const struct ata_port_operations ata_bmdma_port_ops = { 2569 .inherits = &ata_sff_port_ops, 2570 2571 .error_handler = ata_bmdma_error_handler, 2572 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2573 2574 .qc_prep = ata_bmdma_qc_prep, 2575 .qc_issue = ata_bmdma_qc_issue, 2576 2577 .sff_irq_clear = ata_bmdma_irq_clear, 2578 .bmdma_setup = ata_bmdma_setup, 2579 .bmdma_start = ata_bmdma_start, 2580 .bmdma_stop = ata_bmdma_stop, 2581 .bmdma_status = ata_bmdma_status, 2582 2583 .port_start = ata_bmdma_port_start, 2584 }; 2585 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2586 2587 const struct ata_port_operations ata_bmdma32_port_ops = { 2588 .inherits = &ata_bmdma_port_ops, 2589 2590 .sff_data_xfer = ata_sff_data_xfer32, 2591 .port_start = ata_bmdma_port_start32, 2592 }; 2593 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2594 2595 /** 2596 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2597 * @qc: Metadata associated with taskfile to be transferred 2598 * 2599 * Fill PCI IDE PRD (scatter-gather) table with segments 2600 * associated with the current disk command. 2601 * 2602 * LOCKING: 2603 * spin_lock_irqsave(host lock) 2604 * 2605 */ 2606 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2607 { 2608 struct ata_port *ap = qc->ap; 2609 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2610 struct scatterlist *sg; 2611 unsigned int si, pi; 2612 2613 pi = 0; 2614 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2615 u32 addr, offset; 2616 u32 sg_len, len; 2617 2618 /* determine if physical DMA addr spans 64K boundary. 2619 * Note h/w doesn't support 64-bit, so we unconditionally 2620 * truncate dma_addr_t to u32. 2621 */ 2622 addr = (u32) sg_dma_address(sg); 2623 sg_len = sg_dma_len(sg); 2624 2625 while (sg_len) { 2626 offset = addr & 0xffff; 2627 len = sg_len; 2628 if ((offset + sg_len) > 0x10000) 2629 len = 0x10000 - offset; 2630 2631 prd[pi].addr = cpu_to_le32(addr); 2632 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2633 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2634 2635 pi++; 2636 sg_len -= len; 2637 addr += len; 2638 } 2639 } 2640 2641 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2642 } 2643 2644 /** 2645 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2646 * @qc: Metadata associated with taskfile to be transferred 2647 * 2648 * Fill PCI IDE PRD (scatter-gather) table with segments 2649 * associated with the current disk command. Perform the fill 2650 * so that we avoid writing any length 64K records for 2651 * controllers that don't follow the spec. 2652 * 2653 * LOCKING: 2654 * spin_lock_irqsave(host lock) 2655 * 2656 */ 2657 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2658 { 2659 struct ata_port *ap = qc->ap; 2660 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2661 struct scatterlist *sg; 2662 unsigned int si, pi; 2663 2664 pi = 0; 2665 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2666 u32 addr, offset; 2667 u32 sg_len, len, blen; 2668 2669 /* determine if physical DMA addr spans 64K boundary. 2670 * Note h/w doesn't support 64-bit, so we unconditionally 2671 * truncate dma_addr_t to u32. 2672 */ 2673 addr = (u32) sg_dma_address(sg); 2674 sg_len = sg_dma_len(sg); 2675 2676 while (sg_len) { 2677 offset = addr & 0xffff; 2678 len = sg_len; 2679 if ((offset + sg_len) > 0x10000) 2680 len = 0x10000 - offset; 2681 2682 blen = len & 0xffff; 2683 prd[pi].addr = cpu_to_le32(addr); 2684 if (blen == 0) { 2685 /* Some PATA chipsets like the CS5530 can't 2686 cope with 0x0000 meaning 64K as the spec 2687 says */ 2688 prd[pi].flags_len = cpu_to_le32(0x8000); 2689 blen = 0x8000; 2690 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2691 } 2692 prd[pi].flags_len = cpu_to_le32(blen); 2693 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2694 2695 pi++; 2696 sg_len -= len; 2697 addr += len; 2698 } 2699 } 2700 2701 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2702 } 2703 2704 /** 2705 * ata_bmdma_qc_prep - Prepare taskfile for submission 2706 * @qc: Metadata associated with taskfile to be prepared 2707 * 2708 * Prepare ATA taskfile for submission. 2709 * 2710 * LOCKING: 2711 * spin_lock_irqsave(host lock) 2712 */ 2713 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2714 { 2715 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2716 return; 2717 2718 ata_bmdma_fill_sg(qc); 2719 } 2720 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2721 2722 /** 2723 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2724 * @qc: Metadata associated with taskfile to be prepared 2725 * 2726 * Prepare ATA taskfile for submission. 