xref: /openbmc/linux/drivers/ata/libata-core.c (revision 9d56dd3b083a3bec56e9da35ce07baca81030b03)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
67 
68 #include "libata.h"
69 
70 
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
74 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
75 
76 const struct ata_port_operations ata_base_port_ops = {
77 	.prereset		= ata_std_prereset,
78 	.postreset		= ata_std_postreset,
79 	.error_handler		= ata_std_error_handler,
80 };
81 
82 const struct ata_port_operations sata_port_ops = {
83 	.inherits		= &ata_base_port_ops,
84 
85 	.qc_defer		= ata_std_qc_defer,
86 	.hardreset		= sata_std_hardreset,
87 };
88 
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 					u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 					u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
99 
100 struct workqueue_struct *ata_aux_wq;
101 
102 struct ata_force_param {
103 	const char	*name;
104 	unsigned int	cbl;
105 	int		spd_limit;
106 	unsigned long	xfer_mask;
107 	unsigned int	horkage_on;
108 	unsigned int	horkage_off;
109 	unsigned int	lflags;
110 };
111 
112 struct ata_force_ent {
113 	int			port;
114 	int			device;
115 	struct ata_force_param	param;
116 };
117 
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120 
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
129 
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
133 
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
137 
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
141 
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
157 
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
161 
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
166 
167 
168 static bool ata_sstatus_online(u32 sstatus)
169 {
170 	return (sstatus & 0xf) == 0x3;
171 }
172 
173 /**
174  *	ata_link_next - link iteration helper
175  *	@link: the previous link, NULL to start
176  *	@ap: ATA port containing links to iterate
177  *	@mode: iteration mode, one of ATA_LITER_*
178  *
179  *	LOCKING:
180  *	Host lock or EH context.
181  *
182  *	RETURNS:
183  *	Pointer to the next link.
184  */
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 			       enum ata_link_iter_mode mode)
187 {
188 	BUG_ON(mode != ATA_LITER_EDGE &&
189 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190 
191 	/* NULL link indicates start of iteration */
192 	if (!link)
193 		switch (mode) {
194 		case ATA_LITER_EDGE:
195 		case ATA_LITER_PMP_FIRST:
196 			if (sata_pmp_attached(ap))
197 				return ap->pmp_link;
198 			/* fall through */
199 		case ATA_LITER_HOST_FIRST:
200 			return &ap->link;
201 		}
202 
203 	/* we just iterated over the host link, what's next? */
204 	if (link == &ap->link)
205 		switch (mode) {
206 		case ATA_LITER_HOST_FIRST:
207 			if (sata_pmp_attached(ap))
208 				return ap->pmp_link;
209 			/* fall through */
210 		case ATA_LITER_PMP_FIRST:
211 			if (unlikely(ap->slave_link))
212 				return ap->slave_link;
213 			/* fall through */
214 		case ATA_LITER_EDGE:
215 			return NULL;
216 		}
217 
218 	/* slave_link excludes PMP */
219 	if (unlikely(link == ap->slave_link))
220 		return NULL;
221 
222 	/* we were over a PMP link */
223 	if (++link < ap->pmp_link + ap->nr_pmp_links)
224 		return link;
225 
226 	if (mode == ATA_LITER_PMP_FIRST)
227 		return &ap->link;
228 
229 	return NULL;
230 }
231 
232 /**
233  *	ata_dev_next - device iteration helper
234  *	@dev: the previous device, NULL to start
235  *	@link: ATA link containing devices to iterate
236  *	@mode: iteration mode, one of ATA_DITER_*
237  *
238  *	LOCKING:
239  *	Host lock or EH context.
240  *
241  *	RETURNS:
242  *	Pointer to the next device.
243  */
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 				enum ata_dev_iter_mode mode)
246 {
247 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249 
250 	/* NULL dev indicates start of iteration */
251 	if (!dev)
252 		switch (mode) {
253 		case ATA_DITER_ENABLED:
254 		case ATA_DITER_ALL:
255 			dev = link->device;
256 			goto check;
257 		case ATA_DITER_ENABLED_REVERSE:
258 		case ATA_DITER_ALL_REVERSE:
259 			dev = link->device + ata_link_max_devices(link) - 1;
260 			goto check;
261 		}
262 
263  next:
264 	/* move to the next one */
265 	switch (mode) {
266 	case ATA_DITER_ENABLED:
267 	case ATA_DITER_ALL:
268 		if (++dev < link->device + ata_link_max_devices(link))
269 			goto check;
270 		return NULL;
271 	case ATA_DITER_ENABLED_REVERSE:
272 	case ATA_DITER_ALL_REVERSE:
273 		if (--dev >= link->device)
274 			goto check;
275 		return NULL;
276 	}
277 
278  check:
279 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 	    !ata_dev_enabled(dev))
281 		goto next;
282 	return dev;
283 }
284 
285 /**
286  *	ata_dev_phys_link - find physical link for a device
287  *	@dev: ATA device to look up physical link for
288  *
289  *	Look up physical link which @dev is attached to.  Note that
290  *	this is different from @dev->link only when @dev is on slave
291  *	link.  For all other cases, it's the same as @dev->link.
292  *
293  *	LOCKING:
294  *	Don't care.
295  *
296  *	RETURNS:
297  *	Pointer to the found physical link.
298  */
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 {
301 	struct ata_port *ap = dev->link->ap;
302 
303 	if (!ap->slave_link)
304 		return dev->link;
305 	if (!dev->devno)
306 		return &ap->link;
307 	return ap->slave_link;
308 }
309 
310 /**
311  *	ata_force_cbl - force cable type according to libata.force
312  *	@ap: ATA port of interest
313  *
314  *	Force cable type according to libata.force and whine about it.
315  *	The last entry which has matching port number is used, so it
316  *	can be specified as part of device force parameters.  For
317  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318  *	same effect.
319  *
320  *	LOCKING:
321  *	EH context.
322  */
323 void ata_force_cbl(struct ata_port *ap)
324 {
325 	int i;
326 
327 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 		const struct ata_force_ent *fe = &ata_force_tbl[i];
329 
330 		if (fe->port != -1 && fe->port != ap->print_id)
331 			continue;
332 
333 		if (fe->param.cbl == ATA_CBL_NONE)
334 			continue;
335 
336 		ap->cbl = fe->param.cbl;
337 		ata_port_printk(ap, KERN_NOTICE,
338 				"FORCE: cable set to %s\n", fe->param.name);
339 		return;
340 	}
341 }
342 
343 /**
344  *	ata_force_link_limits - force link limits according to libata.force
345  *	@link: ATA link of interest
346  *
347  *	Force link flags and SATA spd limit according to libata.force
348  *	and whine about it.  When only the port part is specified
349  *	(e.g. 1:), the limit applies to all links connected to both
350  *	the host link and all fan-out ports connected via PMP.  If the
351  *	device part is specified as 0 (e.g. 1.00:), it specifies the
352  *	first fan-out link not the host link.  Device number 15 always
353  *	points to the host link whether PMP is attached or not.  If the
354  *	controller has slave link, device number 16 points to it.
355  *
356  *	LOCKING:
357  *	EH context.
358  */
359 static void ata_force_link_limits(struct ata_link *link)
360 {
361 	bool did_spd = false;
362 	int linkno = link->pmp;
363 	int i;
364 
365 	if (ata_is_host_link(link))
366 		linkno += 15;
367 
368 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 		const struct ata_force_ent *fe = &ata_force_tbl[i];
370 
371 		if (fe->port != -1 && fe->port != link->ap->print_id)
372 			continue;
373 
374 		if (fe->device != -1 && fe->device != linkno)
375 			continue;
376 
377 		/* only honor the first spd limit */
378 		if (!did_spd && fe->param.spd_limit) {
379 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 			ata_link_printk(link, KERN_NOTICE,
381 					"FORCE: PHY spd limit set to %s\n",
382 					fe->param.name);
383 			did_spd = true;
384 		}
385 
386 		/* let lflags stack */
387 		if (fe->param.lflags) {
388 			link->flags |= fe->param.lflags;
389 			ata_link_printk(link, KERN_NOTICE,
390 					"FORCE: link flag 0x%x forced -> 0x%x\n",
391 					fe->param.lflags, link->flags);
392 		}
393 	}
394 }
395 
396 /**
397  *	ata_force_xfermask - force xfermask according to libata.force
398  *	@dev: ATA device of interest
399  *
400  *	Force xfer_mask according to libata.force and whine about it.
401  *	For consistency with link selection, device number 15 selects
402  *	the first device connected to the host link.
403  *
404  *	LOCKING:
405  *	EH context.
406  */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 	int devno = dev->link->pmp + dev->devno;
410 	int alt_devno = devno;
411 	int i;
412 
413 	/* allow n.15/16 for devices attached to host port */
414 	if (ata_is_host_link(dev->link))
415 		alt_devno += 15;
416 
417 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 		const struct ata_force_ent *fe = &ata_force_tbl[i];
419 		unsigned long pio_mask, mwdma_mask, udma_mask;
420 
421 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 			continue;
423 
424 		if (fe->device != -1 && fe->device != devno &&
425 		    fe->device != alt_devno)
426 			continue;
427 
428 		if (!fe->param.xfer_mask)
429 			continue;
430 
431 		ata_unpack_xfermask(fe->param.xfer_mask,
432 				    &pio_mask, &mwdma_mask, &udma_mask);
433 		if (udma_mask)
434 			dev->udma_mask = udma_mask;
435 		else if (mwdma_mask) {
436 			dev->udma_mask = 0;
437 			dev->mwdma_mask = mwdma_mask;
438 		} else {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = 0;
441 			dev->pio_mask = pio_mask;
442 		}
443 
444 		ata_dev_printk(dev, KERN_NOTICE,
445 			"FORCE: xfer_mask set to %s\n", fe->param.name);
446 		return;
447 	}
448 }
449 
450 /**
451  *	ata_force_horkage - force horkage according to libata.force
452  *	@dev: ATA device of interest
453  *
454  *	Force horkage according to libata.force and whine about it.
455  *	For consistency with link selection, device number 15 selects
456  *	the first device connected to the host link.
457  *
458  *	LOCKING:
459  *	EH context.
460  */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 	int devno = dev->link->pmp + dev->devno;
464 	int alt_devno = devno;
465 	int i;
466 
467 	/* allow n.15/16 for devices attached to host port */
468 	if (ata_is_host_link(dev->link))
469 		alt_devno += 15;
470 
471 	for (i = 0; i < ata_force_tbl_size; i++) {
472 		const struct ata_force_ent *fe = &ata_force_tbl[i];
473 
474 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 			continue;
476 
477 		if (fe->device != -1 && fe->device != devno &&
478 		    fe->device != alt_devno)
479 			continue;
480 
481 		if (!(~dev->horkage & fe->param.horkage_on) &&
482 		    !(dev->horkage & fe->param.horkage_off))
483 			continue;
484 
485 		dev->horkage |= fe->param.horkage_on;
486 		dev->horkage &= ~fe->param.horkage_off;
487 
488 		ata_dev_printk(dev, KERN_NOTICE,
489 			"FORCE: horkage modified (%s)\n", fe->param.name);
490 	}
491 }
492 
493 /**
494  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495  *	@opcode: SCSI opcode
496  *
497  *	Determine ATAPI command type from @opcode.
498  *
499  *	LOCKING:
500  *	None.
501  *
502  *	RETURNS:
503  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504  */
505 int atapi_cmd_type(u8 opcode)
506 {
507 	switch (opcode) {
508 	case GPCMD_READ_10:
509 	case GPCMD_READ_12:
510 		return ATAPI_READ;
511 
512 	case GPCMD_WRITE_10:
513 	case GPCMD_WRITE_12:
514 	case GPCMD_WRITE_AND_VERIFY_10:
515 		return ATAPI_WRITE;
516 
517 	case GPCMD_READ_CD:
518 	case GPCMD_READ_CD_MSF:
519 		return ATAPI_READ_CD;
520 
521 	case ATA_16:
522 	case ATA_12:
523 		if (atapi_passthru16)
524 			return ATAPI_PASS_THRU;
525 		/* fall thru */
526 	default:
527 		return ATAPI_MISC;
528 	}
529 }
530 
531 /**
532  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533  *	@tf: Taskfile to convert
534  *	@pmp: Port multiplier port
535  *	@is_cmd: This FIS is for command
536  *	@fis: Buffer into which data will output
537  *
538  *	Converts a standard ATA taskfile to a Serial ATA
539  *	FIS structure (Register - Host to Device).
540  *
541  *	LOCKING:
542  *	Inherited from caller.
543  */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 	fis[0] = 0x27;			/* Register - Host to Device FIS */
547 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
548 	if (is_cmd)
549 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
550 
551 	fis[2] = tf->command;
552 	fis[3] = tf->feature;
553 
554 	fis[4] = tf->lbal;
555 	fis[5] = tf->lbam;
556 	fis[6] = tf->lbah;
557 	fis[7] = tf->device;
558 
559 	fis[8] = tf->hob_lbal;
560 	fis[9] = tf->hob_lbam;
561 	fis[10] = tf->hob_lbah;
562 	fis[11] = tf->hob_feature;
563 
564 	fis[12] = tf->nsect;
565 	fis[13] = tf->hob_nsect;
566 	fis[14] = 0;
567 	fis[15] = tf->ctl;
568 
569 	fis[16] = 0;
570 	fis[17] = 0;
571 	fis[18] = 0;
572 	fis[19] = 0;
573 }
574 
575 /**
576  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577  *	@fis: Buffer from which data will be input
578  *	@tf: Taskfile to output
579  *
580  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
581  *
582  *	LOCKING:
583  *	Inherited from caller.
584  */
585 
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 	tf->command	= fis[2];	/* status */
589 	tf->feature	= fis[3];	/* error */
590 
591 	tf->lbal	= fis[4];
592 	tf->lbam	= fis[5];
593 	tf->lbah	= fis[6];
594 	tf->device	= fis[7];
595 
596 	tf->hob_lbal	= fis[8];
597 	tf->hob_lbam	= fis[9];
598 	tf->hob_lbah	= fis[10];
599 
600 	tf->nsect	= fis[12];
601 	tf->hob_nsect	= fis[13];
602 }
603 
604 static const u8 ata_rw_cmds[] = {
605 	/* pio multi */
606 	ATA_CMD_READ_MULTI,
607 	ATA_CMD_WRITE_MULTI,
608 	ATA_CMD_READ_MULTI_EXT,
609 	ATA_CMD_WRITE_MULTI_EXT,
610 	0,
611 	0,
612 	0,
613 	ATA_CMD_WRITE_MULTI_FUA_EXT,
614 	/* pio */
615 	ATA_CMD_PIO_READ,
616 	ATA_CMD_PIO_WRITE,
617 	ATA_CMD_PIO_READ_EXT,
618 	ATA_CMD_PIO_WRITE_EXT,
619 	0,
620 	0,
621 	0,
622 	0,
623 	/* dma */
624 	ATA_CMD_READ,
625 	ATA_CMD_WRITE,
626 	ATA_CMD_READ_EXT,
627 	ATA_CMD_WRITE_EXT,
628 	0,
629 	0,
630 	0,
631 	ATA_CMD_WRITE_FUA_EXT
632 };
633 
634 /**
635  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
636  *	@tf: command to examine and configure
637  *	@dev: device tf belongs to
638  *
639  *	Examine the device configuration and tf->flags to calculate
640  *	the proper read/write commands and protocol to use.
641  *
642  *	LOCKING:
643  *	caller.
644  */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 	u8 cmd;
648 
649 	int index, fua, lba48, write;
650 
651 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 
655 	if (dev->flags & ATA_DFLAG_PIO) {
656 		tf->protocol = ATA_PROT_PIO;
657 		index = dev->multi_count ? 0 : 8;
658 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 		/* Unable to use DMA due to host limitation */
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else {
663 		tf->protocol = ATA_PROT_DMA;
664 		index = 16;
665 	}
666 
667 	cmd = ata_rw_cmds[index + fua + lba48 + write];
668 	if (cmd) {
669 		tf->command = cmd;
670 		return 0;
671 	}
672 	return -1;
673 }
674 
675 /**
676  *	ata_tf_read_block - Read block address from ATA taskfile
677  *	@tf: ATA taskfile of interest
678  *	@dev: ATA device @tf belongs to
679  *
680  *	LOCKING:
681  *	None.
682  *
683  *	Read block address from @tf.  This function can handle all
684  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
685  *	flags select the address format to use.
686  *
687  *	RETURNS:
688  *	Block address read from @tf.
689  */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 	u64 block = 0;
693 
694 	if (tf->flags & ATA_TFLAG_LBA) {
695 		if (tf->flags & ATA_TFLAG_LBA48) {
696 			block |= (u64)tf->hob_lbah << 40;
697 			block |= (u64)tf->hob_lbam << 32;
698 			block |= (u64)tf->hob_lbal << 24;
699 		} else
700 			block |= (tf->device & 0xf) << 24;
701 
702 		block |= tf->lbah << 16;
703 		block |= tf->lbam << 8;
704 		block |= tf->lbal;
705 	} else {
706 		u32 cyl, head, sect;
707 
708 		cyl = tf->lbam | (tf->lbah << 8);
709 		head = tf->device & 0xf;
710 		sect = tf->lbal;
711 
712 		if (!sect) {
713 			ata_dev_printk(dev, KERN_WARNING, "device reported "
714 				       "invalid CHS sector 0\n");
715 			sect = 1; /* oh well */
716 		}
717 
718 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
719 	}
720 
721 	return block;
722 }
723 
724 /**
725  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
726  *	@tf: Target ATA taskfile
727  *	@dev: ATA device @tf belongs to
728  *	@block: Block address
729  *	@n_block: Number of blocks
730  *	@tf_flags: RW/FUA etc...
731  *	@tag: tag
732  *
733  *	LOCKING:
734  *	None.
735  *
736  *	Build ATA taskfile @tf for read/write request described by
737  *	@block, @n_block, @tf_flags and @tag on @dev.
738  *
739  *	RETURNS:
740  *
741  *	0 on success, -ERANGE if the request is too large for @dev,
742  *	-EINVAL if the request is invalid.
743  */
744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
745 		    u64 block, u32 n_block, unsigned int tf_flags,
746 		    unsigned int tag)
747 {
748 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
749 	tf->flags |= tf_flags;
750 
751 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
752 		/* yay, NCQ */
753 		if (!lba_48_ok(block, n_block))
754 			return -ERANGE;
755 
756 		tf->protocol = ATA_PROT_NCQ;
757 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
758 
759 		if (tf->flags & ATA_TFLAG_WRITE)
760 			tf->command = ATA_CMD_FPDMA_WRITE;
761 		else
762 			tf->command = ATA_CMD_FPDMA_READ;
763 
764 		tf->nsect = tag << 3;
765 		tf->hob_feature = (n_block >> 8) & 0xff;
766 		tf->feature = n_block & 0xff;
767 
768 		tf->hob_lbah = (block >> 40) & 0xff;
769 		tf->hob_lbam = (block >> 32) & 0xff;
770 		tf->hob_lbal = (block >> 24) & 0xff;
771 		tf->lbah = (block >> 16) & 0xff;
772 		tf->lbam = (block >> 8) & 0xff;
773 		tf->lbal = block & 0xff;
774 
775 		tf->device = 1 << 6;
776 		if (tf->flags & ATA_TFLAG_FUA)
777 			tf->device |= 1 << 7;
778 	} else if (dev->flags & ATA_DFLAG_LBA) {
779 		tf->flags |= ATA_TFLAG_LBA;
780 
781 		if (lba_28_ok(block, n_block)) {
782 			/* use LBA28 */
783 			tf->device |= (block >> 24) & 0xf;
784 		} else if (lba_48_ok(block, n_block)) {
785 			if (!(dev->flags & ATA_DFLAG_LBA48))
786 				return -ERANGE;
787 
788 			/* use LBA48 */
789 			tf->flags |= ATA_TFLAG_LBA48;
790 
791 			tf->hob_nsect = (n_block >> 8) & 0xff;
792 
793 			tf->hob_lbah = (block >> 40) & 0xff;
794 			tf->hob_lbam = (block >> 32) & 0xff;
795 			tf->hob_lbal = (block >> 24) & 0xff;
796 		} else
797 			/* request too large even for LBA48 */
798 			return -ERANGE;
799 
800 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
801 			return -EINVAL;
802 
803 		tf->nsect = n_block & 0xff;
804 
805 		tf->lbah = (block >> 16) & 0xff;
806 		tf->lbam = (block >> 8) & 0xff;
807 		tf->lbal = block & 0xff;
808 
809 		tf->device |= ATA_LBA;
810 	} else {
811 		/* CHS */
812 		u32 sect, head, cyl, track;
813 
814 		/* The request -may- be too large for CHS addressing. */
815 		if (!lba_28_ok(block, n_block))
816 			return -ERANGE;
817 
818 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
819 			return -EINVAL;
820 
821 		/* Convert LBA to CHS */
822 		track = (u32)block / dev->sectors;
823 		cyl   = track / dev->heads;
824 		head  = track % dev->heads;
825 		sect  = (u32)block % dev->sectors + 1;
826 
827 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 			(u32)block, track, cyl, head, sect);
829 
830 		/* Check whether the converted CHS can fit.
831 		   Cylinder: 0-65535
832 		   Head: 0-15
833 		   Sector: 1-255*/
834 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
835 			return -ERANGE;
836 
837 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
838 		tf->lbal = sect;
839 		tf->lbam = cyl;
840 		tf->lbah = cyl >> 8;
841 		tf->device |= head;
842 	}
843 
844 	return 0;
845 }
846 
847 /**
848  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849  *	@pio_mask: pio_mask
850  *	@mwdma_mask: mwdma_mask
851  *	@udma_mask: udma_mask
852  *
853  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854  *	unsigned int xfer_mask.
855  *
856  *	LOCKING:
857  *	None.
858  *
859  *	RETURNS:
860  *	Packed xfer_mask.
861  */
862 unsigned long ata_pack_xfermask(unsigned long pio_mask,
863 				unsigned long mwdma_mask,
864 				unsigned long udma_mask)
865 {
866 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
867 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
868 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
869 }
870 
871 /**
872  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873  *	@xfer_mask: xfer_mask to unpack
874  *	@pio_mask: resulting pio_mask
875  *	@mwdma_mask: resulting mwdma_mask
876  *	@udma_mask: resulting udma_mask
877  *
878  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879  *	Any NULL distination masks will be ignored.
880  */
881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
882 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
883 {
884 	if (pio_mask)
885 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
886 	if (mwdma_mask)
887 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
888 	if (udma_mask)
889 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
890 }
891 
892 static const struct ata_xfer_ent {
893 	int shift, bits;
894 	u8 base;
895 } ata_xfer_tbl[] = {
896 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
897 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
898 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
899 	{ -1, },
900 };
901 
902 /**
903  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904  *	@xfer_mask: xfer_mask of interest
905  *
906  *	Return matching XFER_* value for @xfer_mask.  Only the highest
907  *	bit of @xfer_mask is considered.
908  *
909  *	LOCKING:
910  *	None.
911  *
912  *	RETURNS:
913  *	Matching XFER_* value, 0xff if no match found.
914  */
915 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
916 {
917 	int highbit = fls(xfer_mask) - 1;
918 	const struct ata_xfer_ent *ent;
919 
920 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
921 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
922 			return ent->base + highbit - ent->shift;
923 	return 0xff;
924 }
925 
926 /**
927  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928  *	@xfer_mode: XFER_* of interest
929  *
930  *	Return matching xfer_mask for @xfer_mode.
931  *
932  *	LOCKING:
933  *	None.
934  *
935  *	RETURNS:
936  *	Matching xfer_mask, 0 if no match found.
937  */
938 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
939 {
940 	const struct ata_xfer_ent *ent;
941 
942 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
943 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
944 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
945 				& ~((1 << ent->shift) - 1);
946 	return 0;
947 }
948 
949 /**
950  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951  *	@xfer_mode: XFER_* of interest
952  *
953  *	Return matching xfer_shift for @xfer_mode.
954  *
955  *	LOCKING:
956  *	None.
957  *
958  *	RETURNS:
959  *	Matching xfer_shift, -1 if no match found.
960  */
961 int ata_xfer_mode2shift(unsigned long xfer_mode)
962 {
963 	const struct ata_xfer_ent *ent;
964 
965 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
966 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
967 			return ent->shift;
968 	return -1;
969 }
970 
971 /**
972  *	ata_mode_string - convert xfer_mask to string
973  *	@xfer_mask: mask of bits supported; only highest bit counts.
974  *
975  *	Determine string which represents the highest speed
976  *	(highest bit in @modemask).
977  *
978  *	LOCKING:
979  *	None.
980  *
981  *	RETURNS:
982  *	Constant C string representing highest speed listed in
983  *	@mode_mask, or the constant C string "<n/a>".
984  */
985 const char *ata_mode_string(unsigned long xfer_mask)
986 {
987 	static const char * const xfer_mode_str[] = {
988 		"PIO0",
989 		"PIO1",
990 		"PIO2",
991 		"PIO3",
992 		"PIO4",
993 		"PIO5",
994 		"PIO6",
995 		"MWDMA0",
996 		"MWDMA1",
997 		"MWDMA2",
998 		"MWDMA3",
999 		"MWDMA4",
1000 		"UDMA/16",
1001 		"UDMA/25",
1002 		"UDMA/33",
1003 		"UDMA/44",
1004 		"UDMA/66",
1005 		"UDMA/100",
1006 		"UDMA/133",
1007 		"UDMA7",
1008 	};
1009 	int highbit;
1010 
1011 	highbit = fls(xfer_mask) - 1;
1012 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 		return xfer_mode_str[highbit];
1014 	return "<n/a>";
1015 }
1016 
1017 static const char *sata_spd_string(unsigned int spd)
1018 {
1019 	static const char * const spd_str[] = {
1020 		"1.5 Gbps",
1021 		"3.0 Gbps",
1022 		"6.0 Gbps",
1023 	};
1024 
1025 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026 		return "<unknown>";
1027 	return spd_str[spd - 1];
1028 }
1029 
1030 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1031 {
1032 	struct ata_link *link = dev->link;
1033 	struct ata_port *ap = link->ap;
1034 	u32 scontrol;
1035 	unsigned int err_mask;
1036 	int rc;
1037 
1038 	/*
1039 	 * disallow DIPM for drivers which haven't set
1040 	 * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1041 	 * phy ready will be set in the interrupt status on
1042 	 * state changes, which will cause some drivers to
1043 	 * think there are errors - additionally drivers will
1044 	 * need to disable hot plug.
