1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_host.h> 64 #include <linux/libata.h> 65 #include <asm/byteorder.h> 66 #include <linux/cdrom.h> 67 68 #include "libata.h" 69 70 71 /* debounce timing parameters in msecs { interval, duration, timeout } */ 72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 75 76 const struct ata_port_operations ata_base_port_ops = { 77 .prereset = ata_std_prereset, 78 .postreset = ata_std_postreset, 79 .error_handler = ata_std_error_handler, 80 }; 81 82 const struct ata_port_operations sata_port_ops = { 83 .inherits = &ata_base_port_ops, 84 85 .qc_defer = ata_std_qc_defer, 86 .hardreset = sata_std_hardreset, 87 }; 88 89 static unsigned int ata_dev_init_params(struct ata_device *dev, 90 u16 heads, u16 sectors); 91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 92 static unsigned int ata_dev_set_feature(struct ata_device *dev, 93 u8 enable, u8 feature); 94 static void ata_dev_xfermask(struct ata_device *dev); 95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 96 97 unsigned int ata_print_id = 1; 98 static struct workqueue_struct *ata_wq; 99 100 struct workqueue_struct *ata_aux_wq; 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 161 162 MODULE_AUTHOR("Jeff Garzik"); 163 MODULE_DESCRIPTION("Library module for ATA devices"); 164 MODULE_LICENSE("GPL"); 165 MODULE_VERSION(DRV_VERSION); 166 167 168 static bool ata_sstatus_online(u32 sstatus) 169 { 170 return (sstatus & 0xf) == 0x3; 171 } 172 173 /** 174 * ata_link_next - link iteration helper 175 * @link: the previous link, NULL to start 176 * @ap: ATA port containing links to iterate 177 * @mode: iteration mode, one of ATA_LITER_* 178 * 179 * LOCKING: 180 * Host lock or EH context. 181 * 182 * RETURNS: 183 * Pointer to the next link. 184 */ 185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 186 enum ata_link_iter_mode mode) 187 { 188 BUG_ON(mode != ATA_LITER_EDGE && 189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 190 191 /* NULL link indicates start of iteration */ 192 if (!link) 193 switch (mode) { 194 case ATA_LITER_EDGE: 195 case ATA_LITER_PMP_FIRST: 196 if (sata_pmp_attached(ap)) 197 return ap->pmp_link; 198 /* fall through */ 199 case ATA_LITER_HOST_FIRST: 200 return &ap->link; 201 } 202 203 /* we just iterated over the host link, what's next? */ 204 if (link == &ap->link) 205 switch (mode) { 206 case ATA_LITER_HOST_FIRST: 207 if (sata_pmp_attached(ap)) 208 return ap->pmp_link; 209 /* fall through */ 210 case ATA_LITER_PMP_FIRST: 211 if (unlikely(ap->slave_link)) 212 return ap->slave_link; 213 /* fall through */ 214 case ATA_LITER_EDGE: 215 return NULL; 216 } 217 218 /* slave_link excludes PMP */ 219 if (unlikely(link == ap->slave_link)) 220 return NULL; 221 222 /* we were over a PMP link */ 223 if (++link < ap->pmp_link + ap->nr_pmp_links) 224 return link; 225 226 if (mode == ATA_LITER_PMP_FIRST) 227 return &ap->link; 228 229 return NULL; 230 } 231 232 /** 233 * ata_dev_next - device iteration helper 234 * @dev: the previous device, NULL to start 235 * @link: ATA link containing devices to iterate 236 * @mode: iteration mode, one of ATA_DITER_* 237 * 238 * LOCKING: 239 * Host lock or EH context. 240 * 241 * RETURNS: 242 * Pointer to the next device. 243 */ 244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 245 enum ata_dev_iter_mode mode) 246 { 247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 249 250 /* NULL dev indicates start of iteration */ 251 if (!dev) 252 switch (mode) { 253 case ATA_DITER_ENABLED: 254 case ATA_DITER_ALL: 255 dev = link->device; 256 goto check; 257 case ATA_DITER_ENABLED_REVERSE: 258 case ATA_DITER_ALL_REVERSE: 259 dev = link->device + ata_link_max_devices(link) - 1; 260 goto check; 261 } 262 263 next: 264 /* move to the next one */ 265 switch (mode) { 266 case ATA_DITER_ENABLED: 267 case ATA_DITER_ALL: 268 if (++dev < link->device + ata_link_max_devices(link)) 269 goto check; 270 return NULL; 271 case ATA_DITER_ENABLED_REVERSE: 272 case ATA_DITER_ALL_REVERSE: 273 if (--dev >= link->device) 274 goto check; 275 return NULL; 276 } 277 278 check: 279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 280 !ata_dev_enabled(dev)) 281 goto next; 282 return dev; 283 } 284 285 /** 286 * ata_dev_phys_link - find physical link for a device 287 * @dev: ATA device to look up physical link for 288 * 289 * Look up physical link which @dev is attached to. Note that 290 * this is different from @dev->link only when @dev is on slave 291 * link. For all other cases, it's the same as @dev->link. 292 * 293 * LOCKING: 294 * Don't care. 295 * 296 * RETURNS: 297 * Pointer to the found physical link. 298 */ 299 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 300 { 301 struct ata_port *ap = dev->link->ap; 302 303 if (!ap->slave_link) 304 return dev->link; 305 if (!dev->devno) 306 return &ap->link; 307 return ap->slave_link; 308 } 309 310 /** 311 * ata_force_cbl - force cable type according to libata.force 312 * @ap: ATA port of interest 313 * 314 * Force cable type according to libata.force and whine about it. 315 * The last entry which has matching port number is used, so it 316 * can be specified as part of device force parameters. For 317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 318 * same effect. 319 * 320 * LOCKING: 321 * EH context. 322 */ 323 void ata_force_cbl(struct ata_port *ap) 324 { 325 int i; 326 327 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 328 const struct ata_force_ent *fe = &ata_force_tbl[i]; 329 330 if (fe->port != -1 && fe->port != ap->print_id) 331 continue; 332 333 if (fe->param.cbl == ATA_CBL_NONE) 334 continue; 335 336 ap->cbl = fe->param.cbl; 337 ata_port_printk(ap, KERN_NOTICE, 338 "FORCE: cable set to %s\n", fe->param.name); 339 return; 340 } 341 } 342 343 /** 344 * ata_force_link_limits - force link limits according to libata.force 345 * @link: ATA link of interest 346 * 347 * Force link flags and SATA spd limit according to libata.force 348 * and whine about it. When only the port part is specified 349 * (e.g. 1:), the limit applies to all links connected to both 350 * the host link and all fan-out ports connected via PMP. If the 351 * device part is specified as 0 (e.g. 1.00:), it specifies the 352 * first fan-out link not the host link. Device number 15 always 353 * points to the host link whether PMP is attached or not. If the 354 * controller has slave link, device number 16 points to it. 355 * 356 * LOCKING: 357 * EH context. 358 */ 359 static void ata_force_link_limits(struct ata_link *link) 360 { 361 bool did_spd = false; 362 int linkno = link->pmp; 363 int i; 364 365 if (ata_is_host_link(link)) 366 linkno += 15; 367 368 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 369 const struct ata_force_ent *fe = &ata_force_tbl[i]; 370 371 if (fe->port != -1 && fe->port != link->ap->print_id) 372 continue; 373 374 if (fe->device != -1 && fe->device != linkno) 375 continue; 376 377 /* only honor the first spd limit */ 378 if (!did_spd && fe->param.spd_limit) { 379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 380 ata_link_printk(link, KERN_NOTICE, 381 "FORCE: PHY spd limit set to %s\n", 382 fe->param.name); 383 did_spd = true; 384 } 385 386 /* let lflags stack */ 387 if (fe->param.lflags) { 388 link->flags |= fe->param.lflags; 389 ata_link_printk(link, KERN_NOTICE, 390 "FORCE: link flag 0x%x forced -> 0x%x\n", 391 fe->param.lflags, link->flags); 392 } 393 } 394 } 395 396 /** 397 * ata_force_xfermask - force xfermask according to libata.force 398 * @dev: ATA device of interest 399 * 400 * Force xfer_mask according to libata.force and whine about it. 401 * For consistency with link selection, device number 15 selects 402 * the first device connected to the host link. 403 * 404 * LOCKING: 405 * EH context. 406 */ 407 static void ata_force_xfermask(struct ata_device *dev) 408 { 409 int devno = dev->link->pmp + dev->devno; 410 int alt_devno = devno; 411 int i; 412 413 /* allow n.15/16 for devices attached to host port */ 414 if (ata_is_host_link(dev->link)) 415 alt_devno += 15; 416 417 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 418 const struct ata_force_ent *fe = &ata_force_tbl[i]; 419 unsigned long pio_mask, mwdma_mask, udma_mask; 420 421 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 422 continue; 423 424 if (fe->device != -1 && fe->device != devno && 425 fe->device != alt_devno) 426 continue; 427 428 if (!fe->param.xfer_mask) 429 continue; 430 431 ata_unpack_xfermask(fe->param.xfer_mask, 432 &pio_mask, &mwdma_mask, &udma_mask); 433 if (udma_mask) 434 dev->udma_mask = udma_mask; 435 else if (mwdma_mask) { 436 dev->udma_mask = 0; 437 dev->mwdma_mask = mwdma_mask; 438 } else { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = 0; 441 dev->pio_mask = pio_mask; 442 } 443 444 ata_dev_printk(dev, KERN_NOTICE, 445 "FORCE: xfer_mask set to %s\n", fe->param.name); 446 return; 447 } 448 } 449 450 /** 451 * ata_force_horkage - force horkage according to libata.force 452 * @dev: ATA device of interest 453 * 454 * Force horkage according to libata.force and whine about it. 455 * For consistency with link selection, device number 15 selects 456 * the first device connected to the host link. 457 * 458 * LOCKING: 459 * EH context. 460 */ 461 static void ata_force_horkage(struct ata_device *dev) 462 { 463 int devno = dev->link->pmp + dev->devno; 464 int alt_devno = devno; 465 int i; 466 467 /* allow n.15/16 for devices attached to host port */ 468 if (ata_is_host_link(dev->link)) 469 alt_devno += 15; 470 471 for (i = 0; i < ata_force_tbl_size; i++) { 472 const struct ata_force_ent *fe = &ata_force_tbl[i]; 473 474 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 475 continue; 476 477 if (fe->device != -1 && fe->device != devno && 478 fe->device != alt_devno) 479 continue; 480 481 if (!(~dev->horkage & fe->param.horkage_on) && 482 !(dev->horkage & fe->param.horkage_off)) 483 continue; 484 485 dev->horkage |= fe->param.horkage_on; 486 dev->horkage &= ~fe->param.horkage_off; 487 488 ata_dev_printk(dev, KERN_NOTICE, 489 "FORCE: horkage modified (%s)\n", fe->param.name); 490 } 491 } 492 493 /** 494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 495 * @opcode: SCSI opcode 496 * 497 * Determine ATAPI command type from @opcode. 498 * 499 * LOCKING: 500 * None. 501 * 502 * RETURNS: 503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 504 */ 505 int atapi_cmd_type(u8 opcode) 506 { 507 switch (opcode) { 508 case GPCMD_READ_10: 509 case GPCMD_READ_12: 510 return ATAPI_READ; 511 512 case GPCMD_WRITE_10: 513 case GPCMD_WRITE_12: 514 case GPCMD_WRITE_AND_VERIFY_10: 515 return ATAPI_WRITE; 516 517 case GPCMD_READ_CD: 518 case GPCMD_READ_CD_MSF: 519 return ATAPI_READ_CD; 520 521 case ATA_16: 522 case ATA_12: 523 if (atapi_passthru16) 524 return ATAPI_PASS_THRU; 525 /* fall thru */ 526 default: 527 return ATAPI_MISC; 528 } 529 } 530 531 /** 532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 533 * @tf: Taskfile to convert 534 * @pmp: Port multiplier port 535 * @is_cmd: This FIS is for command 536 * @fis: Buffer into which data will output 537 * 538 * Converts a standard ATA taskfile to a Serial ATA 539 * FIS structure (Register - Host to Device). 540 * 541 * LOCKING: 542 * Inherited from caller. 543 */ 544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 545 { 546 fis[0] = 0x27; /* Register - Host to Device FIS */ 547 fis[1] = pmp & 0xf; /* Port multiplier number*/ 548 if (is_cmd) 549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 550 551 fis[2] = tf->command; 552 fis[3] = tf->feature; 553 554 fis[4] = tf->lbal; 555 fis[5] = tf->lbam; 556 fis[6] = tf->lbah; 557 fis[7] = tf->device; 558 559 fis[8] = tf->hob_lbal; 560 fis[9] = tf->hob_lbam; 561 fis[10] = tf->hob_lbah; 562 fis[11] = tf->hob_feature; 563 564 fis[12] = tf->nsect; 565 fis[13] = tf->hob_nsect; 566 fis[14] = 0; 567 fis[15] = tf->ctl; 568 569 fis[16] = 0; 570 fis[17] = 0; 571 fis[18] = 0; 572 fis[19] = 0; 573 } 574 575 /** 576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 577 * @fis: Buffer from which data will be input 578 * @tf: Taskfile to output 579 * 580 * Converts a serial ATA FIS structure to a standard ATA taskfile. 581 * 582 * LOCKING: 583 * Inherited from caller. 584 */ 585 586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 587 { 588 tf->command = fis[2]; /* status */ 589 tf->feature = fis[3]; /* error */ 590 591 tf->lbal = fis[4]; 592 tf->lbam = fis[5]; 593 tf->lbah = fis[6]; 594 tf->device = fis[7]; 595 596 tf->hob_lbal = fis[8]; 597 tf->hob_lbam = fis[9]; 598 tf->hob_lbah = fis[10]; 599 600 tf->nsect = fis[12]; 601 tf->hob_nsect = fis[13]; 602 } 603 604 static const u8 ata_rw_cmds[] = { 605 /* pio multi */ 606 ATA_CMD_READ_MULTI, 607 ATA_CMD_WRITE_MULTI, 608 ATA_CMD_READ_MULTI_EXT, 609 ATA_CMD_WRITE_MULTI_EXT, 610 0, 611 0, 612 0, 613 ATA_CMD_WRITE_MULTI_FUA_EXT, 614 /* pio */ 615 ATA_CMD_PIO_READ, 616 ATA_CMD_PIO_WRITE, 617 ATA_CMD_PIO_READ_EXT, 618 ATA_CMD_PIO_WRITE_EXT, 619 0, 620 0, 621 0, 622 0, 623 /* dma */ 624 ATA_CMD_READ, 625 ATA_CMD_WRITE, 626 ATA_CMD_READ_EXT, 627 ATA_CMD_WRITE_EXT, 628 0, 629 0, 630 0, 631 ATA_CMD_WRITE_FUA_EXT 632 }; 633 634 /** 635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 636 * @tf: command to examine and configure 637 * @dev: device tf belongs to 638 * 639 * Examine the device configuration and tf->flags to calculate 640 * the proper read/write commands and protocol to use. 641 * 642 * LOCKING: 643 * caller. 644 */ 645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 646 { 647 u8 cmd; 648 649 int index, fua, lba48, write; 650 651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 654 655 if (dev->flags & ATA_DFLAG_PIO) { 656 tf->protocol = ATA_PROT_PIO; 657 index = dev->multi_count ? 0 : 8; 658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 659 /* Unable to use DMA due to host limitation */ 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else { 663 tf->protocol = ATA_PROT_DMA; 664 index = 16; 665 } 666 667 cmd = ata_rw_cmds[index + fua + lba48 + write]; 668 if (cmd) { 669 tf->command = cmd; 670 return 0; 671 } 672 return -1; 673 } 674 675 /** 676 * ata_tf_read_block - Read block address from ATA taskfile 677 * @tf: ATA taskfile of interest 678 * @dev: ATA device @tf belongs to 679 * 680 * LOCKING: 681 * None. 682 * 683 * Read block address from @tf. This function can handle all 684 * three address formats - LBA, LBA48 and CHS. tf->protocol and 685 * flags select the address format to use. 686 * 687 * RETURNS: 688 * Block address read from @tf. 689 */ 690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 691 { 692 u64 block = 0; 693 694 if (tf->flags & ATA_TFLAG_LBA) { 695 if (tf->flags & ATA_TFLAG_LBA48) { 696 block |= (u64)tf->hob_lbah << 40; 697 block |= (u64)tf->hob_lbam << 32; 698 block |= (u64)tf->hob_lbal << 24; 699 } else 700 block |= (tf->device & 0xf) << 24; 701 702 block |= tf->lbah << 16; 703 block |= tf->lbam << 8; 704 block |= tf->lbal; 705 } else { 706 u32 cyl, head, sect; 707 708 cyl = tf->lbam | (tf->lbah << 8); 709 head = tf->device & 0xf; 710 sect = tf->lbal; 711 712 if (!sect) { 713 ata_dev_printk(dev, KERN_WARNING, "device reported " 714 "invalid CHS sector 0\n"); 715 sect = 1; /* oh well */ 716 } 717 718 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 719 } 720 721 return block; 722 } 723 724 /** 725 * ata_build_rw_tf - Build ATA taskfile for given read/write request 726 * @tf: Target ATA taskfile 727 * @dev: ATA device @tf belongs to 728 * @block: Block address 729 * @n_block: Number of blocks 730 * @tf_flags: RW/FUA etc... 731 * @tag: tag 732 * 733 * LOCKING: 734 * None. 735 * 736 * Build ATA taskfile @tf for read/write request described by 737 * @block, @n_block, @tf_flags and @tag on @dev. 738 * 739 * RETURNS: 740 * 741 * 0 on success, -ERANGE if the request is too large for @dev, 742 * -EINVAL if the request is invalid. 743 */ 744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 745 u64 block, u32 n_block, unsigned int tf_flags, 746 unsigned int tag) 747 { 748 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 749 tf->flags |= tf_flags; 750 751 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 752 /* yay, NCQ */ 753 if (!lba_48_ok(block, n_block)) 754 return -ERANGE; 755 756 tf->protocol = ATA_PROT_NCQ; 757 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 758 759 if (tf->flags & ATA_TFLAG_WRITE) 760 tf->command = ATA_CMD_FPDMA_WRITE; 761 else 762 tf->command = ATA_CMD_FPDMA_READ; 763 764 tf->nsect = tag << 3; 765 tf->hob_feature = (n_block >> 8) & 0xff; 766 tf->feature = n_block & 0xff; 767 768 tf->hob_lbah = (block >> 40) & 0xff; 769 tf->hob_lbam = (block >> 32) & 0xff; 770 tf->hob_lbal = (block >> 24) & 0xff; 771 tf->lbah = (block >> 16) & 0xff; 772 tf->lbam = (block >> 8) & 0xff; 773 tf->lbal = block & 0xff; 774 775 tf->device = 1 << 6; 776 if (tf->flags & ATA_TFLAG_FUA) 777 tf->device |= 1 << 7; 778 } else if (dev->flags & ATA_DFLAG_LBA) { 779 tf->flags |= ATA_TFLAG_LBA; 780 781 if (lba_28_ok(block, n_block)) { 782 /* use LBA28 */ 783 tf->device |= (block >> 24) & 0xf; 784 } else if (lba_48_ok(block, n_block)) { 785 if (!(dev->flags & ATA_DFLAG_LBA48)) 786 return -ERANGE; 787 788 /* use LBA48 */ 789 tf->flags |= ATA_TFLAG_LBA48; 790 791 tf->hob_nsect = (n_block >> 8) & 0xff; 792 793 tf->hob_lbah = (block >> 40) & 0xff; 794 tf->hob_lbam = (block >> 32) & 0xff; 795 tf->hob_lbal = (block >> 24) & 0xff; 796 } else 797 /* request too large even for LBA48 */ 798 return -ERANGE; 799 800 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 801 return -EINVAL; 802 803 tf->nsect = n_block & 0xff; 804 805 tf->lbah = (block >> 16) & 0xff; 806 tf->lbam = (block >> 8) & 0xff; 807 tf->lbal = block & 0xff; 808 809 tf->device |= ATA_LBA; 810 } else { 811 /* CHS */ 812 u32 sect, head, cyl, track; 813 814 /* The request -may- be too large for CHS addressing. */ 815 if (!lba_28_ok(block, n_block)) 816 return -ERANGE; 817 818 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 819 return -EINVAL; 820 821 /* Convert LBA to CHS */ 822 track = (u32)block / dev->sectors; 823 cyl = track / dev->heads; 824 head = track % dev->heads; 825 sect = (u32)block % dev->sectors + 1; 826 827 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 828 (u32)block, track, cyl, head, sect); 829 830 /* Check whether the converted CHS can fit. 831 Cylinder: 0-65535 832 Head: 0-15 833 Sector: 1-255*/ 834 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 835 return -ERANGE; 836 837 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 838 tf->lbal = sect; 839 tf->lbam = cyl; 840 tf->lbah = cyl >> 8; 841 tf->device |= head; 842 } 843 844 return 0; 845 } 846 847 /** 848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 849 * @pio_mask: pio_mask 850 * @mwdma_mask: mwdma_mask 851 * @udma_mask: udma_mask 852 * 853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 854 * unsigned int xfer_mask. 855 * 856 * LOCKING: 857 * None. 858 * 859 * RETURNS: 860 * Packed xfer_mask. 861 */ 862 unsigned long ata_pack_xfermask(unsigned long pio_mask, 863 unsigned long mwdma_mask, 864 unsigned long udma_mask) 865 { 866 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 867 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 868 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 869 } 870 871 /** 872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 873 * @xfer_mask: xfer_mask to unpack 874 * @pio_mask: resulting pio_mask 875 * @mwdma_mask: resulting mwdma_mask 876 * @udma_mask: resulting udma_mask 877 * 878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 879 * Any NULL distination masks will be ignored. 880 */ 881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 882 unsigned long *mwdma_mask, unsigned long *udma_mask) 883 { 884 if (pio_mask) 885 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 886 if (mwdma_mask) 887 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 888 if (udma_mask) 889 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 890 } 891 892 static const struct ata_xfer_ent { 893 int shift, bits; 894 u8 base; 895 } ata_xfer_tbl[] = { 896 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 897 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 898 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 899 { -1, }, 900 }; 901 902 /** 903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 904 * @xfer_mask: xfer_mask of interest 905 * 906 * Return matching XFER_* value for @xfer_mask. Only the highest 907 * bit of @xfer_mask is considered. 908 * 909 * LOCKING: 910 * None. 911 * 912 * RETURNS: 913 * Matching XFER_* value, 0xff if no match found. 914 */ 915 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 916 { 917 int highbit = fls(xfer_mask) - 1; 918 const struct ata_xfer_ent *ent; 919 920 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 921 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 922 return ent->base + highbit - ent->shift; 923 return 0xff; 924 } 925 926 /** 927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 928 * @xfer_mode: XFER_* of interest 929 * 930 * Return matching xfer_mask for @xfer_mode. 931 * 932 * LOCKING: 933 * None. 934 * 935 * RETURNS: 936 * Matching xfer_mask, 0 if no match found. 937 */ 938 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 939 { 940 const struct ata_xfer_ent *ent; 941 942 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 943 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 944 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 945 & ~((1 << ent->shift) - 1); 946 return 0; 947 } 948 949 /** 950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 951 * @xfer_mode: XFER_* of interest 952 * 953 * Return matching xfer_shift for @xfer_mode. 954 * 955 * LOCKING: 956 * None. 957 * 958 * RETURNS: 959 * Matching xfer_shift, -1 if no match found. 960 */ 961 int ata_xfer_mode2shift(unsigned long xfer_mode) 962 { 963 const struct ata_xfer_ent *ent; 964 965 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 966 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 967 return ent->shift; 968 return -1; 969 } 970 971 /** 972 * ata_mode_string - convert xfer_mask to string 973 * @xfer_mask: mask of bits supported; only highest bit counts. 974 * 975 * Determine string which represents the highest speed 976 * (highest bit in @modemask). 977 * 978 * LOCKING: 979 * None. 980 * 981 * RETURNS: 982 * Constant C string representing highest speed listed in 983 * @mode_mask, or the constant C string "<n/a>". 984 */ 985 const char *ata_mode_string(unsigned long xfer_mask) 986 { 987 static const char * const xfer_mode_str[] = { 988 "PIO0", 989 "PIO1", 990 "PIO2", 991 "PIO3", 992 "PIO4", 993 "PIO5", 994 "PIO6", 995 "MWDMA0", 996 "MWDMA1", 997 "MWDMA2", 998 "MWDMA3", 999 "MWDMA4", 1000 "UDMA/16", 1001 "UDMA/25", 1002 "UDMA/33", 1003 "UDMA/44", 1004 "UDMA/66", 1005 "UDMA/100", 1006 "UDMA/133", 1007 "UDMA7", 1008 }; 1009 int highbit; 1010 1011 highbit = fls(xfer_mask) - 1; 1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1013 return xfer_mode_str[highbit]; 1014 return "<n/a>"; 1015 } 1016 1017 static const char *sata_spd_string(unsigned int spd) 1018 { 1019 static const char * const spd_str[] = { 1020 "1.5 Gbps", 1021 "3.0 Gbps", 1022 "6.0 Gbps", 1023 }; 1024 1025 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1026 return "<unknown>"; 1027 return spd_str[spd - 1]; 1028 } 1029 1030 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1031 { 1032 struct ata_link *link = dev->link; 1033 struct ata_port *ap = link->ap; 1034 u32 scontrol; 1035 unsigned int err_mask; 1036 int rc; 1037 1038 /* 1039 * disallow DIPM for drivers which haven't set 1040 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1041 * phy ready will be set in the interrupt status on 1042 * state changes, which will cause some drivers to 1043 * think there are errors - additionally drivers will 1044 * need to disable hot plug. 1045 */ 1046 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1047 ap->pm_policy = NOT_AVAILABLE; 1048 return -EINVAL; 1049 } 1050 1051 /* 1052 * For DIPM, we will only enable it for the 1053 * min_power setting. 