2727 * 2728 * LOCKING: 2729 * spin_lock_irqsave(host lock) 2730 */ 2731 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2732 { 2733 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2734 return; 2735 2736 ata_bmdma_fill_sg_dumb(qc); 2737 } 2738 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2739 2740 /** 2741 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2742 * @qc: command to issue to device 2743 * 2744 * This function issues a PIO, NODATA or DMA command to a 2745 * SFF/BMDMA controller. PIO and NODATA are handled by 2746 * ata_sff_qc_issue(). 2747 * 2748 * LOCKING: 2749 * spin_lock_irqsave(host lock) 2750 * 2751 * RETURNS: 2752 * Zero on success, AC_ERR_* mask on failure 2753 */ 2754 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2755 { 2756 struct ata_port *ap = qc->ap; 2757 struct ata_link *link = qc->dev->link; 2758 2759 /* defer PIO handling to sff_qc_issue */ 2760 if (!ata_is_dma(qc->tf.protocol)) 2761 return ata_sff_qc_issue(qc); 2762 2763 /* select the device */ 2764 ata_dev_select(ap, qc->dev->devno, 1, 0); 2765 2766 /* start the command */ 2767 switch (qc->tf.protocol) { 2768 case ATA_PROT_DMA: 2769 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2770 2771 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2772 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2773 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2774 ap->hsm_task_state = HSM_ST_LAST; 2775 break; 2776 2777 case ATAPI_PROT_DMA: 2778 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2779 2780 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2781 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2782 ap->hsm_task_state = HSM_ST_FIRST; 2783 2784 /* send cdb by polling if no cdb interrupt */ 2785 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2786 ata_sff_queue_pio_task(link, 0); 2787 break; 2788 2789 default: 2790 WARN_ON(1); 2791 return AC_ERR_SYSTEM; 2792 } 2793 2794 return 0; 2795 } 2796 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2797 2798 /** 2799 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2800 * @ap: Port on which interrupt arrived (possibly...) 2801 * @qc: Taskfile currently active in engine 2802 * 2803 * Handle port interrupt for given queued command. 2804 * 2805 * LOCKING: 2806 * spin_lock_irqsave(host lock) 2807 * 2808 * RETURNS: 2809 * One if interrupt was handled, zero if not (shared irq). 2810 */ 2811 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2812 { 2813 struct ata_eh_info *ehi = &ap->link.eh_info; 2814 u8 host_stat = 0; 2815 bool bmdma_stopped = false; 2816 unsigned int handled; 2817 2818 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2819 /* check status of DMA engine */ 2820 host_stat = ap->ops->bmdma_status(ap); 2821 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2822 2823 /* if it's not our irq... */ 2824 if (!(host_stat & ATA_DMA_INTR)) 2825 return ata_sff_idle_irq(ap); 2826 2827 /* before we do anything else, clear DMA-Start bit */ 2828 ap->ops->bmdma_stop(qc); 2829 bmdma_stopped = true; 2830 2831 if (unlikely(host_stat & ATA_DMA_ERR)) { 2832 /* error when transfering data to/from memory */ 2833 qc->err_mask |= AC_ERR_HOST_BUS; 2834 ap->hsm_task_state = HSM_ST_ERR; 2835 } 2836 } 2837 2838 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2839 2840 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2841 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2842 2843 return handled; 2844 } 2845 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2846 2847 /** 2848 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2849 * @irq: irq line (unused) 2850 * @dev_instance: pointer to our ata_host information structure 2851 * 2852 * Default interrupt handler for PCI IDE devices. Calls 2853 * ata_bmdma_port_intr() for each port that is not disabled. 2854 * 2855 * LOCKING: 2856 * Obtains host lock during operation. 2857 * 2858 * RETURNS: 2859 * IRQ_NONE or IRQ_HANDLED. 2860 */ 2861 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2862 { 2863 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2864 } 2865 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2866 2867 /** 2868 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2869 * @ap: port to handle error for 2870 * 2871 * Stock error handler for BMDMA controller. It can handle both 2872 * PATA and SATA controllers. Most BMDMA controllers should be 2873 * able to use this EH as-is or with some added handling before 2874 * and after. 