1045 	 */
1046 	if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1047 		ap->pm_policy = NOT_AVAILABLE;
1048 		return -EINVAL;
1049 	}
1050 
1051 	/*
1052 	 * For DIPM, we will only enable it for the
1053 	 * min_power setting.
1054 	 *
1055 	 * Why?  Because Disks are too stupid to know that
1056 	 * If the host rejects a request to go to SLUMBER
1057 	 * they should retry at PARTIAL, and instead it
1058 	 * just would give up.  So, for medium_power to
1059 	 * work at all, we need to only allow HIPM.
1060 	 */
1061 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1062 	if (rc)
1063 		return rc;
1064 
1065 	switch (policy) {
1066 	case MIN_POWER:
1067 		/* no restrictions on IPM transitions */
1068 		scontrol &= ~(0x3 << 8);
1069 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1070 		if (rc)
1071 			return rc;
1072 
1073 		/* enable DIPM */
1074 		if (dev->flags & ATA_DFLAG_DIPM)
1075 			err_mask = ata_dev_set_feature(dev,
1076 					SETFEATURES_SATA_ENABLE, SATA_DIPM);
1077 		break;
1078 	case MEDIUM_POWER:
1079 		/* allow IPM to PARTIAL */
1080 		scontrol &= ~(0x1 << 8);
1081 		scontrol |= (0x2 << 8);
1082 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1083 		if (rc)
1084 			return rc;
1085 
1086 		/*
1087 		 * we don't have to disable DIPM since IPM flags
1088 		 * disallow transitions to SLUMBER, which effectively
1089 		 * disable DIPM if it does not support PARTIAL
1090 		 */
1091 		break;
1092 	case NOT_AVAILABLE:
1093 	case MAX_PERFORMANCE:
1094 		/* disable all IPM transitions */
1095 		scontrol |= (0x3 << 8);
1096 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1097 		if (rc)
1098 			return rc;
1099 
1100 		/*
1101 		 * we don't have to disable DIPM since IPM flags
1102 		 * disallow all transitions which effectively
1103 		 * disable DIPM anyway.
1104 		 */
1105 		break;
1106 	}
1107 
1108 	/* FIXME: handle SET FEATURES failure */
1109 	(void) err_mask;
1110 
1111 	return 0;
1112 }
1113 
1114 /**
1115  *	ata_dev_enable_pm - enable SATA interface power management
1116  *	@dev:  device to enable power management
1117  *	@policy: the link power management policy
1118  *
1119  *	Enable SATA Interface power management.  This will enable
1120  *	Device Interface Power Management (DIPM) for min_power
1121  * 	policy, and then call driver specific callbacks for
1122  *	enabling Host Initiated Power management.
1123  *
1124  *	Locking: Caller.
1125  *	Returns: -EINVAL if IPM is not supported, 0 otherwise.
1126  */
1127 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1128 {
1129 	int rc = 0;
1130 	struct ata_port *ap = dev->link->ap;
1131 
1132 	/* set HIPM first, then DIPM */
1133 	if (ap->ops->enable_pm)
1134 		rc = ap->ops->enable_pm(ap, policy);
1135 	if (rc)
1136 		goto enable_pm_out;
1137 	rc = ata_dev_set_dipm(dev, policy);
1138 
1139 enable_pm_out:
1140 	if (rc)
1141 		ap->pm_policy = MAX_PERFORMANCE;
1142 	else
1143 		ap->pm_policy = policy;
1144 	return /* rc */;	/* hopefully we can use 'rc' eventually */
1145 }
1146 
1147 #ifdef CONFIG_PM
1148 /**
1149  *	ata_dev_disable_pm - disable SATA interface power management
1150  *	@dev: device to disable power management
1151  *
1152  *	Disable SATA Interface power management.  This will disable
1153  *	Device Interface Power Management (DIPM) without changing
1154  * 	policy,  call driver specific callbacks for disabling Host
1155  * 	Initiated Power management.
1156  *
1157  *	Locking: Caller.
1158  *	Returns: void
1159  */
1160 static void ata_dev_disable_pm(struct ata_device *dev)
1161 {
1162 	struct ata_port *ap = dev->link->ap;
1163 
1164 	ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1165 	if (ap->ops->disable_pm)
1166 		ap->ops->disable_pm(ap);
1167 }
1168 #endif	/* CONFIG_PM */
1169 
1170 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1171 {
1172 	ap->pm_policy = policy;
1173 	ap->link.eh_info.action |= ATA_EH_LPM;
1174 	ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1175 	ata_port_schedule_eh(ap);
1176 }
1177 
1178 #ifdef CONFIG_PM
1179 static void ata_lpm_enable(struct ata_host *host)
1180 {
1181 	struct ata_link *link;
1182 	struct ata_port *ap;
1183 	struct ata_device *dev;
1184 	int i;
1185 
1186 	for (i = 0; i < host->n_ports; i++) {
1187 		ap = host->ports[i];
1188 		ata_for_each_link(link, ap, EDGE) {
1189 			ata_for_each_dev(dev, link, ALL)
1190 				ata_dev_disable_pm(dev);
1191 		}
1192 	}
1193 }
1194 
1195 static void ata_lpm_disable(struct ata_host *host)
1196 {
1197 	int i;
1198 
1199 	for (i = 0; i < host->n_ports; i++) {
1200 		struct ata_port *ap = host->ports[i];
1201 		ata_lpm_schedule(ap, ap->pm_policy);
1202 	}
1203 }
1204 #endif	/* CONFIG_PM */
1205 
1206 /**
1207  *	ata_dev_classify - determine device type based on ATA-spec signature
1208  *	@tf: ATA taskfile register set for device to be identified
1209  *
1210  *	Determine from taskfile register contents whether a device is
1211  *	ATA or ATAPI, as per "Signature and persistence" section
1212  *	of ATA/PI spec (volume 1, sect 5.14).
1213  *
1214  *	LOCKING:
1215  *	None.
1216  *
1217  *	RETURNS:
1218  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1219  *	%ATA_DEV_UNKNOWN the event of failure.
1220  */
1221 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1222 {
1223 	/* Apple's open source Darwin code hints that some devices only
1224 	 * put a proper signature into the LBA mid/high registers,
1225 	 * So, we only check those.  It's sufficient for uniqueness.
1226 	 *
1227 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1228 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1229 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1230 	 * spec has never mentioned about using different signatures
1231 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1232 	 * Multiplier specification began to use 0x69/0x96 to identify
1233 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1234 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1235 	 * 0x69/0x96 shortly and described them as reserved for
1236 	 * SerialATA.
1237 	 *
1238 	 * We follow the current spec and consider that 0x69/0x96
1239 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1240 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1241 	 * SEMB signature.  This is worked around in
1242 	 * ata_dev_read_id().
1243 	 */
1244 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1245 		DPRINTK("found ATA device by sig\n");
1246 		return ATA_DEV_ATA;
1247 	}
1248 
1249 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1250 		DPRINTK("found ATAPI device by sig\n");
1251 		return ATA_DEV_ATAPI;
1252 	}
1253 
1254 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1255 		DPRINTK("found PMP device by sig\n");
1256 		return ATA_DEV_PMP;
1257 	}
1258 
1259 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1260 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1261 		return ATA_DEV_SEMB;
1262 	}
1263 
1264 	DPRINTK("unknown device\n");
1265 	return ATA_DEV_UNKNOWN;
1266 }
1267 
1268 /**
1269  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1270  *	@id: IDENTIFY DEVICE results we will examine
1271  *	@s: string into which data is output
1272  *	@ofs: offset into identify device page
1273  *	@len: length of string to return. must be an even number.
1274  *
1275  *	The strings in the IDENTIFY DEVICE page are broken up into
1276  *	16-bit chunks.  Run through the string, and output each
1277  *	8-bit chunk linearly, regardless of platform.
1278  *
1279  *	LOCKING:
1280  *	caller.
1281  */
1282 
1283 void ata_id_string(const u16 *id, unsigned char *s,
1284 		   unsigned int ofs, unsigned int len)
1285 {
1286 	unsigned int c;
1287 
1288 	BUG_ON(len & 1);
1289 
1290 	while (len > 0) {
1291 		c = id[ofs] >> 8;
1292 		*s = c;
1293 		s++;
1294 
1295 		c = id[ofs] & 0xff;
1296 		*s = c;
1297 		s++;
1298 
1299 		ofs++;
1300 		len -= 2;
1301 	}
1302 }
1303 
1304 /**
1305  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1306  *	@id: IDENTIFY DEVICE results we will examine
1307  *	@s: string into which data is output
1308  *	@ofs: offset into identify device page
1309  *	@len: length of string to return. must be an odd number.
1310  *
1311  *	This function is identical to ata_id_string except that it
1312  *	trims trailing spaces and terminates the resulting string with
1313  *	null.  @len must be actual maximum length (even number) + 1.
1314  *
1315  *	LOCKING:
1316  *	caller.
1317  */
1318 void ata_id_c_string(const u16 *id, unsigned char *s,
1319 		     unsigned int ofs, unsigned int len)
1320 {
1321 	unsigned char *p;
1322 
1323 	ata_id_string(id, s, ofs, len - 1);
1324 
1325 	p = s + strnlen(s, len - 1);
1326 	while (p > s && p[-1] == ' ')
1327 		p--;
1328 	*p = '\0';
1329 }
1330 
1331 static u64 ata_id_n_sectors(const u16 *id)
1332 {
1333 	if (ata_id_has_lba(id)) {
1334 		if (ata_id_has_lba48(id))
1335 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1336 		else
1337 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1338 	} else {
1339 		if (ata_id_current_chs_valid(id))
1340 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1341 			       id[ATA_ID_CUR_SECTORS];
1342 		else
1343 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1344 			       id[ATA_ID_SECTORS];
1345 	}
1346 }
1347 
1348 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1349 {
1350 	u64 sectors = 0;
1351 
1352 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1353 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1354 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1355 	sectors |= (tf->lbah & 0xff) << 16;
1356 	sectors |= (tf->lbam & 0xff) << 8;
1357 	sectors |= (tf->lbal & 0xff);
1358 
1359 	return sectors;
1360 }
1361 
1362 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1363 {
1364 	u64 sectors = 0;
1365 
1366 	sectors |= (tf->device & 0x0f) << 24;
1367 	sectors |= (tf->lbah & 0xff) << 16;
1368 	sectors |= (tf->lbam & 0xff) << 8;
1369 	sectors |= (tf->lbal & 0xff);
1370 
1371 	return sectors;
1372 }
1373 
1374 /**
1375  *	ata_read_native_max_address - Read native max address
1376  *	@dev: target device
1377  *	@max_sectors: out parameter for the result native max address
1378  *
1379  *	Perform an LBA48 or LBA28 native size query upon the device in
1380  *	question.
1381  *
1382  *	RETURNS:
1383  *	0 on success, -EACCES if command is aborted by the drive.
1384  *	-EIO on other errors.
1385  */
1386 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1387 {
1388 	unsigned int err_mask;
1389 	struct ata_taskfile tf;
1390 	int lba48 = ata_id_has_lba48(dev->id);
1391 
1392 	ata_tf_init(dev, &tf);
1393 
1394 	/* always clear all address registers */
1395 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1396 
1397 	if (lba48) {
1398 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1399 		tf.flags |= ATA_TFLAG_LBA48;
1400 	} else
1401 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1402 
1403 	tf.protocol |= ATA_PROT_NODATA;
1404 	tf.device |= ATA_LBA;
1405 
1406 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1407 	if (err_mask) {
1408 		ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1409 			       "max address (err_mask=0x%x)\n", err_mask);
1410 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1411 			return -EACCES;
1412 		return -EIO;
1413 	}
1414 
1415 	if (lba48)
1416 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1417 	else
1418 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1419 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1420 		(*max_sectors)--;
1421 	return 0;
1422 }
1423 
1424 /**
1425  *	ata_set_max_sectors - Set max sectors
1426  *	@dev: target device
1427  *	@new_sectors: new max sectors value to set for the device
1428  *
1429  *	Set max sectors of @dev to @new_sectors.
1430  *
1431  *	RETURNS:
1432  *	0 on success, -EACCES if command is aborted or denied (due to
1433  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1434  *	errors.
1435  */
1436 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1437 {
1438 	unsigned int err_mask;
1439 	struct ata_taskfile tf;
1440 	int lba48 = ata_id_has_lba48(dev->id);
1441 
1442 	new_sectors--;
1443 
1444 	ata_tf_init(dev, &tf);
1445 
1446 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1447 
1448 	if (lba48) {
1449 		tf.command = ATA_CMD_SET_MAX_EXT;
1450 		tf.flags |= ATA_TFLAG_LBA48;
1451 
1452 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1453 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1454 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1455 	} else {
1456 		tf.command = ATA_CMD_SET_MAX;
1457 
1458 		tf.device |= (new_sectors >> 24) & 0xf;
1459 	}
1460 
1461 	tf.protocol |= ATA_PROT_NODATA;
1462 	tf.device |= ATA_LBA;
1463 
1464 	tf.lbal = (new_sectors >> 0) & 0xff;
1465 	tf.lbam = (new_sectors >> 8) & 0xff;
1466 	tf.lbah = (new_sectors >> 16) & 0xff;
1467 
1468 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1469 	if (err_mask) {
1470 		ata_dev_printk(dev, KERN_WARNING, "failed to set "
1471 			       "max address (err_mask=0x%x)\n", err_mask);
1472 		if (err_mask == AC_ERR_DEV &&
1473 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1474 			return -EACCES;
1475 		return -EIO;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  *	ata_hpa_resize		-	Resize a device with an HPA set
1483  *	@dev: Device to resize
1484  *
1485  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1486  *	it if required to the full size of the media. The caller must check
1487  *	the drive has the HPA feature set enabled.
1488  *
1489  *	RETURNS:
1490  *	0 on success, -errno on failure.
1491  */
1492 static int ata_hpa_resize(struct ata_device *dev)
1493 {
1494 	struct ata_eh_context *ehc = &dev->link->eh_context;
1495 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1496 	u64 sectors = ata_id_n_sectors(dev->id);
1497 	u64 native_sectors;
1498 	int rc;
1499 
1500 	/* do we need to do it? */
1501 	if (dev->class != ATA_DEV_ATA ||
1502 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1503 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1504 		return 0;
1505 
1506 	/* read native max address */
1507 	rc = ata_read_native_max_address(dev, &native_sectors);
1508 	if (rc) {
1509 		/* If device aborted the command or HPA isn't going to
1510 		 * be unlocked, skip HPA resizing.
1511 		 */
1512 		if (rc == -EACCES || !ata_ignore_hpa) {
1513 			ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1514 				       "broken, skipping HPA handling\n");
1515 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1516 
1517 			/* we can continue if device aborted the command */
1518 			if (rc == -EACCES)
1519 				rc = 0;
1520 		}
1521 
1522 		return rc;
1523 	}
1524 	dev->n_native_sectors = native_sectors;
1525 
1526 	/* nothing to do? */
1527 	if (native_sectors <= sectors || !ata_ignore_hpa) {
1528 		if (!print_info || native_sectors == sectors)
1529 			return 0;
1530 
1531 		if (native_sectors > sectors)
1532 			ata_dev_printk(dev, KERN_INFO,
1533 				"HPA detected: current %llu, native %llu\n",
1534 				(unsigned long long)sectors,
1535 				(unsigned long long)native_sectors);
1536 		else if (native_sectors < sectors)
1537 			ata_dev_printk(dev, KERN_WARNING,
1538 				"native sectors (%llu) is smaller than "
1539 				"sectors (%llu)\n",
1540 				(unsigned long long)native_sectors,
1541 				(unsigned long long)sectors);
1542 		return 0;
1543 	}
1544 
1545 	/* let's unlock HPA */
1546 	rc = ata_set_max_sectors(dev, native_sectors);
1547 	if (rc == -EACCES) {
1548 		/* if device aborted the command, skip HPA resizing */
1549 		ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1550 			       "(%llu -> %llu), skipping HPA handling\n",
1551 			       (unsigned long long)sectors,
1552 			       (unsigned long long)native_sectors);
1553 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1554 		return 0;
1555 	} else if (rc)
1556 		return rc;
1557 
1558 	/* re-read IDENTIFY data */
1559 	rc = ata_dev_reread_id(dev, 0);
1560 	if (rc) {
1561 		ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1562 			       "data after HPA resizing\n");
1563 		return rc;
1564 	}
1565 
1566 	if (print_info) {
1567 		u64 new_sectors = ata_id_n_sectors(dev->id);
1568 		ata_dev_printk(dev, KERN_INFO,
1569 			"HPA unlocked: %llu -> %llu, native %llu\n",
1570 			(unsigned long long)sectors,
1571 			(unsigned long long)new_sectors,
1572 			(unsigned long long)native_sectors);
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 /**
1579  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1580  *	@id: IDENTIFY DEVICE page to dump
1581  *
1582  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1583  *	page.
1584  *
1585  *	LOCKING:
1586  *	caller.
1587  */
1588 
1589 static inline void ata_dump_id(const u16 *id)
1590 {
1591 	DPRINTK("49==0x%04x  "
1592 		"53==0x%04x  "
1593 		"63==0x%04x  "
1594 		"64==0x%04x  "
1595 		"75==0x%04x  \n",
1596 		id[49],
1597 		id[53],
1598 		id[63],
1599 		id[64],
1600 		id[75]);
1601 	DPRINTK("80==0x%04x  "
1602 		"81==0x%04x  "
1603 		"82==0x%04x  "
1604 		"83==0x%04x  "
1605 		"84==0x%04x  \n",
1606 		id[80],
1607 		id[81],
1608 		id[82],
1609 		id[83],
1610 		id[84]);
1611 	DPRINTK("88==0x%04x  "
1612 		"93==0x%04x\n",
1613 		id[88],
1614 		id[93]);
1615 }
1616 
1617 /**
1618  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1619  *	@id: IDENTIFY data to compute xfer mask from
1620  *
1621  *	Compute the xfermask for this device. This is not as trivial
1622  *	as it seems if we must consider early devices correctly.
1623  *
1624  *	FIXME: pre IDE drive timing (do we care ?).
1625  *
1626  *	LOCKING:
1627  *	None.
1628  *
1629  *	RETURNS:
1630  *	Computed xfermask
1631  */
1632 unsigned long ata_id_xfermask(const u16 *id)
1633 {
1634 	unsigned long pio_mask, mwdma_mask, udma_mask;
1635 
1636 	/* Usual case. Word 53 indicates word 64 is valid */
1637 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1638 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1639 		pio_mask <<= 3;
1640 		pio_mask |= 0x7;
1641 	} else {
1642 		/* If word 64 isn't valid then Word 51 high byte holds
1643 		 * the PIO timing number for the maximum. Turn it into
1644 		 * a mask.
1645 		 */
1646 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1647 		if (mode < 5)	/* Valid PIO range */
1648 			pio_mask = (2 << mode) - 1;
1649 		else
1650 			pio_mask = 1;
1651 
1652 		/* But wait.. there's more. Design your standards by
1653 		 * committee and you too can get a free iordy field to
1654 		 * process. However its the speeds not the modes that
1655 		 * are supported... Note drivers using the timing API
1656 		 * will get this right anyway
1657 		 */
1658 	}
1659 
1660 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1661 
1662 	if (ata_id_is_cfa(id)) {
1663 		/*
1664 		 *	Process compact flash extended modes
1665 		 */
1666 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1667 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1668 
1669 		if (pio)
1670 			pio_mask |= (1 << 5);
1671 		if (pio > 1)
1672 			pio_mask |= (1 << 6);
1673 		if (dma)
1674 			mwdma_mask |= (1 << 3);
1675 		if (dma > 1)
1676 			mwdma_mask |= (1 << 4);
1677 	}
1678 
1679 	udma_mask = 0;
1680 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1681 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1682 
1683 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1684 }
1685 
1686 /**
1687  *	ata_pio_queue_task - Queue port_task
1688  *	@ap: The ata_port to queue port_task for
1689  *	@data: data for @fn to use
1690  *	@delay: delay time in msecs for workqueue function
1691  *
1692  *	Schedule @fn(@data) for execution after @delay jiffies using
1693  *	port_task.  There is one port_task per port and it's the
1694  *	user(low level driver)'s responsibility to make sure that only
1695  *	one task is active at any given time.
1696  *
1697  *	libata core layer takes care of synchronization between
1698  *	port_task and EH.  ata_pio_queue_task() may be ignored for EH
1699  *	synchronization.
1700  *
1701  *	LOCKING:
1702  *	Inherited from caller.
1703  */
1704 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1705 {
1706 	ap->port_task_data = data;
1707 
1708 	/* may fail if ata_port_flush_task() in progress */
1709 	queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1710 }
1711 
1712 /**
1713  *	ata_port_flush_task - Flush port_task
1714  *	@ap: The ata_port to flush port_task for
1715  *
1716  *	After this function completes, port_task is guranteed not to
1717  *	be running or scheduled.
1718  *
1719  *	LOCKING:
1720  *	Kernel thread context (may sleep)
1721  */
1722 void ata_port_flush_task(struct ata_port *ap)
1723 {
1724 	DPRINTK("ENTER\n");
1725 
1726 	cancel_rearming_delayed_work(&ap->port_task);
1727 
1728 	if (ata_msg_ctl(ap))
1729 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1730 }
1731 
1732 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1733 {
1734 	struct completion *waiting = qc->private_data;
1735 
1736 	complete(waiting);
1737 }
1738 
1739 /**
1740  *	ata_exec_internal_sg - execute libata internal command
1741  *	@dev: Device to which the command is sent
1742  *	@tf: Taskfile registers for the command and the result
1743  *	@cdb: CDB for packet command
1744  *	@dma_dir: Data tranfer direction of the command
1745  *	@sgl: sg list for the data buffer of the command
1746  *	@n_elem: Number of sg entries
1747  *	@timeout: Timeout in msecs (0 for default)
1748  *
1749  *	Executes libata internal command with timeout.  @tf contains
1750  *	command on entry and result on return.  Timeout and error
1751  *	conditions are reported via return value.  No recovery action
1752  *	is taken after a command times out.  It's caller's duty to
1753  *	clean up after timeout.
1754  *
1755  *	LOCKING:
1756  *	None.  Should be called with kernel context, might sleep.
1757  *
1758  *	RETURNS:
1759  *	Zero on success, AC_ERR_* mask on failure
1760  */
1761 unsigned ata_exec_internal_sg(struct ata_device *dev,
1762 			      struct ata_taskfile *tf, const u8 *cdb,
1763 			      int dma_dir, struct scatterlist *sgl,
1764 			      unsigned int n_elem, unsigned long timeout)
1765 {
1766 	struct ata_link *link = dev->link;
1767 	struct ata_port *ap = link->ap;
1768 	u8 command = tf->command;
1769 	int auto_timeout = 0;
1770 	struct ata_queued_cmd *qc;
1771 	unsigned int tag, preempted_tag;
1772 	u32 preempted_sactive, preempted_qc_active;
1773 	int preempted_nr_active_links;
1774 	DECLARE_COMPLETION_ONSTACK(wait);
1775 	unsigned long flags;
1776 	unsigned int err_mask;
1777 	int rc;
1778 
1779 	spin_lock_irqsave(ap->lock, flags);
1780 
1781 	/* no internal command while frozen */
1782 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1783 		spin_unlock_irqrestore(ap->lock, flags);
1784 		return AC_ERR_SYSTEM;
1785 	}
1786 
1787 	/* initialize internal qc */
1788 
1789 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1790 	 * drivers choke if any other tag is given.  This breaks
1791 	 * ata_tag_internal() test for those drivers.  Don't use new
1792 	 * EH stuff without converting to it.
1793 	 */
1794 	if (ap->ops->error_handler)
1795 		tag = ATA_TAG_INTERNAL;
1796 	else
1797 		tag = 0;
1798 
1799 	if (test_and_set_bit(tag, &ap->qc_allocated))
1800 		BUG();
1801 	qc = __ata_qc_from_tag(ap, tag);
1802 
1803 	qc->tag = tag;
1804 	qc->scsicmd = NULL;
1805 	qc->ap = ap;
1806 	qc->dev = dev;
1807 	ata_qc_reinit(qc);
1808 
1809 	preempted_tag = link->active_tag;
1810 	preempted_sactive = link->sactive;
1811 	preempted_qc_active = ap->qc_active;
1812 	preempted_nr_active_links = ap->nr_active_links;
1813 	link->active_tag = ATA_TAG_POISON;
1814 	link->sactive = 0;
1815 	ap->qc_active = 0;
1816 	ap->nr_active_links = 0;
1817 
1818 	/* prepare & issue qc */
1819 	qc->tf = *tf;
1820 	if (cdb)
1821 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1822 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1823 	qc->dma_dir = dma_dir;
1824 	if (dma_dir != DMA_NONE) {
1825 		unsigned int i, buflen = 0;
1826 		struct scatterlist *sg;
1827 
1828 		for_each_sg(sgl, sg, n_elem, i)
1829 			buflen += sg->length;
1830 
1831 		ata_sg_init(qc, sgl, n_elem);
1832 		qc->nbytes = buflen;
1833 	}
1834 
1835 	qc->private_data = &wait;
1836 	qc->complete_fn = ata_qc_complete_internal;
1837 
1838 	ata_qc_issue(qc);
1839 
1840 	spin_unlock_irqrestore(ap->lock, flags);
1841 
1842 	if (!timeout) {
1843 		if (ata_probe_timeout)
1844 			timeout = ata_probe_timeout * 1000;
1845 		else {
1846 			timeout = ata_internal_cmd_timeout(dev, command);
1847 			auto_timeout = 1;
1848 		}
1849 	}
1850 
1851 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1852 
1853 	ata_port_flush_task(ap);
1854 
1855 	if (!rc) {
1856 		spin_lock_irqsave(ap->lock, flags);
1857 
1858 		/* We're racing with irq here.  If we lose, the
1859 		 * following test prevents us from completing the qc
1860 		 * twice.  If we win, the port is frozen and will be
1861 		 * cleaned up by ->post_internal_cmd().