1054 * 1055 * Why? Because Disks are too stupid to know that 1056 * If the host rejects a request to go to SLUMBER 1057 * they should retry at PARTIAL, and instead it 1058 * just would give up. So, for medium_power to 1059 * work at all, we need to only allow HIPM. 1060 */ 1061 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1062 if (rc) 1063 return rc; 1064 1065 switch (policy) { 1066 case MIN_POWER: 1067 /* no restrictions on IPM transitions */ 1068 scontrol &= ~(0x3 << 8); 1069 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1070 if (rc) 1071 return rc; 1072 1073 /* enable DIPM */ 1074 if (dev->flags & ATA_DFLAG_DIPM) 1075 err_mask = ata_dev_set_feature(dev, 1076 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1077 break; 1078 case MEDIUM_POWER: 1079 /* allow IPM to PARTIAL */ 1080 scontrol &= ~(0x1 << 8); 1081 scontrol |= (0x2 << 8); 1082 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1083 if (rc) 1084 return rc; 1085 1086 /* 1087 * we don't have to disable DIPM since IPM flags 1088 * disallow transitions to SLUMBER, which effectively 1089 * disable DIPM if it does not support PARTIAL 1090 */ 1091 break; 1092 case NOT_AVAILABLE: 1093 case MAX_PERFORMANCE: 1094 /* disable all IPM transitions */ 1095 scontrol |= (0x3 << 8); 1096 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1097 if (rc) 1098 return rc; 1099 1100 /* 1101 * we don't have to disable DIPM since IPM flags 1102 * disallow all transitions which effectively 1103 * disable DIPM anyway. 1104 */ 1105 break; 1106 } 1107 1108 /* FIXME: handle SET FEATURES failure */ 1109 (void) err_mask; 1110 1111 return 0; 1112 } 1113 1114 /** 1115 * ata_dev_enable_pm - enable SATA interface power management 1116 * @dev: device to enable power management 1117 * @policy: the link power management policy 1118 * 1119 * Enable SATA Interface power management. This will enable 1120 * Device Interface Power Management (DIPM) for min_power 1121 * policy, and then call driver specific callbacks for 1122 * enabling Host Initiated Power management. 1123 * 1124 * Locking: Caller. 1125 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1126 */ 1127 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1128 { 1129 int rc = 0; 1130 struct ata_port *ap = dev->link->ap; 1131 1132 /* set HIPM first, then DIPM */ 1133 if (ap->ops->enable_pm) 1134 rc = ap->ops->enable_pm(ap, policy); 1135 if (rc) 1136 goto enable_pm_out; 1137 rc = ata_dev_set_dipm(dev, policy); 1138 1139 enable_pm_out: 1140 if (rc) 1141 ap->pm_policy = MAX_PERFORMANCE; 1142 else 1143 ap->pm_policy = policy; 1144 return /* rc */; /* hopefully we can use 'rc' eventually */ 1145 } 1146 1147 #ifdef CONFIG_PM 1148 /** 1149 * ata_dev_disable_pm - disable SATA interface power management 1150 * @dev: device to disable power management 1151 * 1152 * Disable SATA Interface power management. This will disable 1153 * Device Interface Power Management (DIPM) without changing 1154 * policy, call driver specific callbacks for disabling Host 1155 * Initiated Power management. 1156 * 1157 * Locking: Caller. 1158 * Returns: void 1159 */ 1160 static void ata_dev_disable_pm(struct ata_device *dev) 1161 { 1162 struct ata_port *ap = dev->link->ap; 1163 1164 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1165 if (ap->ops->disable_pm) 1166 ap->ops->disable_pm(ap); 1167 } 1168 #endif /* CONFIG_PM */ 1169 1170 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1171 { 1172 ap->pm_policy = policy; 1173 ap->link.eh_info.action |= ATA_EH_LPM; 1174 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1175 ata_port_schedule_eh(ap); 1176 } 1177 1178 #ifdef CONFIG_PM 1179 static void ata_lpm_enable(struct ata_host *host) 1180 { 1181 struct ata_link *link; 1182 struct ata_port *ap; 1183 struct ata_device *dev; 1184 int i; 1185 1186 for (i = 0; i < host->n_ports; i++) { 1187 ap = host->ports[i]; 1188 ata_for_each_link(link, ap, EDGE) { 1189 ata_for_each_dev(dev, link, ALL) 1190 ata_dev_disable_pm(dev); 1191 } 1192 } 1193 } 1194 1195 static void ata_lpm_disable(struct ata_host *host) 1196 { 1197 int i; 1198 1199 for (i = 0; i < host->n_ports; i++) { 1200 struct ata_port *ap = host->ports[i]; 1201 ata_lpm_schedule(ap, ap->pm_policy); 1202 } 1203 } 1204 #endif /* CONFIG_PM */ 1205 1206 /** 1207 * ata_dev_classify - determine device type based on ATA-spec signature 1208 * @tf: ATA taskfile register set for device to be identified 1209 * 1210 * Determine from taskfile register contents whether a device is 1211 * ATA or ATAPI, as per "Signature and persistence" section 1212 * of ATA/PI spec (volume 1, sect 5.14). 1213 * 1214 * LOCKING: 1215 * None. 1216 * 1217 * RETURNS: 1218 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1219 * %ATA_DEV_UNKNOWN the event of failure. 1220 */ 1221 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1222 { 1223 /* Apple's open source Darwin code hints that some devices only 1224 * put a proper signature into the LBA mid/high registers, 1225 * So, we only check those. It's sufficient for uniqueness. 1226 * 1227 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1228 * signatures for ATA and ATAPI devices attached on SerialATA, 1229 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1230 * spec has never mentioned about using different signatures 1231 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1232 * Multiplier specification began to use 0x69/0x96 to identify 1233 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1234 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1235 * 0x69/0x96 shortly and described them as reserved for 1236 * SerialATA. 1237 * 1238 * We follow the current spec and consider that 0x69/0x96 1239 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1240 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1241 * SEMB signature. This is worked around in 1242 * ata_dev_read_id(). 1243 */ 1244 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1245 DPRINTK("found ATA device by sig\n"); 1246 return ATA_DEV_ATA; 1247 } 1248 1249 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1250 DPRINTK("found ATAPI device by sig\n"); 1251 return ATA_DEV_ATAPI; 1252 } 1253 1254 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1255 DPRINTK("found PMP device by sig\n"); 1256 return ATA_DEV_PMP; 1257 } 1258 1259 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1260 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1261 return ATA_DEV_SEMB; 1262 } 1263 1264 DPRINTK("unknown device\n"); 1265 return ATA_DEV_UNKNOWN; 1266 } 1267 1268 /** 1269 * ata_id_string - Convert IDENTIFY DEVICE page into string 1270 * @id: IDENTIFY DEVICE results we will examine 1271 * @s: string into which data is output 1272 * @ofs: offset into identify device page 1273 * @len: length of string to return. must be an even number. 1274 * 1275 * The strings in the IDENTIFY DEVICE page are broken up into 1276 * 16-bit chunks. Run through the string, and output each 1277 * 8-bit chunk linearly, regardless of platform. 1278 * 1279 * LOCKING: 1280 * caller. 1281 */ 1282 1283 void ata_id_string(const u16 *id, unsigned char *s, 1284 unsigned int ofs, unsigned int len) 1285 { 1286 unsigned int c; 1287 1288 BUG_ON(len & 1); 1289 1290 while (len > 0) { 1291 c = id[ofs] >> 8; 1292 *s = c; 1293 s++; 1294 1295 c = id[ofs] & 0xff; 1296 *s = c; 1297 s++; 1298 1299 ofs++; 1300 len -= 2; 1301 } 1302 } 1303 1304 /** 1305 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1306 * @id: IDENTIFY DEVICE results we will examine 1307 * @s: string into which data is output 1308 * @ofs: offset into identify device page 1309 * @len: length of string to return. must be an odd number. 1310 * 1311 * This function is identical to ata_id_string except that it 1312 * trims trailing spaces and terminates the resulting string with 1313 * null. @len must be actual maximum length (even number) + 1. 1314 * 1315 * LOCKING: 1316 * caller. 1317 */ 1318 void ata_id_c_string(const u16 *id, unsigned char *s, 1319 unsigned int ofs, unsigned int len) 1320 { 1321 unsigned char *p; 1322 1323 ata_id_string(id, s, ofs, len - 1); 1324 1325 p = s + strnlen(s, len - 1); 1326 while (p > s && p[-1] == ' ') 1327 p--; 1328 *p = '\0'; 1329 } 1330 1331 static u64 ata_id_n_sectors(const u16 *id) 1332 { 1333 if (ata_id_has_lba(id)) { 1334 if (ata_id_has_lba48(id)) 1335 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1336 else 1337 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1338 } else { 1339 if (ata_id_current_chs_valid(id)) 1340 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1341 id[ATA_ID_CUR_SECTORS]; 1342 else 1343 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1344 id[ATA_ID_SECTORS]; 1345 } 1346 } 1347 1348 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1349 { 1350 u64 sectors = 0; 1351 1352 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1353 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1354 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1355 sectors |= (tf->lbah & 0xff) << 16; 1356 sectors |= (tf->lbam & 0xff) << 8; 1357 sectors |= (tf->lbal & 0xff); 1358 1359 return sectors; 1360 } 1361 1362 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1363 { 1364 u64 sectors = 0; 1365 1366 sectors |= (tf->device & 0x0f) << 24; 1367 sectors |= (tf->lbah & 0xff) << 16; 1368 sectors |= (tf->lbam & 0xff) << 8; 1369 sectors |= (tf->lbal & 0xff); 1370 1371 return sectors; 1372 } 1373 1374 /** 1375 * ata_read_native_max_address - Read native max address 1376 * @dev: target device 1377 * @max_sectors: out parameter for the result native max address 1378 * 1379 * Perform an LBA48 or LBA28 native size query upon the device in 1380 * question. 1381 * 1382 * RETURNS: 1383 * 0 on success, -EACCES if command is aborted by the drive. 1384 * -EIO on other errors. 1385 */ 1386 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1387 { 1388 unsigned int err_mask; 1389 struct ata_taskfile tf; 1390 int lba48 = ata_id_has_lba48(dev->id); 1391 1392 ata_tf_init(dev, &tf); 1393 1394 /* always clear all address registers */ 1395 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1396 1397 if (lba48) { 1398 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1399 tf.flags |= ATA_TFLAG_LBA48; 1400 } else 1401 tf.command = ATA_CMD_READ_NATIVE_MAX; 1402 1403 tf.protocol |= ATA_PROT_NODATA; 1404 tf.device |= ATA_LBA; 1405 1406 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1407 if (err_mask) { 1408 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1409 "max address (err_mask=0x%x)\n", err_mask); 1410 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1411 return -EACCES; 1412 return -EIO; 1413 } 1414 1415 if (lba48) 1416 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1417 else 1418 *max_sectors = ata_tf_to_lba(&tf) + 1; 1419 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1420 (*max_sectors)--; 1421 return 0; 1422 } 1423 1424 /** 1425 * ata_set_max_sectors - Set max sectors 1426 * @dev: target device 1427 * @new_sectors: new max sectors value to set for the device 1428 * 1429 * Set max sectors of @dev to @new_sectors. 1430 * 1431 * RETURNS: 1432 * 0 on success, -EACCES if command is aborted or denied (due to 1433 * previous non-volatile SET_MAX) by the drive. -EIO on other 1434 * errors. 1435 */ 1436 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1437 { 1438 unsigned int err_mask; 1439 struct ata_taskfile tf; 1440 int lba48 = ata_id_has_lba48(dev->id); 1441 1442 new_sectors--; 1443 1444 ata_tf_init(dev, &tf); 1445 1446 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1447 1448 if (lba48) { 1449 tf.command = ATA_CMD_SET_MAX_EXT; 1450 tf.flags |= ATA_TFLAG_LBA48; 1451 1452 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1453 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1454 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1455 } else { 1456 tf.command = ATA_CMD_SET_MAX; 1457 1458 tf.device |= (new_sectors >> 24) & 0xf; 1459 } 1460 1461 tf.protocol |= ATA_PROT_NODATA; 1462 tf.device |= ATA_LBA; 1463 1464 tf.lbal = (new_sectors >> 0) & 0xff; 1465 tf.lbam = (new_sectors >> 8) & 0xff; 1466 tf.lbah = (new_sectors >> 16) & 0xff; 1467 1468 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1469 if (err_mask) { 1470 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1471 "max address (err_mask=0x%x)\n", err_mask); 1472 if (err_mask == AC_ERR_DEV && 1473 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1474 return -EACCES; 1475 return -EIO; 1476 } 1477 1478 return 0; 1479 } 1480 1481 /** 1482 * ata_hpa_resize - Resize a device with an HPA set 1483 * @dev: Device to resize 1484 * 1485 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1486 * it if required to the full size of the media. The caller must check 1487 * the drive has the HPA feature set enabled. 1488 * 1489 * RETURNS: 1490 * 0 on success, -errno on failure. 1491 */ 1492 static int ata_hpa_resize(struct ata_device *dev) 1493 { 1494 struct ata_eh_context *ehc = &dev->link->eh_context; 1495 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1496 u64 sectors = ata_id_n_sectors(dev->id); 1497 u64 native_sectors; 1498 int rc; 1499 1500 /* do we need to do it? */ 1501 if (dev->class != ATA_DEV_ATA || 1502 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1503 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1504 return 0; 1505 1506 /* read native max address */ 1507 rc = ata_read_native_max_address(dev, &native_sectors); 1508 if (rc) { 1509 /* If device aborted the command or HPA isn't going to 1510 * be unlocked, skip HPA resizing. 1511 */ 1512 if (rc == -EACCES || !ata_ignore_hpa) { 1513 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1514 "broken, skipping HPA handling\n"); 1515 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1516 1517 /* we can continue if device aborted the command */ 1518 if (rc == -EACCES) 1519 rc = 0; 1520 } 1521 1522 return rc; 1523 } 1524 dev->n_native_sectors = native_sectors; 1525 1526 /* nothing to do? */ 1527 if (native_sectors <= sectors || !ata_ignore_hpa) { 1528 if (!print_info || native_sectors == sectors) 1529 return 0; 1530 1531 if (native_sectors > sectors) 1532 ata_dev_printk(dev, KERN_INFO, 1533 "HPA detected: current %llu, native %llu\n", 1534 (unsigned long long)sectors, 1535 (unsigned long long)native_sectors); 1536 else if (native_sectors < sectors) 1537 ata_dev_printk(dev, KERN_WARNING, 1538 "native sectors (%llu) is smaller than " 1539 "sectors (%llu)\n", 1540 (unsigned long long)native_sectors, 1541 (unsigned long long)sectors); 1542 return 0; 1543 } 1544 1545 /* let's unlock HPA */ 1546 rc = ata_set_max_sectors(dev, native_sectors); 1547 if (rc == -EACCES) { 1548 /* if device aborted the command, skip HPA resizing */ 1549 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1550 "(%llu -> %llu), skipping HPA handling\n", 1551 (unsigned long long)sectors, 1552 (unsigned long long)native_sectors); 1553 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1554 return 0; 1555 } else if (rc) 1556 return rc; 1557 1558 /* re-read IDENTIFY data */ 1559 rc = ata_dev_reread_id(dev, 0); 1560 if (rc) { 1561 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1562 "data after HPA resizing\n"); 1563 return rc; 1564 } 1565 1566 if (print_info) { 1567 u64 new_sectors = ata_id_n_sectors(dev->id); 1568 ata_dev_printk(dev, KERN_INFO, 1569 "HPA unlocked: %llu -> %llu, native %llu\n", 1570 (unsigned long long)sectors, 1571 (unsigned long long)new_sectors, 1572 (unsigned long long)native_sectors); 1573 } 1574 1575 return 0; 1576 } 1577 1578 /** 1579 * ata_dump_id - IDENTIFY DEVICE info debugging output 1580 * @id: IDENTIFY DEVICE page to dump 1581 * 1582 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1583 * page. 1584 * 1585 * LOCKING: 1586 * caller. 1587 */ 1588 1589 static inline void ata_dump_id(const u16 *id) 1590 { 1591 DPRINTK("49==0x%04x " 1592 "53==0x%04x " 1593 "63==0x%04x " 1594 "64==0x%04x " 1595 "75==0x%04x \n", 1596 id[49], 1597 id[53], 1598 id[63], 1599 id[64], 1600 id[75]); 1601 DPRINTK("80==0x%04x " 1602 "81==0x%04x " 1603 "82==0x%04x " 1604 "83==0x%04x " 1605 "84==0x%04x \n", 1606 id[80], 1607 id[81], 1608 id[82], 1609 id[83], 1610 id[84]); 1611 DPRINTK("88==0x%04x " 1612 "93==0x%04x\n", 1613 id[88], 1614 id[93]); 1615 } 1616 1617 /** 1618 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1619 * @id: IDENTIFY data to compute xfer mask from 1620 * 1621 * Compute the xfermask for this device. This is not as trivial 1622 * as it seems if we must consider early devices correctly. 1623 * 1624 * FIXME: pre IDE drive timing (do we care ?). 1625 * 1626 * LOCKING: 1627 * None. 1628 * 1629 * RETURNS: 1630 * Computed xfermask 1631 */ 1632 unsigned long ata_id_xfermask(const u16 *id) 1633 { 1634 unsigned long pio_mask, mwdma_mask, udma_mask; 1635 1636 /* Usual case. Word 53 indicates word 64 is valid */ 1637 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1638 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1639 pio_mask <<= 3; 1640 pio_mask |= 0x7; 1641 } else { 1642 /* If word 64 isn't valid then Word 51 high byte holds 1643 * the PIO timing number for the maximum. Turn it into 1644 * a mask. 1645 */ 1646 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1647 if (mode < 5) /* Valid PIO range */ 1648 pio_mask = (2 << mode) - 1; 1649 else 1650 pio_mask = 1; 1651 1652 /* But wait.. there's more. Design your standards by 1653 * committee and you too can get a free iordy field to 1654 * process. However its the speeds not the modes that 1655 * are supported... Note drivers using the timing API 1656 * will get this right anyway 1657 */ 1658 } 1659 1660 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1661 1662 if (ata_id_is_cfa(id)) { 1663 /* 1664 * Process compact flash extended modes 1665 */ 1666 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1667 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1668 1669 if (pio) 1670 pio_mask |= (1 << 5); 1671 if (pio > 1) 1672 pio_mask |= (1 << 6); 1673 if (dma) 1674 mwdma_mask |= (1 << 3); 1675 if (dma > 1) 1676 mwdma_mask |= (1 << 4); 1677 } 1678 1679 udma_mask = 0; 1680 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1681 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1682 1683 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1684 } 1685 1686 /** 1687 * ata_pio_queue_task - Queue port_task 1688 * @ap: The ata_port to queue port_task for 1689 * @data: data for @fn to use 1690 * @delay: delay time in msecs for workqueue function 1691 * 1692 * Schedule @fn(@data) for execution after @delay jiffies using 1693 * port_task. There is one port_task per port and it's the 1694 * user(low level driver)'s responsibility to make sure that only 1695 * one task is active at any given time. 1696 * 1697 * libata core layer takes care of synchronization between 1698 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1699 * synchronization. 1700 * 1701 * LOCKING: 1702 * Inherited from caller. 1703 */ 1704 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1705 { 1706 ap->port_task_data = data; 1707 1708 /* may fail if ata_port_flush_task() in progress */ 1709 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1710 } 1711 1712 /** 1713 * ata_port_flush_task - Flush port_task 1714 * @ap: The ata_port to flush port_task for 1715 * 1716 * After this function completes, port_task is guranteed not to 1717 * be running or scheduled. 1718 * 1719 * LOCKING: 1720 * Kernel thread context (may sleep) 1721 */ 1722 void ata_port_flush_task(struct ata_port *ap) 1723 { 1724 DPRINTK("ENTER\n"); 1725 1726 cancel_rearming_delayed_work(&ap->port_task); 1727 1728 if (ata_msg_ctl(ap)) 1729 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1730 } 1731 1732 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1733 { 1734 struct completion *waiting = qc->private_data; 1735 1736 complete(waiting); 1737 } 1738 1739 /** 1740 * ata_exec_internal_sg - execute libata internal command 1741 * @dev: Device to which the command is sent 1742 * @tf: Taskfile registers for the command and the result 1743 * @cdb: CDB for packet command 1744 * @dma_dir: Data tranfer direction of the command 1745 * @sgl: sg list for the data buffer of the command 1746 * @n_elem: Number of sg entries 1747 * @timeout: Timeout in msecs (0 for default) 1748 * 1749 * Executes libata internal command with timeout. @tf contains 1750 * command on entry and result on return. Timeout and error 1751 * conditions are reported via return value. No recovery action 1752 * is taken after a command times out. It's caller's duty to 1753 * clean up after timeout. 1754 * 1755 * LOCKING: 1756 * None. Should be called with kernel context, might sleep. 1757 * 1758 * RETURNS: 1759 * Zero on success, AC_ERR_* mask on failure 1760 */ 1761 unsigned ata_exec_internal_sg(struct ata_device *dev, 1762 struct ata_taskfile *tf, const u8 *cdb, 1763 int dma_dir, struct scatterlist *sgl, 1764 unsigned int n_elem, unsigned long timeout) 1765 { 1766 struct ata_link *link = dev->link; 1767 struct ata_port *ap = link->ap; 1768 u8 command = tf->command; 1769 int auto_timeout = 0; 1770 struct ata_queued_cmd *qc; 1771 unsigned int tag, preempted_tag; 1772 u32 preempted_sactive, preempted_qc_active; 1773 int preempted_nr_active_links; 1774 DECLARE_COMPLETION_ONSTACK(wait); 1775 unsigned long flags; 1776 unsigned int err_mask; 1777 int rc; 1778 1779 spin_lock_irqsave(ap->lock, flags); 1780 1781 /* no internal command while frozen */ 1782 if (ap->pflags & ATA_PFLAG_FROZEN) { 1783 spin_unlock_irqrestore(ap->lock, flags); 1784 return AC_ERR_SYSTEM; 1785 } 1786 1787 /* initialize internal qc */ 1788 1789 /* XXX: Tag 0 is used for drivers with legacy EH as some 1790 * drivers choke if any other tag is given. This breaks 1791 * ata_tag_internal() test for those drivers. Don't use new 1792 * EH stuff without converting to it. 1793 */ 1794 if (ap->ops->error_handler) 1795 tag = ATA_TAG_INTERNAL; 1796 else 1797 tag = 0; 1798 1799 if (test_and_set_bit(tag, &ap->qc_allocated)) 1800 BUG(); 1801 qc = __ata_qc_from_tag(ap, tag); 1802 1803 qc->tag = tag; 1804 qc->scsicmd = NULL; 1805 qc->ap = ap; 1806 qc->dev = dev; 1807 ata_qc_reinit(qc); 1808 1809 preempted_tag = link->active_tag; 1810 preempted_sactive = link->sactive; 1811 preempted_qc_active = ap->qc_active; 1812 preempted_nr_active_links = ap->nr_active_links; 1813 link->active_tag = ATA_TAG_POISON; 1814 link->sactive = 0; 1815 ap->qc_active = 0; 1816 ap->nr_active_links = 0; 1817 1818 /* prepare & issue qc */ 1819 qc->tf = *tf; 1820 if (cdb) 1821 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1822 qc->flags |= ATA_QCFLAG_RESULT_TF; 1823 qc->dma_dir = dma_dir; 1824 if (dma_dir != DMA_NONE) { 1825 unsigned int i, buflen = 0; 1826 struct scatterlist *sg; 1827 1828 for_each_sg(sgl, sg, n_elem, i) 1829 buflen += sg->length; 1830 1831 ata_sg_init(qc, sgl, n_elem); 1832 qc->nbytes = buflen; 1833 } 1834 1835 qc->private_data = &wait; 1836 qc->complete_fn = ata_qc_complete_internal; 1837 1838 ata_qc_issue(qc); 1839 1840 spin_unlock_irqrestore(ap->lock, flags); 1841 1842 if (!timeout) { 1843 if (ata_probe_timeout) 1844 timeout = ata_probe_timeout * 1000; 1845 else { 1846 timeout = ata_internal_cmd_timeout(dev, command); 1847 auto_timeout = 1; 1848 } 1849 } 1850 1851 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1852 1853 ata_port_flush_task(ap); 1854 1855 if (!rc) { 1856 spin_lock_irqsave(ap->lock, flags); 1857 1858 /* We're racing with irq here. If we lose, the 1859 * following test prevents us from completing the qc 1860 * twice. If we win, the port is frozen and will be 1861 * cleaned up by ->post_internal_cmd(). 1862 */ 1863 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1864 qc->err_mask |= AC_ERR_TIMEOUT; 1865 1866 if (ap->ops->error_handler) 1867 ata_port_freeze(ap); 1868 else 1869 ata_qc_complete(qc); 1870 1871 if (ata_msg_warn(ap)) 1872 ata_dev_printk(dev, KERN_WARNING, 1873 "qc timeout (cmd 0x%x)\n", command); 1874 } 1875 1876 spin_unlock_irqrestore(ap->lock, flags); 1877 } 1878 1879 /* do post_internal_cmd */ 1880 if (ap->ops->post_internal_cmd) 1881 ap->ops->post_internal_cmd(qc); 1882 1883 /* perform minimal error analysis */ 1884 if (qc->flags & ATA_QCFLAG_FAILED) { 1885 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1886 qc->err_mask |= AC_ERR_DEV; 1887 1888 if (!qc->err_mask) 1889 qc->err_mask |= AC_ERR_OTHER; 1890 1891 if (qc->err_mask & ~AC_ERR_OTHER) 1892 qc->err_mask &= ~AC_ERR_OTHER; 1893 } 1894 1895 /* finish up */ 1896 spin_lock_irqsave(ap->lock, flags); 1897 1898 *tf = qc->result_tf; 1899 err_mask = qc->err_mask; 1900 1901 ata_qc_free(qc); 1902 link->active_tag = preempted_tag; 1903 link->sactive = preempted_sactive; 1904 ap->qc_active = preempted_qc_active; 1905 ap->nr_active_links = preempted_nr_active_links; 1906 1907 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1908 * Until those drivers are fixed, we detect the condition 1909 * here, fail the command with AC_ERR_SYSTEM and reenable the 1910 * port. 1911 * 1912 * Note that this doesn't change any behavior as internal 1913 * command failure results in disabling the device in the 1914 * higher layer for LLDDs without new reset/EH callbacks. 1915 * 1916 * Kill the following code as soon as those drivers are fixed. 