xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER	"power"
66 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD			1	/* 1us */
74 #define C3_OVERHEAD			1	/* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77 
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 module_param(max_cstate, uint, 0000);
80 static unsigned int nocst __read_mostly;
81 module_param(nocst, uint, 0000);
82 
83 #ifndef CONFIG_CPU_IDLE
84 /*
85  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
86  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
87  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
88  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
89  * reduce history for more aggressive entry into C3
90  */
91 static unsigned int bm_history __read_mostly =
92     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
93 module_param(bm_history, uint, 0644);
94 
95 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
96 
97 #endif
98 
99 /*
100  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
101  * For now disable this. Probably a bug somewhere else.
102  *
103  * To skip this limit, boot/load with a large max_cstate limit.
104  */
105 static int set_max_cstate(const struct dmi_system_id *id)
106 {
107 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
108 		return 0;
109 
110 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
111 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
112 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
113 
114 	max_cstate = (long)id->driver_data;
115 
116 	return 0;
117 }
118 
119 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
120    callers to only run once -AK */
121 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
122 	{ set_max_cstate, "IBM ThinkPad R40e", {
123 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
125 	{ set_max_cstate, "IBM ThinkPad R40e", {
126 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
128 	{ set_max_cstate, "IBM ThinkPad R40e", {
129 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
131 	{ set_max_cstate, "IBM ThinkPad R40e", {
132 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
134 	{ set_max_cstate, "IBM ThinkPad R40e", {
135 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
137 	{ set_max_cstate, "IBM ThinkPad R40e", {
138 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
140 	{ set_max_cstate, "IBM ThinkPad R40e", {
141 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
143 	{ set_max_cstate, "IBM ThinkPad R40e", {
144 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
146 	{ set_max_cstate, "IBM ThinkPad R40e", {
147 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
149 	{ set_max_cstate, "IBM ThinkPad R40e", {
150 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
152 	{ set_max_cstate, "IBM ThinkPad R40e", {
153 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
155 	{ set_max_cstate, "IBM ThinkPad R40e", {
156 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
158 	{ set_max_cstate, "IBM ThinkPad R40e", {
159 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
161 	{ set_max_cstate, "IBM ThinkPad R40e", {
162 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
164 	{ set_max_cstate, "IBM ThinkPad R40e", {
165 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
167 	{ set_max_cstate, "IBM ThinkPad R40e", {
168 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
170 	{ set_max_cstate, "Medion 41700", {
171 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
173 	{ set_max_cstate, "Clevo 5600D", {
174 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
175 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
176 	 (void *)2},
177 	{},
178 };
179 
180 static inline u32 ticks_elapsed(u32 t1, u32 t2)
181 {
182 	if (t2 >= t1)
183 		return (t2 - t1);
184 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
185 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
186 	else
187 		return ((0xFFFFFFFF - t1) + t2);
188 }
189 
190 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
191 {
192 	if (t2 >= t1)
193 		return PM_TIMER_TICKS_TO_US(t2 - t1);
194 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
195 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
196 	else
197 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
198 }
199 
200 #ifndef CONFIG_CPU_IDLE
201 
202 static void
203 acpi_processor_power_activate(struct acpi_processor *pr,
204 			      struct acpi_processor_cx *new)
205 {
206 	struct acpi_processor_cx *old;
207 
208 	if (!pr || !new)
209 		return;
210 
211 	old = pr->power.state;
212 
213 	if (old)
214 		old->promotion.count = 0;
215 	new->demotion.count = 0;
216 
217 	/* Cleanup from old state. */
218 	if (old) {
219 		switch (old->type) {
220 		case ACPI_STATE_C3:
221 			/* Disable bus master reload */
222 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
223 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
224 			break;
225 		}
226 	}
227 
228 	/* Prepare to use new state. */
229 	switch (new->type) {
230 	case ACPI_STATE_C3:
231 		/* Enable bus master reload */
232 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
233 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
234 		break;
235 	}
236 
237 	pr->power.state = new;
238 
239 	return;
240 }
241 
242 static void acpi_safe_halt(void)
243 {
244 	current_thread_info()->status &= ~TS_POLLING;
245 	/*
246 	 * TS_POLLING-cleared state must be visible before we
247 	 * test NEED_RESCHED:
248 	 */
249 	smp_mb();
250 	if (!need_resched())
251 		safe_halt();
252 	current_thread_info()->status |= TS_POLLING;
253 }
254 
255 static atomic_t c3_cpu_count;
256 
257 /* Common C-state entry for C2, C3, .. */
258 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
259 {
260 	if (cstate->space_id == ACPI_CSTATE_FFH) {
261 		/* Call into architectural FFH based C-state */
262 		acpi_processor_ffh_cstate_enter(cstate);
263 	} else {
264 		int unused;
265 		/* IO port based C-state */
266 		inb(cstate->address);
267 		/* Dummy wait op - must do something useless after P_LVL2 read
268 		   because chipsets cannot guarantee that STPCLK# signal
269 		   gets asserted in time to freeze execution properly. */
270 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
271 	}
272 }
273 #endif /* !CONFIG_CPU_IDLE */
274 
275 #ifdef ARCH_APICTIMER_STOPS_ON_C3
276 
277 /*
278  * Some BIOS implementations switch to C3 in the published C2 state.