1862 		 */
1863 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1864 			qc->err_mask |= AC_ERR_TIMEOUT;
1865 
1866 			if (ap->ops->error_handler)
1867 				ata_port_freeze(ap);
1868 			else
1869 				ata_qc_complete(qc);
1870 
1871 			if (ata_msg_warn(ap))
1872 				ata_dev_printk(dev, KERN_WARNING,
1873 					"qc timeout (cmd 0x%x)\n", command);
1874 		}
1875 
1876 		spin_unlock_irqrestore(ap->lock, flags);
1877 	}
1878 
1879 	/* do post_internal_cmd */
1880 	if (ap->ops->post_internal_cmd)
1881 		ap->ops->post_internal_cmd(qc);
1882 
1883 	/* perform minimal error analysis */
1884 	if (qc->flags & ATA_QCFLAG_FAILED) {
1885 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1886 			qc->err_mask |= AC_ERR_DEV;
1887 
1888 		if (!qc->err_mask)
1889 			qc->err_mask |= AC_ERR_OTHER;
1890 
1891 		if (qc->err_mask & ~AC_ERR_OTHER)
1892 			qc->err_mask &= ~AC_ERR_OTHER;
1893 	}
1894 
1895 	/* finish up */
1896 	spin_lock_irqsave(ap->lock, flags);
1897 
1898 	*tf = qc->result_tf;
1899 	err_mask = qc->err_mask;
1900 
1901 	ata_qc_free(qc);
1902 	link->active_tag = preempted_tag;
1903 	link->sactive = preempted_sactive;
1904 	ap->qc_active = preempted_qc_active;
1905 	ap->nr_active_links = preempted_nr_active_links;
1906 
1907 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1908 	 * Until those drivers are fixed, we detect the condition
1909 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1910 	 * port.
1911 	 *
1912 	 * Note that this doesn't change any behavior as internal
1913 	 * command failure results in disabling the device in the
1914 	 * higher layer for LLDDs without new reset/EH callbacks.
1915 	 *
1916 	 * Kill the following code as soon as those drivers are fixed.
1917 	 */
1918 	if (ap->flags & ATA_FLAG_DISABLED) {
1919 		err_mask |= AC_ERR_SYSTEM;
1920 		ata_port_probe(ap);
1921 	}
1922 
1923 	spin_unlock_irqrestore(ap->lock, flags);
1924 
1925 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1926 		ata_internal_cmd_timed_out(dev, command);
1927 
1928 	return err_mask;
1929 }
1930 
1931 /**
1932  *	ata_exec_internal - execute libata internal command
1933  *	@dev: Device to which the command is sent
1934  *	@tf: Taskfile registers for the command and the result
1935  *	@cdb: CDB for packet command
1936  *	@dma_dir: Data tranfer direction of the command
1937  *	@buf: Data buffer of the command
1938  *	@buflen: Length of data buffer
1939  *	@timeout: Timeout in msecs (0 for default)
1940  *
1941  *	Wrapper around ata_exec_internal_sg() which takes simple
1942  *	buffer instead of sg list.
1943  *
1944  *	LOCKING:
1945  *	None.  Should be called with kernel context, might sleep.
1946  *
1947  *	RETURNS:
1948  *	Zero on success, AC_ERR_* mask on failure
1949  */
1950 unsigned ata_exec_internal(struct ata_device *dev,
1951 			   struct ata_taskfile *tf, const u8 *cdb,
1952 			   int dma_dir, void *buf, unsigned int buflen,
1953 			   unsigned long timeout)
1954 {
1955 	struct scatterlist *psg = NULL, sg;
1956 	unsigned int n_elem = 0;
1957 
1958 	if (dma_dir != DMA_NONE) {
1959 		WARN_ON(!buf);
1960 		sg_init_one(&sg, buf, buflen);
1961 		psg = &sg;
1962 		n_elem++;
1963 	}
1964 
1965 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1966 				    timeout);
1967 }
1968 
1969 /**
1970  *	ata_do_simple_cmd - execute simple internal command
1971  *	@dev: Device to which the command is sent
1972  *	@cmd: Opcode to execute
1973  *
1974  *	Execute a 'simple' command, that only consists of the opcode
1975  *	'cmd' itself, without filling any other registers
1976  *
1977  *	LOCKING:
1978  *	Kernel thread context (may sleep).
1979  *
1980  *	RETURNS:
1981  *	Zero on success, AC_ERR_* mask on failure
1982  */
1983 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1984 {
1985 	struct ata_taskfile tf;
1986 
1987 	ata_tf_init(dev, &tf);
1988 
1989 	tf.command = cmd;
1990 	tf.flags |= ATA_TFLAG_DEVICE;
1991 	tf.protocol = ATA_PROT_NODATA;
1992 
1993 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1994 }
1995 
1996 /**
1997  *	ata_pio_need_iordy	-	check if iordy needed
1998  *	@adev: ATA device
1999  *
2000  *	Check if the current speed of the device requires IORDY. Used
2001  *	by various controllers for chip configuration.
2002  */
2003 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2004 {
2005 	/* Don't set IORDY if we're preparing for reset.  IORDY may
2006 	 * lead to controller lock up on certain controllers if the
2007 	 * port is not occupied.  See bko#11703 for details.
2008 	 */
2009 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2010 		return 0;
2011 	/* Controller doesn't support IORDY.  Probably a pointless
2012 	 * check as the caller should know this.
2013 	 */
2014 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2015 		return 0;
2016 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
2017 	if (ata_id_is_cfa(adev->id)
2018 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2019 		return 0;
2020 	/* PIO3 and higher it is mandatory */
2021 	if (adev->pio_mode > XFER_PIO_2)
2022 		return 1;
2023 	/* We turn it on when possible */
2024 	if (ata_id_has_iordy(adev->id))
2025 		return 1;
2026 	return 0;
2027 }
2028 
2029 /**
2030  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
2031  *	@adev: ATA device
2032  *
2033  *	Compute the highest mode possible if we are not using iordy. Return
2034  *	-1 if no iordy mode is available.
2035  */
2036 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2037 {
2038 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
2039 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
2040 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
2041 		/* Is the speed faster than the drive allows non IORDY ? */
2042 		if (pio) {
2043 			/* This is cycle times not frequency - watch the logic! */
2044 			if (pio > 240)	/* PIO2 is 240nS per cycle */
2045 				return 3 << ATA_SHIFT_PIO;
2046 			return 7 << ATA_SHIFT_PIO;
2047 		}
2048 	}
2049 	return 3 << ATA_SHIFT_PIO;
2050 }
2051 
2052 /**
2053  *	ata_do_dev_read_id		-	default ID read method
2054  *	@dev: device
2055  *	@tf: proposed taskfile
2056  *	@id: data buffer
2057  *
2058  *	Issue the identify taskfile and hand back the buffer containing
2059  *	identify data. For some RAID controllers and for pre ATA devices
2060  *	this function is wrapped or replaced by the driver
2061  */
2062 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2063 					struct ata_taskfile *tf, u16 *id)
2064 {
2065 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2066 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2067 }
2068 
2069 /**
2070  *	ata_dev_read_id - Read ID data from the specified device
2071  *	@dev: target device
2072  *	@p_class: pointer to class of the target device (may be changed)
2073  *	@flags: ATA_READID_* flags
2074  *	@id: buffer to read IDENTIFY data into
2075  *
2076  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
2077  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2078  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2079  *	for pre-ATA4 drives.
2080  *
2081  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2082  *	now we abort if we hit that case.
2083  *
2084  *	LOCKING:
2085  *	Kernel thread context (may sleep)
2086  *
2087  *	RETURNS:
2088  *	0 on success, -errno otherwise.
2089  */
2090 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2091 		    unsigned int flags, u16 *id)
2092 {
2093 	struct ata_port *ap = dev->link->ap;
2094 	unsigned int class = *p_class;
2095 	struct ata_taskfile tf;
2096 	unsigned int err_mask = 0;
2097 	const char *reason;
2098 	bool is_semb = class == ATA_DEV_SEMB;
2099 	int may_fallback = 1, tried_spinup = 0;
2100 	int rc;
2101 
2102 	if (ata_msg_ctl(ap))
2103 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2104 
2105 retry:
2106 	ata_tf_init(dev, &tf);
2107 
2108 	switch (class) {
2109 	case ATA_DEV_SEMB:
2110 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
2111 	case ATA_DEV_ATA:
2112 		tf.command = ATA_CMD_ID_ATA;
2113 		break;
2114 	case ATA_DEV_ATAPI:
2115 		tf.command = ATA_CMD_ID_ATAPI;
2116 		break;
2117 	default:
2118 		rc = -ENODEV;
2119 		reason = "unsupported class";
2120 		goto err_out;
2121 	}
2122 
2123 	tf.protocol = ATA_PROT_PIO;
2124 
2125 	/* Some devices choke if TF registers contain garbage.  Make
2126 	 * sure those are properly initialized.
2127 	 */
2128 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2129 
2130 	/* Device presence detection is unreliable on some
2131 	 * controllers.  Always poll IDENTIFY if available.
2132 	 */
2133 	tf.flags |= ATA_TFLAG_POLLING;
2134 
2135 	if (ap->ops->read_id)
2136 		err_mask = ap->ops->read_id(dev, &tf, id);
2137 	else
2138 		err_mask = ata_do_dev_read_id(dev, &tf, id);
2139 
2140 	if (err_mask) {
2141 		if (err_mask & AC_ERR_NODEV_HINT) {
2142 			ata_dev_printk(dev, KERN_DEBUG,
2143 				       "NODEV after polling detection\n");
2144 			return -ENOENT;
2145 		}
2146 
2147 		if (is_semb) {
2148 			ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2149 				       "device w/ SEMB sig, disabled\n");
2150 			/* SEMB is not supported yet */
2151 			*p_class = ATA_DEV_SEMB_UNSUP;
2152 			return 0;
2153 		}
2154 
2155 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2156 			/* Device or controller might have reported
2157 			 * the wrong device class.  Give a shot at the
2158 			 * other IDENTIFY if the current one is
2159 			 * aborted by the device.
2160 			 */
2161 			if (may_fallback) {
2162 				may_fallback = 0;
2163 
2164 				if (class == ATA_DEV_ATA)
2165 					class = ATA_DEV_ATAPI;
2166 				else
2167 					class = ATA_DEV_ATA;
2168 				goto retry;
2169 			}
2170 
2171 			/* Control reaches here iff the device aborted
2172 			 * both flavors of IDENTIFYs which happens
2173 			 * sometimes with phantom devices.
2174 			 */
2175 			ata_dev_printk(dev, KERN_DEBUG,
2176 				       "both IDENTIFYs aborted, assuming NODEV\n");
2177 			return -ENOENT;
2178 		}
2179 
2180 		rc = -EIO;
2181 		reason = "I/O error";
2182 		goto err_out;
2183 	}
2184 
2185 	/* Falling back doesn't make sense if ID data was read
2186 	 * successfully at least once.
2187 	 */
2188 	may_fallback = 0;
2189 
2190 	swap_buf_le16(id, ATA_ID_WORDS);
2191 
2192 	/* sanity check */
2193 	rc = -EINVAL;
2194 	reason = "device reports invalid type";
2195 
2196 	if (class == ATA_DEV_ATA) {
2197 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2198 			goto err_out;
2199 	} else {
2200 		if (ata_id_is_ata(id))
2201 			goto err_out;
2202 	}
2203 
2204 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2205 		tried_spinup = 1;
2206 		/*
2207 		 * Drive powered-up in standby mode, and requires a specific
2208 		 * SET_FEATURES spin-up subcommand before it will accept
2209 		 * anything other than the original IDENTIFY command.
2210 		 */
2211 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2212 		if (err_mask && id[2] != 0x738c) {
2213 			rc = -EIO;
2214 			reason = "SPINUP failed";
2215 			goto err_out;
2216 		}
2217 		/*
2218 		 * If the drive initially returned incomplete IDENTIFY info,
2219 		 * we now must reissue the IDENTIFY command.
2220 		 */
2221 		if (id[2] == 0x37c8)
2222 			goto retry;
2223 	}
2224 
2225 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2226 		/*
2227 		 * The exact sequence expected by certain pre-ATA4 drives is:
2228 		 * SRST RESET
2229 		 * IDENTIFY (optional in early ATA)
2230 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2231 		 * anything else..
2232 		 * Some drives were very specific about that exact sequence.
2233 		 *
2234 		 * Note that ATA4 says lba is mandatory so the second check
2235 		 * shoud never trigger.
2236 		 */
2237 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2238 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2239 			if (err_mask) {
2240 				rc = -EIO;
2241 				reason = "INIT_DEV_PARAMS failed";
2242 				goto err_out;
2243 			}
2244 
2245 			/* current CHS translation info (id[53-58]) might be
2246 			 * changed. reread the identify device info.
2247 			 */
2248 			flags &= ~ATA_READID_POSTRESET;
2249 			goto retry;
2250 		}
2251 	}
2252 
2253 	*p_class = class;
2254 
2255 	return 0;
2256 
2257  err_out:
2258 	if (ata_msg_warn(ap))
2259 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2260 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
2261 	return rc;
2262 }
2263 
2264 static int ata_do_link_spd_horkage(struct ata_device *dev)
2265 {
2266 	struct ata_link *plink = ata_dev_phys_link(dev);
2267 	u32 target, target_limit;
2268 
2269 	if (!sata_scr_valid(plink))
2270 		return 0;
2271 
2272 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2273 		target = 1;
2274 	else
2275 		return 0;
2276 
2277 	target_limit = (1 << target) - 1;
2278 
2279 	/* if already on stricter limit, no need to push further */
2280 	if (plink->sata_spd_limit <= target_limit)
2281 		return 0;
2282 
2283 	plink->sata_spd_limit = target_limit;
2284 
2285 	/* Request another EH round by returning -EAGAIN if link is
2286 	 * going faster than the target speed.  Forward progress is
2287 	 * guaranteed by setting sata_spd_limit to target_limit above.
2288 	 */
2289 	if (plink->sata_spd > target) {
2290 		ata_dev_printk(dev, KERN_INFO,
2291 			       "applying link speed limit horkage to %s\n",
2292 			       sata_spd_string(target));
2293 		return -EAGAIN;
2294 	}
2295 	return 0;
2296 }
2297 
2298 static inline u8 ata_dev_knobble(struct ata_device *dev)
2299 {
2300 	struct ata_port *ap = dev->link->ap;
2301 
2302 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2303 		return 0;
2304 
2305 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2306 }
2307 
2308 static int ata_dev_config_ncq(struct ata_device *dev,
2309 			       char *desc, size_t desc_sz)
2310 {
2311 	struct ata_port *ap = dev->link->ap;
2312 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2313 	unsigned int err_mask;
2314 	char *aa_desc = "";
2315 
2316 	if (!ata_id_has_ncq(dev->id)) {
2317 		desc[0] = '\0';
2318 		return 0;
2319 	}
2320 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2321 		snprintf(desc, desc_sz, "NCQ (not used)");
2322 		return 0;
2323 	}
2324 	if (ap->flags & ATA_FLAG_NCQ) {
2325 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2326 		dev->flags |= ATA_DFLAG_NCQ;
2327 	}
2328 
2329 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2330 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2331 		ata_id_has_fpdma_aa(dev->id)) {
2332 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2333 			SATA_FPDMA_AA);
2334 		if (err_mask) {
2335 			ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2336 				"(error_mask=0x%x)\n", err_mask);
2337 			if (err_mask != AC_ERR_DEV) {
2338 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2339 				return -EIO;
2340 			}
2341 		} else
2342 			aa_desc = ", AA";
2343 	}
2344 
2345 	if (hdepth >= ddepth)
2346 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2347 	else
2348 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2349 			ddepth, aa_desc);
2350 	return 0;
2351 }
2352 
2353 /**
2354  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2355  *	@dev: Target device to configure
2356  *
2357  *	Configure @dev according to @dev->id.  Generic and low-level
2358  *	driver specific fixups are also applied.
2359  *
2360  *	LOCKING:
2361  *	Kernel thread context (may sleep)
2362  *
2363  *	RETURNS:
2364  *	0 on success, -errno otherwise
2365  */
2366 int ata_dev_configure(struct ata_device *dev)
2367 {
2368 	struct ata_port *ap = dev->link->ap;
2369 	struct ata_eh_context *ehc = &dev->link->eh_context;
2370 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2371 	const u16 *id = dev->id;
2372 	unsigned long xfer_mask;
2373 	char revbuf[7];		/* XYZ-99\0 */
2374 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2375 	char modelbuf[ATA_ID_PROD_LEN+1];
2376 	int rc;
2377 
2378 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2379 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2380 			       __func__);
2381 		return 0;
2382 	}
2383 
2384 	if (ata_msg_probe(ap))
2385 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2386 
2387 	/* set horkage */
2388 	dev->horkage |= ata_dev_blacklisted(dev);
2389 	ata_force_horkage(dev);
2390 
2391 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2392 		ata_dev_printk(dev, KERN_INFO,
2393 			       "unsupported device, disabling\n");
2394 		ata_dev_disable(dev);
2395 		return 0;
2396 	}
2397 
2398 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2399 	    dev->class == ATA_DEV_ATAPI) {
2400 		ata_dev_printk(dev, KERN_WARNING,
2401 			"WARNING: ATAPI is %s, device ignored.\n",
2402 			atapi_enabled ? "not supported with this driver"
2403 				      : "disabled");
2404 		ata_dev_disable(dev);
2405 		return 0;
2406 	}
2407 
2408 	rc = ata_do_link_spd_horkage(dev);
2409 	if (rc)
2410 		return rc;
2411 
2412 	/* let ACPI work its magic */
2413 	rc = ata_acpi_on_devcfg(dev);
2414 	if (rc)
2415 		return rc;
2416 
2417 	/* massage HPA, do it early as it might change IDENTIFY data */
2418 	rc = ata_hpa_resize(dev);
2419 	if (rc)
2420 		return rc;
2421 
2422 	/* print device capabilities */
2423 	if (ata_msg_probe(ap))
2424 		ata_dev_printk(dev, KERN_DEBUG,
2425 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2426 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
2427 			       __func__,
2428 			       id[49], id[82], id[83], id[84],
2429 			       id[85], id[86], id[87], id[88]);
2430 
2431 	/* initialize to-be-configured parameters */
2432 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2433 	dev->max_sectors = 0;
2434 	dev->cdb_len = 0;
2435 	dev->n_sectors = 0;
2436 	dev->cylinders = 0;
2437 	dev->heads = 0;
2438 	dev->sectors = 0;
2439 	dev->multi_count = 0;
2440 
2441 	/*
2442 	 * common ATA, ATAPI feature tests
2443 	 */
2444 
2445 	/* find max transfer mode; for printk only */
2446 	xfer_mask = ata_id_xfermask(id);
2447 
2448 	if (ata_msg_probe(ap))
2449 		ata_dump_id(id);
2450 
2451 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2452 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2453 			sizeof(fwrevbuf));
2454 
2455 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2456 			sizeof(modelbuf));
2457 
2458 	/* ATA-specific feature tests */
2459 	if (dev->class == ATA_DEV_ATA) {
2460 		if (ata_id_is_cfa(id)) {
2461 			/* CPRM may make this media unusable */
2462 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2463 				ata_dev_printk(dev, KERN_WARNING,
2464 					       "supports DRM functions and may "
2465 					       "not be fully accessable.\n");
2466 			snprintf(revbuf, 7, "CFA");
2467 		} else {
2468 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2469 			/* Warn the user if the device has TPM extensions */
2470 			if (ata_id_has_tpm(id))
2471 				ata_dev_printk(dev, KERN_WARNING,
2472 					       "supports DRM functions and may "
2473 					       "not be fully accessable.\n");
2474 		}
2475 
2476 		dev->n_sectors = ata_id_n_sectors(id);
2477 
2478 		/* get current R/W Multiple count setting */
2479 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2480 			unsigned int max = dev->id[47] & 0xff;
2481 			unsigned int cnt = dev->id[59] & 0xff;
2482 			/* only recognize/allow powers of two here */
2483 			if (is_power_of_2(max) && is_power_of_2(cnt))
2484 				if (cnt <= max)
2485 					dev->multi_count = cnt;
2486 		}
2487 
2488 		if (ata_id_has_lba(id)) {
2489 			const char *lba_desc;
2490 			char ncq_desc[24];
2491 
2492 			lba_desc = "LBA";
2493 			dev->flags |= ATA_DFLAG_LBA;
2494 			if (ata_id_has_lba48(id)) {
2495 				dev->flags |= ATA_DFLAG_LBA48;
2496 				lba_desc = "LBA48";
2497 
2498 				if (dev->n_sectors >= (1UL << 28) &&
2499 				    ata_id_has_flush_ext(id))
2500 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2501 			}
2502 
2503 			/* config NCQ */
2504 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2505 			if (rc)
2506 				return rc;
2507 
2508 			/* print device info to dmesg */
2509 			if (ata_msg_drv(ap) && print_info) {
2510 				ata_dev_printk(dev, KERN_INFO,
2511 					"%s: %s, %s, max %s\n",
2512 					revbuf, modelbuf, fwrevbuf,
2513 					ata_mode_string(xfer_mask));
2514 				ata_dev_printk(dev, KERN_INFO,
2515 					"%Lu sectors, multi %u: %s %s\n",
2516 					(unsigned long long)dev->n_sectors,
2517 					dev->multi_count, lba_desc, ncq_desc);
2518 			}
2519 		} else {
2520 			/* CHS */
2521 
2522 			/* Default translation */
2523 			dev->cylinders	= id[1];
2524 			dev->heads	= id[3];
2525 			dev->sectors	= id[6];
2526 
2527 			if (ata_id_current_chs_valid(id)) {
2528 				/* Current CHS translation is valid. */
2529 				dev->cylinders = id[54];
2530 				dev->heads     = id[55];
2531 				dev->sectors   = id[56];
2532 			}
2533 
2534 			/* print device info to dmesg */
2535 			if (ata_msg_drv(ap) && print_info) {
2536 				ata_dev_printk(dev, KERN_INFO,
2537 					"%s: %s, %s, max %s\n",
2538 					revbuf,	modelbuf, fwrevbuf,
2539 					ata_mode_string(xfer_mask));
2540 				ata_dev_printk(dev, KERN_INFO,
2541 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2542 					(unsigned long long)dev->n_sectors,
2543 					dev->multi_count, dev->cylinders,
2544 					dev->heads, dev->sectors);
2545 			}
2546 		}
2547 
2548 		dev->cdb_len = 16;
2549 	}
2550 
2551 	/* ATAPI-specific feature tests */
2552 	else if (dev->class == ATA_DEV_ATAPI) {
2553 		const char *cdb_intr_string = "";
2554 		const char *atapi_an_string = "";
2555 		const char *dma_dir_string = "";
2556 		u32 sntf;
2557 
2558 		rc = atapi_cdb_len(id);
2559 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2560 			if (ata_msg_warn(ap))
2561 				ata_dev_printk(dev, KERN_WARNING,
2562 					       "unsupported CDB len\n");
2563 			rc = -EINVAL;
2564 			goto err_out_nosup;
2565 		}
2566 		dev->cdb_len = (unsigned int) rc;
2567 
2568 		/* Enable ATAPI AN if both the host and device have
2569 		 * the support.  If PMP is attached, SNTF is required
2570 		 * to enable ATAPI AN to discern between PHY status
2571 		 * changed notifications and ATAPI ANs.
2572 		 */
2573 		if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2574 		    (!sata_pmp_attached(ap) ||
2575 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2576 			unsigned int err_mask;
2577 
2578 			/* issue SET feature command to turn this on */
2579 			err_mask = ata_dev_set_feature(dev,
2580 					SETFEATURES_SATA_ENABLE, SATA_AN);
2581 			if (err_mask)
2582 				ata_dev_printk(dev, KERN_ERR,
2583 					"failed to enable ATAPI AN "
2584 					"(err_mask=0x%x)\n", err_mask);
2585 			else {
2586 				dev->flags |= ATA_DFLAG_AN;
2587 				atapi_an_string = ", ATAPI AN";
2588 			}
2589 		}
2590 
2591 		if (ata_id_cdb_intr(dev->id)) {
2592 			dev->flags |= ATA_DFLAG_CDB_INTR;
2593 			cdb_intr_string = ", CDB intr";
2594 		}
2595 
2596 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2597 			dev->flags |= ATA_DFLAG_DMADIR;
2598 			dma_dir_string = ", DMADIR";
2599 		}
2600 
2601 		/* print device info to dmesg */
2602 		if (ata_msg_drv(ap) && print_info)
2603 			ata_dev_printk(dev, KERN_INFO,
2604 				       "ATAPI: %s, %s, max %s%s%s%s\n",
2605 				       modelbuf, fwrevbuf,
2606 				       ata_mode_string(xfer_mask),
2607 				       cdb_intr_string, atapi_an_string,
2608 				       dma_dir_string);
2609 	}
2610 
2611 	/* determine max_sectors */
2612 	dev->max_sectors = ATA_MAX_SECTORS;
2613 	if (dev->flags & ATA_DFLAG_LBA48)
2614 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2615 
2616 	if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2617 		if (ata_id_has_hipm(dev->id))
2618 			dev->flags |= ATA_DFLAG_HIPM;
2619 		if (ata_id_has_dipm(dev->id))
2620 			dev->flags |= ATA_DFLAG_DIPM;
2621 	}
2622 
2623 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2624 	   200 sectors */
2625 	if (ata_dev_knobble(dev)) {
2626 		if (ata_msg_drv(ap) && print_info)
2627 			ata_dev_printk(dev, KERN_INFO,
2628 				       "applying bridge limits\n");
2629 		dev->udma_mask &= ATA_UDMA5;
2630 		dev->max_sectors = ATA_MAX_SECTORS;
2631 	}
2632 
2633 	if ((dev->class == ATA_DEV_ATAPI) &&
2634 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2635 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2636 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2637 	}
2638 
2639 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2640 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2641 					 dev->max_sectors);
2642 
2643 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2644 		dev->horkage |= ATA_HORKAGE_IPM;
2645 
2646 		/* reset link pm_policy for this port to no pm */
2647 		ap->pm_policy = MAX_PERFORMANCE;
2648 	}
2649 
2650 	if (ap->ops->dev_config)
2651 		ap->ops->dev_config(dev);
2652 
2653 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2654 		/* Let the user know. We don't want to disallow opens for
2655 		   rescue purposes, or in case the vendor is just a blithering
2656 		   idiot. Do this after the dev_config call as some controllers
2657 		   with buggy firmware may want to avoid reporting false device
2658 		   bugs */
2659 
2660 		if (print_info) {
2661 			ata_dev_printk(dev, KERN_WARNING,
2662 "Drive reports diagnostics failure. This may indicate a drive\n");
2663 			ata_dev_printk(dev, KERN_WARNING,
2664 "fault or invalid emulation. Contact drive vendor for information.\n");
2665 		}
2666 	}
2667 
2668 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2669 		ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2670 			       "firmware update to be fully functional.\n");
2671 		ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2672 			       "or visit http://ata.wiki.kernel.org.\n");
2673 	}
2674 
2675 	return 0;
2676 
2677 err_out_nosup:
2678 	if (ata_msg_probe(ap))
2679 		ata_dev_printk(dev, KERN_DEBUG,
2680 			       "%s: EXIT, err\n", __func__);
2681 	return rc;
2682 }
2683 
2684 /**
2685  *	ata_cable_40wire	-	return 40 wire cable type
2686  *	@ap: port
2687  *
2688  *	Helper method for drivers which want to hardwire 40 wire cable
2689  *	detection.