1917 */ 1918 if (ap->flags & ATA_FLAG_DISABLED) { 1919 err_mask |= AC_ERR_SYSTEM; 1920 ata_port_probe(ap); 1921 } 1922 1923 spin_unlock_irqrestore(ap->lock, flags); 1924 1925 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1926 ata_internal_cmd_timed_out(dev, command); 1927 1928 return err_mask; 1929 } 1930 1931 /** 1932 * ata_exec_internal - execute libata internal command 1933 * @dev: Device to which the command is sent 1934 * @tf: Taskfile registers for the command and the result 1935 * @cdb: CDB for packet command 1936 * @dma_dir: Data tranfer direction of the command 1937 * @buf: Data buffer of the command 1938 * @buflen: Length of data buffer 1939 * @timeout: Timeout in msecs (0 for default) 1940 * 1941 * Wrapper around ata_exec_internal_sg() which takes simple 1942 * buffer instead of sg list. 1943 * 1944 * LOCKING: 1945 * None. Should be called with kernel context, might sleep. 1946 * 1947 * RETURNS: 1948 * Zero on success, AC_ERR_* mask on failure 1949 */ 1950 unsigned ata_exec_internal(struct ata_device *dev, 1951 struct ata_taskfile *tf, const u8 *cdb, 1952 int dma_dir, void *buf, unsigned int buflen, 1953 unsigned long timeout) 1954 { 1955 struct scatterlist *psg = NULL, sg; 1956 unsigned int n_elem = 0; 1957 1958 if (dma_dir != DMA_NONE) { 1959 WARN_ON(!buf); 1960 sg_init_one(&sg, buf, buflen); 1961 psg = &sg; 1962 n_elem++; 1963 } 1964 1965 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1966 timeout); 1967 } 1968 1969 /** 1970 * ata_do_simple_cmd - execute simple internal command 1971 * @dev: Device to which the command is sent 1972 * @cmd: Opcode to execute 1973 * 1974 * Execute a 'simple' command, that only consists of the opcode 1975 * 'cmd' itself, without filling any other registers 1976 * 1977 * LOCKING: 1978 * Kernel thread context (may sleep). 1979 * 1980 * RETURNS: 1981 * Zero on success, AC_ERR_* mask on failure 1982 */ 1983 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1984 { 1985 struct ata_taskfile tf; 1986 1987 ata_tf_init(dev, &tf); 1988 1989 tf.command = cmd; 1990 tf.flags |= ATA_TFLAG_DEVICE; 1991 tf.protocol = ATA_PROT_NODATA; 1992 1993 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1994 } 1995 1996 /** 1997 * ata_pio_need_iordy - check if iordy needed 1998 * @adev: ATA device 1999 * 2000 * Check if the current speed of the device requires IORDY. Used 2001 * by various controllers for chip configuration. 2002 */ 2003 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 2004 { 2005 /* Don't set IORDY if we're preparing for reset. IORDY may 2006 * lead to controller lock up on certain controllers if the 2007 * port is not occupied. See bko#11703 for details. 2008 */ 2009 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 2010 return 0; 2011 /* Controller doesn't support IORDY. Probably a pointless 2012 * check as the caller should know this. 2013 */ 2014 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 2015 return 0; 2016 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 2017 if (ata_id_is_cfa(adev->id) 2018 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 2019 return 0; 2020 /* PIO3 and higher it is mandatory */ 2021 if (adev->pio_mode > XFER_PIO_2) 2022 return 1; 2023 /* We turn it on when possible */ 2024 if (ata_id_has_iordy(adev->id)) 2025 return 1; 2026 return 0; 2027 } 2028 2029 /** 2030 * ata_pio_mask_no_iordy - Return the non IORDY mask 2031 * @adev: ATA device 2032 * 2033 * Compute the highest mode possible if we are not using iordy. Return 2034 * -1 if no iordy mode is available. 2035 */ 2036 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 2037 { 2038 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 2039 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 2040 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 2041 /* Is the speed faster than the drive allows non IORDY ? */ 2042 if (pio) { 2043 /* This is cycle times not frequency - watch the logic! */ 2044 if (pio > 240) /* PIO2 is 240nS per cycle */ 2045 return 3 << ATA_SHIFT_PIO; 2046 return 7 << ATA_SHIFT_PIO; 2047 } 2048 } 2049 return 3 << ATA_SHIFT_PIO; 2050 } 2051 2052 /** 2053 * ata_do_dev_read_id - default ID read method 2054 * @dev: device 2055 * @tf: proposed taskfile 2056 * @id: data buffer 2057 * 2058 * Issue the identify taskfile and hand back the buffer containing 2059 * identify data. For some RAID controllers and for pre ATA devices 2060 * this function is wrapped or replaced by the driver 2061 */ 2062 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2063 struct ata_taskfile *tf, u16 *id) 2064 { 2065 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2066 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2067 } 2068 2069 /** 2070 * ata_dev_read_id - Read ID data from the specified device 2071 * @dev: target device 2072 * @p_class: pointer to class of the target device (may be changed) 2073 * @flags: ATA_READID_* flags 2074 * @id: buffer to read IDENTIFY data into 2075 * 2076 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2077 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2078 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2079 * for pre-ATA4 drives. 2080 * 2081 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2082 * now we abort if we hit that case. 2083 * 2084 * LOCKING: 2085 * Kernel thread context (may sleep) 2086 * 2087 * RETURNS: 2088 * 0 on success, -errno otherwise. 2089 */ 2090 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2091 unsigned int flags, u16 *id) 2092 { 2093 struct ata_port *ap = dev->link->ap; 2094 unsigned int class = *p_class; 2095 struct ata_taskfile tf; 2096 unsigned int err_mask = 0; 2097 const char *reason; 2098 bool is_semb = class == ATA_DEV_SEMB; 2099 int may_fallback = 1, tried_spinup = 0; 2100 int rc; 2101 2102 if (ata_msg_ctl(ap)) 2103 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2104 2105 retry: 2106 ata_tf_init(dev, &tf); 2107 2108 switch (class) { 2109 case ATA_DEV_SEMB: 2110 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 2111 case ATA_DEV_ATA: 2112 tf.command = ATA_CMD_ID_ATA; 2113 break; 2114 case ATA_DEV_ATAPI: 2115 tf.command = ATA_CMD_ID_ATAPI; 2116 break; 2117 default: 2118 rc = -ENODEV; 2119 reason = "unsupported class"; 2120 goto err_out; 2121 } 2122 2123 tf.protocol = ATA_PROT_PIO; 2124 2125 /* Some devices choke if TF registers contain garbage. Make 2126 * sure those are properly initialized. 2127 */ 2128 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2129 2130 /* Device presence detection is unreliable on some 2131 * controllers. Always poll IDENTIFY if available. 2132 */ 2133 tf.flags |= ATA_TFLAG_POLLING; 2134 2135 if (ap->ops->read_id) 2136 err_mask = ap->ops->read_id(dev, &tf, id); 2137 else 2138 err_mask = ata_do_dev_read_id(dev, &tf, id); 2139 2140 if (err_mask) { 2141 if (err_mask & AC_ERR_NODEV_HINT) { 2142 ata_dev_printk(dev, KERN_DEBUG, 2143 "NODEV after polling detection\n"); 2144 return -ENOENT; 2145 } 2146 2147 if (is_semb) { 2148 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on " 2149 "device w/ SEMB sig, disabled\n"); 2150 /* SEMB is not supported yet */ 2151 *p_class = ATA_DEV_SEMB_UNSUP; 2152 return 0; 2153 } 2154 2155 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2156 /* Device or controller might have reported 2157 * the wrong device class. Give a shot at the 2158 * other IDENTIFY if the current one is 2159 * aborted by the device. 2160 */ 2161 if (may_fallback) { 2162 may_fallback = 0; 2163 2164 if (class == ATA_DEV_ATA) 2165 class = ATA_DEV_ATAPI; 2166 else 2167 class = ATA_DEV_ATA; 2168 goto retry; 2169 } 2170 2171 /* Control reaches here iff the device aborted 2172 * both flavors of IDENTIFYs which happens 2173 * sometimes with phantom devices. 2174 */ 2175 ata_dev_printk(dev, KERN_DEBUG, 2176 "both IDENTIFYs aborted, assuming NODEV\n"); 2177 return -ENOENT; 2178 } 2179 2180 rc = -EIO; 2181 reason = "I/O error"; 2182 goto err_out; 2183 } 2184 2185 /* Falling back doesn't make sense if ID data was read 2186 * successfully at least once. 2187 */ 2188 may_fallback = 0; 2189 2190 swap_buf_le16(id, ATA_ID_WORDS); 2191 2192 /* sanity check */ 2193 rc = -EINVAL; 2194 reason = "device reports invalid type"; 2195 2196 if (class == ATA_DEV_ATA) { 2197 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2198 goto err_out; 2199 } else { 2200 if (ata_id_is_ata(id)) 2201 goto err_out; 2202 } 2203 2204 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2205 tried_spinup = 1; 2206 /* 2207 * Drive powered-up in standby mode, and requires a specific 2208 * SET_FEATURES spin-up subcommand before it will accept 2209 * anything other than the original IDENTIFY command. 2210 */ 2211 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2212 if (err_mask && id[2] != 0x738c) { 2213 rc = -EIO; 2214 reason = "SPINUP failed"; 2215 goto err_out; 2216 } 2217 /* 2218 * If the drive initially returned incomplete IDENTIFY info, 2219 * we now must reissue the IDENTIFY command. 2220 */ 2221 if (id[2] == 0x37c8) 2222 goto retry; 2223 } 2224 2225 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2226 /* 2227 * The exact sequence expected by certain pre-ATA4 drives is: 2228 * SRST RESET 2229 * IDENTIFY (optional in early ATA) 2230 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2231 * anything else.. 2232 * Some drives were very specific about that exact sequence. 2233 * 2234 * Note that ATA4 says lba is mandatory so the second check 2235 * shoud never trigger. 2236 */ 2237 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2238 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2239 if (err_mask) { 2240 rc = -EIO; 2241 reason = "INIT_DEV_PARAMS failed"; 2242 goto err_out; 2243 } 2244 2245 /* current CHS translation info (id[53-58]) might be 2246 * changed. reread the identify device info. 2247 */ 2248 flags &= ~ATA_READID_POSTRESET; 2249 goto retry; 2250 } 2251 } 2252 2253 *p_class = class; 2254 2255 return 0; 2256 2257 err_out: 2258 if (ata_msg_warn(ap)) 2259 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2260 "(%s, err_mask=0x%x)\n", reason, err_mask); 2261 return rc; 2262 } 2263 2264 static int ata_do_link_spd_horkage(struct ata_device *dev) 2265 { 2266 struct ata_link *plink = ata_dev_phys_link(dev); 2267 u32 target, target_limit; 2268 2269 if (!sata_scr_valid(plink)) 2270 return 0; 2271 2272 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2273 target = 1; 2274 else 2275 return 0; 2276 2277 target_limit = (1 << target) - 1; 2278 2279 /* if already on stricter limit, no need to push further */ 2280 if (plink->sata_spd_limit <= target_limit) 2281 return 0; 2282 2283 plink->sata_spd_limit = target_limit; 2284 2285 /* Request another EH round by returning -EAGAIN if link is 2286 * going faster than the target speed. Forward progress is 2287 * guaranteed by setting sata_spd_limit to target_limit above. 2288 */ 2289 if (plink->sata_spd > target) { 2290 ata_dev_printk(dev, KERN_INFO, 2291 "applying link speed limit horkage to %s\n", 2292 sata_spd_string(target)); 2293 return -EAGAIN; 2294 } 2295 return 0; 2296 } 2297 2298 static inline u8 ata_dev_knobble(struct ata_device *dev) 2299 { 2300 struct ata_port *ap = dev->link->ap; 2301 2302 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2303 return 0; 2304 2305 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2306 } 2307 2308 static int ata_dev_config_ncq(struct ata_device *dev, 2309 char *desc, size_t desc_sz) 2310 { 2311 struct ata_port *ap = dev->link->ap; 2312 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2313 unsigned int err_mask; 2314 char *aa_desc = ""; 2315 2316 if (!ata_id_has_ncq(dev->id)) { 2317 desc[0] = '\0'; 2318 return 0; 2319 } 2320 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2321 snprintf(desc, desc_sz, "NCQ (not used)"); 2322 return 0; 2323 } 2324 if (ap->flags & ATA_FLAG_NCQ) { 2325 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2326 dev->flags |= ATA_DFLAG_NCQ; 2327 } 2328 2329 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2330 (ap->flags & ATA_FLAG_FPDMA_AA) && 2331 ata_id_has_fpdma_aa(dev->id)) { 2332 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2333 SATA_FPDMA_AA); 2334 if (err_mask) { 2335 ata_dev_printk(dev, KERN_ERR, "failed to enable AA" 2336 "(error_mask=0x%x)\n", err_mask); 2337 if (err_mask != AC_ERR_DEV) { 2338 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2339 return -EIO; 2340 } 2341 } else 2342 aa_desc = ", AA"; 2343 } 2344 2345 if (hdepth >= ddepth) 2346 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2347 else 2348 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2349 ddepth, aa_desc); 2350 return 0; 2351 } 2352 2353 /** 2354 * ata_dev_configure - Configure the specified ATA/ATAPI device 2355 * @dev: Target device to configure 2356 * 2357 * Configure @dev according to @dev->id. Generic and low-level 2358 * driver specific fixups are also applied. 2359 * 2360 * LOCKING: 2361 * Kernel thread context (may sleep) 2362 * 2363 * RETURNS: 2364 * 0 on success, -errno otherwise 2365 */ 2366 int ata_dev_configure(struct ata_device *dev) 2367 { 2368 struct ata_port *ap = dev->link->ap; 2369 struct ata_eh_context *ehc = &dev->link->eh_context; 2370 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2371 const u16 *id = dev->id; 2372 unsigned long xfer_mask; 2373 char revbuf[7]; /* XYZ-99\0 */ 2374 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2375 char modelbuf[ATA_ID_PROD_LEN+1]; 2376 int rc; 2377 2378 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2379 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2380 __func__); 2381 return 0; 2382 } 2383 2384 if (ata_msg_probe(ap)) 2385 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2386 2387 /* set horkage */ 2388 dev->horkage |= ata_dev_blacklisted(dev); 2389 ata_force_horkage(dev); 2390 2391 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2392 ata_dev_printk(dev, KERN_INFO, 2393 "unsupported device, disabling\n"); 2394 ata_dev_disable(dev); 2395 return 0; 2396 } 2397 2398 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2399 dev->class == ATA_DEV_ATAPI) { 2400 ata_dev_printk(dev, KERN_WARNING, 2401 "WARNING: ATAPI is %s, device ignored.\n", 2402 atapi_enabled ? "not supported with this driver" 2403 : "disabled"); 2404 ata_dev_disable(dev); 2405 return 0; 2406 } 2407 2408 rc = ata_do_link_spd_horkage(dev); 2409 if (rc) 2410 return rc; 2411 2412 /* let ACPI work its magic */ 2413 rc = ata_acpi_on_devcfg(dev); 2414 if (rc) 2415 return rc; 2416 2417 /* massage HPA, do it early as it might change IDENTIFY data */ 2418 rc = ata_hpa_resize(dev); 2419 if (rc) 2420 return rc; 2421 2422 /* print device capabilities */ 2423 if (ata_msg_probe(ap)) 2424 ata_dev_printk(dev, KERN_DEBUG, 2425 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2426 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2427 __func__, 2428 id[49], id[82], id[83], id[84], 2429 id[85], id[86], id[87], id[88]); 2430 2431 /* initialize to-be-configured parameters */ 2432 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2433 dev->max_sectors = 0; 2434 dev->cdb_len = 0; 2435 dev->n_sectors = 0; 2436 dev->cylinders = 0; 2437 dev->heads = 0; 2438 dev->sectors = 0; 2439 dev->multi_count = 0; 2440 2441 /* 2442 * common ATA, ATAPI feature tests 2443 */ 2444 2445 /* find max transfer mode; for printk only */ 2446 xfer_mask = ata_id_xfermask(id); 2447 2448 if (ata_msg_probe(ap)) 2449 ata_dump_id(id); 2450 2451 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2452 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2453 sizeof(fwrevbuf)); 2454 2455 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2456 sizeof(modelbuf)); 2457 2458 /* ATA-specific feature tests */ 2459 if (dev->class == ATA_DEV_ATA) { 2460 if (ata_id_is_cfa(id)) { 2461 /* CPRM may make this media unusable */ 2462 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2463 ata_dev_printk(dev, KERN_WARNING, 2464 "supports DRM functions and may " 2465 "not be fully accessable.\n"); 2466 snprintf(revbuf, 7, "CFA"); 2467 } else { 2468 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2469 /* Warn the user if the device has TPM extensions */ 2470 if (ata_id_has_tpm(id)) 2471 ata_dev_printk(dev, KERN_WARNING, 2472 "supports DRM functions and may " 2473 "not be fully accessable.\n"); 2474 } 2475 2476 dev->n_sectors = ata_id_n_sectors(id); 2477 2478 /* get current R/W Multiple count setting */ 2479 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2480 unsigned int max = dev->id[47] & 0xff; 2481 unsigned int cnt = dev->id[59] & 0xff; 2482 /* only recognize/allow powers of two here */ 2483 if (is_power_of_2(max) && is_power_of_2(cnt)) 2484 if (cnt <= max) 2485 dev->multi_count = cnt; 2486 } 2487 2488 if (ata_id_has_lba(id)) { 2489 const char *lba_desc; 2490 char ncq_desc[24]; 2491 2492 lba_desc = "LBA"; 2493 dev->flags |= ATA_DFLAG_LBA; 2494 if (ata_id_has_lba48(id)) { 2495 dev->flags |= ATA_DFLAG_LBA48; 2496 lba_desc = "LBA48"; 2497 2498 if (dev->n_sectors >= (1UL << 28) && 2499 ata_id_has_flush_ext(id)) 2500 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2501 } 2502 2503 /* config NCQ */ 2504 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2505 if (rc) 2506 return rc; 2507 2508 /* print device info to dmesg */ 2509 if (ata_msg_drv(ap) && print_info) { 2510 ata_dev_printk(dev, KERN_INFO, 2511 "%s: %s, %s, max %s\n", 2512 revbuf, modelbuf, fwrevbuf, 2513 ata_mode_string(xfer_mask)); 2514 ata_dev_printk(dev, KERN_INFO, 2515 "%Lu sectors, multi %u: %s %s\n", 2516 (unsigned long long)dev->n_sectors, 2517 dev->multi_count, lba_desc, ncq_desc); 2518 } 2519 } else { 2520 /* CHS */ 2521 2522 /* Default translation */ 2523 dev->cylinders = id[1]; 2524 dev->heads = id[3]; 2525 dev->sectors = id[6]; 2526 2527 if (ata_id_current_chs_valid(id)) { 2528 /* Current CHS translation is valid. */ 2529 dev->cylinders = id[54]; 2530 dev->heads = id[55]; 2531 dev->sectors = id[56]; 2532 } 2533 2534 /* print device info to dmesg */ 2535 if (ata_msg_drv(ap) && print_info) { 2536 ata_dev_printk(dev, KERN_INFO, 2537 "%s: %s, %s, max %s\n", 2538 revbuf, modelbuf, fwrevbuf, 2539 ata_mode_string(xfer_mask)); 2540 ata_dev_printk(dev, KERN_INFO, 2541 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2542 (unsigned long long)dev->n_sectors, 2543 dev->multi_count, dev->cylinders, 2544 dev->heads, dev->sectors); 2545 } 2546 } 2547 2548 dev->cdb_len = 16; 2549 } 2550 2551 /* ATAPI-specific feature tests */ 2552 else if (dev->class == ATA_DEV_ATAPI) { 2553 const char *cdb_intr_string = ""; 2554 const char *atapi_an_string = ""; 2555 const char *dma_dir_string = ""; 2556 u32 sntf; 2557 2558 rc = atapi_cdb_len(id); 2559 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2560 if (ata_msg_warn(ap)) 2561 ata_dev_printk(dev, KERN_WARNING, 2562 "unsupported CDB len\n"); 2563 rc = -EINVAL; 2564 goto err_out_nosup; 2565 } 2566 dev->cdb_len = (unsigned int) rc; 2567 2568 /* Enable ATAPI AN if both the host and device have 2569 * the support. If PMP is attached, SNTF is required 2570 * to enable ATAPI AN to discern between PHY status 2571 * changed notifications and ATAPI ANs. 2572 */ 2573 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2574 (!sata_pmp_attached(ap) || 2575 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2576 unsigned int err_mask; 2577 2578 /* issue SET feature command to turn this on */ 2579 err_mask = ata_dev_set_feature(dev, 2580 SETFEATURES_SATA_ENABLE, SATA_AN); 2581 if (err_mask) 2582 ata_dev_printk(dev, KERN_ERR, 2583 "failed to enable ATAPI AN " 2584 "(err_mask=0x%x)\n", err_mask); 2585 else { 2586 dev->flags |= ATA_DFLAG_AN; 2587 atapi_an_string = ", ATAPI AN"; 2588 } 2589 } 2590 2591 if (ata_id_cdb_intr(dev->id)) { 2592 dev->flags |= ATA_DFLAG_CDB_INTR; 2593 cdb_intr_string = ", CDB intr"; 2594 } 2595 2596 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2597 dev->flags |= ATA_DFLAG_DMADIR; 2598 dma_dir_string = ", DMADIR"; 2599 } 2600 2601 /* print device info to dmesg */ 2602 if (ata_msg_drv(ap) && print_info) 2603 ata_dev_printk(dev, KERN_INFO, 2604 "ATAPI: %s, %s, max %s%s%s%s\n", 2605 modelbuf, fwrevbuf, 2606 ata_mode_string(xfer_mask), 2607 cdb_intr_string, atapi_an_string, 2608 dma_dir_string); 2609 } 2610 2611 /* determine max_sectors */ 2612 dev->max_sectors = ATA_MAX_SECTORS; 2613 if (dev->flags & ATA_DFLAG_LBA48) 2614 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2615 2616 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2617 if (ata_id_has_hipm(dev->id)) 2618 dev->flags |= ATA_DFLAG_HIPM; 2619 if (ata_id_has_dipm(dev->id)) 2620 dev->flags |= ATA_DFLAG_DIPM; 2621 } 2622 2623 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2624 200 sectors */ 2625 if (ata_dev_knobble(dev)) { 2626 if (ata_msg_drv(ap) && print_info) 2627 ata_dev_printk(dev, KERN_INFO, 2628 "applying bridge limits\n"); 2629 dev->udma_mask &= ATA_UDMA5; 2630 dev->max_sectors = ATA_MAX_SECTORS; 2631 } 2632 2633 if ((dev->class == ATA_DEV_ATAPI) && 2634 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2635 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2636 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2637 } 2638 2639 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2640 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2641 dev->max_sectors); 2642 2643 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2644 dev->horkage |= ATA_HORKAGE_IPM; 2645 2646 /* reset link pm_policy for this port to no pm */ 2647 ap->pm_policy = MAX_PERFORMANCE; 2648 } 2649 2650 if (ap->ops->dev_config) 2651 ap->ops->dev_config(dev); 2652 2653 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2654 /* Let the user know. We don't want to disallow opens for 2655 rescue purposes, or in case the vendor is just a blithering 2656 idiot. Do this after the dev_config call as some controllers 2657 with buggy firmware may want to avoid reporting false device 2658 bugs */ 2659 2660 if (print_info) { 2661 ata_dev_printk(dev, KERN_WARNING, 2662 "Drive reports diagnostics failure. This may indicate a drive\n"); 2663 ata_dev_printk(dev, KERN_WARNING, 2664 "fault or invalid emulation. Contact drive vendor for information.\n"); 2665 } 2666 } 2667 2668 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2669 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2670 "firmware update to be fully functional.\n"); 2671 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2672 "or visit http://ata.wiki.kernel.org.\n"); 2673 } 2674 2675 return 0; 2676 2677 err_out_nosup: 2678 if (ata_msg_probe(ap)) 2679 ata_dev_printk(dev, KERN_DEBUG, 2680 "%s: EXIT, err\n", __func__); 2681 return rc; 2682 } 2683 2684 /** 2685 * ata_cable_40wire - return 40 wire cable type 2686 * @ap: port 2687 * 2688 * Helper method for drivers which want to hardwire 40 wire cable 2689 * detection. 2690 */ 2691 2692 int ata_cable_40wire(struct ata_port *ap) 2693 { 2694 return ATA_CBL_PATA40; 2695 } 2696 2697 /** 2698 * ata_cable_80wire - return 80 wire cable type 2699 * @ap: port 2700 * 2701 * Helper method for drivers which want to hardwire 80 wire cable 2702 * detection. 2703 */ 2704 2705 int ata_cable_80wire(struct ata_port *ap) 2706 { 2707 return ATA_CBL_PATA80; 2708 } 2709 2710 /** 2711 * ata_cable_unknown - return unknown PATA cable. 2712 * @ap: port 2713 * 2714 * Helper method for drivers which have no PATA cable detection. 2715 */ 2716 2717 int ata_cable_unknown(struct ata_port *ap) 2718 { 2719 return ATA_CBL_PATA_UNK; 2720 } 2721 2722 /** 2723 * ata_cable_ignore - return ignored PATA cable. 2724 * @ap: port 2725 * 2726 * Helper method for drivers which don't use cable type to limit 2727 * transfer mode. 2728 */ 2729 int ata_cable_ignore(struct ata_port *ap) 2730 { 2731 return ATA_CBL_PATA_IGN; 2732 } 2733 2734 /** 2735 * ata_cable_sata - return SATA cable type 2736 * @ap: port 2737 * 2738 * Helper method for drivers which have SATA cables 2739 */ 2740 2741 int ata_cable_sata(struct ata_port *ap) 2742 { 2743 return ATA_CBL_SATA; 2744 } 2745 2746 /** 2747 * ata_bus_probe - Reset and probe ATA bus 2748 * @ap: Bus to probe 2749 * 2750 * Master ATA bus probing function. Initiates a hardware-dependent 2751 * bus reset, then attempts to identify any devices found on 2752 * the bus. 2753 * 2754 * LOCKING: 2755 * PCI/etc. bus probe sem. 2756 * 2757 * RETURNS: 2758 * Zero on success, negative errno otherwise. 