2875 * 2876 * LOCKING: 2877 * Kernel thread context (may sleep) 2878 */ 2879 void ata_bmdma_error_handler(struct ata_port *ap) 2880 { 2881 struct ata_queued_cmd *qc; 2882 unsigned long flags; 2883 bool thaw = false; 2884 2885 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2886 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2887 qc = NULL; 2888 2889 /* reset PIO HSM and stop DMA engine */ 2890 spin_lock_irqsave(ap->lock, flags); 2891 2892 if (qc && ata_is_dma(qc->tf.protocol)) { 2893 u8 host_stat; 2894 2895 host_stat = ap->ops->bmdma_status(ap); 2896 2897 /* BMDMA controllers indicate host bus error by 2898 * setting DMA_ERR bit and timing out. As it wasn't 2899 * really a timeout event, adjust error mask and 2900 * cancel frozen state. 2901 */ 2902 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2903 qc->err_mask = AC_ERR_HOST_BUS; 2904 thaw = true; 2905 } 2906 2907 ap->ops->bmdma_stop(qc); 2908 2909 /* if we're gonna thaw, make sure IRQ is clear */ 2910 if (thaw) { 2911 ap->ops->sff_check_status(ap); 2912 if (ap->ops->sff_irq_clear) 2913 ap->ops->sff_irq_clear(ap); 2914 } 2915 } 2916 2917 spin_unlock_irqrestore(ap->lock, flags); 2918 2919 if (thaw) 2920 ata_eh_thaw_port(ap); 2921 2922 ata_sff_error_handler(ap); 2923 } 2924 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2925 2926 /** 2927 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2928 * @qc: internal command to clean up 2929 * 2930 * LOCKING: 2931 * Kernel thread context (may sleep) 2932 */ 2933 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2934 { 2935 struct ata_port *ap = qc->ap; 2936 unsigned long flags; 2937 2938 if (ata_is_dma(qc->tf.protocol)) { 2939 spin_lock_irqsave(ap->lock, flags); 2940 ap->ops->bmdma_stop(qc); 2941 spin_unlock_irqrestore(ap->lock, flags); 2942 } 2943 } 2944 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2945 2946 /** 2947 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2948 * @ap: Port associated with this ATA transaction. 2949 * 2950 * Clear interrupt and error flags in DMA status register. 2951 * 2952 * May be used as the irq_clear() entry in ata_port_operations. 2953 * 2954 * LOCKING: 2955 * spin_lock_irqsave(host lock) 2956 */ 2957 void ata_bmdma_irq_clear(struct ata_port *ap) 2958 { 2959 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2960 2961 if (!mmio) 2962 return; 2963 2964 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2965 } 2966 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2967 2968 /** 2969 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2970 * @qc: Info associated with this ATA transaction. 2971 * 2972 * LOCKING: 2973 * spin_lock_irqsave(host lock) 2974 */ 2975 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2976 { 2977 struct ata_port *ap = qc->ap; 2978 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2979 u8 dmactl; 2980 2981 /* load PRD table addr. */ 2982 mb(); /* make sure PRD table writes are visible to controller */ 2983 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2984 2985 /* specify data direction, triple-check start bit is clear */ 2986 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2987 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2988 if (!rw) 2989 dmactl |= ATA_DMA_WR; 2990 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2991 2992 /* issue r/w command */ 2993 ap->ops->sff_exec_command(ap, &qc->tf); 2994 } 2995 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2996 2997 /** 2998 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2999 * @qc: Info associated with this ATA transaction. 3000 * 3001 * LOCKING: 3002 * spin_lock_irqsave(host lock) 3003 */ 3004 void ata_bmdma_start(struct ata_queued_cmd *qc) 3005 { 3006 struct ata_port *ap = qc->ap; 3007 u8 dmactl; 3008 3009 /* start host DMA transaction */ 3010 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3011 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3012 3013 /* Strictly, one may wish to issue an ioread8() here, to 3014 * flush the mmio write. However, control also passes 3015 * to the hardware at this point, and it will interrupt 3016 * us when we are to resume control. So, in effect, 3017 * we don't care when the mmio write flushes. 3018 * Further, a read of the DMA status register _immediately_ 3019 * following the write may not be what certain flaky hardware 3020 * is expected, so I think it is best to not add a readb() 3021 * without first all the MMIO ATA cards/mobos. 3022 * Or maybe I'm just being paranoid. 