2690  */
2691 
2692 int ata_cable_40wire(struct ata_port *ap)
2693 {
2694 	return ATA_CBL_PATA40;
2695 }
2696 
2697 /**
2698  *	ata_cable_80wire	-	return 80 wire cable type
2699  *	@ap: port
2700  *
2701  *	Helper method for drivers which want to hardwire 80 wire cable
2702  *	detection.
2703  */
2704 
2705 int ata_cable_80wire(struct ata_port *ap)
2706 {
2707 	return ATA_CBL_PATA80;
2708 }
2709 
2710 /**
2711  *	ata_cable_unknown	-	return unknown PATA cable.
2712  *	@ap: port
2713  *
2714  *	Helper method for drivers which have no PATA cable detection.
2715  */
2716 
2717 int ata_cable_unknown(struct ata_port *ap)
2718 {
2719 	return ATA_CBL_PATA_UNK;
2720 }
2721 
2722 /**
2723  *	ata_cable_ignore	-	return ignored PATA cable.
2724  *	@ap: port
2725  *
2726  *	Helper method for drivers which don't use cable type to limit
2727  *	transfer mode.
2728  */
2729 int ata_cable_ignore(struct ata_port *ap)
2730 {
2731 	return ATA_CBL_PATA_IGN;
2732 }
2733 
2734 /**
2735  *	ata_cable_sata	-	return SATA cable type
2736  *	@ap: port
2737  *
2738  *	Helper method for drivers which have SATA cables
2739  */
2740 
2741 int ata_cable_sata(struct ata_port *ap)
2742 {
2743 	return ATA_CBL_SATA;
2744 }
2745 
2746 /**
2747  *	ata_bus_probe - Reset and probe ATA bus
2748  *	@ap: Bus to probe
2749  *
2750  *	Master ATA bus probing function.  Initiates a hardware-dependent
2751  *	bus reset, then attempts to identify any devices found on
2752  *	the bus.
2753  *
2754  *	LOCKING:
2755  *	PCI/etc. bus probe sem.
2756  *
2757  *	RETURNS:
2758  *	Zero on success, negative errno otherwise.
2759  */
2760 
2761 int ata_bus_probe(struct ata_port *ap)
2762 {
2763 	unsigned int classes[ATA_MAX_DEVICES];
2764 	int tries[ATA_MAX_DEVICES];
2765 	int rc;
2766 	struct ata_device *dev;
2767 
2768 	ata_port_probe(ap);
2769 
2770 	ata_for_each_dev(dev, &ap->link, ALL)
2771 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2772 
2773  retry:
2774 	ata_for_each_dev(dev, &ap->link, ALL) {
2775 		/* If we issue an SRST then an ATA drive (not ATAPI)
2776 		 * may change configuration and be in PIO0 timing. If
2777 		 * we do a hard reset (or are coming from power on)
2778 		 * this is true for ATA or ATAPI. Until we've set a
2779 		 * suitable controller mode we should not touch the
2780 		 * bus as we may be talking too fast.
2781 		 */
2782 		dev->pio_mode = XFER_PIO_0;
2783 
2784 		/* If the controller has a pio mode setup function
2785 		 * then use it to set the chipset to rights. Don't
2786 		 * touch the DMA setup as that will be dealt with when
2787 		 * configuring devices.
2788 		 */
2789 		if (ap->ops->set_piomode)
2790 			ap->ops->set_piomode(ap, dev);
2791 	}
2792 
2793 	/* reset and determine device classes */
2794 	ap->ops->phy_reset(ap);
2795 
2796 	ata_for_each_dev(dev, &ap->link, ALL) {
2797 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2798 		    dev->class != ATA_DEV_UNKNOWN)
2799 			classes[dev->devno] = dev->class;
2800 		else
2801 			classes[dev->devno] = ATA_DEV_NONE;
2802 
2803 		dev->class = ATA_DEV_UNKNOWN;
2804 	}
2805 
2806 	ata_port_probe(ap);
2807 
2808 	/* read IDENTIFY page and configure devices. We have to do the identify
2809 	   specific sequence bass-ackwards so that PDIAG- is released by
2810 	   the slave device */
2811 
2812 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2813 		if (tries[dev->devno])
2814 			dev->class = classes[dev->devno];
2815 
2816 		if (!ata_dev_enabled(dev))
2817 			continue;
2818 
2819 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2820 				     dev->id);
2821 		if (rc)
2822 			goto fail;
2823 	}
2824 
2825 	/* Now ask for the cable type as PDIAG- should have been released */
2826 	if (ap->ops->cable_detect)
2827 		ap->cbl = ap->ops->cable_detect(ap);
2828 
2829 	/* We may have SATA bridge glue hiding here irrespective of
2830 	 * the reported cable types and sensed types.  When SATA
2831 	 * drives indicate we have a bridge, we don't know which end
2832 	 * of the link the bridge is which is a problem.
2833 	 */
2834 	ata_for_each_dev(dev, &ap->link, ENABLED)
2835 		if (ata_id_is_sata(dev->id))
2836 			ap->cbl = ATA_CBL_SATA;
2837 
2838 	/* After the identify sequence we can now set up the devices. We do
2839 	   this in the normal order so that the user doesn't get confused */
2840 
2841 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2842 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2843 		rc = ata_dev_configure(dev);
2844 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2845 		if (rc)
2846 			goto fail;
2847 	}
2848 
2849 	/* configure transfer mode */
2850 	rc = ata_set_mode(&ap->link, &dev);
2851 	if (rc)
2852 		goto fail;
2853 
2854 	ata_for_each_dev(dev, &ap->link, ENABLED)
2855 		return 0;
2856 
2857 	/* no device present, disable port */
2858 	ata_port_disable(ap);
2859 	return -ENODEV;
2860 
2861  fail:
2862 	tries[dev->devno]--;
2863 
2864 	switch (rc) {
2865 	case -EINVAL:
2866 		/* eeek, something went very wrong, give up */
2867 		tries[dev->devno] = 0;
2868 		break;
2869 
2870 	case -ENODEV:
2871 		/* give it just one more chance */
2872 		tries[dev->devno] = min(tries[dev->devno], 1);
2873 	case -EIO:
2874 		if (tries[dev->devno] == 1) {
2875 			/* This is the last chance, better to slow
2876 			 * down than lose it.
2877 			 */
2878 			sata_down_spd_limit(&ap->link, 0);
2879 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2880 		}
2881 	}
2882 
2883 	if (!tries[dev->devno])
2884 		ata_dev_disable(dev);
2885 
2886 	goto retry;
2887 }
2888 
2889 /**
2890  *	ata_port_probe - Mark port as enabled
2891  *	@ap: Port for which we indicate enablement
2892  *
2893  *	Modify @ap data structure such that the system
2894  *	thinks that the entire port is enabled.
2895  *
2896  *	LOCKING: host lock, or some other form of
2897  *	serialization.
2898  */
2899 
2900 void ata_port_probe(struct ata_port *ap)
2901 {
2902 	ap->flags &= ~ATA_FLAG_DISABLED;
2903 }
2904 
2905 /**
2906  *	sata_print_link_status - Print SATA link status
2907  *	@link: SATA link to printk link status about
2908  *
2909  *	This function prints link speed and status of a SATA link.
2910  *
2911  *	LOCKING:
2912  *	None.
2913  */
2914 static void sata_print_link_status(struct ata_link *link)
2915 {
2916 	u32 sstatus, scontrol, tmp;
2917 
2918 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2919 		return;
2920 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2921 
2922 	if (ata_phys_link_online(link)) {
2923 		tmp = (sstatus >> 4) & 0xf;
2924 		ata_link_printk(link, KERN_INFO,
2925 				"SATA link up %s (SStatus %X SControl %X)\n",
2926 				sata_spd_string(tmp), sstatus, scontrol);
2927 	} else {
2928 		ata_link_printk(link, KERN_INFO,
2929 				"SATA link down (SStatus %X SControl %X)\n",
2930 				sstatus, scontrol);
2931 	}
2932 }
2933 
2934 /**
2935  *	ata_dev_pair		-	return other device on cable
2936  *	@adev: device
2937  *
2938  *	Obtain the other device on the same cable, or if none is
2939  *	present NULL is returned
2940  */
2941 
2942 struct ata_device *ata_dev_pair(struct ata_device *adev)
2943 {
2944 	struct ata_link *link = adev->link;
2945 	struct ata_device *pair = &link->device[1 - adev->devno];
2946 	if (!ata_dev_enabled(pair))
2947 		return NULL;
2948 	return pair;
2949 }
2950 
2951 /**
2952  *	ata_port_disable - Disable port.
2953  *	@ap: Port to be disabled.
2954  *
2955  *	Modify @ap data structure such that the system
2956  *	thinks that the entire port is disabled, and should
2957  *	never attempt to probe or communicate with devices
2958  *	on this port.
2959  *
2960  *	LOCKING: host lock, or some other form of
2961  *	serialization.
2962  */
2963 
2964 void ata_port_disable(struct ata_port *ap)
2965 {
2966 	ap->link.device[0].class = ATA_DEV_NONE;
2967 	ap->link.device[1].class = ATA_DEV_NONE;
2968 	ap->flags |= ATA_FLAG_DISABLED;
2969 }
2970 
2971 /**
2972  *	sata_down_spd_limit - adjust SATA spd limit downward
2973  *	@link: Link to adjust SATA spd limit for
2974  *	@spd_limit: Additional limit
2975  *
2976  *	Adjust SATA spd limit of @link downward.  Note that this
2977  *	function only adjusts the limit.  The change must be applied
2978  *	using sata_set_spd().
2979  *
2980  *	If @spd_limit is non-zero, the speed is limited to equal to or
2981  *	lower than @spd_limit if such speed is supported.  If
2982  *	@spd_limit is slower than any supported speed, only the lowest
2983  *	supported speed is allowed.
2984  *
2985  *	LOCKING:
2986  *	Inherited from caller.
2987  *
2988  *	RETURNS:
2989  *	0 on success, negative errno on failure
2990  */
2991 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2992 {
2993 	u32 sstatus, spd, mask;
2994 	int rc, bit;
2995 
2996 	if (!sata_scr_valid(link))
2997 		return -EOPNOTSUPP;
2998 
2999 	/* If SCR can be read, use it to determine the current SPD.
3000 	 * If not, use cached value in link->sata_spd.
3001 	 */
3002 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3003 	if (rc == 0 && ata_sstatus_online(sstatus))
3004 		spd = (sstatus >> 4) & 0xf;
3005 	else
3006 		spd = link->sata_spd;
3007 
3008 	mask = link->sata_spd_limit;
3009 	if (mask <= 1)
3010 		return -EINVAL;
3011 
3012 	/* unconditionally mask off the highest bit */
3013 	bit = fls(mask) - 1;
3014 	mask &= ~(1 << bit);
3015 
3016 	/* Mask off all speeds higher than or equal to the current
3017 	 * one.  Force 1.5Gbps if current SPD is not available.
3018 	 */
3019 	if (spd > 1)
3020 		mask &= (1 << (spd - 1)) - 1;
3021 	else
3022 		mask &= 1;
3023 
3024 	/* were we already at the bottom? */
3025 	if (!mask)
3026 		return -EINVAL;
3027 
3028 	if (spd_limit) {
3029 		if (mask & ((1 << spd_limit) - 1))
3030 			mask &= (1 << spd_limit) - 1;
3031 		else {
3032 			bit = ffs(mask) - 1;
3033 			mask = 1 << bit;
3034 		}
3035 	}
3036 
3037 	link->sata_spd_limit = mask;
3038 
3039 	ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3040 			sata_spd_string(fls(mask)));
3041 
3042 	return 0;
3043 }
3044 
3045 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3046 {
3047 	struct ata_link *host_link = &link->ap->link;
3048 	u32 limit, target, spd;
3049 
3050 	limit = link->sata_spd_limit;
3051 
3052 	/* Don't configure downstream link faster than upstream link.
3053 	 * It doesn't speed up anything and some PMPs choke on such
3054 	 * configuration.
3055 	 */
3056 	if (!ata_is_host_link(link) && host_link->sata_spd)
3057 		limit &= (1 << host_link->sata_spd) - 1;
3058 
3059 	if (limit == UINT_MAX)
3060 		target = 0;
3061 	else
3062 		target = fls(limit);
3063 
3064 	spd = (*scontrol >> 4) & 0xf;
3065 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3066 
3067 	return spd != target;
3068 }
3069 
3070 /**
3071  *	sata_set_spd_needed - is SATA spd configuration needed
3072  *	@link: Link in question
3073  *
3074  *	Test whether the spd limit in SControl matches
3075  *	@link->sata_spd_limit.  This function is used to determine
3076  *	whether hardreset is necessary to apply SATA spd
3077  *	configuration.
3078  *
3079  *	LOCKING:
3080  *	Inherited from caller.
3081  *
3082  *	RETURNS:
3083  *	1 if SATA spd configuration is needed, 0 otherwise.
3084  */
3085 static int sata_set_spd_needed(struct ata_link *link)
3086 {
3087 	u32 scontrol;
3088 
3089 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3090 		return 1;
3091 
3092 	return __sata_set_spd_needed(link, &scontrol);
3093 }
3094 
3095 /**
3096  *	sata_set_spd - set SATA spd according to spd limit
3097  *	@link: Link to set SATA spd for
3098  *
3099  *	Set SATA spd of @link according to sata_spd_limit.
3100  *
3101  *	LOCKING:
3102  *	Inherited from caller.
3103  *
3104  *	RETURNS:
3105  *	0 if spd doesn't need to be changed, 1 if spd has been
3106  *	changed.  Negative errno if SCR registers are inaccessible.
3107  */
3108 int sata_set_spd(struct ata_link *link)
3109 {
3110 	u32 scontrol;
3111 	int rc;
3112 
3113 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3114 		return rc;
3115 
3116 	if (!__sata_set_spd_needed(link, &scontrol))
3117 		return 0;
3118 
3119 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3120 		return rc;
3121 
3122 	return 1;
3123 }
3124 
3125 /*
3126  * This mode timing computation functionality is ported over from
3127  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3128  */
3129 /*
3130  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3131  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3132  * for UDMA6, which is currently supported only by Maxtor drives.
3133  *
3134  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3135  */
3136 
3137 static const struct ata_timing ata_timing[] = {
3138 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3139 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3140 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3141 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3142 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3143 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3144 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3145 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3146 
3147 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3148 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3149 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3150 
3151 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3152 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3153 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3154 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3155 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3156 
3157 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3158 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3159 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3160 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3161 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3162 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3163 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3164 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3165 
3166 	{ 0xFF }
3167 };
3168 
3169 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3170 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3171 
3172 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3173 {
3174 	q->setup	= EZ(t->setup      * 1000,  T);
3175 	q->act8b	= EZ(t->act8b      * 1000,  T);
3176 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3177 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3178 	q->active	= EZ(t->active     * 1000,  T);
3179 	q->recover	= EZ(t->recover    * 1000,  T);
3180 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3181 	q->cycle	= EZ(t->cycle      * 1000,  T);
3182 	q->udma		= EZ(t->udma       * 1000, UT);
3183 }
3184 
3185 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3186 		      struct ata_timing *m, unsigned int what)
3187 {
3188 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3189 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3190 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3191 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3192 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3193 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3194 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3195 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3196 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3197 }
3198 
3199 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3200 {
3201 	const struct ata_timing *t = ata_timing;
3202 
3203 	while (xfer_mode > t->mode)
3204 		t++;
3205 
3206 	if (xfer_mode == t->mode)
3207 		return t;
3208 	return NULL;
3209 }
3210 
3211 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3212 		       struct ata_timing *t, int T, int UT)
3213 {
3214 	const struct ata_timing *s;
3215 	struct ata_timing p;
3216 
3217 	/*
3218 	 * Find the mode.
3219 	 */
3220 
3221 	if (!(s = ata_timing_find_mode(speed)))
3222 		return -EINVAL;
3223 
3224 	memcpy(t, s, sizeof(*s));
3225 
3226 	/*
3227 	 * If the drive is an EIDE drive, it can tell us it needs extended
3228 	 * PIO/MW_DMA cycle timing.
3229 	 */
3230 
3231 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3232 		memset(&p, 0, sizeof(p));
3233 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3234 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3235 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3236 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3237 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3238 		}
3239 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3240 	}
3241 
3242 	/*
3243 	 * Convert the timing to bus clock counts.
3244 	 */
3245 
3246 	ata_timing_quantize(t, t, T, UT);
3247 
3248 	/*
3249 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3250 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3251 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3252 	 */
3253 
3254 	if (speed > XFER_PIO_6) {
3255 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3256 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3257 	}
3258 
3259 	/*
3260 	 * Lengthen active & recovery time so that cycle time is correct.
3261 	 */
3262 
3263 	if (t->act8b + t->rec8b < t->cyc8b) {
3264 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3265 		t->rec8b = t->cyc8b - t->act8b;
3266 	}
3267 
3268 	if (t->active + t->recover < t->cycle) {
3269 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3270 		t->recover = t->cycle - t->active;
3271 	}
3272 
3273 	/* In a few cases quantisation may produce enough errors to
3274 	   leave t->cycle too low for the sum of active and recovery
3275 	   if so we must correct this */
3276 	if (t->active + t->recover > t->cycle)
3277 		t->cycle = t->active + t->recover;
3278 
3279 	return 0;
3280 }
3281 
3282 /**
3283  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3284  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3285  *	@cycle: cycle duration in ns
3286  *
3287  *	Return matching xfer mode for @cycle.  The returned mode is of
3288  *	the transfer type specified by @xfer_shift.  If @cycle is too
3289  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3290  *	than the fastest known mode, the fasted mode is returned.
3291  *
3292  *	LOCKING:
3293  *	None.
3294  *
3295  *	RETURNS:
3296  *	Matching xfer_mode, 0xff if no match found.
3297  */
3298 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3299 {
3300 	u8 base_mode = 0xff, last_mode = 0xff;
3301 	const struct ata_xfer_ent *ent;
3302 	const struct ata_timing *t;
3303 
3304 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3305 		if (ent->shift == xfer_shift)
3306 			base_mode = ent->base;
3307 
3308 	for (t = ata_timing_find_mode(base_mode);
3309 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3310 		unsigned short this_cycle;
3311 
3312 		switch (xfer_shift) {
3313 		case ATA_SHIFT_PIO:
3314 		case ATA_SHIFT_MWDMA:
3315 			this_cycle = t->cycle;
3316 			break;
3317 		case ATA_SHIFT_UDMA:
3318 			this_cycle = t->udma;
3319 			break;
3320 		default:
3321 			return 0xff;
3322 		}
3323 
3324 		if (cycle > this_cycle)
3325 			break;
3326 
3327 		last_mode = t->mode;
3328 	}
3329 
3330 	return last_mode;
3331 }
3332 
3333 /**
3334  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3335  *	@dev: Device to adjust xfer masks
3336  *	@sel: ATA_DNXFER_* selector
3337  *
3338  *	Adjust xfer masks of @dev downward.  Note that this function
3339  *	does not apply the change.  Invoking ata_set_mode() afterwards
3340  *	will apply the limit.
3341  *
3342  *	LOCKING:
3343  *	Inherited from caller.
3344  *
3345  *	RETURNS:
3346  *	0 on success, negative errno on failure
3347  */
3348 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3349 {
3350 	char buf[32];
3351 	unsigned long orig_mask, xfer_mask;
3352 	unsigned long pio_mask, mwdma_mask, udma_mask;
3353 	int quiet, highbit;
3354 
3355 	quiet = !!(sel & ATA_DNXFER_QUIET);
3356 	sel &= ~ATA_DNXFER_QUIET;
3357 
3358 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3359 						  dev->mwdma_mask,
3360 						  dev->udma_mask);
3361 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3362 
3363 	switch (sel) {
3364 	case ATA_DNXFER_PIO:
3365 		highbit = fls(pio_mask) - 1;
3366 		pio_mask &= ~(1 << highbit);
3367 		break;
3368 
3369 	case ATA_DNXFER_DMA:
3370 		if (udma_mask) {
3371 			highbit = fls(udma_mask) - 1;
3372 			udma_mask &= ~(1 << highbit);
3373 			if (!udma_mask)
3374 				return -ENOENT;
3375 		} else if (mwdma_mask) {
3376 			highbit = fls(mwdma_mask) - 1;
3377 			mwdma_mask &= ~(1 << highbit);
3378 			if (!mwdma_mask)
3379 				return -ENOENT;
3380 		}
3381 		break;
3382 
3383 	case ATA_DNXFER_40C:
3384 		udma_mask &= ATA_UDMA_MASK_40C;
3385 		break;
3386 
3387 	case ATA_DNXFER_FORCE_PIO0:
3388 		pio_mask &= 1;
3389 	case ATA_DNXFER_FORCE_PIO:
3390 		mwdma_mask = 0;
3391 		udma_mask = 0;
3392 		break;
3393 
3394 	default:
3395 		BUG();
3396 	}
3397 
3398 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3399 
3400 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3401 		return -ENOENT;
3402 
3403 	if (!quiet) {
3404 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3405 			snprintf(buf, sizeof(buf), "%s:%s",
3406 				 ata_mode_string(xfer_mask),
3407 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3408 		else
3409 			snprintf(buf, sizeof(buf), "%s",
3410 				 ata_mode_string(xfer_mask));
3411 
3412 		ata_dev_printk(dev, KERN_WARNING,
3413 			       "limiting speed to %s\n", buf);
3414 	}
3415 
3416 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3417 			    &dev->udma_mask);
3418 
3419 	return 0;
3420 }
3421 
3422 static int ata_dev_set_mode(struct ata_device *dev)
3423 {
3424 	struct ata_port *ap = dev->link->ap;
3425 	struct ata_eh_context *ehc = &dev->link->eh_context;
3426 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3427 	const char *dev_err_whine = "";
3428 	int ign_dev_err = 0;
3429 	unsigned int err_mask = 0;
3430 	int rc;
3431 
3432 	dev->flags &= ~ATA_DFLAG_PIO;
3433 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3434 		dev->flags |= ATA_DFLAG_PIO;
3435 
3436 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3437 		dev_err_whine = " (SET_XFERMODE skipped)";
3438 	else {
3439 		if (nosetxfer)
3440 			ata_dev_printk(dev, KERN_WARNING,
3441 				       "NOSETXFER but PATA detected - can't "
3442 				       "skip SETXFER, might malfunction\n");
3443 		err_mask = ata_dev_set_xfermode(dev);
3444 	}
3445 
3446 	if (err_mask & ~AC_ERR_DEV)
3447 		goto fail;
3448 
3449 	/* revalidate */
3450 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3451 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3452 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3453 	if (rc)
3454 		return rc;
3455 
3456 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3457 		/* Old CFA may refuse this command, which is just fine */
3458 		if (ata_id_is_cfa(dev->id))
3459 			ign_dev_err = 1;
3460 		/* Catch several broken garbage emulations plus some pre
3461 		   ATA devices */
3462 		if (ata_id_major_version(dev->id) == 0 &&
3463 					dev->pio_mode <= XFER_PIO_2)
3464 			ign_dev_err = 1;
3465 		/* Some very old devices and some bad newer ones fail
3466 		   any kind of SET_XFERMODE request but support PIO0-2
3467 		   timings and no IORDY */
3468 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3469 			ign_dev_err = 1;
3470 	}
3471 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3472 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3473 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3474 	    dev->dma_mode == XFER_MW_DMA_0 &&
3475 	    (dev->id[63] >> 8) & 1)
3476 		ign_dev_err = 1;
3477 
3478 	/* if the device is actually configured correctly, ignore dev err */
3479 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3480 		ign_dev_err = 1;
3481 
3482 	if (err_mask & AC_ERR_DEV) {
3483 		if (!ign_dev_err)
3484 			goto fail;
3485 		else
3486 			dev_err_whine = " (device error ignored)";
3487 	}
3488 
3489 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3490 		dev->xfer_shift, (int)dev->xfer_mode);
3491 
3492 	ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3493 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3494 		       dev_err_whine);
3495 
3496 	return 0;
3497 
3498  fail:
3499 	ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3500 		       "(err_mask=0x%x)\n", err_mask);
3501 	return -EIO;
3502 }
3503 
3504 /**
3505  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3506  *	@link: link on which timings will be programmed
3507  *	@r_failed_dev: out parameter for failed device
3508  *
3509  *	Standard implementation of the function used to tune and set
3510  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3511  *	ata_dev_set_mode() fails, pointer to the failing device is
3512  *	returned in @r_failed_dev.
3513  *
3514  *	LOCKING:
3515  *	PCI/etc. bus probe sem.