2759 */ 2760 2761 int ata_bus_probe(struct ata_port *ap) 2762 { 2763 unsigned int classes[ATA_MAX_DEVICES]; 2764 int tries[ATA_MAX_DEVICES]; 2765 int rc; 2766 struct ata_device *dev; 2767 2768 ata_port_probe(ap); 2769 2770 ata_for_each_dev(dev, &ap->link, ALL) 2771 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2772 2773 retry: 2774 ata_for_each_dev(dev, &ap->link, ALL) { 2775 /* If we issue an SRST then an ATA drive (not ATAPI) 2776 * may change configuration and be in PIO0 timing. If 2777 * we do a hard reset (or are coming from power on) 2778 * this is true for ATA or ATAPI. Until we've set a 2779 * suitable controller mode we should not touch the 2780 * bus as we may be talking too fast. 2781 */ 2782 dev->pio_mode = XFER_PIO_0; 2783 2784 /* If the controller has a pio mode setup function 2785 * then use it to set the chipset to rights. Don't 2786 * touch the DMA setup as that will be dealt with when 2787 * configuring devices. 2788 */ 2789 if (ap->ops->set_piomode) 2790 ap->ops->set_piomode(ap, dev); 2791 } 2792 2793 /* reset and determine device classes */ 2794 ap->ops->phy_reset(ap); 2795 2796 ata_for_each_dev(dev, &ap->link, ALL) { 2797 if (!(ap->flags & ATA_FLAG_DISABLED) && 2798 dev->class != ATA_DEV_UNKNOWN) 2799 classes[dev->devno] = dev->class; 2800 else 2801 classes[dev->devno] = ATA_DEV_NONE; 2802 2803 dev->class = ATA_DEV_UNKNOWN; 2804 } 2805 2806 ata_port_probe(ap); 2807 2808 /* read IDENTIFY page and configure devices. We have to do the identify 2809 specific sequence bass-ackwards so that PDIAG- is released by 2810 the slave device */ 2811 2812 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2813 if (tries[dev->devno]) 2814 dev->class = classes[dev->devno]; 2815 2816 if (!ata_dev_enabled(dev)) 2817 continue; 2818 2819 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2820 dev->id); 2821 if (rc) 2822 goto fail; 2823 } 2824 2825 /* Now ask for the cable type as PDIAG- should have been released */ 2826 if (ap->ops->cable_detect) 2827 ap->cbl = ap->ops->cable_detect(ap); 2828 2829 /* We may have SATA bridge glue hiding here irrespective of 2830 * the reported cable types and sensed types. When SATA 2831 * drives indicate we have a bridge, we don't know which end 2832 * of the link the bridge is which is a problem. 2833 */ 2834 ata_for_each_dev(dev, &ap->link, ENABLED) 2835 if (ata_id_is_sata(dev->id)) 2836 ap->cbl = ATA_CBL_SATA; 2837 2838 /* After the identify sequence we can now set up the devices. We do 2839 this in the normal order so that the user doesn't get confused */ 2840 2841 ata_for_each_dev(dev, &ap->link, ENABLED) { 2842 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2843 rc = ata_dev_configure(dev); 2844 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2845 if (rc) 2846 goto fail; 2847 } 2848 2849 /* configure transfer mode */ 2850 rc = ata_set_mode(&ap->link, &dev); 2851 if (rc) 2852 goto fail; 2853 2854 ata_for_each_dev(dev, &ap->link, ENABLED) 2855 return 0; 2856 2857 /* no device present, disable port */ 2858 ata_port_disable(ap); 2859 return -ENODEV; 2860 2861 fail: 2862 tries[dev->devno]--; 2863 2864 switch (rc) { 2865 case -EINVAL: 2866 /* eeek, something went very wrong, give up */ 2867 tries[dev->devno] = 0; 2868 break; 2869 2870 case -ENODEV: 2871 /* give it just one more chance */ 2872 tries[dev->devno] = min(tries[dev->devno], 1); 2873 case -EIO: 2874 if (tries[dev->devno] == 1) { 2875 /* This is the last chance, better to slow 2876 * down than lose it. 2877 */ 2878 sata_down_spd_limit(&ap->link, 0); 2879 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2880 } 2881 } 2882 2883 if (!tries[dev->devno]) 2884 ata_dev_disable(dev); 2885 2886 goto retry; 2887 } 2888 2889 /** 2890 * ata_port_probe - Mark port as enabled 2891 * @ap: Port for which we indicate enablement 2892 * 2893 * Modify @ap data structure such that the system 2894 * thinks that the entire port is enabled. 2895 * 2896 * LOCKING: host lock, or some other form of 2897 * serialization. 2898 */ 2899 2900 void ata_port_probe(struct ata_port *ap) 2901 { 2902 ap->flags &= ~ATA_FLAG_DISABLED; 2903 } 2904 2905 /** 2906 * sata_print_link_status - Print SATA link status 2907 * @link: SATA link to printk link status about 2908 * 2909 * This function prints link speed and status of a SATA link. 2910 * 2911 * LOCKING: 2912 * None. 2913 */ 2914 static void sata_print_link_status(struct ata_link *link) 2915 { 2916 u32 sstatus, scontrol, tmp; 2917 2918 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2919 return; 2920 sata_scr_read(link, SCR_CONTROL, &scontrol); 2921 2922 if (ata_phys_link_online(link)) { 2923 tmp = (sstatus >> 4) & 0xf; 2924 ata_link_printk(link, KERN_INFO, 2925 "SATA link up %s (SStatus %X SControl %X)\n", 2926 sata_spd_string(tmp), sstatus, scontrol); 2927 } else { 2928 ata_link_printk(link, KERN_INFO, 2929 "SATA link down (SStatus %X SControl %X)\n", 2930 sstatus, scontrol); 2931 } 2932 } 2933 2934 /** 2935 * ata_dev_pair - return other device on cable 2936 * @adev: device 2937 * 2938 * Obtain the other device on the same cable, or if none is 2939 * present NULL is returned 2940 */ 2941 2942 struct ata_device *ata_dev_pair(struct ata_device *adev) 2943 { 2944 struct ata_link *link = adev->link; 2945 struct ata_device *pair = &link->device[1 - adev->devno]; 2946 if (!ata_dev_enabled(pair)) 2947 return NULL; 2948 return pair; 2949 } 2950 2951 /** 2952 * ata_port_disable - Disable port. 2953 * @ap: Port to be disabled. 2954 * 2955 * Modify @ap data structure such that the system 2956 * thinks that the entire port is disabled, and should 2957 * never attempt to probe or communicate with devices 2958 * on this port. 2959 * 2960 * LOCKING: host lock, or some other form of 2961 * serialization. 2962 */ 2963 2964 void ata_port_disable(struct ata_port *ap) 2965 { 2966 ap->link.device[0].class = ATA_DEV_NONE; 2967 ap->link.device[1].class = ATA_DEV_NONE; 2968 ap->flags |= ATA_FLAG_DISABLED; 2969 } 2970 2971 /** 2972 * sata_down_spd_limit - adjust SATA spd limit downward 2973 * @link: Link to adjust SATA spd limit for 2974 * @spd_limit: Additional limit 2975 * 2976 * Adjust SATA spd limit of @link downward. Note that this 2977 * function only adjusts the limit. The change must be applied 2978 * using sata_set_spd(). 2979 * 2980 * If @spd_limit is non-zero, the speed is limited to equal to or 2981 * lower than @spd_limit if such speed is supported. If 2982 * @spd_limit is slower than any supported speed, only the lowest 2983 * supported speed is allowed. 2984 * 2985 * LOCKING: 2986 * Inherited from caller. 2987 * 2988 * RETURNS: 2989 * 0 on success, negative errno on failure 2990 */ 2991 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2992 { 2993 u32 sstatus, spd, mask; 2994 int rc, bit; 2995 2996 if (!sata_scr_valid(link)) 2997 return -EOPNOTSUPP; 2998 2999 /* If SCR can be read, use it to determine the current SPD. 3000 * If not, use cached value in link->sata_spd. 3001 */ 3002 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3003 if (rc == 0 && ata_sstatus_online(sstatus)) 3004 spd = (sstatus >> 4) & 0xf; 3005 else 3006 spd = link->sata_spd; 3007 3008 mask = link->sata_spd_limit; 3009 if (mask <= 1) 3010 return -EINVAL; 3011 3012 /* unconditionally mask off the highest bit */ 3013 bit = fls(mask) - 1; 3014 mask &= ~(1 << bit); 3015 3016 /* Mask off all speeds higher than or equal to the current 3017 * one. Force 1.5Gbps if current SPD is not available. 3018 */ 3019 if (spd > 1) 3020 mask &= (1 << (spd - 1)) - 1; 3021 else 3022 mask &= 1; 3023 3024 /* were we already at the bottom? */ 3025 if (!mask) 3026 return -EINVAL; 3027 3028 if (spd_limit) { 3029 if (mask & ((1 << spd_limit) - 1)) 3030 mask &= (1 << spd_limit) - 1; 3031 else { 3032 bit = ffs(mask) - 1; 3033 mask = 1 << bit; 3034 } 3035 } 3036 3037 link->sata_spd_limit = mask; 3038 3039 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 3040 sata_spd_string(fls(mask))); 3041 3042 return 0; 3043 } 3044 3045 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3046 { 3047 struct ata_link *host_link = &link->ap->link; 3048 u32 limit, target, spd; 3049 3050 limit = link->sata_spd_limit; 3051 3052 /* Don't configure downstream link faster than upstream link. 3053 * It doesn't speed up anything and some PMPs choke on such 3054 * configuration. 3055 */ 3056 if (!ata_is_host_link(link) && host_link->sata_spd) 3057 limit &= (1 << host_link->sata_spd) - 1; 3058 3059 if (limit == UINT_MAX) 3060 target = 0; 3061 else 3062 target = fls(limit); 3063 3064 spd = (*scontrol >> 4) & 0xf; 3065 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3066 3067 return spd != target; 3068 } 3069 3070 /** 3071 * sata_set_spd_needed - is SATA spd configuration needed 3072 * @link: Link in question 3073 * 3074 * Test whether the spd limit in SControl matches 3075 * @link->sata_spd_limit. This function is used to determine 3076 * whether hardreset is necessary to apply SATA spd 3077 * configuration. 3078 * 3079 * LOCKING: 3080 * Inherited from caller. 3081 * 3082 * RETURNS: 3083 * 1 if SATA spd configuration is needed, 0 otherwise. 3084 */ 3085 static int sata_set_spd_needed(struct ata_link *link) 3086 { 3087 u32 scontrol; 3088 3089 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3090 return 1; 3091 3092 return __sata_set_spd_needed(link, &scontrol); 3093 } 3094 3095 /** 3096 * sata_set_spd - set SATA spd according to spd limit 3097 * @link: Link to set SATA spd for 3098 * 3099 * Set SATA spd of @link according to sata_spd_limit. 3100 * 3101 * LOCKING: 3102 * Inherited from caller. 3103 * 3104 * RETURNS: 3105 * 0 if spd doesn't need to be changed, 1 if spd has been 3106 * changed. Negative errno if SCR registers are inaccessible. 3107 */ 3108 int sata_set_spd(struct ata_link *link) 3109 { 3110 u32 scontrol; 3111 int rc; 3112 3113 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3114 return rc; 3115 3116 if (!__sata_set_spd_needed(link, &scontrol)) 3117 return 0; 3118 3119 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3120 return rc; 3121 3122 return 1; 3123 } 3124 3125 /* 3126 * This mode timing computation functionality is ported over from 3127 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3128 */ 3129 /* 3130 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3131 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3132 * for UDMA6, which is currently supported only by Maxtor drives. 3133 * 3134 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3135 */ 3136 3137 static const struct ata_timing ata_timing[] = { 3138 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3139 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3140 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3141 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3142 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3143 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3144 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3145 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3146 3147 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3148 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3149 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3150 3151 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3152 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3153 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3154 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3155 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3156 3157 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3158 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3159 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3160 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3161 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3162 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3163 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3164 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3165 3166 { 0xFF } 3167 }; 3168 3169 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3170 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3171 3172 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3173 { 3174 q->setup = EZ(t->setup * 1000, T); 3175 q->act8b = EZ(t->act8b * 1000, T); 3176 q->rec8b = EZ(t->rec8b * 1000, T); 3177 q->cyc8b = EZ(t->cyc8b * 1000, T); 3178 q->active = EZ(t->active * 1000, T); 3179 q->recover = EZ(t->recover * 1000, T); 3180 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3181 q->cycle = EZ(t->cycle * 1000, T); 3182 q->udma = EZ(t->udma * 1000, UT); 3183 } 3184 3185 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3186 struct ata_timing *m, unsigned int what) 3187 { 3188 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3189 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3190 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3191 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3192 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3193 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3194 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3195 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3196 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3197 } 3198 3199 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3200 { 3201 const struct ata_timing *t = ata_timing; 3202 3203 while (xfer_mode > t->mode) 3204 t++; 3205 3206 if (xfer_mode == t->mode) 3207 return t; 3208 return NULL; 3209 } 3210 3211 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3212 struct ata_timing *t, int T, int UT) 3213 { 3214 const struct ata_timing *s; 3215 struct ata_timing p; 3216 3217 /* 3218 * Find the mode. 3219 */ 3220 3221 if (!(s = ata_timing_find_mode(speed))) 3222 return -EINVAL; 3223 3224 memcpy(t, s, sizeof(*s)); 3225 3226 /* 3227 * If the drive is an EIDE drive, it can tell us it needs extended 3228 * PIO/MW_DMA cycle timing. 3229 */ 3230 3231 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3232 memset(&p, 0, sizeof(p)); 3233 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3234 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3235 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3236 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3237 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3238 } 3239 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3240 } 3241 3242 /* 3243 * Convert the timing to bus clock counts. 3244 */ 3245 3246 ata_timing_quantize(t, t, T, UT); 3247 3248 /* 3249 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3250 * S.M.A.R.T * and some other commands. We have to ensure that the 3251 * DMA cycle timing is slower/equal than the fastest PIO timing. 3252 */ 3253 3254 if (speed > XFER_PIO_6) { 3255 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3256 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3257 } 3258 3259 /* 3260 * Lengthen active & recovery time so that cycle time is correct. 3261 */ 3262 3263 if (t->act8b + t->rec8b < t->cyc8b) { 3264 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3265 t->rec8b = t->cyc8b - t->act8b; 3266 } 3267 3268 if (t->active + t->recover < t->cycle) { 3269 t->active += (t->cycle - (t->active + t->recover)) / 2; 3270 t->recover = t->cycle - t->active; 3271 } 3272 3273 /* In a few cases quantisation may produce enough errors to 3274 leave t->cycle too low for the sum of active and recovery 3275 if so we must correct this */ 3276 if (t->active + t->recover > t->cycle) 3277 t->cycle = t->active + t->recover; 3278 3279 return 0; 3280 } 3281 3282 /** 3283 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3284 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3285 * @cycle: cycle duration in ns 3286 * 3287 * Return matching xfer mode for @cycle. The returned mode is of 3288 * the transfer type specified by @xfer_shift. If @cycle is too 3289 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3290 * than the fastest known mode, the fasted mode is returned. 3291 * 3292 * LOCKING: 3293 * None. 3294 * 3295 * RETURNS: 3296 * Matching xfer_mode, 0xff if no match found. 3297 */ 3298 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3299 { 3300 u8 base_mode = 0xff, last_mode = 0xff; 3301 const struct ata_xfer_ent *ent; 3302 const struct ata_timing *t; 3303 3304 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3305 if (ent->shift == xfer_shift) 3306 base_mode = ent->base; 3307 3308 for (t = ata_timing_find_mode(base_mode); 3309 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3310 unsigned short this_cycle; 3311 3312 switch (xfer_shift) { 3313 case ATA_SHIFT_PIO: 3314 case ATA_SHIFT_MWDMA: 3315 this_cycle = t->cycle; 3316 break; 3317 case ATA_SHIFT_UDMA: 3318 this_cycle = t->udma; 3319 break; 3320 default: 3321 return 0xff; 3322 } 3323 3324 if (cycle > this_cycle) 3325 break; 3326 3327 last_mode = t->mode; 3328 } 3329 3330 return last_mode; 3331 } 3332 3333 /** 3334 * ata_down_xfermask_limit - adjust dev xfer masks downward 3335 * @dev: Device to adjust xfer masks 3336 * @sel: ATA_DNXFER_* selector 3337 * 3338 * Adjust xfer masks of @dev downward. Note that this function 3339 * does not apply the change. Invoking ata_set_mode() afterwards 3340 * will apply the limit. 3341 * 3342 * LOCKING: 3343 * Inherited from caller. 3344 * 3345 * RETURNS: 3346 * 0 on success, negative errno on failure 3347 */ 3348 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3349 { 3350 char buf[32]; 3351 unsigned long orig_mask, xfer_mask; 3352 unsigned long pio_mask, mwdma_mask, udma_mask; 3353 int quiet, highbit; 3354 3355 quiet = !!(sel & ATA_DNXFER_QUIET); 3356 sel &= ~ATA_DNXFER_QUIET; 3357 3358 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3359 dev->mwdma_mask, 3360 dev->udma_mask); 3361 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3362 3363 switch (sel) { 3364 case ATA_DNXFER_PIO: 3365 highbit = fls(pio_mask) - 1; 3366 pio_mask &= ~(1 << highbit); 3367 break; 3368 3369 case ATA_DNXFER_DMA: 3370 if (udma_mask) { 3371 highbit = fls(udma_mask) - 1; 3372 udma_mask &= ~(1 << highbit); 3373 if (!udma_mask) 3374 return -ENOENT; 3375 } else if (mwdma_mask) { 3376 highbit = fls(mwdma_mask) - 1; 3377 mwdma_mask &= ~(1 << highbit); 3378 if (!mwdma_mask) 3379 return -ENOENT; 3380 } 3381 break; 3382 3383 case ATA_DNXFER_40C: 3384 udma_mask &= ATA_UDMA_MASK_40C; 3385 break; 3386 3387 case ATA_DNXFER_FORCE_PIO0: 3388 pio_mask &= 1; 3389 case ATA_DNXFER_FORCE_PIO: 3390 mwdma_mask = 0; 3391 udma_mask = 0; 3392 break; 3393 3394 default: 3395 BUG(); 3396 } 3397 3398 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3399 3400 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3401 return -ENOENT; 3402 3403 if (!quiet) { 3404 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3405 snprintf(buf, sizeof(buf), "%s:%s", 3406 ata_mode_string(xfer_mask), 3407 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3408 else 3409 snprintf(buf, sizeof(buf), "%s", 3410 ata_mode_string(xfer_mask)); 3411 3412 ata_dev_printk(dev, KERN_WARNING, 3413 "limiting speed to %s\n", buf); 3414 } 3415 3416 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3417 &dev->udma_mask); 3418 3419 return 0; 3420 } 3421 3422 static int ata_dev_set_mode(struct ata_device *dev) 3423 { 3424 struct ata_port *ap = dev->link->ap; 3425 struct ata_eh_context *ehc = &dev->link->eh_context; 3426 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3427 const char *dev_err_whine = ""; 3428 int ign_dev_err = 0; 3429 unsigned int err_mask = 0; 3430 int rc; 3431 3432 dev->flags &= ~ATA_DFLAG_PIO; 3433 if (dev->xfer_shift == ATA_SHIFT_PIO) 3434 dev->flags |= ATA_DFLAG_PIO; 3435 3436 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3437 dev_err_whine = " (SET_XFERMODE skipped)"; 3438 else { 3439 if (nosetxfer) 3440 ata_dev_printk(dev, KERN_WARNING, 3441 "NOSETXFER but PATA detected - can't " 3442 "skip SETXFER, might malfunction\n"); 3443 err_mask = ata_dev_set_xfermode(dev); 3444 } 3445 3446 if (err_mask & ~AC_ERR_DEV) 3447 goto fail; 3448 3449 /* revalidate */ 3450 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3451 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3452 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3453 if (rc) 3454 return rc; 3455 3456 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3457 /* Old CFA may refuse this command, which is just fine */ 3458 if (ata_id_is_cfa(dev->id)) 3459 ign_dev_err = 1; 3460 /* Catch several broken garbage emulations plus some pre 3461 ATA devices */ 3462 if (ata_id_major_version(dev->id) == 0 && 3463 dev->pio_mode <= XFER_PIO_2) 3464 ign_dev_err = 1; 3465 /* Some very old devices and some bad newer ones fail 3466 any kind of SET_XFERMODE request but support PIO0-2 3467 timings and no IORDY */ 3468 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3469 ign_dev_err = 1; 3470 } 3471 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3472 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3473 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3474 dev->dma_mode == XFER_MW_DMA_0 && 3475 (dev->id[63] >> 8) & 1) 3476 ign_dev_err = 1; 3477 3478 /* if the device is actually configured correctly, ignore dev err */ 3479 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3480 ign_dev_err = 1; 3481 3482 if (err_mask & AC_ERR_DEV) { 3483 if (!ign_dev_err) 3484 goto fail; 3485 else 3486 dev_err_whine = " (device error ignored)"; 3487 } 3488 3489 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3490 dev->xfer_shift, (int)dev->xfer_mode); 3491 3492 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3493 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3494 dev_err_whine); 3495 3496 return 0; 3497 3498 fail: 3499 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3500 "(err_mask=0x%x)\n", err_mask); 3501 return -EIO; 3502 } 3503 3504 /** 3505 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3506 * @link: link on which timings will be programmed 3507 * @r_failed_dev: out parameter for failed device 3508 * 3509 * Standard implementation of the function used to tune and set 3510 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3511 * ata_dev_set_mode() fails, pointer to the failing device is 3512 * returned in @r_failed_dev. 3513 * 3514 * LOCKING: 3515 * PCI/etc. bus probe sem. 3516 * 3517 * RETURNS: 3518 * 0 on success, negative errno otherwise 3519 */ 3520 3521 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3522 { 3523 struct ata_port *ap = link->ap; 3524 struct ata_device *dev; 3525 int rc = 0, used_dma = 0, found = 0; 3526 3527 /* step 1: calculate xfer_mask */ 3528 ata_for_each_dev(dev, link, ENABLED) { 3529 unsigned long pio_mask, dma_mask; 3530 unsigned int mode_mask; 3531 3532 mode_mask = ATA_DMA_MASK_ATA; 3533 if (dev->class == ATA_DEV_ATAPI) 3534 mode_mask = ATA_DMA_MASK_ATAPI; 3535 else if (ata_id_is_cfa(dev->id)) 3536 mode_mask = ATA_DMA_MASK_CFA; 3537 3538 ata_dev_xfermask(dev); 3539 ata_force_xfermask(dev); 3540 3541 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3542 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3543 3544 if (libata_dma_mask & mode_mask) 3545 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3546 else 3547 dma_mask = 0; 3548 3549 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3550 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3551 3552 found = 1; 3553 if (ata_dma_enabled(dev)) 3554 used_dma = 1; 3555 } 3556 if (!found) 3557 goto out; 3558 3559 /* step 2: always set host PIO timings */ 3560 ata_for_each_dev(dev, link, ENABLED) { 3561 if (dev->pio_mode == 0xff) { 3562 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3563 rc = -EINVAL; 3564 goto out; 3565 } 3566 3567 dev->xfer_mode = dev->pio_mode; 3568 dev->xfer_shift = ATA_SHIFT_PIO; 3569 if (ap->ops->set_piomode) 3570 ap->ops->set_piomode(ap, dev); 3571 } 3572 3573 /* step 3: set host DMA timings */ 3574 ata_for_each_dev(dev, link, ENABLED) { 3575 if (!ata_dma_enabled(dev)) 3576 continue; 3577 3578 dev->xfer_mode = dev->dma_mode; 3579 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3580 if (ap->ops->set_dmamode) 3581 ap->ops->set_dmamode(ap, dev); 3582 } 3583 3584 /* step 4: update devices' xfer mode */ 3585 ata_for_each_dev(dev, link, ENABLED) { 3586 rc = ata_dev_set_mode(dev); 3587 if (rc) 3588 goto out; 3589 } 3590 3591 /* Record simplex status. If we selected DMA then the other 3592 * host channels are not permitted to do so. 3593 */ 3594 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3595 ap->host->simplex_claimed = ap; 3596 3597 out: 3598 if (rc) 3599 *r_failed_dev = dev; 3600 return rc; 3601 } 3602 3603 /** 3604 * ata_wait_ready - wait for link to become ready 3605 * @link: link to be waited on 3606 * @deadline: deadline jiffies for the operation 3607 * @check_ready: callback to check link readiness 3608 * 3609 * Wait for @link to become ready. @check_ready should return 3610 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3611 * link doesn't seem to be occupied, other errno for other error 3612 * conditions. 3613 * 3614 * Transient -ENODEV conditions are allowed for 3615 * ATA_TMOUT_FF_WAIT. 3616 * 3617 * LOCKING: 3618 * EH context. 