3023 * 3024 * FIXME: The posting of this write means I/O starts are 3025 * unneccessarily delayed for MMIO 3026 */ 3027 } 3028 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3029 3030 /** 3031 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3032 * @qc: Command we are ending DMA for 3033 * 3034 * Clears the ATA_DMA_START flag in the dma control register 3035 * 3036 * May be used as the bmdma_stop() entry in ata_port_operations. 3037 * 3038 * LOCKING: 3039 * spin_lock_irqsave(host lock) 3040 */ 3041 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3042 { 3043 struct ata_port *ap = qc->ap; 3044 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3045 3046 /* clear start/stop bit */ 3047 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3048 mmio + ATA_DMA_CMD); 3049 3050 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3051 ata_sff_dma_pause(ap); 3052 } 3053 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3054 3055 /** 3056 * ata_bmdma_status - Read PCI IDE BMDMA status 3057 * @ap: Port associated with this ATA transaction. 3058 * 3059 * Read and return BMDMA status register. 3060 * 3061 * May be used as the bmdma_status() entry in ata_port_operations. 3062 * 3063 * LOCKING: 3064 * spin_lock_irqsave(host lock) 3065 */ 3066 u8 ata_bmdma_status(struct ata_port *ap) 3067 { 3068 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3069 } 3070 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3071 3072 3073 /** 3074 * ata_bmdma_port_start - Set port up for bmdma. 3075 * @ap: Port to initialize 3076 * 3077 * Called just after data structures for each port are 3078 * initialized. Allocates space for PRD table. 3079 * 3080 * May be used as the port_start() entry in ata_port_operations. 3081 * 3082 * LOCKING: 3083 * Inherited from caller. 3084 */ 3085 int ata_bmdma_port_start(struct ata_port *ap) 3086 { 3087 if (ap->mwdma_mask || ap->udma_mask) { 3088 ap->bmdma_prd = 3089 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3090 &ap->bmdma_prd_dma, GFP_KERNEL); 3091 if (!ap->bmdma_prd) 3092 return -ENOMEM; 3093 } 3094 3095 return 0; 3096 } 3097 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3098 3099 /** 3100 * ata_bmdma_port_start32 - Set port up for dma. 3101 * @ap: Port to initialize 3102 * 3103 * Called just after data structures for each port are 3104 * initialized. Enables 32bit PIO and allocates space for PRD 3105 * table. 3106 * 3107 * May be used as the port_start() entry in ata_port_operations for 3108 * devices that are capable of 32bit PIO. 3109 * 3110 * LOCKING: 3111 * Inherited from caller. 3112 */ 3113 int ata_bmdma_port_start32(struct ata_port *ap) 3114 { 3115 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3116 return ata_bmdma_port_start(ap); 3117 } 3118 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3119 3120 #ifdef CONFIG_PCI 3121 3122 /** 3123 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3124 * @pdev: PCI device 3125 * 3126 * Some PCI ATA devices report simplex mode but in fact can be told to 3127 * enter non simplex mode. This implements the necessary logic to 3128 * perform the task on such devices. Calling it on other devices will 3129 * have -undefined- behaviour. 3130 */ 3131 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3132 { 3133 unsigned long bmdma = pci_resource_start(pdev, 4); 3134 u8 simplex; 3135 3136 if (bmdma == 0) 3137 return -ENOENT; 3138 3139 simplex = inb(bmdma + 0x02); 3140 outb(simplex & 0x60, bmdma + 0x02); 3141 simplex = inb(bmdma + 0x02); 3142 if (simplex & 0x80) 3143 return -EOPNOTSUPP; 3144 return 0; 3145 } 3146 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3147 3148 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3149 { 3150 int i; 3151 3152 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n", 3153 reason); 3154 3155 for (i = 0; i < 2; i++) { 3156 host->ports[i]->mwdma_mask = 0; 3157 host->ports[i]->udma_mask = 0; 3158 } 3159 } 3160 3161 /** 3162 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3163 * @host: target ATA host 3164 * 3165 * Acquire PCI BMDMA resources and initialize @host accordingly. 3166 * 3167 * LOCKING: 3168 * Inherited from calling layer (may sleep). 3169 */ 3170 void ata_pci_bmdma_init(struct ata_host *host) 3171 { 3172 struct device *gdev = host->dev; 3173 struct pci_dev *pdev = to_pci_dev(gdev); 3174 int i, rc; 3175 3176 /* No BAR4 allocation: No DMA */ 3177 if (pci_resource_start(pdev, 4) == 0) { 3178 ata_bmdma_nodma(host, "BAR4 is zero"); 3179 return; 3180 } 3181 3182 /* 3183 * Some controllers require BMDMA region to be initialized 3184 * even if DMA is not in use to clear IRQ status via 3185 * ->sff_irq_clear method. Try to initialize bmdma_addr 3186 * regardless of dma masks. 