3516  *
3517  *	RETURNS:
3518  *	0 on success, negative errno otherwise
3519  */
3520 
3521 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3522 {
3523 	struct ata_port *ap = link->ap;
3524 	struct ata_device *dev;
3525 	int rc = 0, used_dma = 0, found = 0;
3526 
3527 	/* step 1: calculate xfer_mask */
3528 	ata_for_each_dev(dev, link, ENABLED) {
3529 		unsigned long pio_mask, dma_mask;
3530 		unsigned int mode_mask;
3531 
3532 		mode_mask = ATA_DMA_MASK_ATA;
3533 		if (dev->class == ATA_DEV_ATAPI)
3534 			mode_mask = ATA_DMA_MASK_ATAPI;
3535 		else if (ata_id_is_cfa(dev->id))
3536 			mode_mask = ATA_DMA_MASK_CFA;
3537 
3538 		ata_dev_xfermask(dev);
3539 		ata_force_xfermask(dev);
3540 
3541 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3542 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3543 
3544 		if (libata_dma_mask & mode_mask)
3545 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3546 		else
3547 			dma_mask = 0;
3548 
3549 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3550 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3551 
3552 		found = 1;
3553 		if (ata_dma_enabled(dev))
3554 			used_dma = 1;
3555 	}
3556 	if (!found)
3557 		goto out;
3558 
3559 	/* step 2: always set host PIO timings */
3560 	ata_for_each_dev(dev, link, ENABLED) {
3561 		if (dev->pio_mode == 0xff) {
3562 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3563 			rc = -EINVAL;
3564 			goto out;
3565 		}
3566 
3567 		dev->xfer_mode = dev->pio_mode;
3568 		dev->xfer_shift = ATA_SHIFT_PIO;
3569 		if (ap->ops->set_piomode)
3570 			ap->ops->set_piomode(ap, dev);
3571 	}
3572 
3573 	/* step 3: set host DMA timings */
3574 	ata_for_each_dev(dev, link, ENABLED) {
3575 		if (!ata_dma_enabled(dev))
3576 			continue;
3577 
3578 		dev->xfer_mode = dev->dma_mode;
3579 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3580 		if (ap->ops->set_dmamode)
3581 			ap->ops->set_dmamode(ap, dev);
3582 	}
3583 
3584 	/* step 4: update devices' xfer mode */
3585 	ata_for_each_dev(dev, link, ENABLED) {
3586 		rc = ata_dev_set_mode(dev);
3587 		if (rc)
3588 			goto out;
3589 	}
3590 
3591 	/* Record simplex status. If we selected DMA then the other
3592 	 * host channels are not permitted to do so.
3593 	 */
3594 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3595 		ap->host->simplex_claimed = ap;
3596 
3597  out:
3598 	if (rc)
3599 		*r_failed_dev = dev;
3600 	return rc;
3601 }
3602 
3603 /**
3604  *	ata_wait_ready - wait for link to become ready
3605  *	@link: link to be waited on
3606  *	@deadline: deadline jiffies for the operation
3607  *	@check_ready: callback to check link readiness
3608  *
3609  *	Wait for @link to become ready.  @check_ready should return
3610  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3611  *	link doesn't seem to be occupied, other errno for other error
3612  *	conditions.
3613  *
3614  *	Transient -ENODEV conditions are allowed for
3615  *	ATA_TMOUT_FF_WAIT.
3616  *
3617  *	LOCKING:
3618  *	EH context.
3619  *
3620  *	RETURNS:
3621  *	0 if @linke is ready before @deadline; otherwise, -errno.
3622  */
3623 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3624 		   int (*check_ready)(struct ata_link *link))
3625 {
3626 	unsigned long start = jiffies;
3627 	unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3628 	int warned = 0;
3629 
3630 	/* Slave readiness can't be tested separately from master.  On
3631 	 * M/S emulation configuration, this function should be called
3632 	 * only on the master and it will handle both master and slave.
3633 	 */
3634 	WARN_ON(link == link->ap->slave_link);
3635 
3636 	if (time_after(nodev_deadline, deadline))
3637 		nodev_deadline = deadline;
3638 
3639 	while (1) {
3640 		unsigned long now = jiffies;
3641 		int ready, tmp;
3642 
3643 		ready = tmp = check_ready(link);
3644 		if (ready > 0)
3645 			return 0;
3646 
3647 		/* -ENODEV could be transient.  Ignore -ENODEV if link
3648 		 * is online.  Also, some SATA devices take a long
3649 		 * time to clear 0xff after reset.  For example,
3650 		 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3651 		 * GoVault needs even more than that.  Wait for
3652 		 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3653 		 *
3654 		 * Note that some PATA controllers (pata_ali) explode
3655 		 * if status register is read more than once when
3656 		 * there's no device attached.
3657 		 */
3658 		if (ready == -ENODEV) {
3659 			if (ata_link_online(link))
3660 				ready = 0;
3661 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3662 				 !ata_link_offline(link) &&
3663 				 time_before(now, nodev_deadline))
3664 				ready = 0;
3665 		}
3666 
3667 		if (ready)
3668 			return ready;
3669 		if (time_after(now, deadline))
3670 			return -EBUSY;
3671 
3672 		if (!warned && time_after(now, start + 5 * HZ) &&
3673 		    (deadline - now > 3 * HZ)) {
3674 			ata_link_printk(link, KERN_WARNING,
3675 				"link is slow to respond, please be patient "
3676 				"(ready=%d)\n", tmp);
3677 			warned = 1;
3678 		}
3679 
3680 		msleep(50);
3681 	}
3682 }
3683 
3684 /**
3685  *	ata_wait_after_reset - wait for link to become ready after reset
3686  *	@link: link to be waited on
3687  *	@deadline: deadline jiffies for the operation
3688  *	@check_ready: callback to check link readiness
3689  *
3690  *	Wait for @link to become ready after reset.
3691  *
3692  *	LOCKING:
3693  *	EH context.
3694  *
3695  *	RETURNS:
3696  *	0 if @linke is ready before @deadline; otherwise, -errno.
3697  */
3698 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3699 				int (*check_ready)(struct ata_link *link))
3700 {
3701 	msleep(ATA_WAIT_AFTER_RESET);
3702 
3703 	return ata_wait_ready(link, deadline, check_ready);
3704 }
3705 
3706 /**
3707  *	sata_link_debounce - debounce SATA phy status
3708  *	@link: ATA link to debounce SATA phy status for
3709  *	@params: timing parameters { interval, duratinon, timeout } in msec
3710  *	@deadline: deadline jiffies for the operation
3711  *
3712 *	Make sure SStatus of @link reaches stable state, determined by
3713  *	holding the same value where DET is not 1 for @duration polled
3714  *	every @interval, before @timeout.  Timeout constraints the
3715  *	beginning of the stable state.  Because DET gets stuck at 1 on
3716  *	some controllers after hot unplugging, this functions waits
3717  *	until timeout then returns 0 if DET is stable at 1.
3718  *
3719  *	@timeout is further limited by @deadline.  The sooner of the
3720  *	two is used.
3721  *
3722  *	LOCKING:
3723  *	Kernel thread context (may sleep)
3724  *
3725  *	RETURNS:
3726  *	0 on success, -errno on failure.
3727  */
3728 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3729 		       unsigned long deadline)
3730 {
3731 	unsigned long interval = params[0];
3732 	unsigned long duration = params[1];
3733 	unsigned long last_jiffies, t;
3734 	u32 last, cur;
3735 	int rc;
3736 
3737 	t = ata_deadline(jiffies, params[2]);
3738 	if (time_before(t, deadline))
3739 		deadline = t;
3740 
3741 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3742 		return rc;
3743 	cur &= 0xf;
3744 
3745 	last = cur;
3746 	last_jiffies = jiffies;
3747 
3748 	while (1) {
3749 		msleep(interval);
3750 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3751 			return rc;
3752 		cur &= 0xf;
3753 
3754 		/* DET stable? */
3755 		if (cur == last) {
3756 			if (cur == 1 && time_before(jiffies, deadline))
3757 				continue;
3758 			if (time_after(jiffies,
3759 				       ata_deadline(last_jiffies, duration)))
3760 				return 0;
3761 			continue;
3762 		}
3763 
3764 		/* unstable, start over */
3765 		last = cur;
3766 		last_jiffies = jiffies;
3767 
3768 		/* Check deadline.  If debouncing failed, return
3769 		 * -EPIPE to tell upper layer to lower link speed.
3770 		 */
3771 		if (time_after(jiffies, deadline))
3772 			return -EPIPE;
3773 	}
3774 }
3775 
3776 /**
3777  *	sata_link_resume - resume SATA link
3778  *	@link: ATA link to resume SATA
3779  *	@params: timing parameters { interval, duratinon, timeout } in msec
3780  *	@deadline: deadline jiffies for the operation
3781  *
3782  *	Resume SATA phy @link and debounce it.
3783  *
3784  *	LOCKING:
3785  *	Kernel thread context (may sleep)
3786  *
3787  *	RETURNS:
3788  *	0 on success, -errno on failure.
3789  */
3790 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3791 		     unsigned long deadline)
3792 {
3793 	int tries = ATA_LINK_RESUME_TRIES;
3794 	u32 scontrol, serror;
3795 	int rc;
3796 
3797 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3798 		return rc;
3799 
3800 	/*
3801 	 * Writes to SControl sometimes get ignored under certain
3802 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3803 	 * cleared.
3804 	 */
3805 	do {
3806 		scontrol = (scontrol & 0x0f0) | 0x300;
3807 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3808 			return rc;
3809 		/*
3810 		 * Some PHYs react badly if SStatus is pounded
3811 		 * immediately after resuming.  Delay 200ms before
3812 		 * debouncing.
3813 		 */
3814 		msleep(200);
3815 
3816 		/* is SControl restored correctly? */
3817 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3818 			return rc;
3819 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3820 
3821 	if ((scontrol & 0xf0f) != 0x300) {
3822 		ata_link_printk(link, KERN_ERR,
3823 				"failed to resume link (SControl %X)\n",
3824 				scontrol);
3825 		return 0;
3826 	}
3827 
3828 	if (tries < ATA_LINK_RESUME_TRIES)
3829 		ata_link_printk(link, KERN_WARNING,
3830 				"link resume succeeded after %d retries\n",
3831 				ATA_LINK_RESUME_TRIES - tries);
3832 
3833 	if ((rc = sata_link_debounce(link, params, deadline)))
3834 		return rc;
3835 
3836 	/* clear SError, some PHYs require this even for SRST to work */
3837 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3838 		rc = sata_scr_write(link, SCR_ERROR, serror);
3839 
3840 	return rc != -EINVAL ? rc : 0;
3841 }
3842 
3843 /**
3844  *	ata_std_prereset - prepare for reset
3845  *	@link: ATA link to be reset
3846  *	@deadline: deadline jiffies for the operation
3847  *
3848  *	@link is about to be reset.  Initialize it.  Failure from
3849  *	prereset makes libata abort whole reset sequence and give up
3850  *	that port, so prereset should be best-effort.  It does its
3851  *	best to prepare for reset sequence but if things go wrong, it
3852  *	should just whine, not fail.
3853  *
3854  *	LOCKING:
3855  *	Kernel thread context (may sleep)
3856  *
3857  *	RETURNS:
3858  *	0 on success, -errno otherwise.
3859  */
3860 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3861 {
3862 	struct ata_port *ap = link->ap;
3863 	struct ata_eh_context *ehc = &link->eh_context;
3864 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3865 	int rc;
3866 
3867 	/* if we're about to do hardreset, nothing more to do */
3868 	if (ehc->i.action & ATA_EH_HARDRESET)
3869 		return 0;
3870 
3871 	/* if SATA, resume link */
3872 	if (ap->flags & ATA_FLAG_SATA) {
3873 		rc = sata_link_resume(link, timing, deadline);
3874 		/* whine about phy resume failure but proceed */
3875 		if (rc && rc != -EOPNOTSUPP)
3876 			ata_link_printk(link, KERN_WARNING, "failed to resume "
3877 					"link for reset (errno=%d)\n", rc);
3878 	}
3879 
3880 	/* no point in trying softreset on offline link */
3881 	if (ata_phys_link_offline(link))
3882 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3883 
3884 	return 0;
3885 }
3886 
3887 /**
3888  *	sata_link_hardreset - reset link via SATA phy reset
3889  *	@link: link to reset
3890  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3891  *	@deadline: deadline jiffies for the operation
3892  *	@online: optional out parameter indicating link onlineness
3893  *	@check_ready: optional callback to check link readiness
3894  *
3895  *	SATA phy-reset @link using DET bits of SControl register.
3896  *	After hardreset, link readiness is waited upon using
3897  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3898  *	allowed to not specify @check_ready and wait itself after this
3899  *	function returns.  Device classification is LLD's
3900  *	responsibility.
3901  *
3902  *	*@online is set to one iff reset succeeded and @link is online
3903  *	after reset.
3904  *
3905  *	LOCKING:
3906  *	Kernel thread context (may sleep)
3907  *
3908  *	RETURNS:
3909  *	0 on success, -errno otherwise.
3910  */
3911 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3912 			unsigned long deadline,
3913 			bool *online, int (*check_ready)(struct ata_link *))
3914 {
3915 	u32 scontrol;
3916 	int rc;
3917 
3918 	DPRINTK("ENTER\n");
3919 
3920 	if (online)
3921 		*online = false;
3922 
3923 	if (sata_set_spd_needed(link)) {
3924 		/* SATA spec says nothing about how to reconfigure
3925 		 * spd.  To be on the safe side, turn off phy during
3926 		 * reconfiguration.  This works for at least ICH7 AHCI
3927 		 * and Sil3124.
3928 		 */
3929 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3930 			goto out;
3931 
3932 		scontrol = (scontrol & 0x0f0) | 0x304;
3933 
3934 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3935 			goto out;
3936 
3937 		sata_set_spd(link);
3938 	}
3939 
3940 	/* issue phy wake/reset */
3941 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3942 		goto out;
3943 
3944 	scontrol = (scontrol & 0x0f0) | 0x301;
3945 
3946 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3947 		goto out;
3948 
3949 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3950 	 * 10.4.2 says at least 1 ms.
3951 	 */
3952 	msleep(1);
3953 
3954 	/* bring link back */
3955 	rc = sata_link_resume(link, timing, deadline);
3956 	if (rc)
3957 		goto out;
3958 	/* if link is offline nothing more to do */
3959 	if (ata_phys_link_offline(link))
3960 		goto out;
3961 
3962 	/* Link is online.  From this point, -ENODEV too is an error. */
3963 	if (online)
3964 		*online = true;
3965 
3966 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3967 		/* If PMP is supported, we have to do follow-up SRST.
3968 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3969 		 * the first port is empty.  Wait only for
3970 		 * ATA_TMOUT_PMP_SRST_WAIT.
3971 		 */
3972 		if (check_ready) {
3973 			unsigned long pmp_deadline;
3974 
3975 			pmp_deadline = ata_deadline(jiffies,
3976 						    ATA_TMOUT_PMP_SRST_WAIT);
3977 			if (time_after(pmp_deadline, deadline))
3978 				pmp_deadline = deadline;
3979 			ata_wait_ready(link, pmp_deadline, check_ready);
3980 		}
3981 		rc = -EAGAIN;
3982 		goto out;
3983 	}
3984 
3985 	rc = 0;
3986 	if (check_ready)
3987 		rc = ata_wait_ready(link, deadline, check_ready);
3988  out:
3989 	if (rc && rc != -EAGAIN) {
3990 		/* online is set iff link is online && reset succeeded */
3991 		if (online)
3992 			*online = false;
3993 		ata_link_printk(link, KERN_ERR,
3994 				"COMRESET failed (errno=%d)\n", rc);
3995 	}
3996 	DPRINTK("EXIT, rc=%d\n", rc);
3997 	return rc;
3998 }
3999 
4000 /**
4001  *	sata_std_hardreset - COMRESET w/o waiting or classification
4002  *	@link: link to reset
4003  *	@class: resulting class of attached device
4004  *	@deadline: deadline jiffies for the operation
4005  *
4006  *	Standard SATA COMRESET w/o waiting or classification.
4007  *
4008  *	LOCKING:
4009  *	Kernel thread context (may sleep)
4010  *
4011  *	RETURNS:
4012  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4013  */
4014 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4015 		       unsigned long deadline)
4016 {
4017 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4018 	bool online;
4019 	int rc;
4020 
4021 	/* do hardreset */
4022 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4023 	return online ? -EAGAIN : rc;
4024 }
4025 
4026 /**
4027  *	ata_std_postreset - standard postreset callback
4028  *	@link: the target ata_link
4029  *	@classes: classes of attached devices
4030  *
4031  *	This function is invoked after a successful reset.  Note that
4032  *	the device might have been reset more than once using
4033  *	different reset methods before postreset is invoked.
4034  *
4035  *	LOCKING:
4036  *	Kernel thread context (may sleep)
4037  */
4038 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4039 {
4040 	u32 serror;
4041 
4042 	DPRINTK("ENTER\n");
4043 
4044 	/* reset complete, clear SError */
4045 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4046 		sata_scr_write(link, SCR_ERROR, serror);
4047 
4048 	/* print link status */
4049 	sata_print_link_status(link);
4050 
4051 	DPRINTK("EXIT\n");
4052 }
4053 
4054 /**
4055  *	ata_dev_same_device - Determine whether new ID matches configured device
4056  *	@dev: device to compare against
4057  *	@new_class: class of the new device
4058  *	@new_id: IDENTIFY page of the new device
4059  *
4060  *	Compare @new_class and @new_id against @dev and determine
4061  *	whether @dev is the device indicated by @new_class and
4062  *	@new_id.
4063  *
4064  *	LOCKING:
4065  *	None.
4066  *
4067  *	RETURNS:
4068  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4069  */
4070 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4071 			       const u16 *new_id)
4072 {
4073 	const u16 *old_id = dev->id;
4074 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4075 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4076 
4077 	if (dev->class != new_class) {
4078 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4079 			       dev->class, new_class);
4080 		return 0;
4081 	}
4082 
4083 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4084 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4085 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4086 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4087 
4088 	if (strcmp(model[0], model[1])) {
4089 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4090 			       "'%s' != '%s'\n", model[0], model[1]);
4091 		return 0;
4092 	}
4093 
4094 	if (strcmp(serial[0], serial[1])) {
4095 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4096 			       "'%s' != '%s'\n", serial[0], serial[1]);
4097 		return 0;
4098 	}
4099 
4100 	return 1;
4101 }
4102 
4103 /**
4104  *	ata_dev_reread_id - Re-read IDENTIFY data
4105  *	@dev: target ATA device
4106  *	@readid_flags: read ID flags
4107  *
4108  *	Re-read IDENTIFY page and make sure @dev is still attached to
4109  *	the port.
4110  *
4111  *	LOCKING:
4112  *	Kernel thread context (may sleep)
4113  *
4114  *	RETURNS:
4115  *	0 on success, negative errno otherwise
4116  */
4117 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4118 {
4119 	unsigned int class = dev->class;
4120 	u16 *id = (void *)dev->link->ap->sector_buf;
4121 	int rc;
4122 
4123 	/* read ID data */
4124 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4125 	if (rc)
4126 		return rc;
4127 
4128 	/* is the device still there? */
4129 	if (!ata_dev_same_device(dev, class, id))
4130 		return -ENODEV;
4131 
4132 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4133 	return 0;
4134 }
4135 
4136 /**
4137  *	ata_dev_revalidate - Revalidate ATA device
4138  *	@dev: device to revalidate
4139  *	@new_class: new class code
4140  *	@readid_flags: read ID flags
4141  *
4142  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4143  *	port and reconfigure it according to the new IDENTIFY page.
4144  *
4145  *	LOCKING:
4146  *	Kernel thread context (may sleep)
4147  *
4148  *	RETURNS:
4149  *	0 on success, negative errno otherwise
4150  */
4151 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4152 		       unsigned int readid_flags)
4153 {
4154 	u64 n_sectors = dev->n_sectors;
4155 	u64 n_native_sectors = dev->n_native_sectors;
4156 	int rc;
4157 
4158 	if (!ata_dev_enabled(dev))
4159 		return -ENODEV;
4160 
4161 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4162 	if (ata_class_enabled(new_class) &&
4163 	    new_class != ATA_DEV_ATA &&
4164 	    new_class != ATA_DEV_ATAPI &&
4165 	    new_class != ATA_DEV_SEMB) {
4166 		ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4167 			       dev->class, new_class);
4168 		rc = -ENODEV;
4169 		goto fail;
4170 	}
4171 
4172 	/* re-read ID */
4173 	rc = ata_dev_reread_id(dev, readid_flags);
4174 	if (rc)
4175 		goto fail;
4176 
4177 	/* configure device according to the new ID */
4178 	rc = ata_dev_configure(dev);
4179 	if (rc)
4180 		goto fail;
4181 
4182 	/* verify n_sectors hasn't changed */
4183 	if (dev->class == ATA_DEV_ATA && n_sectors &&
4184 	    dev->n_sectors != n_sectors) {
4185 		ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch "
4186 			       "%llu != %llu\n",
4187 			       (unsigned long long)n_sectors,
4188 			       (unsigned long long)dev->n_sectors);
4189 		/*
4190 		 * Something could have caused HPA to be unlocked
4191 		 * involuntarily.  If n_native_sectors hasn't changed
4192 		 * and the new size matches it, keep the device.
4193 		 */
4194 		if (dev->n_native_sectors == n_native_sectors &&
4195 		    dev->n_sectors > n_sectors &&
4196 		    dev->n_sectors == n_native_sectors) {
4197 			ata_dev_printk(dev, KERN_WARNING,
4198 				       "new n_sectors matches native, probably "
4199 				       "late HPA unlock, continuing\n");
4200 			/* keep using the old n_sectors */
4201 			dev->n_sectors = n_sectors;
4202 		} else {
4203 			/* restore original n_[native]_sectors and fail */
4204 			dev->n_native_sectors = n_native_sectors;
4205 			dev->n_sectors = n_sectors;
4206 			rc = -ENODEV;
4207 			goto fail;
4208 		}
4209 	}
4210 
4211 	return 0;
4212 
4213  fail:
4214 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4215 	return rc;
4216 }
4217 
4218 struct ata_blacklist_entry {
4219 	const char *model_num;
4220 	const char *model_rev;
4221 	unsigned long horkage;
4222 };
4223 
4224 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4225 	/* Devices with DMA related problems under Linux */
4226 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4227 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4228 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4229 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4230 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4231 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4232 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4233 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4234 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4235 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
4236 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
4237 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4238 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4239 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4240 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4241 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4242 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
4243 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
4244 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4245 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4246 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4247 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4248 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4249 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4250 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4251 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4252 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4253 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4254 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4255 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4256 	/* Odd clown on sil3726/4726 PMPs */
4257 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4258 
4259 	/* Weird ATAPI devices */
4260 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4261 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4262 
4263 	/* Devices we expect to fail diagnostics */
4264 
4265 	/* Devices where NCQ should be avoided */
4266 	/* NCQ is slow */
4267 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4268 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4269 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4270 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4271 	/* NCQ is broken */
4272 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4273 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4274 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4275 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4276 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4277 
4278 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4279 	{ "ST31500341AS",	"SD15",		ATA_HORKAGE_NONCQ |
4280 						ATA_HORKAGE_FIRMWARE_WARN },
4281 	{ "ST31500341AS",	"SD16",		ATA_HORKAGE_NONCQ |
4282 						ATA_HORKAGE_FIRMWARE_WARN },
4283 	{ "ST31500341AS",	"SD17",		ATA_HORKAGE_NONCQ |
4284 						ATA_HORKAGE_FIRMWARE_WARN },
4285 	{ "ST31500341AS",	"SD18",		ATA_HORKAGE_NONCQ |
4286 						ATA_HORKAGE_FIRMWARE_WARN },
4287 	{ "ST31500341AS",	"SD19",		ATA_HORKAGE_NONCQ |
4288 						ATA_HORKAGE_FIRMWARE_WARN },
4289 
4290 	{ "ST31000333AS",	"SD15",		ATA_HORKAGE_NONCQ |
4291 						ATA_HORKAGE_FIRMWARE_WARN },
4292 	{ "ST31000333AS",	"SD16",		ATA_HORKAGE_NONCQ |
4293 						ATA_HORKAGE_FIRMWARE_WARN },
4294 	{ "ST31000333AS",	"SD17",		ATA_HORKAGE_NONCQ |
4295 						ATA_HORKAGE_FIRMWARE_WARN },
4296 	{ "ST31000333AS",	"SD18",		ATA_HORKAGE_NONCQ |
4297 						ATA_HORKAGE_FIRMWARE_WARN },
4298 	{ "ST31000333AS",	"SD19",		ATA_HORKAGE_NONCQ |
4299 						ATA_HORKAGE_FIRMWARE_WARN },
4300 
4301 	{ "ST3640623AS",	"SD15",		ATA_HORKAGE_NONCQ |
4302 						ATA_HORKAGE_FIRMWARE_WARN },
4303 	{ "ST3640623AS",	"SD16",		ATA_HORKAGE_NONCQ |
4304 						ATA_HORKAGE_FIRMWARE_WARN },
4305 	{ "ST3640623AS",	"SD17",		ATA_HORKAGE_NONCQ |
4306 						ATA_HORKAGE_FIRMWARE_WARN },
4307 	{ "ST3640623AS",	"SD18",		ATA_HORKAGE_NONCQ |
4308 						ATA_HORKAGE_FIRMWARE_WARN },
4309 	{ "ST3640623AS",	"SD19",		ATA_HORKAGE_NONCQ |
4310 						ATA_HORKAGE_FIRMWARE_WARN },
4311 
4312 	{ "ST3640323AS",	"SD15",		ATA_HORKAGE_NONCQ |
4313 						ATA_HORKAGE_FIRMWARE_WARN },
4314 	{ "ST3640323AS",	"SD16",		ATA_HORKAGE_NONCQ |
4315 						ATA_HORKAGE_FIRMWARE_WARN },
4316 	{ "ST3640323AS",	"SD17",		ATA_HORKAGE_NONCQ |
4317 						ATA_HORKAGE_FIRMWARE_WARN },
4318 	{ "ST3640323AS",	"SD18",		ATA_HORKAGE_NONCQ |
4319 						ATA_HORKAGE_FIRMWARE_WARN },
4320 	{ "ST3640323AS",	"SD19",		ATA_HORKAGE_NONCQ |
4321 						ATA_HORKAGE_FIRMWARE_WARN },
4322 
4323 	{ "ST3320813AS",	"SD15",		ATA_HORKAGE_NONCQ |
4324 						ATA_HORKAGE_FIRMWARE_WARN },
4325 	{ "ST3320813AS",	"SD16",		ATA_HORKAGE_NONCQ |
4326 						ATA_HORKAGE_FIRMWARE_WARN },
4327 	{ "ST3320813AS",	"SD17",		ATA_HORKAGE_NONCQ |
4328 						ATA_HORKAGE_FIRMWARE_WARN },
4329 	{ "ST3320813AS",	"SD18",		ATA_HORKAGE_NONCQ |
4330 						ATA_HORKAGE_FIRMWARE_WARN },
4331 	{ "ST3320813AS",	"SD19",		ATA_HORKAGE_NONCQ |
4332 						ATA_HORKAGE_FIRMWARE_WARN },
4333 
4334 	{ "ST3320613AS",	"SD15",		ATA_HORKAGE_NONCQ |
4335 						ATA_HORKAGE_FIRMWARE_WARN },
4336 	{ "ST3320613AS",	"SD16",		ATA_HORKAGE_NONCQ |
4337 						ATA_HORKAGE_FIRMWARE_WARN },
4338 	{ "ST3320613AS",	"SD17",		ATA_HORKAGE_NONCQ |
4339 						ATA_HORKAGE_FIRMWARE_WARN },
4340 	{ "ST3320613AS",	"SD18",		ATA_HORKAGE_NONCQ |
4341 						ATA_HORKAGE_FIRMWARE_WARN },
4342 	{ "ST3320613AS",	"SD19",		ATA_HORKAGE_NONCQ |
4343 						ATA_HORKAGE_FIRMWARE_WARN },
4344 
4345 	/* Blacklist entries taken from Silicon Image 3124/3132
4346 	   Windows driver .inf file - also several Linux problem reports */
4347 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4348 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4349 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4350 
4351 	/* devices which puke on READ_NATIVE_MAX */
4352 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4353 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4354 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4355 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4356 
4357 	/* this one allows HPA unlocking but fails IOs on the area */
4358 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4359 
4360 	/* Devices which report 1 sector over size HPA */
4361 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4362 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4363 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4364 
4365 	/* Devices which get the IVB wrong */
4366 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4367 	/* Maybe we should just blacklist TSSTcorp... */
4368 	{ "TSSTcorp CDDVDW SH-S202H", "SB00",	  ATA_HORKAGE_IVB, },
4369 	{ "TSSTcorp CDDVDW SH-S202H", "SB01",	  ATA_HORKAGE_IVB, },
4370 	{ "TSSTcorp CDDVDW SH-S202J", "SB00",	  ATA_HORKAGE_IVB, },
4371 	{ "TSSTcorp CDDVDW SH-S202J", "SB01",	  ATA_HORKAGE_IVB, },
4372 	{ "TSSTcorp CDDVDW SH-S202N", "SB00",	  ATA_HORKAGE_IVB, },
4373 	{ "TSSTcorp CDDVDW SH-S202N", "SB01",	  ATA_HORKAGE_IVB, },
4374 
4375 	/* Devices that do not need bridging limits applied */
4376 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4377 
4378 	/* Devices which aren't very happy with higher link speeds */
4379 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4380 
4381 	/*
4382 	 * Devices which choke on SETXFER.  Applies only if both the
4383 	 * device and controller are SATA.