3619 * 3620 * RETURNS: 3621 * 0 if @linke is ready before @deadline; otherwise, -errno. 3622 */ 3623 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3624 int (*check_ready)(struct ata_link *link)) 3625 { 3626 unsigned long start = jiffies; 3627 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3628 int warned = 0; 3629 3630 /* Slave readiness can't be tested separately from master. On 3631 * M/S emulation configuration, this function should be called 3632 * only on the master and it will handle both master and slave. 3633 */ 3634 WARN_ON(link == link->ap->slave_link); 3635 3636 if (time_after(nodev_deadline, deadline)) 3637 nodev_deadline = deadline; 3638 3639 while (1) { 3640 unsigned long now = jiffies; 3641 int ready, tmp; 3642 3643 ready = tmp = check_ready(link); 3644 if (ready > 0) 3645 return 0; 3646 3647 /* -ENODEV could be transient. Ignore -ENODEV if link 3648 * is online. Also, some SATA devices take a long 3649 * time to clear 0xff after reset. For example, 3650 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3651 * GoVault needs even more than that. Wait for 3652 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3653 * 3654 * Note that some PATA controllers (pata_ali) explode 3655 * if status register is read more than once when 3656 * there's no device attached. 3657 */ 3658 if (ready == -ENODEV) { 3659 if (ata_link_online(link)) 3660 ready = 0; 3661 else if ((link->ap->flags & ATA_FLAG_SATA) && 3662 !ata_link_offline(link) && 3663 time_before(now, nodev_deadline)) 3664 ready = 0; 3665 } 3666 3667 if (ready) 3668 return ready; 3669 if (time_after(now, deadline)) 3670 return -EBUSY; 3671 3672 if (!warned && time_after(now, start + 5 * HZ) && 3673 (deadline - now > 3 * HZ)) { 3674 ata_link_printk(link, KERN_WARNING, 3675 "link is slow to respond, please be patient " 3676 "(ready=%d)\n", tmp); 3677 warned = 1; 3678 } 3679 3680 msleep(50); 3681 } 3682 } 3683 3684 /** 3685 * ata_wait_after_reset - wait for link to become ready after reset 3686 * @link: link to be waited on 3687 * @deadline: deadline jiffies for the operation 3688 * @check_ready: callback to check link readiness 3689 * 3690 * Wait for @link to become ready after reset. 3691 * 3692 * LOCKING: 3693 * EH context. 3694 * 3695 * RETURNS: 3696 * 0 if @linke is ready before @deadline; otherwise, -errno. 3697 */ 3698 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3699 int (*check_ready)(struct ata_link *link)) 3700 { 3701 msleep(ATA_WAIT_AFTER_RESET); 3702 3703 return ata_wait_ready(link, deadline, check_ready); 3704 } 3705 3706 /** 3707 * sata_link_debounce - debounce SATA phy status 3708 * @link: ATA link to debounce SATA phy status for 3709 * @params: timing parameters { interval, duratinon, timeout } in msec 3710 * @deadline: deadline jiffies for the operation 3711 * 3712 * Make sure SStatus of @link reaches stable state, determined by 3713 * holding the same value where DET is not 1 for @duration polled 3714 * every @interval, before @timeout. Timeout constraints the 3715 * beginning of the stable state. Because DET gets stuck at 1 on 3716 * some controllers after hot unplugging, this functions waits 3717 * until timeout then returns 0 if DET is stable at 1. 3718 * 3719 * @timeout is further limited by @deadline. The sooner of the 3720 * two is used. 3721 * 3722 * LOCKING: 3723 * Kernel thread context (may sleep) 3724 * 3725 * RETURNS: 3726 * 0 on success, -errno on failure. 3727 */ 3728 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3729 unsigned long deadline) 3730 { 3731 unsigned long interval = params[0]; 3732 unsigned long duration = params[1]; 3733 unsigned long last_jiffies, t; 3734 u32 last, cur; 3735 int rc; 3736 3737 t = ata_deadline(jiffies, params[2]); 3738 if (time_before(t, deadline)) 3739 deadline = t; 3740 3741 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3742 return rc; 3743 cur &= 0xf; 3744 3745 last = cur; 3746 last_jiffies = jiffies; 3747 3748 while (1) { 3749 msleep(interval); 3750 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3751 return rc; 3752 cur &= 0xf; 3753 3754 /* DET stable? */ 3755 if (cur == last) { 3756 if (cur == 1 && time_before(jiffies, deadline)) 3757 continue; 3758 if (time_after(jiffies, 3759 ata_deadline(last_jiffies, duration))) 3760 return 0; 3761 continue; 3762 } 3763 3764 /* unstable, start over */ 3765 last = cur; 3766 last_jiffies = jiffies; 3767 3768 /* Check deadline. If debouncing failed, return 3769 * -EPIPE to tell upper layer to lower link speed. 3770 */ 3771 if (time_after(jiffies, deadline)) 3772 return -EPIPE; 3773 } 3774 } 3775 3776 /** 3777 * sata_link_resume - resume SATA link 3778 * @link: ATA link to resume SATA 3779 * @params: timing parameters { interval, duratinon, timeout } in msec 3780 * @deadline: deadline jiffies for the operation 3781 * 3782 * Resume SATA phy @link and debounce it. 3783 * 3784 * LOCKING: 3785 * Kernel thread context (may sleep) 3786 * 3787 * RETURNS: 3788 * 0 on success, -errno on failure. 3789 */ 3790 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3791 unsigned long deadline) 3792 { 3793 int tries = ATA_LINK_RESUME_TRIES; 3794 u32 scontrol, serror; 3795 int rc; 3796 3797 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3798 return rc; 3799 3800 /* 3801 * Writes to SControl sometimes get ignored under certain 3802 * controllers (ata_piix SIDPR). Make sure DET actually is 3803 * cleared. 3804 */ 3805 do { 3806 scontrol = (scontrol & 0x0f0) | 0x300; 3807 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3808 return rc; 3809 /* 3810 * Some PHYs react badly if SStatus is pounded 3811 * immediately after resuming. Delay 200ms before 3812 * debouncing. 3813 */ 3814 msleep(200); 3815 3816 /* is SControl restored correctly? */ 3817 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3818 return rc; 3819 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3820 3821 if ((scontrol & 0xf0f) != 0x300) { 3822 ata_link_printk(link, KERN_ERR, 3823 "failed to resume link (SControl %X)\n", 3824 scontrol); 3825 return 0; 3826 } 3827 3828 if (tries < ATA_LINK_RESUME_TRIES) 3829 ata_link_printk(link, KERN_WARNING, 3830 "link resume succeeded after %d retries\n", 3831 ATA_LINK_RESUME_TRIES - tries); 3832 3833 if ((rc = sata_link_debounce(link, params, deadline))) 3834 return rc; 3835 3836 /* clear SError, some PHYs require this even for SRST to work */ 3837 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3838 rc = sata_scr_write(link, SCR_ERROR, serror); 3839 3840 return rc != -EINVAL ? rc : 0; 3841 } 3842 3843 /** 3844 * ata_std_prereset - prepare for reset 3845 * @link: ATA link to be reset 3846 * @deadline: deadline jiffies for the operation 3847 * 3848 * @link is about to be reset. Initialize it. Failure from 3849 * prereset makes libata abort whole reset sequence and give up 3850 * that port, so prereset should be best-effort. It does its 3851 * best to prepare for reset sequence but if things go wrong, it 3852 * should just whine, not fail. 3853 * 3854 * LOCKING: 3855 * Kernel thread context (may sleep) 3856 * 3857 * RETURNS: 3858 * 0 on success, -errno otherwise. 3859 */ 3860 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3861 { 3862 struct ata_port *ap = link->ap; 3863 struct ata_eh_context *ehc = &link->eh_context; 3864 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3865 int rc; 3866 3867 /* if we're about to do hardreset, nothing more to do */ 3868 if (ehc->i.action & ATA_EH_HARDRESET) 3869 return 0; 3870 3871 /* if SATA, resume link */ 3872 if (ap->flags & ATA_FLAG_SATA) { 3873 rc = sata_link_resume(link, timing, deadline); 3874 /* whine about phy resume failure but proceed */ 3875 if (rc && rc != -EOPNOTSUPP) 3876 ata_link_printk(link, KERN_WARNING, "failed to resume " 3877 "link for reset (errno=%d)\n", rc); 3878 } 3879 3880 /* no point in trying softreset on offline link */ 3881 if (ata_phys_link_offline(link)) 3882 ehc->i.action &= ~ATA_EH_SOFTRESET; 3883 3884 return 0; 3885 } 3886 3887 /** 3888 * sata_link_hardreset - reset link via SATA phy reset 3889 * @link: link to reset 3890 * @timing: timing parameters { interval, duratinon, timeout } in msec 3891 * @deadline: deadline jiffies for the operation 3892 * @online: optional out parameter indicating link onlineness 3893 * @check_ready: optional callback to check link readiness 3894 * 3895 * SATA phy-reset @link using DET bits of SControl register. 3896 * After hardreset, link readiness is waited upon using 3897 * ata_wait_ready() if @check_ready is specified. LLDs are 3898 * allowed to not specify @check_ready and wait itself after this 3899 * function returns. Device classification is LLD's 3900 * responsibility. 3901 * 3902 * *@online is set to one iff reset succeeded and @link is online 3903 * after reset. 3904 * 3905 * LOCKING: 3906 * Kernel thread context (may sleep) 3907 * 3908 * RETURNS: 3909 * 0 on success, -errno otherwise. 3910 */ 3911 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3912 unsigned long deadline, 3913 bool *online, int (*check_ready)(struct ata_link *)) 3914 { 3915 u32 scontrol; 3916 int rc; 3917 3918 DPRINTK("ENTER\n"); 3919 3920 if (online) 3921 *online = false; 3922 3923 if (sata_set_spd_needed(link)) { 3924 /* SATA spec says nothing about how to reconfigure 3925 * spd. To be on the safe side, turn off phy during 3926 * reconfiguration. This works for at least ICH7 AHCI 3927 * and Sil3124. 3928 */ 3929 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3930 goto out; 3931 3932 scontrol = (scontrol & 0x0f0) | 0x304; 3933 3934 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3935 goto out; 3936 3937 sata_set_spd(link); 3938 } 3939 3940 /* issue phy wake/reset */ 3941 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3942 goto out; 3943 3944 scontrol = (scontrol & 0x0f0) | 0x301; 3945 3946 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3947 goto out; 3948 3949 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3950 * 10.4.2 says at least 1 ms. 3951 */ 3952 msleep(1); 3953 3954 /* bring link back */ 3955 rc = sata_link_resume(link, timing, deadline); 3956 if (rc) 3957 goto out; 3958 /* if link is offline nothing more to do */ 3959 if (ata_phys_link_offline(link)) 3960 goto out; 3961 3962 /* Link is online. From this point, -ENODEV too is an error. */ 3963 if (online) 3964 *online = true; 3965 3966 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3967 /* If PMP is supported, we have to do follow-up SRST. 3968 * Some PMPs don't send D2H Reg FIS after hardreset if 3969 * the first port is empty. Wait only for 3970 * ATA_TMOUT_PMP_SRST_WAIT. 3971 */ 3972 if (check_ready) { 3973 unsigned long pmp_deadline; 3974 3975 pmp_deadline = ata_deadline(jiffies, 3976 ATA_TMOUT_PMP_SRST_WAIT); 3977 if (time_after(pmp_deadline, deadline)) 3978 pmp_deadline = deadline; 3979 ata_wait_ready(link, pmp_deadline, check_ready); 3980 } 3981 rc = -EAGAIN; 3982 goto out; 3983 } 3984 3985 rc = 0; 3986 if (check_ready) 3987 rc = ata_wait_ready(link, deadline, check_ready); 3988 out: 3989 if (rc && rc != -EAGAIN) { 3990 /* online is set iff link is online && reset succeeded */ 3991 if (online) 3992 *online = false; 3993 ata_link_printk(link, KERN_ERR, 3994 "COMRESET failed (errno=%d)\n", rc); 3995 } 3996 DPRINTK("EXIT, rc=%d\n", rc); 3997 return rc; 3998 } 3999 4000 /** 4001 * sata_std_hardreset - COMRESET w/o waiting or classification 4002 * @link: link to reset 4003 * @class: resulting class of attached device 4004 * @deadline: deadline jiffies for the operation 4005 * 4006 * Standard SATA COMRESET w/o waiting or classification. 4007 * 4008 * LOCKING: 4009 * Kernel thread context (may sleep) 4010 * 4011 * RETURNS: 4012 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4013 */ 4014 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4015 unsigned long deadline) 4016 { 4017 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4018 bool online; 4019 int rc; 4020 4021 /* do hardreset */ 4022 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4023 return online ? -EAGAIN : rc; 4024 } 4025 4026 /** 4027 * ata_std_postreset - standard postreset callback 4028 * @link: the target ata_link 4029 * @classes: classes of attached devices 4030 * 4031 * This function is invoked after a successful reset. Note that 4032 * the device might have been reset more than once using 4033 * different reset methods before postreset is invoked. 4034 * 4035 * LOCKING: 4036 * Kernel thread context (may sleep) 4037 */ 4038 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4039 { 4040 u32 serror; 4041 4042 DPRINTK("ENTER\n"); 4043 4044 /* reset complete, clear SError */ 4045 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4046 sata_scr_write(link, SCR_ERROR, serror); 4047 4048 /* print link status */ 4049 sata_print_link_status(link); 4050 4051 DPRINTK("EXIT\n"); 4052 } 4053 4054 /** 4055 * ata_dev_same_device - Determine whether new ID matches configured device 4056 * @dev: device to compare against 4057 * @new_class: class of the new device 4058 * @new_id: IDENTIFY page of the new device 4059 * 4060 * Compare @new_class and @new_id against @dev and determine 4061 * whether @dev is the device indicated by @new_class and 4062 * @new_id. 4063 * 4064 * LOCKING: 4065 * None. 4066 * 4067 * RETURNS: 4068 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4069 */ 4070 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4071 const u16 *new_id) 4072 { 4073 const u16 *old_id = dev->id; 4074 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4075 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4076 4077 if (dev->class != new_class) { 4078 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 4079 dev->class, new_class); 4080 return 0; 4081 } 4082 4083 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4084 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4085 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4086 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4087 4088 if (strcmp(model[0], model[1])) { 4089 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 4090 "'%s' != '%s'\n", model[0], model[1]); 4091 return 0; 4092 } 4093 4094 if (strcmp(serial[0], serial[1])) { 4095 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4096 "'%s' != '%s'\n", serial[0], serial[1]); 4097 return 0; 4098 } 4099 4100 return 1; 4101 } 4102 4103 /** 4104 * ata_dev_reread_id - Re-read IDENTIFY data 4105 * @dev: target ATA device 4106 * @readid_flags: read ID flags 4107 * 4108 * Re-read IDENTIFY page and make sure @dev is still attached to 4109 * the port. 4110 * 4111 * LOCKING: 4112 * Kernel thread context (may sleep) 4113 * 4114 * RETURNS: 4115 * 0 on success, negative errno otherwise 4116 */ 4117 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4118 { 4119 unsigned int class = dev->class; 4120 u16 *id = (void *)dev->link->ap->sector_buf; 4121 int rc; 4122 4123 /* read ID data */ 4124 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4125 if (rc) 4126 return rc; 4127 4128 /* is the device still there? */ 4129 if (!ata_dev_same_device(dev, class, id)) 4130 return -ENODEV; 4131 4132 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4133 return 0; 4134 } 4135 4136 /** 4137 * ata_dev_revalidate - Revalidate ATA device 4138 * @dev: device to revalidate 4139 * @new_class: new class code 4140 * @readid_flags: read ID flags 4141 * 4142 * Re-read IDENTIFY page, make sure @dev is still attached to the 4143 * port and reconfigure it according to the new IDENTIFY page. 4144 * 4145 * LOCKING: 4146 * Kernel thread context (may sleep) 4147 * 4148 * RETURNS: 4149 * 0 on success, negative errno otherwise 4150 */ 4151 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4152 unsigned int readid_flags) 4153 { 4154 u64 n_sectors = dev->n_sectors; 4155 u64 n_native_sectors = dev->n_native_sectors; 4156 int rc; 4157 4158 if (!ata_dev_enabled(dev)) 4159 return -ENODEV; 4160 4161 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4162 if (ata_class_enabled(new_class) && 4163 new_class != ATA_DEV_ATA && 4164 new_class != ATA_DEV_ATAPI && 4165 new_class != ATA_DEV_SEMB) { 4166 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4167 dev->class, new_class); 4168 rc = -ENODEV; 4169 goto fail; 4170 } 4171 4172 /* re-read ID */ 4173 rc = ata_dev_reread_id(dev, readid_flags); 4174 if (rc) 4175 goto fail; 4176 4177 /* configure device according to the new ID */ 4178 rc = ata_dev_configure(dev); 4179 if (rc) 4180 goto fail; 4181 4182 /* verify n_sectors hasn't changed */ 4183 if (dev->class == ATA_DEV_ATA && n_sectors && 4184 dev->n_sectors != n_sectors) { 4185 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch " 4186 "%llu != %llu\n", 4187 (unsigned long long)n_sectors, 4188 (unsigned long long)dev->n_sectors); 4189 /* 4190 * Something could have caused HPA to be unlocked 4191 * involuntarily. If n_native_sectors hasn't changed 4192 * and the new size matches it, keep the device. 4193 */ 4194 if (dev->n_native_sectors == n_native_sectors && 4195 dev->n_sectors > n_sectors && 4196 dev->n_sectors == n_native_sectors) { 4197 ata_dev_printk(dev, KERN_WARNING, 4198 "new n_sectors matches native, probably " 4199 "late HPA unlock, continuing\n"); 4200 /* keep using the old n_sectors */ 4201 dev->n_sectors = n_sectors; 4202 } else { 4203 /* restore original n_[native]_sectors and fail */ 4204 dev->n_native_sectors = n_native_sectors; 4205 dev->n_sectors = n_sectors; 4206 rc = -ENODEV; 4207 goto fail; 4208 } 4209 } 4210 4211 return 0; 4212 4213 fail: 4214 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4215 return rc; 4216 } 4217 4218 struct ata_blacklist_entry { 4219 const char *model_num; 4220 const char *model_rev; 4221 unsigned long horkage; 4222 }; 4223 4224 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4225 /* Devices with DMA related problems under Linux */ 4226 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4227 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4228 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4229 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4230 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4231 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4232 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4233 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4234 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4235 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4236 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4237 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4238 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4239 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4240 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4241 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4242 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4243 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4244 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4245 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4246 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4247 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4248 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4249 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4250 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4251 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4252 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4253 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4254 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4255 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4256 /* Odd clown on sil3726/4726 PMPs */ 4257 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4258 4259 /* Weird ATAPI devices */ 4260 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4261 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4262 4263 /* Devices we expect to fail diagnostics */ 4264 4265 /* Devices where NCQ should be avoided */ 4266 /* NCQ is slow */ 4267 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4268 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4269 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4270 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4271 /* NCQ is broken */ 4272 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4273 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4274 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4275 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4276 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4277 4278 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4279 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4280 ATA_HORKAGE_FIRMWARE_WARN }, 4281 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4282 ATA_HORKAGE_FIRMWARE_WARN }, 4283 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4284 ATA_HORKAGE_FIRMWARE_WARN }, 4285 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4286 ATA_HORKAGE_FIRMWARE_WARN }, 4287 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4288 ATA_HORKAGE_FIRMWARE_WARN }, 4289 4290 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4291 ATA_HORKAGE_FIRMWARE_WARN }, 4292 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4293 ATA_HORKAGE_FIRMWARE_WARN }, 4294 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4295 ATA_HORKAGE_FIRMWARE_WARN }, 4296 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4297 ATA_HORKAGE_FIRMWARE_WARN }, 4298 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4299 ATA_HORKAGE_FIRMWARE_WARN }, 4300 4301 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4302 ATA_HORKAGE_FIRMWARE_WARN }, 4303 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4304 ATA_HORKAGE_FIRMWARE_WARN }, 4305 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4306 ATA_HORKAGE_FIRMWARE_WARN }, 4307 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4308 ATA_HORKAGE_FIRMWARE_WARN }, 4309 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4310 ATA_HORKAGE_FIRMWARE_WARN }, 4311 4312 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4313 ATA_HORKAGE_FIRMWARE_WARN }, 4314 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4315 ATA_HORKAGE_FIRMWARE_WARN }, 4316 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4317 ATA_HORKAGE_FIRMWARE_WARN }, 4318 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4319 ATA_HORKAGE_FIRMWARE_WARN }, 4320 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4321 ATA_HORKAGE_FIRMWARE_WARN }, 4322 4323 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4324 ATA_HORKAGE_FIRMWARE_WARN }, 4325 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4326 ATA_HORKAGE_FIRMWARE_WARN }, 4327 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4328 ATA_HORKAGE_FIRMWARE_WARN }, 4329 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4330 ATA_HORKAGE_FIRMWARE_WARN }, 4331 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4332 ATA_HORKAGE_FIRMWARE_WARN }, 4333 4334 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4335 ATA_HORKAGE_FIRMWARE_WARN }, 4336 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4337 ATA_HORKAGE_FIRMWARE_WARN }, 4338 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4339 ATA_HORKAGE_FIRMWARE_WARN }, 4340 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4341 ATA_HORKAGE_FIRMWARE_WARN }, 4342 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4343 ATA_HORKAGE_FIRMWARE_WARN }, 4344 4345 /* Blacklist entries taken from Silicon Image 3124/3132 4346 Windows driver .inf file - also several Linux problem reports */ 4347 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4348 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4349 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4350 4351 /* devices which puke on READ_NATIVE_MAX */ 4352 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4353 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4354 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4355 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4356 4357 /* this one allows HPA unlocking but fails IOs on the area */ 4358 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4359 4360 /* Devices which report 1 sector over size HPA */ 4361 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4362 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4363 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4364 4365 /* Devices which get the IVB wrong */ 4366 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4367 /* Maybe we should just blacklist TSSTcorp... */ 4368 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4369 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4370 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4371 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4372 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4373 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4374 4375 /* Devices that do not need bridging limits applied */ 4376 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4377 4378 /* Devices which aren't very happy with higher link speeds */ 4379 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4380 4381 /* 4382 * Devices which choke on SETXFER. Applies only if both the 4383 * device and controller are SATA. 4384 */ 4385 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER }, 4386 4387 /* End Marker */ 4388 { } 4389 }; 4390 4391 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4392 { 4393 const char *p; 4394 int len; 4395 4396 /* 4397 * check for trailing wildcard: *\0 4398 */ 4399 p = strchr(patt, wildchar); 4400 if (p && ((*(p + 1)) == 0)) 4401 len = p - patt; 4402 else { 4403 len = strlen(name); 4404 if (!len) { 4405 if (!