3187 */ 3188 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 3189 if (rc) 3190 ata_bmdma_nodma(host, "failed to set dma mask"); 3191 if (!rc) { 3192 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 3193 if (rc) 3194 ata_bmdma_nodma(host, 3195 "failed to set consistent dma mask"); 3196 } 3197 3198 /* request and iomap DMA region */ 3199 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3200 if (rc) { 3201 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3202 return; 3203 } 3204 host->iomap = pcim_iomap_table(pdev); 3205 3206 for (i = 0; i < 2; i++) { 3207 struct ata_port *ap = host->ports[i]; 3208 void __iomem *bmdma = host->iomap[4] + 8 * i; 3209 3210 if (ata_port_is_dummy(ap)) 3211 continue; 3212 3213 ap->ioaddr.bmdma_addr = bmdma; 3214 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3215 (ioread8(bmdma + 2) & 0x80)) 3216 host->flags |= ATA_HOST_SIMPLEX; 3217 3218 ata_port_desc(ap, "bmdma 0x%llx", 3219 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3220 } 3221 } 3222 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3223 3224 /** 3225 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3226 * @pdev: target PCI device 3227 * @ppi: array of port_info, must be enough for two ports 3228 * @r_host: out argument for the initialized ATA host 3229 * 3230 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3231 * resources and initialize it accordingly in one go. 3232 * 3233 * LOCKING: 3234 * Inherited from calling layer (may sleep). 3235 * 3236 * RETURNS: 3237 * 0 on success, -errno otherwise. 3238 */ 3239 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3240 const struct ata_port_info * const * ppi, 3241 struct ata_host **r_host) 3242 { 3243 int rc; 3244 3245 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3246 if (rc) 3247 return rc; 3248 3249 ata_pci_bmdma_init(*r_host); 3250 return 0; 3251 } 3252 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3253 3254 /** 3255 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3256 * @pdev: Controller to be initialized 3257 * @ppi: array of port_info, must be enough for two ports 3258 * @sht: scsi_host_template to use when registering the host 3259 * @host_priv: host private_data 3260 * @hflags: host flags 3261 * 3262 * This function is similar to ata_pci_sff_init_one() but also 3263 * takes care of BMDMA initialization. 3264 * 3265 * LOCKING: 3266 * Inherited from PCI layer (may sleep). 3267 * 3268 * RETURNS: 3269 * Zero on success, negative on errno-based value on error. 3270 */ 3271 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3272 const struct ata_port_info * const * ppi, 3273 struct scsi_host_template *sht, void *host_priv, 3274 int hflags) 3275 { 3276 struct device *dev = &pdev->dev; 3277 const struct ata_port_info *pi; 3278 struct ata_host *host = NULL; 3279 int rc; 3280 3281 DPRINTK("ENTER\n"); 3282 3283 pi = ata_sff_find_valid_pi(ppi); 3284 if (!pi) { 3285 dev_printk(KERN_ERR, &pdev->dev, 3286 "no valid port_info specified\n"); 3287 return -EINVAL; 3288 } 3289 3290 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 3291 return -ENOMEM; 3292 3293 rc = pcim_enable_device(pdev); 3294 if (rc) 3295 goto out; 3296 3297 /* prepare and activate BMDMA host */ 3298 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 3299 if (rc) 3300 goto out; 3301 host->private_data = host_priv; 3302 host->flags |= hflags; 3303 3304 pci_set_master(pdev); 3305 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 3306 out: 3307 if (rc == 0) 3308 devres_remove_group(&pdev->dev, NULL); 3309 else 3310 devres_release_group(&pdev->dev, NULL); 3311 3312 return rc; 3313 } 3314 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3315 3316 #endif /* CONFIG_PCI */ 3317 #endif /* CONFIG_ATA_BMDMA */ 3318 3319 /** 3320 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3321 * @ap: Port to initialize 3322 * 3323 * Called on port allocation to initialize SFF/BMDMA specific 3324 * fields. 3325 * 3326 * LOCKING: 3327 * None. 3328 */ 3329 void ata_sff_port_init(struct ata_port *ap) 3330 { 3331 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3332 ap->ctl = ATA_DEVCTL_OBS; 3333 ap->last_ctl = 0xFF; 3334 } 3335 3336 int __init ata_sff_init(void) 3337 { 3338 ata_sff_wq = alloc_workqueue("ata_sff", WQ_RESCUER, WQ_MAX_ACTIVE); 3339 if (!ata_sff_wq) 3340 return -ENOMEM; 3341 3342 return 0; 3343 } 3344 3345 void ata_sff_exit(void) 3346 { 3347 destroy_workqueue(ata_sff_wq); 3348 } 3349