279  * This seems to be a common problem on AMD boxen, but other vendors
280  * are affected too. We pick the most conservative approach: we assume
281  * that the local APIC stops in both C2 and C3.
282  */
283 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
284 				   struct acpi_processor_cx *cx)
285 {
286 	struct acpi_processor_power *pwr = &pr->power;
287 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
288 
289 	/*
290 	 * Check, if one of the previous states already marked the lapic
291 	 * unstable
292 	 */
293 	if (pwr->timer_broadcast_on_state < state)
294 		return;
295 
296 	if (cx->type >= type)
297 		pr->power.timer_broadcast_on_state = state;
298 }
299 
300 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
301 {
302 	unsigned long reason;
303 
304 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
305 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
306 
307 	clockevents_notify(reason, &pr->id);
308 }
309 
310 /* Power(C) State timer broadcast control */
311 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
312 				       struct acpi_processor_cx *cx,
313 				       int broadcast)
314 {
315 	int state = cx - pr->power.states;
316 
317 	if (state >= pr->power.timer_broadcast_on_state) {
318 		unsigned long reason;
319 
320 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
321 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
322 		clockevents_notify(reason, &pr->id);
323 	}
324 }
325 
326 #else
327 
328 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
329 				   struct acpi_processor_cx *cstate) { }
330 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
331 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
332 				       struct acpi_processor_cx *cx,
333 				       int broadcast)
334 {
335 }
336 
337 #endif
338 
339 /*
340  * Suspend / resume control
341  */
342 static int acpi_idle_suspend;
343 
344 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
345 {
346 	acpi_idle_suspend = 1;
347 	return 0;
348 }
349 
350 int acpi_processor_resume(struct acpi_device * device)
351 {
352 	acpi_idle_suspend = 0;
353 	return 0;
354 }
355 
356 #ifndef CONFIG_CPU_IDLE
357 static void acpi_processor_idle(void)
358 {
359 	struct acpi_processor *pr = NULL;
360 	struct acpi_processor_cx *cx = NULL;
361 	struct acpi_processor_cx *next_state = NULL;
362 	int sleep_ticks = 0;
363 	u32 t1, t2 = 0;
364 
365 	/*
366 	 * Interrupts must be disabled during bus mastering calculations and
367 	 * for C2/C3 transitions.
368 	 */
369 	local_irq_disable();
370 
371 	pr = processors[smp_processor_id()];
372 	if (!pr) {
373 		local_irq_enable();
374 		return;
375 	}
376 
377 	/*
378 	 * Check whether we truly need to go idle, or should
379 	 * reschedule:
380 	 */
381 	if (unlikely(need_resched())) {
382 		local_irq_enable();
383 		return;
384 	}
385 
386 	cx = pr->power.state;
387 	if (!cx || acpi_idle_suspend) {
388 		if (pm_idle_save)
389 			pm_idle_save();
390 		else
391 			acpi_safe_halt();
392 		return;
393 	}
394 
395 	/*
396 	 * Check BM Activity
397 	 * -----------------
398 	 * Check for bus mastering activity (if required), record, and check
399 	 * for demotion.
400 	 */
401 	if (pr->flags.bm_check) {
402 		u32 bm_status = 0;
403 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
404 
405 		if (diff > 31)
406 			diff = 31;
407 
408 		pr->power.bm_activity <<= diff;
409 
410 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
411 		if (bm_status) {
412 			pr->power.bm_activity |= 0x1;
413 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
414 		}
415 		/*
416 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
417 		 * the true state of bus mastering activity; forcing us to
418 		 * manually check the BMIDEA bit of each IDE channel.
419 		 */
420 		else if (errata.piix4.bmisx) {
421 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
422 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
423 				pr->power.bm_activity |= 0x1;
424 		}
425 
426 		pr->power.bm_check_timestamp = jiffies;
427 
428 		/*
429 		 * If bus mastering is or was active this jiffy, demote
430 		 * to avoid a faulty transition.  Note that the processor
431 		 * won't enter a low-power state during this call (to this
432 		 * function) but should upon the next.