*patt) 4406 return 0; 4407 return -1; 4408 } 4409 } 4410 4411 return strncmp(patt, name, len); 4412 } 4413 4414 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4415 { 4416 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4417 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4418 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4419 4420 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4421 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4422 4423 while (ad->model_num) { 4424 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4425 if (ad->model_rev == NULL) 4426 return ad->horkage; 4427 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4428 return ad->horkage; 4429 } 4430 ad++; 4431 } 4432 return 0; 4433 } 4434 4435 static int ata_dma_blacklisted(const struct ata_device *dev) 4436 { 4437 /* We don't support polling DMA. 4438 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4439 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4440 */ 4441 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4442 (dev->flags & ATA_DFLAG_CDB_INTR)) 4443 return 1; 4444 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4445 } 4446 4447 /** 4448 * ata_is_40wire - check drive side detection 4449 * @dev: device 4450 * 4451 * Perform drive side detection decoding, allowing for device vendors 4452 * who can't follow the documentation. 4453 */ 4454 4455 static int ata_is_40wire(struct ata_device *dev) 4456 { 4457 if (dev->horkage & ATA_HORKAGE_IVB) 4458 return ata_drive_40wire_relaxed(dev->id); 4459 return ata_drive_40wire(dev->id); 4460 } 4461 4462 /** 4463 * cable_is_40wire - 40/80/SATA decider 4464 * @ap: port to consider 4465 * 4466 * This function encapsulates the policy for speed management 4467 * in one place. At the moment we don't cache the result but 4468 * there is a good case for setting ap->cbl to the result when 4469 * we are called with unknown cables (and figuring out if it 4470 * impacts hotplug at all). 4471 * 4472 * Return 1 if the cable appears to be 40 wire. 4473 */ 4474 4475 static int cable_is_40wire(struct ata_port *ap) 4476 { 4477 struct ata_link *link; 4478 struct ata_device *dev; 4479 4480 /* If the controller thinks we are 40 wire, we are. */ 4481 if (ap->cbl == ATA_CBL_PATA40) 4482 return 1; 4483 4484 /* If the controller thinks we are 80 wire, we are. */ 4485 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4486 return 0; 4487 4488 /* If the system is known to be 40 wire short cable (eg 4489 * laptop), then we allow 80 wire modes even if the drive 4490 * isn't sure. 4491 */ 4492 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4493 return 0; 4494 4495 /* If the controller doesn't know, we scan. 4496 * 4497 * Note: We look for all 40 wire detects at this point. Any 4498 * 80 wire detect is taken to be 80 wire cable because 4499 * - in many setups only the one drive (slave if present) will 4500 * give a valid detect 4501 * - if you have a non detect capable drive you don't want it 4502 * to colour the choice 4503 */ 4504 ata_for_each_link(link, ap, EDGE) { 4505 ata_for_each_dev(dev, link, ENABLED) { 4506 if (!ata_is_40wire(dev)) 4507 return 0; 4508 } 4509 } 4510 return 1; 4511 } 4512 4513 /** 4514 * ata_dev_xfermask - Compute supported xfermask of the given device 4515 * @dev: Device to compute xfermask for 4516 * 4517 * Compute supported xfermask of @dev and store it in 4518 * dev->*_mask. This function is responsible for applying all 4519 * known limits including host controller limits, device 4520 * blacklist, etc... 4521 * 4522 * LOCKING: 4523 * None. 4524 */ 4525 static void ata_dev_xfermask(struct ata_device *dev) 4526 { 4527 struct ata_link *link = dev->link; 4528 struct ata_port *ap = link->ap; 4529 struct ata_host *host = ap->host; 4530 unsigned long xfer_mask; 4531 4532 /* controller modes available */ 4533 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4534 ap->mwdma_mask, ap->udma_mask); 4535 4536 /* drive modes available */ 4537 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4538 dev->mwdma_mask, dev->udma_mask); 4539 xfer_mask &= ata_id_xfermask(dev->id); 4540 4541 /* 4542 * CFA Advanced TrueIDE timings are not allowed on a shared 4543 * cable 4544 */ 4545 if (ata_dev_pair(dev)) { 4546 /* No PIO5 or PIO6 */ 4547 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4548 /* No MWDMA3 or MWDMA 4 */ 4549 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4550 } 4551 4552 if (ata_dma_blacklisted(dev)) { 4553 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4554 ata_dev_printk(dev, KERN_WARNING, 4555 "device is on DMA blacklist, disabling DMA\n"); 4556 } 4557 4558 if ((host->flags & ATA_HOST_SIMPLEX) && 4559 host->simplex_claimed && host->simplex_claimed != ap) { 4560 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4561 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4562 "other device, disabling DMA\n"); 4563 } 4564 4565 if (ap->flags & ATA_FLAG_NO_IORDY) 4566 xfer_mask &= ata_pio_mask_no_iordy(dev); 4567 4568 if (ap->ops->mode_filter) 4569 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4570 4571 /* Apply cable rule here. Don't apply it early because when 4572 * we handle hot plug the cable type can itself change. 4573 * Check this last so that we know if the transfer rate was 4574 * solely limited by the cable. 4575 * Unknown or 80 wire cables reported host side are checked 4576 * drive side as well. Cases where we know a 40wire cable 4577 * is used safely for 80 are not checked here. 4578 */ 4579 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4580 /* UDMA/44 or higher would be available */ 4581 if (cable_is_40wire(ap)) { 4582 ata_dev_printk(dev, KERN_WARNING, 4583 "limited to UDMA/33 due to 40-wire cable\n"); 4584 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4585 } 4586 4587 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4588 &dev->mwdma_mask, &dev->udma_mask); 4589 } 4590 4591 /** 4592 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4593 * @dev: Device to which command will be sent 4594 * 4595 * Issue SET FEATURES - XFER MODE command to device @dev 4596 * on port @ap. 4597 * 4598 * LOCKING: 4599 * PCI/etc. bus probe sem. 4600 * 4601 * RETURNS: 4602 * 0 on success, AC_ERR_* mask otherwise. 4603 */ 4604 4605 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4606 { 4607 struct ata_taskfile tf; 4608 unsigned int err_mask; 4609 4610 /* set up set-features taskfile */ 4611 DPRINTK("set features - xfer mode\n"); 4612 4613 /* Some controllers and ATAPI devices show flaky interrupt 4614 * behavior after setting xfer mode. Use polling instead. 4615 */ 4616 ata_tf_init(dev, &tf); 4617 tf.command = ATA_CMD_SET_FEATURES; 4618 tf.feature = SETFEATURES_XFER; 4619 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4620 tf.protocol = ATA_PROT_NODATA; 4621 /* If we are using IORDY we must send the mode setting command */ 4622 if (ata_pio_need_iordy(dev)) 4623 tf.nsect = dev->xfer_mode; 4624 /* If the device has IORDY and the controller does not - turn it off */ 4625 else if (ata_id_has_iordy(dev->id)) 4626 tf.nsect = 0x01; 4627 else /* In the ancient relic department - skip all of this */ 4628 return 0; 4629 4630 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4631 4632 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4633 return err_mask; 4634 } 4635 /** 4636 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4637 * @dev: Device to which command will be sent 4638 * @enable: Whether to enable or disable the feature 4639 * @feature: The sector count represents the feature to set 4640 * 4641 * Issue SET FEATURES - SATA FEATURES command to device @dev 4642 * on port @ap with sector count 4643 * 4644 * LOCKING: 4645 * PCI/etc. bus probe sem. 4646 * 4647 * RETURNS: 4648 * 0 on success, AC_ERR_* mask otherwise. 4649 */ 4650 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4651 u8 feature) 4652 { 4653 struct ata_taskfile tf; 4654 unsigned int err_mask; 4655 4656 /* set up set-features taskfile */ 4657 DPRINTK("set features - SATA features\n"); 4658 4659 ata_tf_init(dev, &tf); 4660 tf.command = ATA_CMD_SET_FEATURES; 4661 tf.feature = enable; 4662 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4663 tf.protocol = ATA_PROT_NODATA; 4664 tf.nsect = feature; 4665 4666 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4667 4668 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4669 return err_mask; 4670 } 4671 4672 /** 4673 * ata_dev_init_params - Issue INIT DEV PARAMS command 4674 * @dev: Device to which command will be sent 4675 * @heads: Number of heads (taskfile parameter) 4676 * @sectors: Number of sectors (taskfile parameter) 4677 * 4678 * LOCKING: 4679 * Kernel thread context (may sleep) 4680 * 4681 * RETURNS: 4682 * 0 on success, AC_ERR_* mask otherwise. 4683 */ 4684 static unsigned int ata_dev_init_params(struct ata_device *dev, 4685 u16 heads, u16 sectors) 4686 { 4687 struct ata_taskfile tf; 4688 unsigned int err_mask; 4689 4690 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4691 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4692 return AC_ERR_INVALID; 4693 4694 /* set up init dev params taskfile */ 4695 DPRINTK("init dev params \n"); 4696 4697 ata_tf_init(dev, &tf); 4698 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4699 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4700 tf.protocol = ATA_PROT_NODATA; 4701 tf.nsect = sectors; 4702 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4703 4704 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4705 /* A clean abort indicates an original or just out of spec drive 4706 and we should continue as we issue the setup based on the 4707 drive reported working geometry */ 4708 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4709 err_mask = 0; 4710 4711 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4712 return err_mask; 4713 } 4714 4715 /** 4716 * ata_sg_clean - Unmap DMA memory associated with command 4717 * @qc: Command containing DMA memory to be released 4718 * 4719 * Unmap all mapped DMA memory associated with this command. 4720 * 4721 * LOCKING: 4722 * spin_lock_irqsave(host lock) 4723 */ 4724 void ata_sg_clean(struct ata_queued_cmd *qc) 4725 { 4726 struct ata_port *ap = qc->ap; 4727 struct scatterlist *sg = qc->sg; 4728 int dir = qc->dma_dir; 4729 4730 WARN_ON_ONCE(sg == NULL); 4731 4732 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4733 4734 if (qc->n_elem) 4735 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4736 4737 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4738 qc->sg = NULL; 4739 } 4740 4741 /** 4742 * atapi_check_dma - Check whether ATAPI DMA can be supported 4743 * @qc: Metadata associated with taskfile to check 4744 * 4745 * Allow low-level driver to filter ATA PACKET commands, returning 4746 * a status indicating whether or not it is OK to use DMA for the 4747 * supplied PACKET command. 4748 * 4749 * LOCKING: 4750 * spin_lock_irqsave(host lock) 4751 * 4752 * RETURNS: 0 when ATAPI DMA can be used 4753 * nonzero otherwise 4754 */ 4755 int atapi_check_dma(struct ata_queued_cmd *qc) 4756 { 4757 struct ata_port *ap = qc->ap; 4758 4759 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4760 * few ATAPI devices choke on such DMA requests. 4761 */ 4762 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4763 unlikely(qc->nbytes & 15)) 4764 return 1; 4765 4766 if (ap->ops->check_atapi_dma) 4767 return ap->ops->check_atapi_dma(qc); 4768 4769 return 0; 4770 } 4771 4772 /** 4773 * ata_std_qc_defer - Check whether a qc needs to be deferred 4774 * @qc: ATA command in question 4775 * 4776 * Non-NCQ commands cannot run with any other command, NCQ or 4777 * not. As upper layer only knows the queue depth, we are 4778 * responsible for maintaining exclusion. This function checks 4779 * whether a new command @qc can be issued. 4780 * 4781 * LOCKING: 4782 * spin_lock_irqsave(host lock) 4783 * 4784 * RETURNS: 4785 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4786 */ 4787 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4788 { 4789 struct ata_link *link = qc->dev->link; 4790 4791 if (qc->tf.protocol == ATA_PROT_NCQ) { 4792 if (!ata_tag_valid(link->active_tag)) 4793 return 0; 4794 } else { 4795 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4796 return 0; 4797 } 4798 4799 return ATA_DEFER_LINK; 4800 } 4801 4802 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4803 4804 /** 4805 * ata_sg_init - Associate command with scatter-gather table. 4806 * @qc: Command to be associated 4807 * @sg: Scatter-gather table. 4808 * @n_elem: Number of elements in s/g table. 4809 * 4810 * Initialize the data-related elements of queued_cmd @qc 4811 * to point to a scatter-gather table @sg, containing @n_elem 4812 * elements. 4813 * 4814 * LOCKING: 4815 * spin_lock_irqsave(host lock) 4816 */ 4817 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4818 unsigned int n_elem) 4819 { 4820 qc->sg = sg; 4821 qc->n_elem = n_elem; 4822 qc->cursg = qc->sg; 4823 } 4824 4825 /** 4826 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4827 * @qc: Command with scatter-gather table to be mapped. 4828 * 4829 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4830 * 4831 * LOCKING: 4832 * spin_lock_irqsave(host lock) 4833 * 4834 * RETURNS: 4835 * Zero on success, negative on error. 4836 * 4837 */ 4838 static int ata_sg_setup(struct ata_queued_cmd *qc) 4839 { 4840 struct ata_port *ap = qc->ap; 4841 unsigned int n_elem; 4842 4843 VPRINTK("ENTER, ata%u\n", ap->print_id); 4844 4845 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4846 if (n_elem < 1) 4847 return -1; 4848 4849 DPRINTK("%d sg elements mapped\n", n_elem); 4850 qc->orig_n_elem = qc->n_elem; 4851 qc->n_elem = n_elem; 4852 qc->flags |= ATA_QCFLAG_DMAMAP; 4853 4854 return 0; 4855 } 4856 4857 /** 4858 * swap_buf_le16 - swap halves of 16-bit words in place 4859 * @buf: Buffer to swap 4860 * @buf_words: Number of 16-bit words in buffer. 4861 * 4862 * Swap halves of 16-bit words if needed to convert from 4863 * little-endian byte order to native cpu byte order, or 4864 * vice-versa. 4865 * 4866 * LOCKING: 4867 * Inherited from caller. 4868 */ 4869 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4870 { 4871 #ifdef __BIG_ENDIAN 4872 unsigned int i; 4873 4874 for (i = 0; i < buf_words; i++) 4875 buf[i] = le16_to_cpu(buf[i]); 4876 #endif /* __BIG_ENDIAN */ 4877 } 4878 4879 /** 4880 * ata_qc_new - Request an available ATA command, for queueing 4881 * @ap: target port 4882 * 4883 * LOCKING: 4884 * None. 4885 */ 4886 4887 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4888 { 4889 struct ata_queued_cmd *qc = NULL; 4890 unsigned int i; 4891 4892 /* no command while frozen */ 4893 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4894 return NULL; 4895 4896 /* the last tag is reserved for internal command. */ 4897 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4898 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4899 qc = __ata_qc_from_tag(ap, i); 4900 break; 4901 } 4902 4903 if (qc) 4904 qc->tag = i; 4905 4906 return qc; 4907 } 4908 4909 /** 4910 * ata_qc_new_init - Request an available ATA command, and initialize it 4911 * @dev: Device from whom we request an available command structure 4912 * 4913 * LOCKING: 4914 * None. 4915 */ 4916 4917 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4918 { 4919 struct ata_port *ap = dev->link->ap; 4920 struct ata_queued_cmd *qc; 4921 4922 qc = ata_qc_new(ap); 4923 if (qc) { 4924 qc->scsicmd = NULL; 4925 qc->ap = ap; 4926 qc->dev = dev; 4927 4928 ata_qc_reinit(qc); 4929 } 4930 4931 return qc; 4932 } 4933 4934 /** 4935 * ata_qc_free - free unused ata_queued_cmd 4936 * @qc: Command to complete 4937 * 4938 * Designed to free unused ata_queued_cmd object 4939 * in case something prevents using it. 4940 * 4941 * LOCKING: 4942 * spin_lock_irqsave(host lock) 4943 */ 4944 void ata_qc_free(struct ata_queued_cmd *qc) 4945 { 4946 struct ata_port *ap; 4947 unsigned int tag; 4948 4949 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4950 ap = qc->ap; 4951 4952 qc->flags = 0; 4953 tag = qc->tag; 4954 if (likely(ata_tag_valid(tag))) { 4955 qc->tag = ATA_TAG_POISON; 4956 clear_bit(tag, &ap->qc_allocated); 4957 } 4958 } 4959 4960 void __ata_qc_complete(struct ata_queued_cmd *qc) 4961 { 4962 struct ata_port *ap; 4963 struct ata_link *link; 4964 4965 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4966 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4967 ap = qc->ap; 4968 link = qc->dev->link; 4969 4970 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4971 ata_sg_clean(qc); 4972 4973 /* command should be marked inactive atomically with qc completion */ 4974 if (qc->tf.protocol == ATA_PROT_NCQ) { 4975 link->sactive &= ~(1 << qc->tag); 4976 if (!link->sactive) 4977 ap->nr_active_links--; 4978 } else { 4979 link->active_tag = ATA_TAG_POISON; 4980 ap->nr_active_links--; 4981 } 4982 4983 /* clear exclusive status */ 4984 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4985 ap->excl_link == link)) 4986 ap->excl_link = NULL; 4987 4988 /* atapi: mark qc as inactive to prevent the interrupt handler 4989 * from completing the command twice later, before the error handler 4990 * is called. (when rc != 0 and atapi request sense is needed) 4991 */ 4992 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4993 ap->qc_active &= ~(1 << qc->tag); 4994 4995 /* call completion callback */ 4996 qc->complete_fn(qc); 4997 } 4998 4999 static void fill_result_tf(struct ata_queued_cmd *qc) 5000 { 5001 struct ata_port *ap = qc->ap; 5002 5003 qc->result_tf.flags = qc->tf.flags; 5004 ap->ops->qc_fill_rtf(qc); 5005 } 5006 5007 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5008 { 5009 struct ata_device *dev = qc->dev; 5010 5011 if (ata_tag_internal(qc->tag)) 5012 return; 5013 5014 if (ata_is_nodata(qc->tf.protocol)) 5015 return; 5016 5017 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5018 return; 5019 5020 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5021 } 5022 5023 /** 5024 * ata_qc_complete - Complete an active ATA command 5025 * @qc: Command to complete 5026 * 5027 * Indicate to the mid and upper layers that an ATA 5028 * command has completed, with either an ok or not-ok status. 5029 * 5030 * LOCKING: 5031 * spin_lock_irqsave(host lock) 5032 */ 5033 void ata_qc_complete(struct ata_queued_cmd *qc) 5034 { 5035 struct ata_port *ap = qc->ap; 5036 5037 /* XXX: New EH and old EH use different mechanisms to 5038 * synchronize EH with regular execution path. 5039 * 5040 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5041 * Normal execution path is responsible for not accessing a 5042 * failed qc. libata core enforces the rule by returning NULL 5043 * from ata_qc_from_tag() for failed qcs. 5044 * 5045 * Old EH depends on ata_qc_complete() nullifying completion 5046 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5047 * not synchronize with interrupt handler. Only PIO task is 5048 * taken care of. 5049 */ 5050 if (ap->ops->error_handler) { 5051 struct ata_device *dev = qc->dev; 5052 struct ata_eh_info *ehi = &dev->link->eh_info; 5053 5054 if (unlikely(qc->err_mask)) 5055 qc->flags |= ATA_QCFLAG_FAILED; 5056 5057 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5058 /* always fill result TF for failed qc */ 5059 fill_result_tf(qc); 5060 5061 if (!ata_tag_internal(qc->tag)) 5062 ata_qc_schedule_eh(qc); 5063 else 5064 __ata_qc_complete(qc); 5065 return; 5066 } 5067 5068 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5069 5070 /* read result TF if requested */ 5071 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5072 fill_result_tf(qc); 5073 5074 /* Some commands need post-processing after successful 5075 * completion. 5076 */ 5077 switch (qc->tf.command) { 5078 case ATA_CMD_SET_FEATURES: 5079 if (qc->tf.feature != SETFEATURES_WC_ON && 5080 qc->tf.feature != SETFEATURES_WC_OFF) 5081 break; 5082 /* fall through */ 5083 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5084 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5085 /* revalidate device */ 5086 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5087 ata_port_schedule_eh(ap); 5088 break; 5089 5090 case ATA_CMD_SLEEP: 5091 dev->flags |= ATA_DFLAG_SLEEPING; 5092 break; 5093 } 5094 5095 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5096 ata_verify_xfer(qc); 5097 5098 __ata_qc_complete(qc); 5099 } else { 5100 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5101 return; 5102 5103 /* read result TF if failed or requested */ 5104 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5105 fill_result_tf(qc); 5106 5107 __ata_qc_complete(qc); 5108 } 5109 } 5110 5111 /** 5112 * ata_qc_complete_multiple - Complete multiple qcs successfully 5113 * @ap: port in question 5114 * @qc_active: new qc_active mask 5115 * 5116 * Complete in-flight commands. This functions is meant to be 5117 * called from low-level driver's interrupt routine to complete 5118 * requests normally. ap->qc_active and @qc_active is compared 5119 * and commands are completed accordingly. 5120 * 5121 * LOCKING: 5122 * spin_lock_irqsave(host lock) 5123 * 5124 * RETURNS: 5125 * Number of completed commands on success, -errno otherwise. 5126 */ 5127 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5128 { 5129 int nr_done = 0; 5130 u32 done_mask; 5131 5132 done_mask = ap->qc_active ^ qc_active; 5133 5134 if (unlikely(done_mask & qc_active)) { 5135 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5136 "(%08x->%08x)\n", ap->qc_active, qc_active); 5137 return -EINVAL; 5138 } 5139 5140 while (done_mask) { 5141 struct ata_queued_cmd *qc; 5142 unsigned int tag = __ffs(done_mask); 5143 5144 qc = ata_qc_from_tag(ap, tag); 5145 if (qc) { 5146 ata_qc_complete(qc); 5147 nr_done++; 5148 } 5149 done_mask &= ~(1 << tag); 5150 } 5151 5152 return nr_done; 5153 } 5154 5155 /** 5156 * ata_qc_issue - issue taskfile to device 5157 * @qc: command to issue to device 5158 * 5159 * Prepare an ATA command to submission to device. 5160 * This includes mapping the data into a DMA-able 5161 * area, filling in the S/G table, and finally 5162 * writing the taskfile to hardware, starting the command. 5163 * 5164 * LOCKING: 5165 * spin_lock_irqsave(host lock) 5166 */ 5167 void ata_qc_issue(struct ata_queued_cmd *qc) 5168 { 5169 struct ata_port *ap = qc->ap; 5170 struct ata_link *link = qc->dev->link; 5171 u8 prot = qc->tf.protocol; 5172 5173 /* Make sure only one non-NCQ command is outstanding. The 5174 * check is skipped for old EH because it reuses active qc to 5175 * request ATAPI sense. 5176 */ 5177 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5178 5179 if (ata_is_ncq(prot)) { 5180 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5181 5182 if (!link->sactive) 5183 ap->nr_active_links++; 5184 link->sactive |= 1 << qc->tag; 5185 } else { 5186 WARN_ON_ONCE(link->sactive); 5187 5188 ap->nr_active_links++; 5189 link->active_tag = qc->tag; 5190 } 5191 5192 qc->flags |= ATA_QCFLAG_ACTIVE; 5193 ap->qc_active |= 1 << qc->tag; 5194 5195 /* We guarantee to LLDs that they will have at least one 5196 * non-zero sg if the command is a data command. 5197 */ 5198 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5199 5200 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5201 (ap->flags & ATA_FLAG_PIO_DMA))) 5202 if (ata_sg_setup(qc)) 5203 goto sg_err; 5204 5205 /* if device is sleeping, schedule reset and abort the link */ 5206 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5207 link->eh_info.action |= ATA_EH_RESET; 5208 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5209 ata_link_abort(link); 5210 return; 5211 } 5212 5213 ap->ops->qc_prep(qc); 5214 5215 qc->err_mask |= ap->ops->qc_issue(qc); 5216 if (unlikely(qc->err_mask)) 5217 goto err; 5218 return; 5219 5220 sg_err: 5221 qc->err_mask |= AC_ERR_SYSTEM; 5222 err: 5223 ata_qc_complete(qc); 5224 } 5225 5226 /** 5227 * sata_scr_valid - test whether SCRs are accessible 5228 * @link: ATA link to test SCR accessibility for 5229 * 5230 * Test whether SCRs are accessible for @link. 5231 * 5232 * LOCKING: 5233 * None. 5234 * 5235 * RETURNS: 5236 * 1 if SCRs are accessible, 0 otherwise. 