4384 	 */
4385 	{ "PIONEER DVD-RW  DVRTD08",	"1.00",	ATA_HORKAGE_NOSETXFER },
4386 
4387 	/* End Marker */
4388 	{ }
4389 };
4390 
4391 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4392 {
4393 	const char *p;
4394 	int len;
4395 
4396 	/*
4397 	 * check for trailing wildcard: *\0
4398 	 */
4399 	p = strchr(patt, wildchar);
4400 	if (p && ((*(p + 1)) == 0))
4401 		len = p - patt;
4402 	else {
4403 		len = strlen(name);
4404 		if (!len) {
4405 			if (!*patt)
4406 				return 0;
4407 			return -1;
4408 		}
4409 	}
4410 
4411 	return strncmp(patt, name, len);
4412 }
4413 
4414 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4415 {
4416 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4417 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4418 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4419 
4420 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4421 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4422 
4423 	while (ad->model_num) {
4424 		if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4425 			if (ad->model_rev == NULL)
4426 				return ad->horkage;
4427 			if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4428 				return ad->horkage;
4429 		}
4430 		ad++;
4431 	}
4432 	return 0;
4433 }
4434 
4435 static int ata_dma_blacklisted(const struct ata_device *dev)
4436 {
4437 	/* We don't support polling DMA.
4438 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4439 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4440 	 */
4441 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4442 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4443 		return 1;
4444 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4445 }
4446 
4447 /**
4448  *	ata_is_40wire		-	check drive side detection
4449  *	@dev: device
4450  *
4451  *	Perform drive side detection decoding, allowing for device vendors
4452  *	who can't follow the documentation.
4453  */
4454 
4455 static int ata_is_40wire(struct ata_device *dev)
4456 {
4457 	if (dev->horkage & ATA_HORKAGE_IVB)
4458 		return ata_drive_40wire_relaxed(dev->id);
4459 	return ata_drive_40wire(dev->id);
4460 }
4461 
4462 /**
4463  *	cable_is_40wire		-	40/80/SATA decider
4464  *	@ap: port to consider
4465  *
4466  *	This function encapsulates the policy for speed management
4467  *	in one place. At the moment we don't cache the result but
4468  *	there is a good case for setting ap->cbl to the result when
4469  *	we are called with unknown cables (and figuring out if it
4470  *	impacts hotplug at all).
4471  *
4472  *	Return 1 if the cable appears to be 40 wire.
4473  */
4474 
4475 static int cable_is_40wire(struct ata_port *ap)
4476 {
4477 	struct ata_link *link;
4478 	struct ata_device *dev;
4479 
4480 	/* If the controller thinks we are 40 wire, we are. */
4481 	if (ap->cbl == ATA_CBL_PATA40)
4482 		return 1;
4483 
4484 	/* If the controller thinks we are 80 wire, we are. */
4485 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4486 		return 0;
4487 
4488 	/* If the system is known to be 40 wire short cable (eg
4489 	 * laptop), then we allow 80 wire modes even if the drive
4490 	 * isn't sure.
4491 	 */
4492 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4493 		return 0;
4494 
4495 	/* If the controller doesn't know, we scan.
4496 	 *
4497 	 * Note: We look for all 40 wire detects at this point.  Any
4498 	 *       80 wire detect is taken to be 80 wire cable because
4499 	 * - in many setups only the one drive (slave if present) will
4500 	 *   give a valid detect
4501 	 * - if you have a non detect capable drive you don't want it
4502 	 *   to colour the choice
4503 	 */
4504 	ata_for_each_link(link, ap, EDGE) {
4505 		ata_for_each_dev(dev, link, ENABLED) {
4506 			if (!ata_is_40wire(dev))
4507 				return 0;
4508 		}
4509 	}
4510 	return 1;
4511 }
4512 
4513 /**
4514  *	ata_dev_xfermask - Compute supported xfermask of the given device
4515  *	@dev: Device to compute xfermask for
4516  *
4517  *	Compute supported xfermask of @dev and store it in
4518  *	dev->*_mask.  This function is responsible for applying all
4519  *	known limits including host controller limits, device
4520  *	blacklist, etc...
4521  *
4522  *	LOCKING:
4523  *	None.
4524  */
4525 static void ata_dev_xfermask(struct ata_device *dev)
4526 {
4527 	struct ata_link *link = dev->link;
4528 	struct ata_port *ap = link->ap;
4529 	struct ata_host *host = ap->host;
4530 	unsigned long xfer_mask;
4531 
4532 	/* controller modes available */
4533 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4534 				      ap->mwdma_mask, ap->udma_mask);
4535 
4536 	/* drive modes available */
4537 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4538 				       dev->mwdma_mask, dev->udma_mask);
4539 	xfer_mask &= ata_id_xfermask(dev->id);
4540 
4541 	/*
4542 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4543 	 *	cable
4544 	 */
4545 	if (ata_dev_pair(dev)) {
4546 		/* No PIO5 or PIO6 */
4547 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4548 		/* No MWDMA3 or MWDMA 4 */
4549 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4550 	}
4551 
4552 	if (ata_dma_blacklisted(dev)) {
4553 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4554 		ata_dev_printk(dev, KERN_WARNING,
4555 			       "device is on DMA blacklist, disabling DMA\n");
4556 	}
4557 
4558 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4559 	    host->simplex_claimed && host->simplex_claimed != ap) {
4560 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4561 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4562 			       "other device, disabling DMA\n");
4563 	}
4564 
4565 	if (ap->flags & ATA_FLAG_NO_IORDY)
4566 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4567 
4568 	if (ap->ops->mode_filter)
4569 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4570 
4571 	/* Apply cable rule here.  Don't apply it early because when
4572 	 * we handle hot plug the cable type can itself change.
4573 	 * Check this last so that we know if the transfer rate was
4574 	 * solely limited by the cable.
4575 	 * Unknown or 80 wire cables reported host side are checked
4576 	 * drive side as well. Cases where we know a 40wire cable
4577 	 * is used safely for 80 are not checked here.
4578 	 */
4579 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4580 		/* UDMA/44 or higher would be available */
4581 		if (cable_is_40wire(ap)) {
4582 			ata_dev_printk(dev, KERN_WARNING,
4583 				 "limited to UDMA/33 due to 40-wire cable\n");
4584 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4585 		}
4586 
4587 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4588 			    &dev->mwdma_mask, &dev->udma_mask);
4589 }
4590 
4591 /**
4592  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4593  *	@dev: Device to which command will be sent
4594  *
4595  *	Issue SET FEATURES - XFER MODE command to device @dev
4596  *	on port @ap.
4597  *
4598  *	LOCKING:
4599  *	PCI/etc. bus probe sem.
4600  *
4601  *	RETURNS:
4602  *	0 on success, AC_ERR_* mask otherwise.
4603  */
4604 
4605 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4606 {
4607 	struct ata_taskfile tf;
4608 	unsigned int err_mask;
4609 
4610 	/* set up set-features taskfile */
4611 	DPRINTK("set features - xfer mode\n");
4612 
4613 	/* Some controllers and ATAPI devices show flaky interrupt
4614 	 * behavior after setting xfer mode.  Use polling instead.
4615 	 */
4616 	ata_tf_init(dev, &tf);
4617 	tf.command = ATA_CMD_SET_FEATURES;
4618 	tf.feature = SETFEATURES_XFER;
4619 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4620 	tf.protocol = ATA_PROT_NODATA;
4621 	/* If we are using IORDY we must send the mode setting command */
4622 	if (ata_pio_need_iordy(dev))
4623 		tf.nsect = dev->xfer_mode;
4624 	/* If the device has IORDY and the controller does not - turn it off */
4625  	else if (ata_id_has_iordy(dev->id))
4626 		tf.nsect = 0x01;
4627 	else /* In the ancient relic department - skip all of this */
4628 		return 0;
4629 
4630 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4631 
4632 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4633 	return err_mask;
4634 }
4635 /**
4636  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4637  *	@dev: Device to which command will be sent
4638  *	@enable: Whether to enable or disable the feature
4639  *	@feature: The sector count represents the feature to set
4640  *
4641  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4642  *	on port @ap with sector count
4643  *
4644  *	LOCKING:
4645  *	PCI/etc. bus probe sem.
4646  *
4647  *	RETURNS:
4648  *	0 on success, AC_ERR_* mask otherwise.
4649  */
4650 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4651 					u8 feature)
4652 {
4653 	struct ata_taskfile tf;
4654 	unsigned int err_mask;
4655 
4656 	/* set up set-features taskfile */
4657 	DPRINTK("set features - SATA features\n");
4658 
4659 	ata_tf_init(dev, &tf);
4660 	tf.command = ATA_CMD_SET_FEATURES;
4661 	tf.feature = enable;
4662 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4663 	tf.protocol = ATA_PROT_NODATA;
4664 	tf.nsect = feature;
4665 
4666 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4667 
4668 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4669 	return err_mask;
4670 }
4671 
4672 /**
4673  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4674  *	@dev: Device to which command will be sent
4675  *	@heads: Number of heads (taskfile parameter)
4676  *	@sectors: Number of sectors (taskfile parameter)
4677  *
4678  *	LOCKING:
4679  *	Kernel thread context (may sleep)
4680  *
4681  *	RETURNS:
4682  *	0 on success, AC_ERR_* mask otherwise.
4683  */
4684 static unsigned int ata_dev_init_params(struct ata_device *dev,
4685 					u16 heads, u16 sectors)
4686 {
4687 	struct ata_taskfile tf;
4688 	unsigned int err_mask;
4689 
4690 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4691 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4692 		return AC_ERR_INVALID;
4693 
4694 	/* set up init dev params taskfile */
4695 	DPRINTK("init dev params \n");
4696 
4697 	ata_tf_init(dev, &tf);
4698 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4699 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4700 	tf.protocol = ATA_PROT_NODATA;
4701 	tf.nsect = sectors;
4702 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4703 
4704 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4705 	/* A clean abort indicates an original or just out of spec drive
4706 	   and we should continue as we issue the setup based on the
4707 	   drive reported working geometry */
4708 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4709 		err_mask = 0;
4710 
4711 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4712 	return err_mask;
4713 }
4714 
4715 /**
4716  *	ata_sg_clean - Unmap DMA memory associated with command
4717  *	@qc: Command containing DMA memory to be released
4718  *
4719  *	Unmap all mapped DMA memory associated with this command.
4720  *
4721  *	LOCKING:
4722  *	spin_lock_irqsave(host lock)
4723  */
4724 void ata_sg_clean(struct ata_queued_cmd *qc)
4725 {
4726 	struct ata_port *ap = qc->ap;
4727 	struct scatterlist *sg = qc->sg;
4728 	int dir = qc->dma_dir;
4729 
4730 	WARN_ON_ONCE(sg == NULL);
4731 
4732 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4733 
4734 	if (qc->n_elem)
4735 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4736 
4737 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4738 	qc->sg = NULL;
4739 }
4740 
4741 /**
4742  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4743  *	@qc: Metadata associated with taskfile to check
4744  *
4745  *	Allow low-level driver to filter ATA PACKET commands, returning
4746  *	a status indicating whether or not it is OK to use DMA for the
4747  *	supplied PACKET command.
4748  *
4749  *	LOCKING:
4750  *	spin_lock_irqsave(host lock)
4751  *
4752  *	RETURNS: 0 when ATAPI DMA can be used
4753  *               nonzero otherwise
4754  */
4755 int atapi_check_dma(struct ata_queued_cmd *qc)
4756 {
4757 	struct ata_port *ap = qc->ap;
4758 
4759 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4760 	 * few ATAPI devices choke on such DMA requests.
4761 	 */
4762 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4763 	    unlikely(qc->nbytes & 15))
4764 		return 1;
4765 
4766 	if (ap->ops->check_atapi_dma)
4767 		return ap->ops->check_atapi_dma(qc);
4768 
4769 	return 0;
4770 }
4771 
4772 /**
4773  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4774  *	@qc: ATA command in question
4775  *
4776  *	Non-NCQ commands cannot run with any other command, NCQ or
4777  *	not.  As upper layer only knows the queue depth, we are
4778  *	responsible for maintaining exclusion.  This function checks
4779  *	whether a new command @qc can be issued.
4780  *
4781  *	LOCKING:
4782  *	spin_lock_irqsave(host lock)
4783  *
4784  *	RETURNS:
4785  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4786  */
4787 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4788 {
4789 	struct ata_link *link = qc->dev->link;
4790 
4791 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4792 		if (!ata_tag_valid(link->active_tag))
4793 			return 0;
4794 	} else {
4795 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4796 			return 0;
4797 	}
4798 
4799 	return ATA_DEFER_LINK;
4800 }
4801 
4802 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4803 
4804 /**
4805  *	ata_sg_init - Associate command with scatter-gather table.
4806  *	@qc: Command to be associated
4807  *	@sg: Scatter-gather table.
4808  *	@n_elem: Number of elements in s/g table.
4809  *
4810  *	Initialize the data-related elements of queued_cmd @qc
4811  *	to point to a scatter-gather table @sg, containing @n_elem
4812  *	elements.
4813  *
4814  *	LOCKING:
4815  *	spin_lock_irqsave(host lock)
4816  */
4817 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4818 		 unsigned int n_elem)
4819 {
4820 	qc->sg = sg;
4821 	qc->n_elem = n_elem;
4822 	qc->cursg = qc->sg;
4823 }
4824 
4825 /**
4826  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4827  *	@qc: Command with scatter-gather table to be mapped.
4828  *
4829  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4830  *
4831  *	LOCKING:
4832  *	spin_lock_irqsave(host lock)
4833  *
4834  *	RETURNS:
4835  *	Zero on success, negative on error.
4836  *
4837  */
4838 static int ata_sg_setup(struct ata_queued_cmd *qc)
4839 {
4840 	struct ata_port *ap = qc->ap;
4841 	unsigned int n_elem;
4842 
4843 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4844 
4845 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4846 	if (n_elem < 1)
4847 		return -1;
4848 
4849 	DPRINTK("%d sg elements mapped\n", n_elem);
4850 	qc->orig_n_elem = qc->n_elem;
4851 	qc->n_elem = n_elem;
4852 	qc->flags |= ATA_QCFLAG_DMAMAP;
4853 
4854 	return 0;
4855 }
4856 
4857 /**
4858  *	swap_buf_le16 - swap halves of 16-bit words in place
4859  *	@buf:  Buffer to swap
4860  *	@buf_words:  Number of 16-bit words in buffer.
4861  *
4862  *	Swap halves of 16-bit words if needed to convert from
4863  *	little-endian byte order to native cpu byte order, or
4864  *	vice-versa.
4865  *
4866  *	LOCKING:
4867  *	Inherited from caller.
4868  */
4869 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4870 {
4871 #ifdef __BIG_ENDIAN
4872 	unsigned int i;
4873 
4874 	for (i = 0; i < buf_words; i++)
4875 		buf[i] = le16_to_cpu(buf[i]);
4876 #endif /* __BIG_ENDIAN */
4877 }
4878 
4879 /**
4880  *	ata_qc_new - Request an available ATA command, for queueing
4881  *	@ap: target port
4882  *
4883  *	LOCKING:
4884  *	None.
4885  */
4886 
4887 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4888 {
4889 	struct ata_queued_cmd *qc = NULL;
4890 	unsigned int i;
4891 
4892 	/* no command while frozen */
4893 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4894 		return NULL;
4895 
4896 	/* the last tag is reserved for internal command. */
4897 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4898 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4899 			qc = __ata_qc_from_tag(ap, i);
4900 			break;
4901 		}
4902 
4903 	if (qc)
4904 		qc->tag = i;
4905 
4906 	return qc;
4907 }
4908 
4909 /**
4910  *	ata_qc_new_init - Request an available ATA command, and initialize it
4911  *	@dev: Device from whom we request an available command structure
4912  *
4913  *	LOCKING:
4914  *	None.
4915  */
4916 
4917 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4918 {
4919 	struct ata_port *ap = dev->link->ap;
4920 	struct ata_queued_cmd *qc;
4921 
4922 	qc = ata_qc_new(ap);
4923 	if (qc) {
4924 		qc->scsicmd = NULL;
4925 		qc->ap = ap;
4926 		qc->dev = dev;
4927 
4928 		ata_qc_reinit(qc);
4929 	}
4930 
4931 	return qc;
4932 }
4933 
4934 /**
4935  *	ata_qc_free - free unused ata_queued_cmd
4936  *	@qc: Command to complete
4937  *
4938  *	Designed to free unused ata_queued_cmd object
4939  *	in case something prevents using it.
4940  *
4941  *	LOCKING:
4942  *	spin_lock_irqsave(host lock)
4943  */
4944 void ata_qc_free(struct ata_queued_cmd *qc)
4945 {
4946 	struct ata_port *ap;
4947 	unsigned int tag;
4948 
4949 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4950 	ap = qc->ap;
4951 
4952 	qc->flags = 0;
4953 	tag = qc->tag;
4954 	if (likely(ata_tag_valid(tag))) {
4955 		qc->tag = ATA_TAG_POISON;
4956 		clear_bit(tag, &ap->qc_allocated);
4957 	}
4958 }
4959 
4960 void __ata_qc_complete(struct ata_queued_cmd *qc)
4961 {
4962 	struct ata_port *ap;
4963 	struct ata_link *link;
4964 
4965 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4966 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4967 	ap = qc->ap;
4968 	link = qc->dev->link;
4969 
4970 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4971 		ata_sg_clean(qc);
4972 
4973 	/* command should be marked inactive atomically with qc completion */
4974 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4975 		link->sactive &= ~(1 << qc->tag);
4976 		if (!link->sactive)
4977 			ap->nr_active_links--;
4978 	} else {
4979 		link->active_tag = ATA_TAG_POISON;
4980 		ap->nr_active_links--;
4981 	}
4982 
4983 	/* clear exclusive status */
4984 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4985 		     ap->excl_link == link))
4986 		ap->excl_link = NULL;
4987 
4988 	/* atapi: mark qc as inactive to prevent the interrupt handler
4989 	 * from completing the command twice later, before the error handler
4990 	 * is called. (when rc != 0 and atapi request sense is needed)
4991 	 */
4992 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4993 	ap->qc_active &= ~(1 << qc->tag);
4994 
4995 	/* call completion callback */
4996 	qc->complete_fn(qc);
4997 }
4998 
4999 static void fill_result_tf(struct ata_queued_cmd *qc)
5000 {
5001 	struct ata_port *ap = qc->ap;
5002 
5003 	qc->result_tf.flags = qc->tf.flags;
5004 	ap->ops->qc_fill_rtf(qc);
5005 }
5006 
5007 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5008 {
5009 	struct ata_device *dev = qc->dev;
5010 
5011 	if (ata_tag_internal(qc->tag))
5012 		return;
5013 
5014 	if (ata_is_nodata(qc->tf.protocol))
5015 		return;
5016 
5017 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5018 		return;
5019 
5020 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5021 }
5022 
5023 /**
5024  *	ata_qc_complete - Complete an active ATA command
5025  *	@qc: Command to complete
5026  *
5027  *	Indicate to the mid and upper layers that an ATA
5028  *	command has completed, with either an ok or not-ok status.
5029  *
5030  *	LOCKING:
5031  *	spin_lock_irqsave(host lock)
5032  */
5033 void ata_qc_complete(struct ata_queued_cmd *qc)
5034 {
5035 	struct ata_port *ap = qc->ap;
5036 
5037 	/* XXX: New EH and old EH use different mechanisms to
5038 	 * synchronize EH with regular execution path.
5039 	 *
5040 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5041 	 * Normal execution path is responsible for not accessing a
5042 	 * failed qc.  libata core enforces the rule by returning NULL
5043 	 * from ata_qc_from_tag() for failed qcs.
5044 	 *
5045 	 * Old EH depends on ata_qc_complete() nullifying completion
5046 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5047 	 * not synchronize with interrupt handler.  Only PIO task is
5048 	 * taken care of.
5049 	 */
5050 	if (ap->ops->error_handler) {
5051 		struct ata_device *dev = qc->dev;
5052 		struct ata_eh_info *ehi = &dev->link->eh_info;
5053 
5054 		if (unlikely(qc->err_mask))
5055 			qc->flags |= ATA_QCFLAG_FAILED;
5056 
5057 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5058 			/* always fill result TF for failed qc */
5059 			fill_result_tf(qc);
5060 
5061 			if (!ata_tag_internal(qc->tag))
5062 				ata_qc_schedule_eh(qc);
5063 			else
5064 				__ata_qc_complete(qc);
5065 			return;
5066 		}
5067 
5068 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5069 
5070 		/* read result TF if requested */
5071 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5072 			fill_result_tf(qc);
5073 
5074 		/* Some commands need post-processing after successful
5075 		 * completion.
5076 		 */
5077 		switch (qc->tf.command) {
5078 		case ATA_CMD_SET_FEATURES:
5079 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5080 			    qc->tf.feature != SETFEATURES_WC_OFF)
5081 				break;
5082 			/* fall through */
5083 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5084 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5085 			/* revalidate device */
5086 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5087 			ata_port_schedule_eh(ap);
5088 			break;
5089 
5090 		case ATA_CMD_SLEEP:
5091 			dev->flags |= ATA_DFLAG_SLEEPING;
5092 			break;
5093 		}
5094 
5095 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5096 			ata_verify_xfer(qc);
5097 
5098 		__ata_qc_complete(qc);
5099 	} else {
5100 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5101 			return;
5102 
5103 		/* read result TF if failed or requested */
5104 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5105 			fill_result_tf(qc);
5106 
5107 		__ata_qc_complete(qc);
5108 	}
5109 }
5110 
5111 /**
5112  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5113  *	@ap: port in question
5114  *	@qc_active: new qc_active mask
5115  *
5116  *	Complete in-flight commands.  This functions is meant to be
5117  *	called from low-level driver's interrupt routine to complete
5118  *	requests normally.  ap->qc_active and @qc_active is compared
5119  *	and commands are completed accordingly.
5120  *
5121  *	LOCKING:
5122  *	spin_lock_irqsave(host lock)
5123  *
5124  *	RETURNS:
5125  *	Number of completed commands on success, -errno otherwise.
5126  */
5127 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5128 {
5129 	int nr_done = 0;
5130 	u32 done_mask;
5131 
5132 	done_mask = ap->qc_active ^ qc_active;
5133 
5134 	if (unlikely(done_mask & qc_active)) {
5135 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5136 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5137 		return -EINVAL;
5138 	}
5139 
5140 	while (done_mask) {
5141 		struct ata_queued_cmd *qc;
5142 		unsigned int tag = __ffs(done_mask);
5143 
5144 		qc = ata_qc_from_tag(ap, tag);
5145 		if (qc) {
5146 			ata_qc_complete(qc);
5147 			nr_done++;
5148 		}
5149 		done_mask &= ~(1 << tag);
5150 	}
5151 
5152 	return nr_done;
5153 }
5154 
5155 /**
5156  *	ata_qc_issue - issue taskfile to device
5157  *	@qc: command to issue to device
5158  *
5159  *	Prepare an ATA command to submission to device.
5160  *	This includes mapping the data into a DMA-able
5161  *	area, filling in the S/G table, and finally
5162  *	writing the taskfile to hardware, starting the command.
5163  *
5164  *	LOCKING:
5165  *	spin_lock_irqsave(host lock)
5166  */
5167 void ata_qc_issue(struct ata_queued_cmd *qc)
5168 {
5169 	struct ata_port *ap = qc->ap;
5170 	struct ata_link *link = qc->dev->link;
5171 	u8 prot = qc->tf.protocol;
5172 
5173 	/* Make sure only one non-NCQ command is outstanding.  The
5174 	 * check is skipped for old EH because it reuses active qc to
5175 	 * request ATAPI sense.