5237 */ 5238 int sata_scr_valid(struct ata_link *link) 5239 { 5240 struct ata_port *ap = link->ap; 5241 5242 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5243 } 5244 5245 /** 5246 * sata_scr_read - read SCR register of the specified port 5247 * @link: ATA link to read SCR for 5248 * @reg: SCR to read 5249 * @val: Place to store read value 5250 * 5251 * Read SCR register @reg of @link into *@val. This function is 5252 * guaranteed to succeed if @link is ap->link, the cable type of 5253 * the port is SATA and the port implements ->scr_read. 5254 * 5255 * LOCKING: 5256 * None if @link is ap->link. Kernel thread context otherwise. 5257 * 5258 * RETURNS: 5259 * 0 on success, negative errno on failure. 5260 */ 5261 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5262 { 5263 if (ata_is_host_link(link)) { 5264 if (sata_scr_valid(link)) 5265 return link->ap->ops->scr_read(link, reg, val); 5266 return -EOPNOTSUPP; 5267 } 5268 5269 return sata_pmp_scr_read(link, reg, val); 5270 } 5271 5272 /** 5273 * sata_scr_write - write SCR register of the specified port 5274 * @link: ATA link to write SCR for 5275 * @reg: SCR to write 5276 * @val: value to write 5277 * 5278 * Write @val to SCR register @reg of @link. This function is 5279 * guaranteed to succeed if @link is ap->link, the cable type of 5280 * the port is SATA and the port implements ->scr_read. 5281 * 5282 * LOCKING: 5283 * None if @link is ap->link. Kernel thread context otherwise. 5284 * 5285 * RETURNS: 5286 * 0 on success, negative errno on failure. 5287 */ 5288 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5289 { 5290 if (ata_is_host_link(link)) { 5291 if (sata_scr_valid(link)) 5292 return link->ap->ops->scr_write(link, reg, val); 5293 return -EOPNOTSUPP; 5294 } 5295 5296 return sata_pmp_scr_write(link, reg, val); 5297 } 5298 5299 /** 5300 * sata_scr_write_flush - write SCR register of the specified port and flush 5301 * @link: ATA link to write SCR for 5302 * @reg: SCR to write 5303 * @val: value to write 5304 * 5305 * This function is identical to sata_scr_write() except that this 5306 * function performs flush after writing to the register. 5307 * 5308 * LOCKING: 5309 * None if @link is ap->link. Kernel thread context otherwise. 5310 * 5311 * RETURNS: 5312 * 0 on success, negative errno on failure. 5313 */ 5314 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5315 { 5316 if (ata_is_host_link(link)) { 5317 int rc; 5318 5319 if (sata_scr_valid(link)) { 5320 rc = link->ap->ops->scr_write(link, reg, val); 5321 if (rc == 0) 5322 rc = link->ap->ops->scr_read(link, reg, &val); 5323 return rc; 5324 } 5325 return -EOPNOTSUPP; 5326 } 5327 5328 return sata_pmp_scr_write(link, reg, val); 5329 } 5330 5331 /** 5332 * ata_phys_link_online - test whether the given link is online 5333 * @link: ATA link to test 5334 * 5335 * Test whether @link is online. Note that this function returns 5336 * 0 if online status of @link cannot be obtained, so 5337 * ata_link_online(link) != !ata_link_offline(link). 5338 * 5339 * LOCKING: 5340 * None. 5341 * 5342 * RETURNS: 5343 * True if the port online status is available and online. 5344 */ 5345 bool ata_phys_link_online(struct ata_link *link) 5346 { 5347 u32 sstatus; 5348 5349 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5350 ata_sstatus_online(sstatus)) 5351 return true; 5352 return false; 5353 } 5354 5355 /** 5356 * ata_phys_link_offline - test whether the given link is offline 5357 * @link: ATA link to test 5358 * 5359 * Test whether @link is offline. Note that this function 5360 * returns 0 if offline status of @link cannot be obtained, so 5361 * ata_link_online(link) != !ata_link_offline(link). 5362 * 5363 * LOCKING: 5364 * None. 5365 * 5366 * RETURNS: 5367 * True if the port offline status is available and offline. 5368 */ 5369 bool ata_phys_link_offline(struct ata_link *link) 5370 { 5371 u32 sstatus; 5372 5373 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5374 !ata_sstatus_online(sstatus)) 5375 return true; 5376 return false; 5377 } 5378 5379 /** 5380 * ata_link_online - test whether the given link is online 5381 * @link: ATA link to test 5382 * 5383 * Test whether @link is online. This is identical to 5384 * ata_phys_link_online() when there's no slave link. When 5385 * there's a slave link, this function should only be called on 5386 * the master link and will return true if any of M/S links is 5387 * online. 5388 * 5389 * LOCKING: 5390 * None. 5391 * 5392 * RETURNS: 5393 * True if the port online status is available and online. 5394 */ 5395 bool ata_link_online(struct ata_link *link) 5396 { 5397 struct ata_link *slave = link->ap->slave_link; 5398 5399 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5400 5401 return ata_phys_link_online(link) || 5402 (slave && ata_phys_link_online(slave)); 5403 } 5404 5405 /** 5406 * ata_link_offline - test whether the given link is offline 5407 * @link: ATA link to test 5408 * 5409 * Test whether @link is offline. This is identical to 5410 * ata_phys_link_offline() when there's no slave link. When 5411 * there's a slave link, this function should only be called on 5412 * the master link and will return true if both M/S links are 5413 * offline. 5414 * 5415 * LOCKING: 5416 * None. 5417 * 5418 * RETURNS: 5419 * True if the port offline status is available and offline. 5420 */ 5421 bool ata_link_offline(struct ata_link *link) 5422 { 5423 struct ata_link *slave = link->ap->slave_link; 5424 5425 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5426 5427 return ata_phys_link_offline(link) && 5428 (!slave || ata_phys_link_offline(slave)); 5429 } 5430 5431 #ifdef CONFIG_PM 5432 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5433 unsigned int action, unsigned int ehi_flags, 5434 int wait) 5435 { 5436 unsigned long flags; 5437 int i, rc; 5438 5439 for (i = 0; i < host->n_ports; i++) { 5440 struct ata_port *ap = host->ports[i]; 5441 struct ata_link *link; 5442 5443 /* Previous resume operation might still be in 5444 * progress. Wait for PM_PENDING to clear. 5445 */ 5446 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5447 ata_port_wait_eh(ap); 5448 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5449 } 5450 5451 /* request PM ops to EH */ 5452 spin_lock_irqsave(ap->lock, flags); 5453 5454 ap->pm_mesg = mesg; 5455 if (wait) { 5456 rc = 0; 5457 ap->pm_result = &rc; 5458 } 5459 5460 ap->pflags |= ATA_PFLAG_PM_PENDING; 5461 ata_for_each_link(link, ap, HOST_FIRST) { 5462 link->eh_info.action |= action; 5463 link->eh_info.flags |= ehi_flags; 5464 } 5465 5466 ata_port_schedule_eh(ap); 5467 5468 spin_unlock_irqrestore(ap->lock, flags); 5469 5470 /* wait and check result */ 5471 if (wait) { 5472 ata_port_wait_eh(ap); 5473 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5474 if (rc) 5475 return rc; 5476 } 5477 } 5478 5479 return 0; 5480 } 5481 5482 /** 5483 * ata_host_suspend - suspend host 5484 * @host: host to suspend 5485 * @mesg: PM message 5486 * 5487 * Suspend @host. Actual operation is performed by EH. This 5488 * function requests EH to perform PM operations and waits for EH 5489 * to finish. 5490 * 5491 * LOCKING: 5492 * Kernel thread context (may sleep). 5493 * 5494 * RETURNS: 5495 * 0 on success, -errno on failure. 5496 */ 5497 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5498 { 5499 int rc; 5500 5501 /* 5502 * disable link pm on all ports before requesting 5503 * any pm activity 5504 */ 5505 ata_lpm_enable(host); 5506 5507 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5508 if (rc == 0) 5509 host->dev->power.power_state = mesg; 5510 return rc; 5511 } 5512 5513 /** 5514 * ata_host_resume - resume host 5515 * @host: host to resume 5516 * 5517 * Resume @host. Actual operation is performed by EH. This 5518 * function requests EH to perform PM operations and returns. 5519 * Note that all resume operations are performed parallely. 5520 * 5521 * LOCKING: 5522 * Kernel thread context (may sleep). 5523 */ 5524 void ata_host_resume(struct ata_host *host) 5525 { 5526 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5527 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5528 host->dev->power.power_state = PMSG_ON; 5529 5530 /* reenable link pm */ 5531 ata_lpm_disable(host); 5532 } 5533 #endif 5534 5535 /** 5536 * ata_port_start - Set port up for dma. 5537 * @ap: Port to initialize 5538 * 5539 * Called just after data structures for each port are 5540 * initialized. Allocates space for PRD table. 5541 * 5542 * May be used as the port_start() entry in ata_port_operations. 5543 * 5544 * LOCKING: 5545 * Inherited from caller. 5546 */ 5547 int ata_port_start(struct ata_port *ap) 5548 { 5549 struct device *dev = ap->dev; 5550 5551 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5552 GFP_KERNEL); 5553 if (!ap->prd) 5554 return -ENOMEM; 5555 5556 return 0; 5557 } 5558 5559 /** 5560 * ata_dev_init - Initialize an ata_device structure 5561 * @dev: Device structure to initialize 5562 * 5563 * Initialize @dev in preparation for probing. 5564 * 5565 * LOCKING: 5566 * Inherited from caller. 5567 */ 5568 void ata_dev_init(struct ata_device *dev) 5569 { 5570 struct ata_link *link = ata_dev_phys_link(dev); 5571 struct ata_port *ap = link->ap; 5572 unsigned long flags; 5573 5574 /* SATA spd limit is bound to the attached device, reset together */ 5575 link->sata_spd_limit = link->hw_sata_spd_limit; 5576 link->sata_spd = 0; 5577 5578 /* High bits of dev->flags are used to record warm plug 5579 * requests which occur asynchronously. Synchronize using 5580 * host lock. 5581 */ 5582 spin_lock_irqsave(ap->lock, flags); 5583 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5584 dev->horkage = 0; 5585 spin_unlock_irqrestore(ap->lock, flags); 5586 5587 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5588 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5589 dev->pio_mask = UINT_MAX; 5590 dev->mwdma_mask = UINT_MAX; 5591 dev->udma_mask = UINT_MAX; 5592 } 5593 5594 /** 5595 * ata_link_init - Initialize an ata_link structure 5596 * @ap: ATA port link is attached to 5597 * @link: Link structure to initialize 5598 * @pmp: Port multiplier port number 5599 * 5600 * Initialize @link. 5601 * 5602 * LOCKING: 5603 * Kernel thread context (may sleep) 5604 */ 5605 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5606 { 5607 int i; 5608 5609 /* clear everything except for devices */ 5610 memset(link, 0, offsetof(struct ata_link, device[0])); 5611 5612 link->ap = ap; 5613 link->pmp = pmp; 5614 link->active_tag = ATA_TAG_POISON; 5615 link->hw_sata_spd_limit = UINT_MAX; 5616 5617 /* can't use iterator, ap isn't initialized yet */ 5618 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5619 struct ata_device *dev = &link->device[i]; 5620 5621 dev->link = link; 5622 dev->devno = dev - link->device; 5623 #ifdef CONFIG_ATA_ACPI 5624 dev->gtf_filter = ata_acpi_gtf_filter; 5625 #endif 5626 ata_dev_init(dev); 5627 } 5628 } 5629 5630 /** 5631 * sata_link_init_spd - Initialize link->sata_spd_limit 5632 * @link: Link to configure sata_spd_limit for 5633 * 5634 * Initialize @link->[hw_]sata_spd_limit to the currently 5635 * configured value. 5636 * 5637 * LOCKING: 5638 * Kernel thread context (may sleep). 5639 * 5640 * RETURNS: 5641 * 0 on success, -errno on failure. 5642 */ 5643 int sata_link_init_spd(struct ata_link *link) 5644 { 5645 u8 spd; 5646 int rc; 5647 5648 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5649 if (rc) 5650 return rc; 5651 5652 spd = (link->saved_scontrol >> 4) & 0xf; 5653 if (spd) 5654 link->hw_sata_spd_limit &= (1 << spd) - 1; 5655 5656 ata_force_link_limits(link); 5657 5658 link->sata_spd_limit = link->hw_sata_spd_limit; 5659 5660 return 0; 5661 } 5662 5663 /** 5664 * ata_port_alloc - allocate and initialize basic ATA port resources 5665 * @host: ATA host this allocated port belongs to 5666 * 5667 * Allocate and initialize basic ATA port resources. 5668 * 5669 * RETURNS: 5670 * Allocate ATA port on success, NULL on failure. 5671 * 5672 * LOCKING: 5673 * Inherited from calling layer (may sleep). 5674 */ 5675 struct ata_port *ata_port_alloc(struct ata_host *host) 5676 { 5677 struct ata_port *ap; 5678 5679 DPRINTK("ENTER\n"); 5680 5681 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5682 if (!ap) 5683 return NULL; 5684 5685 ap->pflags |= ATA_PFLAG_INITIALIZING; 5686 ap->lock = &host->lock; 5687 ap->flags = ATA_FLAG_DISABLED; 5688 ap->print_id = -1; 5689 ap->ctl = ATA_DEVCTL_OBS; 5690 ap->host = host; 5691 ap->dev = host->dev; 5692 ap->last_ctl = 0xFF; 5693 5694 #if defined(ATA_VERBOSE_DEBUG) 5695 /* turn on all debugging levels */ 5696 ap->msg_enable = 0x00FF; 5697 #elif defined(ATA_DEBUG) 5698 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5699 #else 5700 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5701 #endif 5702 5703 #ifdef CONFIG_ATA_SFF 5704 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5705 #else 5706 INIT_DELAYED_WORK(&ap->port_task, NULL); 5707 #endif 5708 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5709 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5710 INIT_LIST_HEAD(&ap->eh_done_q); 5711 init_waitqueue_head(&ap->eh_wait_q); 5712 init_completion(&ap->park_req_pending); 5713 init_timer_deferrable(&ap->fastdrain_timer); 5714 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5715 ap->fastdrain_timer.data = (unsigned long)ap; 5716 5717 ap->cbl = ATA_CBL_NONE; 5718 5719 ata_link_init(ap, &ap->link, 0); 5720 5721 #ifdef ATA_IRQ_TRAP 5722 ap->stats.unhandled_irq = 1; 5723 ap->stats.idle_irq = 1; 5724 #endif 5725 return ap; 5726 } 5727 5728 static void ata_host_release(struct device *gendev, void *res) 5729 { 5730 struct ata_host *host = dev_get_drvdata(gendev); 5731 int i; 5732 5733 for (i = 0; i < host->n_ports; i++) { 5734 struct ata_port *ap = host->ports[i]; 5735 5736 if (!ap) 5737 continue; 5738 5739 if (ap->scsi_host) 5740 scsi_host_put(ap->scsi_host); 5741 5742 kfree(ap->pmp_link); 5743 kfree(ap->slave_link); 5744 kfree(ap); 5745 host->ports[i] = NULL; 5746 } 5747 5748 dev_set_drvdata(gendev, NULL); 5749 } 5750 5751 /** 5752 * ata_host_alloc - allocate and init basic ATA host resources 5753 * @dev: generic device this host is associated with 5754 * @max_ports: maximum number of ATA ports associated with this host 5755 * 5756 * Allocate and initialize basic ATA host resources. LLD calls 5757 * this function to allocate a host, initializes it fully and 5758 * attaches it using ata_host_register(). 5759 * 5760 * @max_ports ports are allocated and host->n_ports is 5761 * initialized to @max_ports. The caller is allowed to decrease 5762 * host->n_ports before calling ata_host_register(). The unused 5763 * ports will be automatically freed on registration. 5764 * 5765 * RETURNS: 5766 * Allocate ATA host on success, NULL on failure. 5767 * 5768 * LOCKING: 5769 * Inherited from calling layer (may sleep). 5770 */ 5771 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5772 { 5773 struct ata_host *host; 5774 size_t sz; 5775 int i; 5776 5777 DPRINTK("ENTER\n"); 5778 5779 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5780 return NULL; 5781 5782 /* alloc a container for our list of ATA ports (buses) */ 5783 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5784 /* alloc a container for our list of ATA ports (buses) */ 5785 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5786 if (!host) 5787 goto err_out; 5788 5789 devres_add(dev, host); 5790 dev_set_drvdata(dev, host); 5791 5792 spin_lock_init(&host->lock); 5793 host->dev = dev; 5794 host->n_ports = max_ports; 5795 5796 /* allocate ports bound to this host */ 5797 for (i = 0; i < max_ports; i++) { 5798 struct ata_port *ap; 5799 5800 ap = ata_port_alloc(host); 5801 if (!ap) 5802 goto err_out; 5803 5804 ap->port_no = i; 5805 host->ports[i] = ap; 5806 } 5807 5808 devres_remove_group(dev, NULL); 5809 return host; 5810 5811 err_out: 5812 devres_release_group(dev, NULL); 5813 return NULL; 5814 } 5815 5816 /** 5817 * ata_host_alloc_pinfo - alloc host and init with port_info array 5818 * @dev: generic device this host is associated with 5819 * @ppi: array of ATA port_info to initialize host with 5820 * @n_ports: number of ATA ports attached to this host 5821 * 5822 * Allocate ATA host and initialize with info from @ppi. If NULL 5823 * terminated, @ppi may contain fewer entries than @n_ports. The 5824 * last entry will be used for the remaining ports. 5825 * 5826 * RETURNS: 5827 * Allocate ATA host on success, NULL on failure. 5828 * 5829 * LOCKING: 5830 * Inherited from calling layer (may sleep). 5831 */ 5832 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5833 const struct ata_port_info * const * ppi, 5834 int n_ports) 5835 { 5836 const struct ata_port_info *pi; 5837 struct ata_host *host; 5838 int i, j; 5839 5840 host = ata_host_alloc(dev, n_ports); 5841 if (!host) 5842 return NULL; 5843 5844 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5845 struct ata_port *ap = host->ports[i]; 5846 5847 if (ppi[j]) 5848 pi = ppi[j++]; 5849 5850 ap->pio_mask = pi->pio_mask; 5851 ap->mwdma_mask = pi->mwdma_mask; 5852 ap->udma_mask = pi->udma_mask; 5853 ap->flags |= pi->flags; 5854 ap->link.flags |= pi->link_flags; 5855 ap->ops = pi->port_ops; 5856 5857 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5858 host->ops = pi->port_ops; 5859 } 5860 5861 return host; 5862 } 5863 5864 /** 5865 * ata_slave_link_init - initialize slave link 5866 * @ap: port to initialize slave link for 5867 * 5868 * Create and initialize slave link for @ap. This enables slave 5869 * link handling on the port. 5870 * 5871 * In libata, a port contains links and a link contains devices. 5872 * There is single host link but if a PMP is attached to it, 5873 * there can be multiple fan-out links. On SATA, there's usually 5874 * a single device connected to a link but PATA and SATA 5875 * controllers emulating TF based interface can have two - master 5876 * and slave. 5877 * 5878 * However, there are a few controllers which don't fit into this 5879 * abstraction too well - SATA controllers which emulate TF 5880 * interface with both master and slave devices but also have 5881 * separate SCR register sets for each device. These controllers 5882 * need separate links for physical link handling 5883 * (e.g. onlineness, link speed) but should be treated like a 5884 * traditional M/S controller for everything else (e.g. command 5885 * issue, softreset). 5886 * 5887 * slave_link is libata's way of handling this class of 5888 * controllers without impacting core layer too much. For 5889 * anything other than physical link handling, the default host 5890 * link is used for both master and slave. For physical link 5891 * handling, separate @ap->slave_link is used. All dirty details 5892 * are implemented inside libata core layer. From LLD's POV, the 5893 * only difference is that prereset, hardreset and postreset are 5894 * called once more for the slave link, so the reset sequence 5895 * looks like the following. 5896 * 5897 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5898 * softreset(M) -> postreset(M) -> postreset(S) 5899 * 5900 * Note that softreset is called only for the master. Softreset 5901 * resets both M/S by definition, so SRST on master should handle 5902 * both (the standard method will work just fine). 5903 * 5904 * LOCKING: 5905 * Should be called before host is registered. 5906 * 5907 * RETURNS: 5908 * 0 on success, -errno on failure. 5909 */ 5910 int ata_slave_link_init(struct ata_port *ap) 5911 { 5912 struct ata_link *link; 5913 5914 WARN_ON(ap->slave_link); 5915 WARN_ON(ap->flags & ATA_FLAG_PMP); 5916 5917 link = kzalloc(sizeof(*link), GFP_KERNEL); 5918 if (!link) 5919 return -ENOMEM; 5920 5921 ata_link_init(ap, link, 1); 5922 ap->slave_link = link; 5923 return 0; 5924 } 5925 5926 static void ata_host_stop(struct device *gendev, void *res) 5927 { 5928 struct ata_host *host = dev_get_drvdata(gendev); 5929 int i; 5930 5931 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5932 5933 for (i = 0; i < host->n_ports; i++) { 5934 struct ata_port *ap = host->ports[i]; 5935 5936 if (ap->ops->port_stop) 5937 ap->ops->port_stop(ap); 5938 } 5939 5940 if (host->ops->host_stop) 5941 host->ops->host_stop(host); 5942 } 5943 5944 /** 5945 * ata_finalize_port_ops - finalize ata_port_operations 5946 * @ops: ata_port_operations to finalize 5947 * 5948 * An ata_port_operations can inherit from another ops and that 5949 * ops can again inherit from another. This can go on as many 5950 * times as necessary as long as there is no loop in the 5951 * inheritance chain. 5952 * 5953 * Ops tables are finalized when the host is started. NULL or 5954 * unspecified entries are inherited from the closet ancestor 5955 * which has the method and the entry is populated with it. 5956 * After finalization, the ops table directly points to all the 5957 * methods and ->inherits is no longer necessary and cleared. 5958 * 5959 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5960 * 5961 * LOCKING: 5962 * None. 5963 */ 5964 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5965 { 5966 static DEFINE_SPINLOCK(lock); 5967 const struct ata_port_operations *cur; 5968 void **begin = (void **)ops; 5969 void **end = (void **)&ops->inherits; 5970 void **pp; 5971 5972 if (!ops || !ops->inherits) 5973 return; 5974 5975 spin_lock(&lock); 5976 5977 for (cur = ops->inherits; cur; cur = cur->inherits) { 5978 void **inherit = (void **)cur; 5979 5980 for (pp = begin; pp < end; pp++, inherit++) 5981 if (!*pp) 5982 *pp = *inherit; 5983 } 5984 5985 for (pp = begin; pp < end; pp++) 5986 if (IS_ERR(*pp)) 5987 *pp = NULL; 5988 5989 ops->inherits = NULL; 5990 5991 spin_unlock(&lock); 5992 } 5993 5994 /** 5995 * ata_host_start - start and freeze ports of an ATA host 5996 * @host: ATA host to start ports for 5997 * 5998 * Start and then freeze ports of @host. Started status is 5999 * recorded in host->flags, so this function can be called 6000 * multiple times. Ports are guaranteed to get started only 6001 * once. If host->ops isn't initialized yet, its set to the 6002 * first non-dummy port ops. 6003 * 6004 * LOCKING: 6005 * Inherited from calling layer (may sleep). 6006 * 6007 * RETURNS: 6008 * 0 if all ports are started successfully, -errno otherwise. 6009 */ 6010 int ata_host_start(struct ata_host *host) 6011 { 6012 int have_stop = 0; 6013 void *start_dr = NULL; 6014 int i, rc; 6015 6016 if (host->flags & ATA_HOST_STARTED) 6017 return 0; 6018 6019 ata_finalize_port_ops(host->ops); 6020 6021 for (i = 0; i < host->n_ports; i++) { 6022 struct ata_port *ap = host->ports[i]; 6023 6024 ata_finalize_port_ops(ap->ops); 6025 6026 if (!host->ops && !ata_port_is_dummy(ap)) 6027 host->ops = ap->ops; 6028 6029 if (ap->ops->port_stop) 6030 have_stop = 1; 6031 } 6032 6033 if (host->ops->host_stop) 6034 have_stop = 1; 6035 6036 if (have_stop) { 6037 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6038 if (!start_dr) 6039 return -ENOMEM; 6040 } 6041 6042 for (i = 0; i < host->n_ports; i++) { 6043 struct ata_port *ap = host->ports[i]; 6044 6045 if (ap->ops->port_start) { 6046 rc = ap->ops->port_start(ap); 6047 if (rc) { 6048 if (rc != -ENODEV) 6049 dev_printk(KERN_ERR, host->dev, 6050 "failed to start port %d " 6051 "(errno=%d)\n", i, rc); 6052 goto err_out; 6053 } 6054 } 6055 ata_eh_freeze_port(ap); 6056 } 6057 6058 if (start_dr) 6059 devres_add(host->dev, start_dr); 6060 host->flags |= ATA_HOST_STARTED; 6061 return 0; 6062 6063 err_out: 6064 while (--i >= 0) { 6065 struct ata_port *ap = host->ports[i]; 6066 6067 if (ap->ops->port_stop) 6068 ap->ops->port_stop(ap); 6069 } 6070 devres_free(start_dr); 6071 return rc; 6072 } 6073 6074 /** 6075 * ata_sas_host_init - Initialize a host struct 6076 * @host: host to initialize 6077 * @dev: device host is attached to 6078 * @flags: host flags 6079 * @ops: port_ops 6080 * 6081 * LOCKING: 6082 * PCI/etc. bus probe sem. 6083 * 6084 */ 6085 /* KILLME - the only user left is ipr */ 6086 void ata_host_init(struct ata_host *host, struct device *dev, 6087 unsigned long flags, struct ata_port_operations *ops) 6088 { 6089 spin_lock_init(&host->lock); 6090 host->dev = dev; 6091 host->flags = flags; 6092 host->ops = ops; 6093 } 6094 6095 6096 static void async_port_probe(void *data, async_cookie_t cookie) 6097 { 6098 int rc; 6099 struct ata_port *ap = data; 6100 6101 /* 6102 * If we're not allowed to scan this host in parallel, 6103 * we need to wait until all previous scans have completed 6104 * before going further. 