5176 	 */
5177 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5178 
5179 	if (ata_is_ncq(prot)) {
5180 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5181 
5182 		if (!link->sactive)
5183 			ap->nr_active_links++;
5184 		link->sactive |= 1 << qc->tag;
5185 	} else {
5186 		WARN_ON_ONCE(link->sactive);
5187 
5188 		ap->nr_active_links++;
5189 		link->active_tag = qc->tag;
5190 	}
5191 
5192 	qc->flags |= ATA_QCFLAG_ACTIVE;
5193 	ap->qc_active |= 1 << qc->tag;
5194 
5195 	/* We guarantee to LLDs that they will have at least one
5196 	 * non-zero sg if the command is a data command.
5197 	 */
5198 	BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5199 
5200 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5201 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5202 		if (ata_sg_setup(qc))
5203 			goto sg_err;
5204 
5205 	/* if device is sleeping, schedule reset and abort the link */
5206 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5207 		link->eh_info.action |= ATA_EH_RESET;
5208 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5209 		ata_link_abort(link);
5210 		return;
5211 	}
5212 
5213 	ap->ops->qc_prep(qc);
5214 
5215 	qc->err_mask |= ap->ops->qc_issue(qc);
5216 	if (unlikely(qc->err_mask))
5217 		goto err;
5218 	return;
5219 
5220 sg_err:
5221 	qc->err_mask |= AC_ERR_SYSTEM;
5222 err:
5223 	ata_qc_complete(qc);
5224 }
5225 
5226 /**
5227  *	sata_scr_valid - test whether SCRs are accessible
5228  *	@link: ATA link to test SCR accessibility for
5229  *
5230  *	Test whether SCRs are accessible for @link.
5231  *
5232  *	LOCKING:
5233  *	None.
5234  *
5235  *	RETURNS:
5236  *	1 if SCRs are accessible, 0 otherwise.
5237  */
5238 int sata_scr_valid(struct ata_link *link)
5239 {
5240 	struct ata_port *ap = link->ap;
5241 
5242 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5243 }
5244 
5245 /**
5246  *	sata_scr_read - read SCR register of the specified port
5247  *	@link: ATA link to read SCR for
5248  *	@reg: SCR to read
5249  *	@val: Place to store read value
5250  *
5251  *	Read SCR register @reg of @link into *@val.  This function is
5252  *	guaranteed to succeed if @link is ap->link, the cable type of
5253  *	the port is SATA and the port implements ->scr_read.
5254  *
5255  *	LOCKING:
5256  *	None if @link is ap->link.  Kernel thread context otherwise.
5257  *
5258  *	RETURNS:
5259  *	0 on success, negative errno on failure.
5260  */
5261 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5262 {
5263 	if (ata_is_host_link(link)) {
5264 		if (sata_scr_valid(link))
5265 			return link->ap->ops->scr_read(link, reg, val);
5266 		return -EOPNOTSUPP;
5267 	}
5268 
5269 	return sata_pmp_scr_read(link, reg, val);
5270 }
5271 
5272 /**
5273  *	sata_scr_write - write SCR register of the specified port
5274  *	@link: ATA link to write SCR for
5275  *	@reg: SCR to write
5276  *	@val: value to write
5277  *
5278  *	Write @val to SCR register @reg of @link.  This function is
5279  *	guaranteed to succeed if @link is ap->link, the cable type of
5280  *	the port is SATA and the port implements ->scr_read.
5281  *
5282  *	LOCKING:
5283  *	None if @link is ap->link.  Kernel thread context otherwise.
5284  *
5285  *	RETURNS:
5286  *	0 on success, negative errno on failure.
5287  */
5288 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5289 {
5290 	if (ata_is_host_link(link)) {
5291 		if (sata_scr_valid(link))
5292 			return link->ap->ops->scr_write(link, reg, val);
5293 		return -EOPNOTSUPP;
5294 	}
5295 
5296 	return sata_pmp_scr_write(link, reg, val);
5297 }
5298 
5299 /**
5300  *	sata_scr_write_flush - write SCR register of the specified port and flush
5301  *	@link: ATA link to write SCR for
5302  *	@reg: SCR to write
5303  *	@val: value to write
5304  *
5305  *	This function is identical to sata_scr_write() except that this
5306  *	function performs flush after writing to the register.
5307  *
5308  *	LOCKING:
5309  *	None if @link is ap->link.  Kernel thread context otherwise.
5310  *
5311  *	RETURNS:
5312  *	0 on success, negative errno on failure.
5313  */
5314 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5315 {
5316 	if (ata_is_host_link(link)) {
5317 		int rc;
5318 
5319 		if (sata_scr_valid(link)) {
5320 			rc = link->ap->ops->scr_write(link, reg, val);
5321 			if (rc == 0)
5322 				rc = link->ap->ops->scr_read(link, reg, &val);
5323 			return rc;
5324 		}
5325 		return -EOPNOTSUPP;
5326 	}
5327 
5328 	return sata_pmp_scr_write(link, reg, val);
5329 }
5330 
5331 /**
5332  *	ata_phys_link_online - test whether the given link is online
5333  *	@link: ATA link to test
5334  *
5335  *	Test whether @link is online.  Note that this function returns
5336  *	0 if online status of @link cannot be obtained, so
5337  *	ata_link_online(link) != !ata_link_offline(link).
5338  *
5339  *	LOCKING:
5340  *	None.
5341  *
5342  *	RETURNS:
5343  *	True if the port online status is available and online.
5344  */
5345 bool ata_phys_link_online(struct ata_link *link)
5346 {
5347 	u32 sstatus;
5348 
5349 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5350 	    ata_sstatus_online(sstatus))
5351 		return true;
5352 	return false;
5353 }
5354 
5355 /**
5356  *	ata_phys_link_offline - test whether the given link is offline
5357  *	@link: ATA link to test
5358  *
5359  *	Test whether @link is offline.  Note that this function
5360  *	returns 0 if offline status of @link cannot be obtained, so
5361  *	ata_link_online(link) != !ata_link_offline(link).
5362  *
5363  *	LOCKING:
5364  *	None.
5365  *
5366  *	RETURNS:
5367  *	True if the port offline status is available and offline.
5368  */
5369 bool ata_phys_link_offline(struct ata_link *link)
5370 {
5371 	u32 sstatus;
5372 
5373 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5374 	    !ata_sstatus_online(sstatus))
5375 		return true;
5376 	return false;
5377 }
5378 
5379 /**
5380  *	ata_link_online - test whether the given link is online
5381  *	@link: ATA link to test
5382  *
5383  *	Test whether @link is online.  This is identical to
5384  *	ata_phys_link_online() when there's no slave link.  When
5385  *	there's a slave link, this function should only be called on
5386  *	the master link and will return true if any of M/S links is
5387  *	online.
5388  *
5389  *	LOCKING:
5390  *	None.
5391  *
5392  *	RETURNS:
5393  *	True if the port online status is available and online.
5394  */
5395 bool ata_link_online(struct ata_link *link)
5396 {
5397 	struct ata_link *slave = link->ap->slave_link;
5398 
5399 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5400 
5401 	return ata_phys_link_online(link) ||
5402 		(slave && ata_phys_link_online(slave));
5403 }
5404 
5405 /**
5406  *	ata_link_offline - test whether the given link is offline
5407  *	@link: ATA link to test
5408  *
5409  *	Test whether @link is offline.  This is identical to
5410  *	ata_phys_link_offline() when there's no slave link.  When
5411  *	there's a slave link, this function should only be called on
5412  *	the master link and will return true if both M/S links are
5413  *	offline.
5414  *
5415  *	LOCKING:
5416  *	None.
5417  *
5418  *	RETURNS:
5419  *	True if the port offline status is available and offline.
5420  */
5421 bool ata_link_offline(struct ata_link *link)
5422 {
5423 	struct ata_link *slave = link->ap->slave_link;
5424 
5425 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5426 
5427 	return ata_phys_link_offline(link) &&
5428 		(!slave || ata_phys_link_offline(slave));
5429 }
5430 
5431 #ifdef CONFIG_PM
5432 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5433 			       unsigned int action, unsigned int ehi_flags,
5434 			       int wait)
5435 {
5436 	unsigned long flags;
5437 	int i, rc;
5438 
5439 	for (i = 0; i < host->n_ports; i++) {
5440 		struct ata_port *ap = host->ports[i];
5441 		struct ata_link *link;
5442 
5443 		/* Previous resume operation might still be in
5444 		 * progress.  Wait for PM_PENDING to clear.
5445 		 */
5446 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5447 			ata_port_wait_eh(ap);
5448 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5449 		}
5450 
5451 		/* request PM ops to EH */
5452 		spin_lock_irqsave(ap->lock, flags);
5453 
5454 		ap->pm_mesg = mesg;
5455 		if (wait) {
5456 			rc = 0;
5457 			ap->pm_result = &rc;
5458 		}
5459 
5460 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5461 		ata_for_each_link(link, ap, HOST_FIRST) {
5462 			link->eh_info.action |= action;
5463 			link->eh_info.flags |= ehi_flags;
5464 		}
5465 
5466 		ata_port_schedule_eh(ap);
5467 
5468 		spin_unlock_irqrestore(ap->lock, flags);
5469 
5470 		/* wait and check result */
5471 		if (wait) {
5472 			ata_port_wait_eh(ap);
5473 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5474 			if (rc)
5475 				return rc;
5476 		}
5477 	}
5478 
5479 	return 0;
5480 }
5481 
5482 /**
5483  *	ata_host_suspend - suspend host
5484  *	@host: host to suspend
5485  *	@mesg: PM message
5486  *
5487  *	Suspend @host.  Actual operation is performed by EH.  This
5488  *	function requests EH to perform PM operations and waits for EH
5489  *	to finish.
5490  *
5491  *	LOCKING:
5492  *	Kernel thread context (may sleep).
5493  *
5494  *	RETURNS:
5495  *	0 on success, -errno on failure.
5496  */
5497 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5498 {
5499 	int rc;
5500 
5501 	/*
5502 	 * disable link pm on all ports before requesting
5503 	 * any pm activity
5504 	 */
5505 	ata_lpm_enable(host);
5506 
5507 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5508 	if (rc == 0)
5509 		host->dev->power.power_state = mesg;
5510 	return rc;
5511 }
5512 
5513 /**
5514  *	ata_host_resume - resume host
5515  *	@host: host to resume
5516  *
5517  *	Resume @host.  Actual operation is performed by EH.  This
5518  *	function requests EH to perform PM operations and returns.
5519  *	Note that all resume operations are performed parallely.
5520  *
5521  *	LOCKING:
5522  *	Kernel thread context (may sleep).
5523  */
5524 void ata_host_resume(struct ata_host *host)
5525 {
5526 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5527 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5528 	host->dev->power.power_state = PMSG_ON;
5529 
5530 	/* reenable link pm */
5531 	ata_lpm_disable(host);
5532 }
5533 #endif
5534 
5535 /**
5536  *	ata_port_start - Set port up for dma.
5537  *	@ap: Port to initialize
5538  *
5539  *	Called just after data structures for each port are
5540  *	initialized.  Allocates space for PRD table.
5541  *
5542  *	May be used as the port_start() entry in ata_port_operations.
5543  *
5544  *	LOCKING:
5545  *	Inherited from caller.
5546  */
5547 int ata_port_start(struct ata_port *ap)
5548 {
5549 	struct device *dev = ap->dev;
5550 
5551 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5552 				      GFP_KERNEL);
5553 	if (!ap->prd)
5554 		return -ENOMEM;
5555 
5556 	return 0;
5557 }
5558 
5559 /**
5560  *	ata_dev_init - Initialize an ata_device structure
5561  *	@dev: Device structure to initialize
5562  *
5563  *	Initialize @dev in preparation for probing.
5564  *
5565  *	LOCKING:
5566  *	Inherited from caller.
5567  */
5568 void ata_dev_init(struct ata_device *dev)
5569 {
5570 	struct ata_link *link = ata_dev_phys_link(dev);
5571 	struct ata_port *ap = link->ap;
5572 	unsigned long flags;
5573 
5574 	/* SATA spd limit is bound to the attached device, reset together */
5575 	link->sata_spd_limit = link->hw_sata_spd_limit;
5576 	link->sata_spd = 0;
5577 
5578 	/* High bits of dev->flags are used to record warm plug
5579 	 * requests which occur asynchronously.  Synchronize using
5580 	 * host lock.
5581 	 */
5582 	spin_lock_irqsave(ap->lock, flags);
5583 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5584 	dev->horkage = 0;
5585 	spin_unlock_irqrestore(ap->lock, flags);
5586 
5587 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5588 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5589 	dev->pio_mask = UINT_MAX;
5590 	dev->mwdma_mask = UINT_MAX;
5591 	dev->udma_mask = UINT_MAX;
5592 }
5593 
5594 /**
5595  *	ata_link_init - Initialize an ata_link structure
5596  *	@ap: ATA port link is attached to
5597  *	@link: Link structure to initialize
5598  *	@pmp: Port multiplier port number
5599  *
5600  *	Initialize @link.
5601  *
5602  *	LOCKING:
5603  *	Kernel thread context (may sleep)
5604  */
5605 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5606 {
5607 	int i;
5608 
5609 	/* clear everything except for devices */
5610 	memset(link, 0, offsetof(struct ata_link, device[0]));
5611 
5612 	link->ap = ap;
5613 	link->pmp = pmp;
5614 	link->active_tag = ATA_TAG_POISON;
5615 	link->hw_sata_spd_limit = UINT_MAX;
5616 
5617 	/* can't use iterator, ap isn't initialized yet */
5618 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5619 		struct ata_device *dev = &link->device[i];
5620 
5621 		dev->link = link;
5622 		dev->devno = dev - link->device;
5623 #ifdef CONFIG_ATA_ACPI
5624 		dev->gtf_filter = ata_acpi_gtf_filter;
5625 #endif
5626 		ata_dev_init(dev);
5627 	}
5628 }
5629 
5630 /**
5631  *	sata_link_init_spd - Initialize link->sata_spd_limit
5632  *	@link: Link to configure sata_spd_limit for
5633  *
5634  *	Initialize @link->[hw_]sata_spd_limit to the currently
5635  *	configured value.
5636  *
5637  *	LOCKING:
5638  *	Kernel thread context (may sleep).
5639  *
5640  *	RETURNS:
5641  *	0 on success, -errno on failure.
5642  */
5643 int sata_link_init_spd(struct ata_link *link)
5644 {
5645 	u8 spd;
5646 	int rc;
5647 
5648 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5649 	if (rc)
5650 		return rc;
5651 
5652 	spd = (link->saved_scontrol >> 4) & 0xf;
5653 	if (spd)
5654 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5655 
5656 	ata_force_link_limits(link);
5657 
5658 	link->sata_spd_limit = link->hw_sata_spd_limit;
5659 
5660 	return 0;
5661 }
5662 
5663 /**
5664  *	ata_port_alloc - allocate and initialize basic ATA port resources
5665  *	@host: ATA host this allocated port belongs to
5666  *
5667  *	Allocate and initialize basic ATA port resources.
5668  *
5669  *	RETURNS:
5670  *	Allocate ATA port on success, NULL on failure.
5671  *
5672  *	LOCKING:
5673  *	Inherited from calling layer (may sleep).
5674  */
5675 struct ata_port *ata_port_alloc(struct ata_host *host)
5676 {
5677 	struct ata_port *ap;
5678 
5679 	DPRINTK("ENTER\n");
5680 
5681 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5682 	if (!ap)
5683 		return NULL;
5684 
5685 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5686 	ap->lock = &host->lock;
5687 	ap->flags = ATA_FLAG_DISABLED;
5688 	ap->print_id = -1;
5689 	ap->ctl = ATA_DEVCTL_OBS;
5690 	ap->host = host;
5691 	ap->dev = host->dev;
5692 	ap->last_ctl = 0xFF;
5693 
5694 #if defined(ATA_VERBOSE_DEBUG)
5695 	/* turn on all debugging levels */
5696 	ap->msg_enable = 0x00FF;
5697 #elif defined(ATA_DEBUG)
5698 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5699 #else
5700 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5701 #endif
5702 
5703 #ifdef CONFIG_ATA_SFF
5704 	INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5705 #else
5706 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5707 #endif
5708 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5709 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5710 	INIT_LIST_HEAD(&ap->eh_done_q);
5711 	init_waitqueue_head(&ap->eh_wait_q);
5712 	init_completion(&ap->park_req_pending);
5713 	init_timer_deferrable(&ap->fastdrain_timer);
5714 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5715 	ap->fastdrain_timer.data = (unsigned long)ap;
5716 
5717 	ap->cbl = ATA_CBL_NONE;
5718 
5719 	ata_link_init(ap, &ap->link, 0);
5720 
5721 #ifdef ATA_IRQ_TRAP
5722 	ap->stats.unhandled_irq = 1;
5723 	ap->stats.idle_irq = 1;
5724 #endif
5725 	return ap;
5726 }
5727 
5728 static void ata_host_release(struct device *gendev, void *res)
5729 {
5730 	struct ata_host *host = dev_get_drvdata(gendev);
5731 	int i;
5732 
5733 	for (i = 0; i < host->n_ports; i++) {
5734 		struct ata_port *ap = host->ports[i];
5735 
5736 		if (!ap)
5737 			continue;
5738 
5739 		if (ap->scsi_host)
5740 			scsi_host_put(ap->scsi_host);
5741 
5742 		kfree(ap->pmp_link);
5743 		kfree(ap->slave_link);
5744 		kfree(ap);
5745 		host->ports[i] = NULL;
5746 	}
5747 
5748 	dev_set_drvdata(gendev, NULL);
5749 }
5750 
5751 /**
5752  *	ata_host_alloc - allocate and init basic ATA host resources
5753  *	@dev: generic device this host is associated with
5754  *	@max_ports: maximum number of ATA ports associated with this host
5755  *
5756  *	Allocate and initialize basic ATA host resources.  LLD calls
5757  *	this function to allocate a host, initializes it fully and
5758  *	attaches it using ata_host_register().
5759  *
5760  *	@max_ports ports are allocated and host->n_ports is
5761  *	initialized to @max_ports.  The caller is allowed to decrease
5762  *	host->n_ports before calling ata_host_register().  The unused
5763  *	ports will be automatically freed on registration.
5764  *
5765  *	RETURNS:
5766  *	Allocate ATA host on success, NULL on failure.
5767  *
5768  *	LOCKING:
5769  *	Inherited from calling layer (may sleep).
5770  */
5771 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5772 {
5773 	struct ata_host *host;
5774 	size_t sz;
5775 	int i;
5776 
5777 	DPRINTK("ENTER\n");
5778 
5779 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5780 		return NULL;
5781 
5782 	/* alloc a container for our list of ATA ports (buses) */
5783 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5784 	/* alloc a container for our list of ATA ports (buses) */
5785 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5786 	if (!host)
5787 		goto err_out;
5788 
5789 	devres_add(dev, host);
5790 	dev_set_drvdata(dev, host);
5791 
5792 	spin_lock_init(&host->lock);
5793 	host->dev = dev;
5794 	host->n_ports = max_ports;
5795 
5796 	/* allocate ports bound to this host */
5797 	for (i = 0; i < max_ports; i++) {
5798 		struct ata_port *ap;
5799 
5800 		ap = ata_port_alloc(host);
5801 		if (!ap)
5802 			goto err_out;
5803 
5804 		ap->port_no = i;
5805 		host->ports[i] = ap;
5806 	}
5807 
5808 	devres_remove_group(dev, NULL);
5809 	return host;
5810 
5811  err_out:
5812 	devres_release_group(dev, NULL);
5813 	return NULL;
5814 }
5815 
5816 /**
5817  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5818  *	@dev: generic device this host is associated with
5819  *	@ppi: array of ATA port_info to initialize host with
5820  *	@n_ports: number of ATA ports attached to this host
5821  *
5822  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5823  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5824  *	last entry will be used for the remaining ports.
5825  *
5826  *	RETURNS:
5827  *	Allocate ATA host on success, NULL on failure.
5828  *
5829  *	LOCKING:
5830  *	Inherited from calling layer (may sleep).
5831  */
5832 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5833 				      const struct ata_port_info * const * ppi,
5834 				      int n_ports)
5835 {
5836 	const struct ata_port_info *pi;
5837 	struct ata_host *host;
5838 	int i, j;
5839 
5840 	host = ata_host_alloc(dev, n_ports);
5841 	if (!host)
5842 		return NULL;
5843 
5844 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5845 		struct ata_port *ap = host->ports[i];
5846 
5847 		if (ppi[j])
5848 			pi = ppi[j++];
5849 
5850 		ap->pio_mask = pi->pio_mask;
5851 		ap->mwdma_mask = pi->mwdma_mask;
5852 		ap->udma_mask = pi->udma_mask;
5853 		ap->flags |= pi->flags;
5854 		ap->link.flags |= pi->link_flags;
5855 		ap->ops = pi->port_ops;
5856 
5857 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5858 			host->ops = pi->port_ops;
5859 	}
5860 
5861 	return host;
5862 }
5863 
5864 /**
5865  *	ata_slave_link_init - initialize slave link
5866  *	@ap: port to initialize slave link for
5867  *
5868  *	Create and initialize slave link for @ap.  This enables slave
5869  *	link handling on the port.
5870  *
5871  *	In libata, a port contains links and a link contains devices.
5872  *	There is single host link but if a PMP is attached to it,
5873  *	there can be multiple fan-out links.  On SATA, there's usually
5874  *	a single device connected to a link but PATA and SATA
5875  *	controllers emulating TF based interface can have two - master
5876  *	and slave.
5877  *
5878  *	However, there are a few controllers which don't fit into this
5879  *	abstraction too well - SATA controllers which emulate TF
5880  *	interface with both master and slave devices but also have
5881  *	separate SCR register sets for each device.  These controllers
5882  *	need separate links for physical link handling
5883  *	(e.g. onlineness, link speed) but should be treated like a
5884  *	traditional M/S controller for everything else (e.g. command
5885  *	issue, softreset).
5886  *
5887  *	slave_link is libata's way of handling this class of
5888  *	controllers without impacting core layer too much.  For
5889  *	anything other than physical link handling, the default host
5890  *	link is used for both master and slave.  For physical link
5891  *	handling, separate @ap->slave_link is used.  All dirty details
5892  *	are implemented inside libata core layer.  From LLD's POV, the
5893  *	only difference is that prereset, hardreset and postreset are
5894  *	called once more for the slave link, so the reset sequence
5895  *	looks like the following.
5896  *
5897  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5898  *	softreset(M) -> postreset(M) -> postreset(S)
5899  *
5900  *	Note that softreset is called only for the master.  Softreset
5901  *	resets both M/S by definition, so SRST on master should handle
5902  *	both (the standard method will work just fine).
5903  *
5904  *	LOCKING:
5905  *	Should be called before host is registered.
5906  *
5907  *	RETURNS:
5908  *	0 on success, -errno on failure.
5909  */
5910 int ata_slave_link_init(struct ata_port *ap)
5911 {
5912 	struct ata_link *link;
5913 
5914 	WARN_ON(ap->slave_link);
5915 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5916 
5917 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5918 	if (!link)
5919 		return -ENOMEM;
5920 
5921 	ata_link_init(ap, link, 1);
5922 	ap->slave_link = link;
5923 	return 0;
5924 }
5925 
5926 static void ata_host_stop(struct device *gendev, void *res)
5927 {
5928 	struct ata_host *host = dev_get_drvdata(gendev);
5929 	int i;
5930 
5931 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5932 
5933 	for (i = 0; i < host->n_ports; i++) {
5934 		struct ata_port *ap = host->ports[i];
5935 
5936 		if (ap->ops->port_stop)
5937 			ap->ops->port_stop(ap);
5938 	}
5939 
5940 	if (host->ops->host_stop)
5941 		host->ops->host_stop(host);
5942 }
5943 
5944 /**
5945  *	ata_finalize_port_ops - finalize ata_port_operations
5946  *	@ops: ata_port_operations to finalize
5947  *
5948  *	An ata_port_operations can inherit from another ops and that
5949  *	ops can again inherit from another.  This can go on as many
5950  *	times as necessary as long as there is no loop in the
5951  *	inheritance chain.
5952  *
5953  *	Ops tables are finalized when the host is started.  NULL or
5954  *	unspecified entries are inherited from the closet ancestor
5955  *	which has the method and the entry is populated with it.
5956  *	After finalization, the ops table directly points to all the
5957  *	methods and ->inherits is no longer necessary and cleared.
5958  *
5959  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5960  *
5961  *	LOCKING:
5962  *	None.
5963  */
5964 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5965 {
5966 	static DEFINE_SPINLOCK(lock);
5967 	const struct ata_port_operations *cur;
5968 	void **begin = (void **)ops;
5969 	void **end = (void **)&ops->inherits;
5970 	void **pp;
5971 
5972 	if (!ops || !ops->inherits)
5973 		return;
5974 
5975 	spin_lock(&lock);
5976 
5977 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5978 		void **inherit = (void **)cur;
5979 
5980 		for (pp = begin; pp < end; pp++, inherit++)
5981 			if (!*pp)
5982 				*pp = *inherit;
5983 	}
5984 
5985 	for (pp = begin; pp < end; pp++)
5986 		if (IS_ERR(*pp))
5987 			*pp = NULL;
5988 
5989 	ops->inherits = NULL;
5990 
5991 	spin_unlock(&lock);
5992 }
5993 
5994 /**
5995  *	ata_host_start - start and freeze ports of an ATA host
5996  *	@host: ATA host to start ports for
5997  *
5998  *	Start and then freeze ports of @host.  Started status is
5999  *	recorded in host->flags, so this function can be called
6000  *	multiple times.  Ports are guaranteed to get started only
6001  *	once.  If host->ops isn't initialized yet, its set to the
6002  *	first non-dummy port ops.
6003  *
6004  *	LOCKING:
6005  *	Inherited from calling layer (may sleep).
6006  *
6007  *	RETURNS:
6008  *	0 if all ports are started successfully, -errno otherwise.
6009  */
6010 int ata_host_start(struct ata_host *host)
6011 {
6012 	int have_stop = 0;
6013 	void *start_dr = NULL;
6014 	int i, rc;
6015 
6016 	if (host->flags & ATA_HOST_STARTED)
6017 		return 0;
6018 
6019 	ata_finalize_port_ops(host->ops);
6020 
6021 	for (i = 0; i < host->n_ports; i++) {
6022 		struct ata_port *ap = host->ports[i];
6023 
6024 		ata_finalize_port_ops(ap->ops);
6025 
6026 		if (!host->ops && !ata_port_is_dummy(ap))
6027 			host->ops = ap->ops;
6028 
6029 		if (ap->ops->port_stop)
6030 			have_stop = 1;
6031 	}
6032 
6033 	if (host->ops->host_stop)
6034 		have_stop = 1;
6035 
6036 	if (have_stop) {
6037 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6038 		if (!start_dr)
6039 			return -ENOMEM;
6040 	}
6041 
6042 	for (i = 0; i < host->n_ports; i++) {
6043 		struct ata_port *ap = host->ports[i];
6044 
6045 		if (ap->ops->port_start) {
6046 			rc = ap->ops->port_start(ap);
6047 			if (rc) {
6048 				if (rc != -ENODEV)
6049 					dev_printk(KERN_ERR, host->dev,
6050 						"failed to start port %d "
6051 						"(errno=%d)\n", i, rc);
6052 				goto err_out;
6053 			}
6054 		}
6055 		ata_eh_freeze_port(ap);
6056 	}
6057 
6058 	if (start_dr)
6059 		devres_add(host->dev, start_dr);
6060 	host->flags |= ATA_HOST_STARTED;
6061 	return 0;
6062 
6063  err_out:
6064 	while (--i >= 0) {
6065 		struct ata_port *ap = host->ports[i];
6066 
6067 		if (ap->ops->port_stop)
6068 			ap->ops->port_stop(ap);
6069 	}
6070 	devres_free(start_dr);
6071 	return rc;
6072 }
6073 
6074 /**
6075  *	ata_sas_host_init - Initialize a host struct
6076  *	@host:	host to initialize
6077  *	@dev:	device host is attached to
6078  *	@flags:	host flags
6079  *	@ops:	port_ops
6080  *
6081  *	LOCKING:
6082  *	PCI/etc. bus probe sem.
6083  *
6084  */
6085 /* KILLME - the only user left is ipr */
6086 void ata_host_init(struct ata_host *host, struct device *dev,
6087 		   unsigned long flags, struct ata_port_operations *ops)
6088 {
6089 	spin_lock_init(&host->lock);
6090 	host->dev = dev;
6091 	host->flags = flags;
6092 	host->ops = ops;
6093 }
6094 
6095 
6096 static void async_port_probe(void *data, async_cookie_t cookie)
6097 {
6098 	int rc;
6099 	struct ata_port *ap = data;
6100 
6101 	/*
6102 	 * If we're not allowed to scan this host in parallel,
6103 	 * we need to wait until all previous scans have completed
6104 	 * before going further.
6105 	 * Jeff Garzik says this is only within a controller, so we
6106 	 * don't need to wait for port 0, only for later ports.
6107 	 */
6108 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6109 		async_synchronize_cookie(cookie);
6110 
6111 	/* probe */
6112 	if (ap->ops->error_handler) {
6113 		struct ata_eh_info *ehi = &ap->link.eh_info;
6114 		unsigned long flags;
6115 
6116 		ata_port_probe(ap);
6117 
6118 		/* kick EH for boot probing */
6119 		spin_lock_irqsave(ap->lock, flags);
6120 
6121 		ehi->probe_mask |= ATA_ALL_DEVICES;
6122 		ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6123 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6124 
6125 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6126 		ap->pflags |= ATA_PFLAG_LOADING;
6127 		ata_port_schedule_eh(ap);
6128 
6129 		spin_unlock_irqrestore(ap->lock, flags);
6130 
6131 		/* wait for EH to finish */
6132 		ata_port_wait_eh(ap);
6133 	} else {
6134 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6135 		rc = ata_bus_probe(ap);
6136 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6137 
6138 		if (rc) {
6139 			/* FIXME: do something useful here?
6140 			 * Current libata behavior will
6141 			 * tear down everything when
6142 			 * the module is removed
6143 			 * or the h/w is unplugged.
6144 			 */
6145 		}
6146 	}
6147 
6148 	/* in order to keep device order, we need to synchronize at this point */
6149 	async_synchronize_cookie(cookie);
6150 
6151 	ata_scsi_scan_host(ap, 1);
6152 
6153 }
6154 /**
6155  *	ata_host_register - register initialized ATA host
6156  *	@host: ATA host to register
6157  *	@sht: template for SCSI host
6158  *
6159  *	Register initialized ATA host.  @host is allocated using
6160  *	ata_host_alloc() and fully initialized by LLD.  This function
6161  *	starts ports, registers @host with ATA and SCSI layers and
6162  *	probe registered devices.
6163  *
6164  *	LOCKING:
6165  *	Inherited from calling layer (may sleep).
6166  *
6167  *	RETURNS:
6168  *	0 on success, -errno otherwise.
6169  */
6170 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6171 {
6172 	int i, rc;
6173 
6174 	/* host must have been started */
6175 	if (!(host->flags & ATA_HOST_STARTED)) {
6176 		dev_printk(KERN_ERR, host->dev,
6177 			   "BUG: trying to register unstarted host\n");
6178 		WARN_ON(1);
6179 		return -EINVAL;
6180 	}
6181 
6182 	/* Blow away unused ports.  This happens when LLD can't
6183 	 * determine the exact number of ports to allocate at
6184 	 * allocation time.
6185 	 */
6186 	for (i = host->n_ports; host->ports[i]; i++)
6187 		kfree(host->ports[i]);
6188 
6189 	/* give ports names and add SCSI hosts */
6190 	for (i = 0; i < host->n_ports; i++)
6191 		host->ports[i]->print_id = ata_print_id++;
6192 
6193 	rc = ata_scsi_add_hosts(host, sht);
6194 	if (rc)
6195 		return rc;
6196 
6197 	/* associate with ACPI nodes */
6198 	ata_acpi_associate(host);
6199 
6200 	/* set cable, sata_spd_limit and report */
6201 	for (i = 0; i < host->n_ports; i++) {
6202 		struct ata_port *ap = host->ports[i];
6203 		unsigned long xfer_mask;
6204 
6205 		/* set SATA cable type if still unset */
6206 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6207 			ap->cbl = ATA_CBL_SATA;
6208 
6209 		/* init sata_spd_limit to the current value */
6210 		sata_link_init_spd(&ap->link);
6211 		if (ap->slave_link)
6212 			sata_link_init_spd(ap->slave_link);
6213 
6214 		/* print per-port info to dmesg */
6215 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6216 					      ap->udma_mask);
6217 
6218 		if (!ata_port_is_dummy(ap)) {
6219 			ata_port_printk(ap, KERN_INFO,
6220 					"%cATA max %s %s\n",
6221 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6222 					ata_mode_string(xfer_mask),
6223 					ap->link.eh_info.desc);
6224 			ata_ehi_clear_desc(&ap->link.eh_info);
6225 		} else
6226 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6227 	}
6228 
6229 	/* perform each probe asynchronously */
6230 	for (i = 0; i < host->n_ports; i++) {
6231 		struct ata_port *ap = host->ports[i];
6232 		async_schedule(async_port_probe, ap);
6233 	}
6234 
6235 	return 0;
6236 }
6237 
6238 /**
6239  *	ata_host_activate - start host, request IRQ and register it
6240  *	@host: target ATA host
6241  *	@irq: IRQ to request
6242  *	@irq_handler: irq_handler used when requesting IRQ
6243  *	@irq_flags: irq_flags used when requesting IRQ
6244  *	@sht: scsi_host_template to use when registering the host
6245  *
6246  *	After allocating an ATA host and initializing it, most libata
6247  *	LLDs perform three steps to activate the host - start host,
6248  *	request IRQ and register it.  This helper takes necessasry
6249  *	arguments and performs the three steps in one go.
6250  *
6251  *	An invalid IRQ skips the IRQ registration and expects the host to
6252  *	have set polling mode on the port. In this case, @irq_handler
6253  *	should be NULL.
6254  *
6255  *	LOCKING:
6256  *	Inherited from calling layer (may sleep).
6257  *
6258  *	RETURNS:
6259  *	0 on success, -errno otherwise.
6260  */
6261 int ata_host_activate(struct ata_host *host, int irq,
6262 		      irq_handler_t irq_handler, unsigned long irq_flags,
6263 		      struct scsi_host_template *sht)
6264 {
6265 	int i, rc;
6266 
6267 	rc = ata_host_start(host);
6268 	if (rc)
6269 		return rc;
6270 
6271 	/* Special case for polling mode */
6272 	if (!irq) {
6273 		WARN_ON(irq_handler);
6274 		return ata_host_register(host, sht);
6275 	}
6276 
6277 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6278 			      dev_driver_string(host->dev), host);
6279 	if (rc)
6280 		return rc;
6281 
6282 	for (i = 0; i < host->n_ports; i++)
6283 		ata_port_desc(host->ports[i], "irq %d", irq);
6284 
6285 	rc = ata_host_register(host, sht);
6286 	/* if failed, just free the IRQ and leave ports alone */
6287 	if (rc)
6288 		devm_free_irq(host->dev, irq, host);
6289 
6290 	return rc;
6291 }
6292 
6293 /**
6294  *	ata_port_detach - Detach ATA port in prepration of device removal
6295  *	@ap: ATA port to be detached
6296  *
6297  *	Detach all ATA devices and the associated SCSI devices of @ap;
6298  *	then, remove the associated SCSI host.  @ap is guaranteed to
6299  *	be quiescent on return from this function.
6300  *
6301  *	LOCKING:
6302  *	Kernel thread context (may sleep).
6303  */
6304 static void ata_port_detach(struct ata_port *ap)
6305 {
6306 	unsigned long flags;
6307 
6308 	if (!ap->ops->error_handler)
6309 		goto skip_eh;
6310 
6311 	/* tell EH we're leaving & flush EH */
6312 	spin_lock_irqsave(ap->lock, flags);
6313 	ap->pflags |= ATA_PFLAG_UNLOADING;
6314 	ata_port_schedule_eh(ap);
6315 	spin_unlock_irqrestore(ap->lock, flags);
6316 
6317 	/* wait till EH commits suicide */
6318 	ata_port_wait_eh(ap);
6319 
6320 	/* it better be dead now */
6321 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6322 
6323 	cancel_rearming_delayed_work(&ap->hotplug_task);
6324 
6325  skip_eh:
6326 	/* remove the associated SCSI host */
6327 	scsi_remove_host(ap->scsi_host);
6328 }
6329 
6330 /**
6331  *	ata_host_detach - Detach all ports of an ATA host
6332  *	@host: Host to detach
6333  *
6334  *	Detach all ports of @host.
6335  *
6336  *	LOCKING:
6337  *	Kernel thread context (may sleep).
6338  */
6339 void ata_host_detach(struct ata_host *host)
6340 {
6341 	int i;
6342 
6343 	for (i = 0; i < host->n_ports; i++)
6344 		ata_port_detach(host->ports[i]);
6345 
6346 	/* the host is dead now, dissociate ACPI */
6347 	ata_acpi_dissociate(host);
6348 }
6349 
6350 #ifdef CONFIG_PCI
6351 
6352 /**
6353  *	ata_pci_remove_one - PCI layer callback for device removal
6354  *	@pdev: PCI device that was removed
6355  *
6356  *	PCI layer indicates to libata via this hook that hot-unplug or
6357  *	module unload event has occurred.  Detach all ports.  Resource
6358  *	release is handled via devres.
6359  *
6360  *	LOCKING:
6361  *	Inherited from PCI layer (may sleep).
6362  */
6363 void ata_pci_remove_one(struct pci_dev *pdev)
6364 {
6365 	struct device *dev = &pdev->dev;
6366 	struct ata_host *host = dev_get_drvdata(dev);
6367 
6368 	ata_host_detach(host);
6369 }
6370 
6371 /* move to PCI subsystem */
6372 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6373 {
6374 	unsigned long tmp = 0;
6375 
6376 	switch (bits->width) {
6377 	case 1: {
6378 		u8 tmp8 = 0;
6379 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6380 		tmp = tmp8;
6381 		break;
6382 	}
6383 	case 2: {
6384 		u16 tmp16 = 0;
6385 		pci_read_config_word(pdev, bits->reg, &tmp16);
6386 		tmp = tmp16;
6387 		break;
6388 	}
6389 	case 4: {
6390 		u32 tmp32 = 0;
6391 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6392 		tmp = tmp32;
6393 		break;
6394 	}
6395 
6396 	default:
6397 		return -EINVAL;
6398 	}
6399 
6400 	tmp &= bits->mask;
6401 
6402 	return (tmp == bits->val) ? 1 : 0;
6403 }
6404 
6405 #ifdef CONFIG_PM
6406 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6407 {
6408 	pci_save_state(pdev);
6409 	pci_disable_device(pdev);
6410 
6411 	if (mesg.event & PM_EVENT_SLEEP)
6412 		pci_set_power_state(pdev, PCI_D3hot);
6413 }
6414 
6415 int ata_pci_device_do_resume(struct pci_dev *pdev)
6416 {
6417 	int rc;
6418 
6419 	pci_set_power_state(pdev, PCI_D0);
6420 	pci_restore_state(pdev);
6421 
6422 	rc = pcim_enable_device(pdev);
6423 	if (rc) {
6424 		dev_printk(KERN_ERR, &pdev->dev,
6425 			   "failed to enable device after resume (%d)\n", rc);
6426 		return rc;
6427 	}
6428 
6429 	pci_set_master(pdev);
6430 	return 0;
6431 }
6432 
6433 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6434 {
6435 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6436 	int rc = 0;
6437 
6438 	rc = ata_host_suspend(host, mesg);
6439 	if (rc)
6440 		return rc;
6441 
6442 	ata_pci_device_do_suspend(pdev, mesg);
6443 
6444 	return 0;
6445 }
6446 
6447 int ata_pci_device_resume(struct pci_dev *pdev)
6448 {
6449 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6450 	int rc;
6451 
6452 	rc = ata_pci_device_do_resume(pdev);
6453 	if (rc == 0)
6454 		ata_host_resume(host);
6455 	return rc;
6456 }
6457 #endif /* CONFIG_PM */
6458 
6459 #endif /* CONFIG_PCI */
6460 
6461 static int __init ata_parse_force_one(char **cur,
6462 				      struct ata_force_ent *force_ent,
6463 				      const char **reason)
6464 {
6465 	/* FIXME: Currently, there's no way to tag init const data and
6466 	 * using __initdata causes build failure on some versions of
6467 	 * gcc.  Once __initdataconst is implemented, add const to the
6468 	 * following structure.
6469 	 */
6470 	static struct ata_force_param force_tbl[] __initdata = {
6471 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6472 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6473 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6474 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6475 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6476 		{ "sata",	.cbl		= ATA_CBL_SATA },
6477 		{ "1.5Gbps",	.spd_limit	= 1 },
6478 		{ "3.0Gbps",	.spd_limit	= 2 },
6479 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6480 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6481 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6482 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6483 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6484 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6485 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6486 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6487 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6488 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6489 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6490 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6491 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6492 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6493 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6494 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6495 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6496 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6497 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6498 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6499 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6500 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6501 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6502 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6503 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6504 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6505 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6506 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6507 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6508 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6509 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6510 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6511 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6512 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6513 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6514 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6515 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6516 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6517 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6518 	};
6519 	char *start = *cur, *p = *cur;
6520 	char *id, *val, *endp;
6521 	const struct ata_force_param *match_fp = NULL;
6522 	int nr_matches = 0, i;
6523 
6524 	/* find where this param ends and update *cur */
6525 	while (*p != '\0' && *p != ',')
6526 		p++;
6527 
6528 	if (*p == '\0')
6529 		*cur = p;
6530 	else
6531 		*cur = p + 1;
6532 
6533 	*p = '\0';
6534 
6535 	/* parse */
6536 	p = strchr(start, ':');
6537 	if (!p) {
6538 		val = strstrip(start);
6539 		goto parse_val;
6540 	}
6541 	*p = '\0';
6542 
6543 	id = strstrip(start);
6544 	val = strstrip(p + 1);
6545 
6546 	/* parse id */
6547 	p = strchr(id, '.');
6548 	if (p) {
6549 		*p++ = '\0';
6550 		force_ent->device = simple_strtoul(p, &endp, 10);
6551 		if (p == endp || *endp != '\0') {
6552 			*reason = "invalid device";
6553 			return -EINVAL;
6554 		}
6555 	}
6556 
6557 	force_ent->port = simple_strtoul(id, &endp, 10);
6558 	if (p == endp || *endp != '\0') {
6559 		*reason = "invalid port/link";
6560 		return -EINVAL;
6561 	}
6562 
6563  parse_val:
6564 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6565 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6566 		const struct ata_force_param *fp = &force_tbl[i];
6567 
6568 		if (strncasecmp(val, fp->name, strlen(val)))
6569 			continue;
6570 
6571 		nr_matches++;
6572 		match_fp = fp;
6573 
6574 		if (strcasecmp(val, fp->name) == 0) {
6575 			nr_matches = 1;
6576 			break;
6577 		}
6578 	}
6579 
6580 	if (!nr_matches) {
6581 		*reason = "unknown value";
6582 		return -EINVAL;
6583 	}
6584 	if (nr_matches > 1) {
6585 		*reason = "ambigious value";
6586 		return -EINVAL;
6587 	}
6588 
6589 	force_ent->param = *match_fp;
6590 
6591 	return 0;
6592 }
6593 
6594 static void __init ata_parse_force_param(void)
6595 {
6596 	int idx = 0, size = 1;
6597 	int last_port = -1, last_device = -1;
6598 	char *p, *cur, *next;
6599 
6600 	/* calculate maximum number of params and allocate force_tbl */
6601 	for (p = ata_force_param_buf; *p; p++)
6602 		if (*p == ',')
6603 			size++;
6604 
6605 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6606 	if (!ata_force_tbl) {
6607 		printk(KERN_WARNING "ata: failed to extend force table, "
6608 		       "libata.force ignored\n");
6609 		return;
6610 	}
6611 
6612 	/* parse and populate the table */
6613 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6614 		const char *reason = "";
6615 		struct ata_force_ent te = { .port = -1, .device = -1 };
6616 
6617 		next = cur;
6618 		if (ata_parse_force_one(&next, &te, &reason)) {
6619 			printk(KERN_WARNING "ata: failed to parse force "
6620 			       "parameter \"%s\" (%s)\n",
6621 			       cur, reason);
6622 			continue;
6623 		}
6624 
6625 		if (te.port == -1) {
6626 			te.port = last_port;
6627 			te.device = last_device;
6628 		}
6629 
6630 		ata_force_tbl[idx++] = te;
6631 
6632 		last_port = te.port;
6633 		last_device = te.device;
6634 	}
6635 
6636 	ata_force_tbl_size = idx;
6637 }
6638 
6639 static int __init ata_init(void)
6640 {
6641 	ata_parse_force_param();
6642 
6643 	/*
6644 	 * FIXME: In UP case, there is only one workqueue thread and if you
6645 	 * have more than one PIO device, latency is bloody awful, with
6646 	 * occasional multi-second "hiccups" as one PIO device waits for
6647 	 * another.  It's an ugly wart that users DO occasionally complain
6648 	 * about; luckily most users have at most one PIO polled device.
6649 	 */
6650 	ata_wq = create_workqueue("ata");
6651 	if (!ata_wq)
6652 		goto free_force_tbl;
6653 
6654 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6655 	if (!ata_aux_wq)
6656 		goto free_wq;
6657 
6658 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6659 	return 0;
6660 
6661 free_wq:
6662 	destroy_workqueue(ata_wq);
6663 free_force_tbl:
6664 	kfree(ata_force_tbl);
6665 	return -ENOMEM;
6666 }
6667 
6668 static void __exit ata_exit(void)
6669 {
6670 	kfree(ata_force_tbl);
6671 	destroy_workqueue(ata_wq);
6672 	destroy_workqueue(ata_aux_wq);
6673 }
6674 
6675 subsys_initcall(ata_init);
6676 module_exit(ata_exit);
6677 
6678 static unsigned long ratelimit_time;
6679 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6680 
6681 int ata_ratelimit(void)
6682 {
6683 	int rc;
6684 	unsigned long flags;
6685 
6686 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6687 
6688 	if (time_after(jiffies, ratelimit_time)) {
6689 		rc = 1;
6690 		ratelimit_time = jiffies + (HZ/5);
6691 	} else
6692 		rc = 0;
6693 
6694 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6695 
6696 	return rc;
6697 }
6698 
6699 /**
6700  *	ata_wait_register - wait until register value changes
6701  *	@reg: IO-mapped register
6702  *	@mask: Mask to apply to read register value
6703  *	@val: Wait condition
6704  *	@interval: polling interval in milliseconds
6705  *	@timeout: timeout in milliseconds
6706  *
6707  *	Waiting for some bits of register to change is a common
6708  *	operation for ATA controllers.  This function reads 32bit LE
6709  *	IO-mapped register @reg and tests for the following condition.
6710  *
6711  *	(*@reg & mask) != val
6712  *
6713  *	If the condition is met, it returns; otherwise, the process is
6714  *	repeated after @interval_msec until timeout.
6715  *
6716  *	LOCKING:
6717  *	Kernel thread context (may sleep)
6718  *
6719  *	RETURNS:
6720  *	The final register value.
6721  */
6722 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6723 		      unsigned long interval, unsigned long timeout)
6724 {
6725 	unsigned long deadline;
6726 	u32 tmp;
6727 
6728 	tmp = ioread32(reg);
6729 
6730 	/* Calculate timeout _after_ the first read to make sure
6731 	 * preceding writes reach the controller before starting to
6732 	 * eat away the timeout.
6733 	 */
6734 	deadline = ata_deadline(jiffies, timeout);
6735 
6736 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6737 		msleep(interval);
6738 		tmp = ioread32(reg);
6739 	}
6740 
6741 	return tmp;
6742 }
6743 
6744 /*
6745  * Dummy port_ops
6746  */
6747 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6748 {
6749 	return AC_ERR_SYSTEM;
6750 }
6751 
6752 static void ata_dummy_error_handler(struct ata_port *ap)
6753 {
6754 	/* truly dummy */
6755 }
6756 
6757 struct ata_port_operations ata_dummy_port_ops = {
6758 	.qc_prep		= ata_noop_qc_prep,
6759 	.qc_issue		= ata_dummy_qc_issue,
6760 	.error_handler		= ata_dummy_error_handler,
6761 };
6762 
6763 const struct ata_port_info ata_dummy_port_info = {
6764 	.port_ops		= &ata_dummy_port_ops,
6765 };
6766 
6767 /*
6768  * libata is essentially a library of internal helper functions for
6769  * low-level ATA host controller drivers.  As such, the API/ABI is
6770  * likely to change as new drivers are added and updated.
6771  * Do not depend on ABI/API stability.
6772  */
6773 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6774 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6775 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6776 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6777 EXPORT_SYMBOL_GPL(sata_port_ops);
6778 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6779 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6780 EXPORT_SYMBOL_GPL(ata_link_next);
6781 EXPORT_SYMBOL_GPL(ata_dev_next);
6782 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6783 EXPORT_SYMBOL_GPL(ata_host_init);
6784 EXPORT_SYMBOL_GPL(ata_host_alloc);
6785 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6786 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6787 EXPORT_SYMBOL_GPL(ata_host_start);
6788 EXPORT_SYMBOL_GPL(ata_host_register);
6789 EXPORT_SYMBOL_GPL(ata_host_activate);
6790 EXPORT_SYMBOL_GPL(ata_host_detach);
6791 EXPORT_SYMBOL_GPL(ata_sg_init);
6792 EXPORT_SYMBOL_GPL(ata_qc_complete);
6793 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6794 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6795 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6796 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6797 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6798 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6799 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6800 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6801 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6802 EXPORT_SYMBOL_GPL(ata_mode_string);
6803 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6804 EXPORT_SYMBOL_GPL(ata_port_start);
6805 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6806 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6807 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6808 EXPORT_SYMBOL_GPL(ata_port_probe);
6809 EXPORT_SYMBOL_GPL(ata_dev_disable);
6810 EXPORT_SYMBOL_GPL(sata_set_spd);
6811 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6812 EXPORT_SYMBOL_GPL(sata_link_debounce);
6813 EXPORT_SYMBOL_GPL(sata_link_resume);
6814 EXPORT_SYMBOL_GPL(ata_std_prereset);
6815 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6816 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6817 EXPORT_SYMBOL_GPL(ata_std_postreset);
6818 EXPORT_SYMBOL_GPL(ata_dev_classify);
6819 EXPORT_SYMBOL_GPL(ata_dev_pair);
6820 EXPORT_SYMBOL_GPL(ata_port_disable);
6821 EXPORT_SYMBOL_GPL(ata_ratelimit);
6822 EXPORT_SYMBOL_GPL(ata_wait_register);
6823 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6824 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6825 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6826 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6827 EXPORT_SYMBOL_GPL(sata_scr_valid);
6828 EXPORT_SYMBOL_GPL(sata_scr_read);
6829 EXPORT_SYMBOL_GPL(sata_scr_write);
6830 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6831 EXPORT_SYMBOL_GPL(ata_link_online);
6832 EXPORT_SYMBOL_GPL(ata_link_offline);
6833 #ifdef CONFIG_PM
6834 EXPORT_SYMBOL_GPL(ata_host_suspend);
6835 EXPORT_SYMBOL_GPL(ata_host_resume);
6836 #endif /* CONFIG_PM */
6837 EXPORT_SYMBOL_GPL(ata_id_string);
6838 EXPORT_SYMBOL_GPL(ata_id_c_string);
6839 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6840 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6841 
6842 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6843 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6844 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6845 EXPORT_SYMBOL_GPL(ata_timing_compute);
6846 EXPORT_SYMBOL_GPL(ata_timing_merge);
6847 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6848 
6849 #ifdef CONFIG_PCI
6850 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6851 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6852 #ifdef CONFIG_PM
6853 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6854 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6855 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6856 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6857 #endif /* CONFIG_PM */
6858 #endif /* CONFIG_PCI */
6859 
6860 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6861 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6862 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6863 EXPORT_SYMBOL_GPL(ata_port_desc);
6864 #ifdef CONFIG_PCI
6865 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6866 #endif /* CONFIG_PCI */
6867 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6868 EXPORT_SYMBOL_GPL(ata_link_abort);
6869 EXPORT_SYMBOL_GPL(ata_port_abort);
6870 EXPORT_SYMBOL_GPL(ata_port_freeze);
6871 EXPORT_SYMBOL_GPL(sata_async_notification);
6872 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6873 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6874 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6875 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6876 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6877 EXPORT_SYMBOL_GPL(ata_do_eh);
6878 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6879 
6880 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6881 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6882 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6883 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6884 EXPORT_SYMBOL_GPL(ata_cable_sata);
6885