6105 * Jeff Garzik says this is only within a controller, so we 6106 * don't need to wait for port 0, only for later ports. 6107 */ 6108 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6109 async_synchronize_cookie(cookie); 6110 6111 /* probe */ 6112 if (ap->ops->error_handler) { 6113 struct ata_eh_info *ehi = &ap->link.eh_info; 6114 unsigned long flags; 6115 6116 ata_port_probe(ap); 6117 6118 /* kick EH for boot probing */ 6119 spin_lock_irqsave(ap->lock, flags); 6120 6121 ehi->probe_mask |= ATA_ALL_DEVICES; 6122 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6123 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6124 6125 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6126 ap->pflags |= ATA_PFLAG_LOADING; 6127 ata_port_schedule_eh(ap); 6128 6129 spin_unlock_irqrestore(ap->lock, flags); 6130 6131 /* wait for EH to finish */ 6132 ata_port_wait_eh(ap); 6133 } else { 6134 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6135 rc = ata_bus_probe(ap); 6136 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6137 6138 if (rc) { 6139 /* FIXME: do something useful here? 6140 * Current libata behavior will 6141 * tear down everything when 6142 * the module is removed 6143 * or the h/w is unplugged. 6144 */ 6145 } 6146 } 6147 6148 /* in order to keep device order, we need to synchronize at this point */ 6149 async_synchronize_cookie(cookie); 6150 6151 ata_scsi_scan_host(ap, 1); 6152 6153 } 6154 /** 6155 * ata_host_register - register initialized ATA host 6156 * @host: ATA host to register 6157 * @sht: template for SCSI host 6158 * 6159 * Register initialized ATA host. @host is allocated using 6160 * ata_host_alloc() and fully initialized by LLD. This function 6161 * starts ports, registers @host with ATA and SCSI layers and 6162 * probe registered devices. 6163 * 6164 * LOCKING: 6165 * Inherited from calling layer (may sleep). 6166 * 6167 * RETURNS: 6168 * 0 on success, -errno otherwise. 6169 */ 6170 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6171 { 6172 int i, rc; 6173 6174 /* host must have been started */ 6175 if (!(host->flags & ATA_HOST_STARTED)) { 6176 dev_printk(KERN_ERR, host->dev, 6177 "BUG: trying to register unstarted host\n"); 6178 WARN_ON(1); 6179 return -EINVAL; 6180 } 6181 6182 /* Blow away unused ports. This happens when LLD can't 6183 * determine the exact number of ports to allocate at 6184 * allocation time. 6185 */ 6186 for (i = host->n_ports; host->ports[i]; i++) 6187 kfree(host->ports[i]); 6188 6189 /* give ports names and add SCSI hosts */ 6190 for (i = 0; i < host->n_ports; i++) 6191 host->ports[i]->print_id = ata_print_id++; 6192 6193 rc = ata_scsi_add_hosts(host, sht); 6194 if (rc) 6195 return rc; 6196 6197 /* associate with ACPI nodes */ 6198 ata_acpi_associate(host); 6199 6200 /* set cable, sata_spd_limit and report */ 6201 for (i = 0; i < host->n_ports; i++) { 6202 struct ata_port *ap = host->ports[i]; 6203 unsigned long xfer_mask; 6204 6205 /* set SATA cable type if still unset */ 6206 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6207 ap->cbl = ATA_CBL_SATA; 6208 6209 /* init sata_spd_limit to the current value */ 6210 sata_link_init_spd(&ap->link); 6211 if (ap->slave_link) 6212 sata_link_init_spd(ap->slave_link); 6213 6214 /* print per-port info to dmesg */ 6215 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6216 ap->udma_mask); 6217 6218 if (!ata_port_is_dummy(ap)) { 6219 ata_port_printk(ap, KERN_INFO, 6220 "%cATA max %s %s\n", 6221 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6222 ata_mode_string(xfer_mask), 6223 ap->link.eh_info.desc); 6224 ata_ehi_clear_desc(&ap->link.eh_info); 6225 } else 6226 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6227 } 6228 6229 /* perform each probe asynchronously */ 6230 for (i = 0; i < host->n_ports; i++) { 6231 struct ata_port *ap = host->ports[i]; 6232 async_schedule(async_port_probe, ap); 6233 } 6234 6235 return 0; 6236 } 6237 6238 /** 6239 * ata_host_activate - start host, request IRQ and register it 6240 * @host: target ATA host 6241 * @irq: IRQ to request 6242 * @irq_handler: irq_handler used when requesting IRQ 6243 * @irq_flags: irq_flags used when requesting IRQ 6244 * @sht: scsi_host_template to use when registering the host 6245 * 6246 * After allocating an ATA host and initializing it, most libata 6247 * LLDs perform three steps to activate the host - start host, 6248 * request IRQ and register it. This helper takes necessasry 6249 * arguments and performs the three steps in one go. 6250 * 6251 * An invalid IRQ skips the IRQ registration and expects the host to 6252 * have set polling mode on the port. In this case, @irq_handler 6253 * should be NULL. 6254 * 6255 * LOCKING: 6256 * Inherited from calling layer (may sleep). 6257 * 6258 * RETURNS: 6259 * 0 on success, -errno otherwise. 6260 */ 6261 int ata_host_activate(struct ata_host *host, int irq, 6262 irq_handler_t irq_handler, unsigned long irq_flags, 6263 struct scsi_host_template *sht) 6264 { 6265 int i, rc; 6266 6267 rc = ata_host_start(host); 6268 if (rc) 6269 return rc; 6270 6271 /* Special case for polling mode */ 6272 if (!irq) { 6273 WARN_ON(irq_handler); 6274 return ata_host_register(host, sht); 6275 } 6276 6277 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6278 dev_driver_string(host->dev), host); 6279 if (rc) 6280 return rc; 6281 6282 for (i = 0; i < host->n_ports; i++) 6283 ata_port_desc(host->ports[i], "irq %d", irq); 6284 6285 rc = ata_host_register(host, sht); 6286 /* if failed, just free the IRQ and leave ports alone */ 6287 if (rc) 6288 devm_free_irq(host->dev, irq, host); 6289 6290 return rc; 6291 } 6292 6293 /** 6294 * ata_port_detach - Detach ATA port in prepration of device removal 6295 * @ap: ATA port to be detached 6296 * 6297 * Detach all ATA devices and the associated SCSI devices of @ap; 6298 * then, remove the associated SCSI host. @ap is guaranteed to 6299 * be quiescent on return from this function. 6300 * 6301 * LOCKING: 6302 * Kernel thread context (may sleep). 6303 */ 6304 static void ata_port_detach(struct ata_port *ap) 6305 { 6306 unsigned long flags; 6307 6308 if (!ap->ops->error_handler) 6309 goto skip_eh; 6310 6311 /* tell EH we're leaving & flush EH */ 6312 spin_lock_irqsave(ap->lock, flags); 6313 ap->pflags |= ATA_PFLAG_UNLOADING; 6314 ata_port_schedule_eh(ap); 6315 spin_unlock_irqrestore(ap->lock, flags); 6316 6317 /* wait till EH commits suicide */ 6318 ata_port_wait_eh(ap); 6319 6320 /* it better be dead now */ 6321 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6322 6323 cancel_rearming_delayed_work(&ap->hotplug_task); 6324 6325 skip_eh: 6326 /* remove the associated SCSI host */ 6327 scsi_remove_host(ap->scsi_host); 6328 } 6329 6330 /** 6331 * ata_host_detach - Detach all ports of an ATA host 6332 * @host: Host to detach 6333 * 6334 * Detach all ports of @host. 6335 * 6336 * LOCKING: 6337 * Kernel thread context (may sleep). 6338 */ 6339 void ata_host_detach(struct ata_host *host) 6340 { 6341 int i; 6342 6343 for (i = 0; i < host->n_ports; i++) 6344 ata_port_detach(host->ports[i]); 6345 6346 /* the host is dead now, dissociate ACPI */ 6347 ata_acpi_dissociate(host); 6348 } 6349 6350 #ifdef CONFIG_PCI 6351 6352 /** 6353 * ata_pci_remove_one - PCI layer callback for device removal 6354 * @pdev: PCI device that was removed 6355 * 6356 * PCI layer indicates to libata via this hook that hot-unplug or 6357 * module unload event has occurred. Detach all ports. Resource 6358 * release is handled via devres. 6359 * 6360 * LOCKING: 6361 * Inherited from PCI layer (may sleep). 6362 */ 6363 void ata_pci_remove_one(struct pci_dev *pdev) 6364 { 6365 struct device *dev = &pdev->dev; 6366 struct ata_host *host = dev_get_drvdata(dev); 6367 6368 ata_host_detach(host); 6369 } 6370 6371 /* move to PCI subsystem */ 6372 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6373 { 6374 unsigned long tmp = 0; 6375 6376 switch (bits->width) { 6377 case 1: { 6378 u8 tmp8 = 0; 6379 pci_read_config_byte(pdev, bits->reg, &tmp8); 6380 tmp = tmp8; 6381 break; 6382 } 6383 case 2: { 6384 u16 tmp16 = 0; 6385 pci_read_config_word(pdev, bits->reg, &tmp16); 6386 tmp = tmp16; 6387 break; 6388 } 6389 case 4: { 6390 u32 tmp32 = 0; 6391 pci_read_config_dword(pdev, bits->reg, &tmp32); 6392 tmp = tmp32; 6393 break; 6394 } 6395 6396 default: 6397 return -EINVAL; 6398 } 6399 6400 tmp &= bits->mask; 6401 6402 return (tmp == bits->val) ? 1 : 0; 6403 } 6404 6405 #ifdef CONFIG_PM 6406 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6407 { 6408 pci_save_state(pdev); 6409 pci_disable_device(pdev); 6410 6411 if (mesg.event & PM_EVENT_SLEEP) 6412 pci_set_power_state(pdev, PCI_D3hot); 6413 } 6414 6415 int ata_pci_device_do_resume(struct pci_dev *pdev) 6416 { 6417 int rc; 6418 6419 pci_set_power_state(pdev, PCI_D0); 6420 pci_restore_state(pdev); 6421 6422 rc = pcim_enable_device(pdev); 6423 if (rc) { 6424 dev_printk(KERN_ERR, &pdev->dev, 6425 "failed to enable device after resume (%d)\n", rc); 6426 return rc; 6427 } 6428 6429 pci_set_master(pdev); 6430 return 0; 6431 } 6432 6433 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6434 { 6435 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6436 int rc = 0; 6437 6438 rc = ata_host_suspend(host, mesg); 6439 if (rc) 6440 return rc; 6441 6442 ata_pci_device_do_suspend(pdev, mesg); 6443 6444 return 0; 6445 } 6446 6447 int ata_pci_device_resume(struct pci_dev *pdev) 6448 { 6449 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6450 int rc; 6451 6452 rc = ata_pci_device_do_resume(pdev); 6453 if (rc == 0) 6454 ata_host_resume(host); 6455 return rc; 6456 } 6457 #endif /* CONFIG_PM */ 6458 6459 #endif /* CONFIG_PCI */ 6460 6461 static int __init ata_parse_force_one(char **cur, 6462 struct ata_force_ent *force_ent, 6463 const char **reason) 6464 { 6465 /* FIXME: Currently, there's no way to tag init const data and 6466 * using __initdata causes build failure on some versions of 6467 * gcc. Once __initdataconst is implemented, add const to the 6468 * following structure. 6469 */ 6470 static struct ata_force_param force_tbl[] __initdata = { 6471 { "40c", .cbl = ATA_CBL_PATA40 }, 6472 { "80c", .cbl = ATA_CBL_PATA80 }, 6473 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6474 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6475 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6476 { "sata", .cbl = ATA_CBL_SATA }, 6477 { "1.5Gbps", .spd_limit = 1 }, 6478 { "3.0Gbps", .spd_limit = 2 }, 6479 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6480 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6481 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6482 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6483 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6484 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6485 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6486 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6487 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6488 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6489 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6490 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6491 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6492 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6493 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6494 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6495 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6496 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6497 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6498 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6499 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6500 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6501 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6502 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6503 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6504 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6505 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6506 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6507 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6508 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6509 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6510 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6511 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6512 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6513 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6514 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6515 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6516 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6517 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6518 }; 6519 char *start = *cur, *p = *cur; 6520 char *id, *val, *endp; 6521 const struct ata_force_param *match_fp = NULL; 6522 int nr_matches = 0, i; 6523 6524 /* find where this param ends and update *cur */ 6525 while (*p != '\0' && *p != ',') 6526 p++; 6527 6528 if (*p == '\0') 6529 *cur = p; 6530 else 6531 *cur = p + 1; 6532 6533 *p = '\0'; 6534 6535 /* parse */ 6536 p = strchr(start, ':'); 6537 if (!p) { 6538 val = strstrip(start); 6539 goto parse_val; 6540 } 6541 *p = '\0'; 6542 6543 id = strstrip(start); 6544 val = strstrip(p + 1); 6545 6546 /* parse id */ 6547 p = strchr(id, '.'); 6548 if (p) { 6549 *p++ = '\0'; 6550 force_ent->device = simple_strtoul(p, &endp, 10); 6551 if (p == endp || *endp != '\0') { 6552 *reason = "invalid device"; 6553 return -EINVAL; 6554 } 6555 } 6556 6557 force_ent->port = simple_strtoul(id, &endp, 10); 6558 if (p == endp || *endp != '\0') { 6559 *reason = "invalid port/link"; 6560 return -EINVAL; 6561 } 6562 6563 parse_val: 6564 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6565 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6566 const struct ata_force_param *fp = &force_tbl[i]; 6567 6568 if (strncasecmp(val, fp->name, strlen(val))) 6569 continue; 6570 6571 nr_matches++; 6572 match_fp = fp; 6573 6574 if (strcasecmp(val, fp->name) == 0) { 6575 nr_matches = 1; 6576 break; 6577 } 6578 } 6579 6580 if (!nr_matches) { 6581 *reason = "unknown value"; 6582 return -EINVAL; 6583 } 6584 if (nr_matches > 1) { 6585 *reason = "ambigious value"; 6586 return -EINVAL; 6587 } 6588 6589 force_ent->param = *match_fp; 6590 6591 return 0; 6592 } 6593 6594 static void __init ata_parse_force_param(void) 6595 { 6596 int idx = 0, size = 1; 6597 int last_port = -1, last_device = -1; 6598 char *p, *cur, *next; 6599 6600 /* calculate maximum number of params and allocate force_tbl */ 6601 for (p = ata_force_param_buf; *p; p++) 6602 if (*p == ',') 6603 size++; 6604 6605 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6606 if (!ata_force_tbl) { 6607 printk(KERN_WARNING "ata: failed to extend force table, " 6608 "libata.force ignored\n"); 6609 return; 6610 } 6611 6612 /* parse and populate the table */ 6613 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6614 const char *reason = ""; 6615 struct ata_force_ent te = { .port = -1, .device = -1 }; 6616 6617 next = cur; 6618 if (ata_parse_force_one(&next, &te, &reason)) { 6619 printk(KERN_WARNING "ata: failed to parse force " 6620 "parameter \"%s\" (%s)\n", 6621 cur, reason); 6622 continue; 6623 } 6624 6625 if (te.port == -1) { 6626 te.port = last_port; 6627 te.device = last_device; 6628 } 6629 6630 ata_force_tbl[idx++] = te; 6631 6632 last_port = te.port; 6633 last_device = te.device; 6634 } 6635 6636 ata_force_tbl_size = idx; 6637 } 6638 6639 static int __init ata_init(void) 6640 { 6641 ata_parse_force_param(); 6642 6643 /* 6644 * FIXME: In UP case, there is only one workqueue thread and if you 6645 * have more than one PIO device, latency is bloody awful, with 6646 * occasional multi-second "hiccups" as one PIO device waits for 6647 * another. It's an ugly wart that users DO occasionally complain 6648 * about; luckily most users have at most one PIO polled device. 6649 */ 6650 ata_wq = create_workqueue("ata"); 6651 if (!ata_wq) 6652 goto free_force_tbl; 6653 6654 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6655 if (!ata_aux_wq) 6656 goto free_wq; 6657 6658 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6659 return 0; 6660 6661 free_wq: 6662 destroy_workqueue(ata_wq); 6663 free_force_tbl: 6664 kfree(ata_force_tbl); 6665 return -ENOMEM; 6666 } 6667 6668 static void __exit ata_exit(void) 6669 { 6670 kfree(ata_force_tbl); 6671 destroy_workqueue(ata_wq); 6672 destroy_workqueue(ata_aux_wq); 6673 } 6674 6675 subsys_initcall(ata_init); 6676 module_exit(ata_exit); 6677 6678 static unsigned long ratelimit_time; 6679 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6680 6681 int ata_ratelimit(void) 6682 { 6683 int rc; 6684 unsigned long flags; 6685 6686 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6687 6688 if (time_after(jiffies, ratelimit_time)) { 6689 rc = 1; 6690 ratelimit_time = jiffies + (HZ/5); 6691 } else 6692 rc = 0; 6693 6694 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6695 6696 return rc; 6697 } 6698 6699 /** 6700 * ata_wait_register - wait until register value changes 6701 * @reg: IO-mapped register 6702 * @mask: Mask to apply to read register value 6703 * @val: Wait condition 6704 * @interval: polling interval in milliseconds 6705 * @timeout: timeout in milliseconds 6706 * 6707 * Waiting for some bits of register to change is a common 6708 * operation for ATA controllers. This function reads 32bit LE 6709 * IO-mapped register @reg and tests for the following condition. 6710 * 6711 * (*@reg & mask) != val 6712 * 6713 * If the condition is met, it returns; otherwise, the process is 6714 * repeated after @interval_msec until timeout. 6715 * 6716 * LOCKING: 6717 * Kernel thread context (may sleep) 6718 * 6719 * RETURNS: 6720 * The final register value. 6721 */ 6722 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6723 unsigned long interval, unsigned long timeout) 6724 { 6725 unsigned long deadline; 6726 u32 tmp; 6727 6728 tmp = ioread32(reg); 6729 6730 /* Calculate timeout _after_ the first read to make sure 6731 * preceding writes reach the controller before starting to 6732 * eat away the timeout. 6733 */ 6734 deadline = ata_deadline(jiffies, timeout); 6735 6736 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6737 msleep(interval); 6738 tmp = ioread32(reg); 6739 } 6740 6741 return tmp; 6742 } 6743 6744 /* 6745 * Dummy port_ops 6746 */ 6747 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6748 { 6749 return AC_ERR_SYSTEM; 6750 } 6751 6752 static void ata_dummy_error_handler(struct ata_port *ap) 6753 { 6754 /* truly dummy */ 6755 } 6756 6757 struct ata_port_operations ata_dummy_port_ops = { 6758 .qc_prep = ata_noop_qc_prep, 6759 .qc_issue = ata_dummy_qc_issue, 6760 .error_handler = ata_dummy_error_handler, 6761 }; 6762 6763 const struct ata_port_info ata_dummy_port_info = { 6764 .port_ops = &ata_dummy_port_ops, 6765 }; 6766 6767 /* 6768 * libata is essentially a library of internal helper functions for 6769 * low-level ATA host controller drivers. As such, the API/ABI is 6770 * likely to change as new drivers are added and updated. 6771 * Do not depend on ABI/API stability. 6772 */ 6773 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6774 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6775 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6776 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6777 EXPORT_SYMBOL_GPL(sata_port_ops); 6778 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6779 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6780 EXPORT_SYMBOL_GPL(ata_link_next); 6781 EXPORT_SYMBOL_GPL(ata_dev_next); 6782 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6783 EXPORT_SYMBOL_GPL(ata_host_init); 6784 EXPORT_SYMBOL_GPL(ata_host_alloc); 6785 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6786 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6787 EXPORT_SYMBOL_GPL(ata_host_start); 6788 EXPORT_SYMBOL_GPL(ata_host_register); 6789 EXPORT_SYMBOL_GPL(ata_host_activate); 6790 EXPORT_SYMBOL_GPL(ata_host_detach); 6791 EXPORT_SYMBOL_GPL(ata_sg_init); 6792 EXPORT_SYMBOL_GPL(ata_qc_complete); 6793 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6794 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6795 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6796 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6797 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6798 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6799 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6800 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6801 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6802 EXPORT_SYMBOL_GPL(ata_mode_string); 6803 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6804 EXPORT_SYMBOL_GPL(ata_port_start); 6805 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6806 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6807 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6808 EXPORT_SYMBOL_GPL(ata_port_probe); 6809 EXPORT_SYMBOL_GPL(ata_dev_disable); 6810 EXPORT_SYMBOL_GPL(sata_set_spd); 6811 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6812 EXPORT_SYMBOL_GPL(sata_link_debounce); 6813 EXPORT_SYMBOL_GPL(sata_link_resume); 6814 EXPORT_SYMBOL_GPL(ata_std_prereset); 6815 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6816 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6817 EXPORT_SYMBOL_GPL(ata_std_postreset); 6818 EXPORT_SYMBOL_GPL(ata_dev_classify); 6819 EXPORT_SYMBOL_GPL(ata_dev_pair); 6820 EXPORT_SYMBOL_GPL(ata_port_disable); 6821 EXPORT_SYMBOL_GPL(ata_ratelimit); 6822 EXPORT_SYMBOL_GPL(ata_wait_register); 6823 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6824 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6825 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6826 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6827 EXPORT_SYMBOL_GPL(sata_scr_valid); 6828 EXPORT_SYMBOL_GPL(sata_scr_read); 6829 EXPORT_SYMBOL_GPL(sata_scr_write); 6830 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6831 EXPORT_SYMBOL_GPL(ata_link_online); 6832 EXPORT_SYMBOL_GPL(ata_link_offline); 6833 #ifdef CONFIG_PM 6834 EXPORT_SYMBOL_GPL(ata_host_suspend); 6835 EXPORT_SYMBOL_GPL(ata_host_resume); 6836 #endif /* CONFIG_PM */ 6837 EXPORT_SYMBOL_GPL(ata_id_string); 6838 EXPORT_SYMBOL_GPL(ata_id_c_string); 6839 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6840 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6841 6842 EXPORT_SYMBOL_GPL(ata_pio_queue_task); 6843 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6844 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6845 EXPORT_SYMBOL_GPL(ata_timing_compute); 6846 EXPORT_SYMBOL_GPL(ata_timing_merge); 6847 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6848 6849 #ifdef CONFIG_PCI 6850 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6851 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6852 #ifdef CONFIG_PM 6853 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6854 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6855 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6856 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6857 #endif /* CONFIG_PM */ 6858 #endif /* CONFIG_PCI */ 6859 6860 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6861 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6862 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6863 EXPORT_SYMBOL_GPL(ata_port_desc); 6864 #ifdef CONFIG_PCI 6865 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6866 #endif /* CONFIG_PCI */ 6867 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6868 EXPORT_SYMBOL_GPL(ata_link_abort); 6869 EXPORT_SYMBOL_GPL(ata_port_abort); 6870 EXPORT_SYMBOL_GPL(ata_port_freeze); 6871 EXPORT_SYMBOL_GPL(sata_async_notification); 6872 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6873 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6874 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6875 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6876 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6877 EXPORT_SYMBOL_GPL(ata_do_eh); 6878 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6879 6880 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6881 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6882 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6883 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6884 EXPORT_SYMBOL_GPL(ata_cable_sata); 6885