433 		 *
434 		 * TBD: A better policy might be to fallback to the demotion
435 		 *      state (use it for this quantum only) istead of
436 		 *      demoting -- and rely on duration as our sole demotion
437 		 *      qualification.  This may, however, introduce DMA
438 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
439 		 */
440 		if ((pr->power.bm_activity & 0x1) &&
441 		    cx->demotion.threshold.bm) {
442 			local_irq_enable();
443 			next_state = cx->demotion.state;
444 			goto end;
445 		}
446 	}
447 
448 #ifdef CONFIG_HOTPLUG_CPU
449 	/*
450 	 * Check for P_LVL2_UP flag before entering C2 and above on
451 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
452 	 * detection phase, to work cleanly with logical CPU hotplug.
453 	 */
454 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
455 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
456 		cx = &pr->power.states[ACPI_STATE_C1];
457 #endif
458 
459 	/*
460 	 * Sleep:
461 	 * ------
462 	 * Invoke the current Cx state to put the processor to sleep.
463 	 */
464 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
465 		current_thread_info()->status &= ~TS_POLLING;
466 		/*
467 		 * TS_POLLING-cleared state must be visible before we
468 		 * test NEED_RESCHED:
469 		 */
470 		smp_mb();
471 		if (need_resched()) {
472 			current_thread_info()->status |= TS_POLLING;
473 			local_irq_enable();
474 			return;
475 		}
476 	}
477 
478 	switch (cx->type) {
479 
480 	case ACPI_STATE_C1:
481 		/*
482 		 * Invoke C1.
483 		 * Use the appropriate idle routine, the one that would
484 		 * be used without acpi C-states.
485 		 */
486 		if (pm_idle_save)
487 			pm_idle_save();
488 		else
489 			acpi_safe_halt();
490 
491 		/*
492 		 * TBD: Can't get time duration while in C1, as resumes
493 		 *      go to an ISR rather than here.  Need to instrument
494 		 *      base interrupt handler.
495 		 *
496 		 * Note: the TSC better not stop in C1, sched_clock() will
497 		 *       skew otherwise.
498 		 */
499 		sleep_ticks = 0xFFFFFFFF;
500 		break;
501 
502 	case ACPI_STATE_C2:
503 		/* Get start time (ticks) */
504 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
505 		/* Tell the scheduler that we are going deep-idle: */
506 		sched_clock_idle_sleep_event();
507 		/* Invoke C2 */
508 		acpi_state_timer_broadcast(pr, cx, 1);
509 		acpi_cstate_enter(cx);
510 		/* Get end time (ticks) */
511 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
512 
513 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
514 		/* TSC halts in C2, so notify users */
515 		mark_tsc_unstable("possible TSC halt in C2");
516 #endif
517 		/* Compute time (ticks) that we were actually asleep */
518 		sleep_ticks = ticks_elapsed(t1, t2);
519 
520 		/* Tell the scheduler how much we idled: */
521 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
522 
523 		/* Re-enable interrupts */
524 		local_irq_enable();
525 		/* Do not account our idle-switching overhead: */
526 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
527 
528 		current_thread_info()->status |= TS_POLLING;
529 		acpi_state_timer_broadcast(pr, cx, 0);
530 		break;
531 
532 	case ACPI_STATE_C3:
533 		/*
534 		 * disable bus master
535 		 * bm_check implies we need ARB_DIS
536 		 * !bm_check implies we need cache flush
537 		 * bm_control implies whether we can do ARB_DIS
538 		 *
539 		 * That leaves a case where bm_check is set and bm_control is
540 		 * not set. In that case we cannot do much, we enter C3
541 		 * without doing anything.
542 		 */
543 		if (pr->flags.bm_check && pr->flags.bm_control) {
544 			if (atomic_inc_return(&c3_cpu_count) ==
545 			    num_online_cpus()) {
546 				/*
547 				 * All CPUs are trying to go to C3
548 				 * Disable bus master arbitration
549 				 */
550 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
551 			}
552 		} else if (!pr->flags.bm_check) {
553 			/* SMP with no shared cache... Invalidate cache  */
554 			ACPI_FLUSH_CPU_CACHE();
555 		}
556 
557 		/* Get start time (ticks) */
558 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
559 		/* Invoke C3 */
560 		acpi_state_timer_broadcast(pr, cx, 1);
561 		/* Tell the scheduler that we are going deep-idle: */
562 		sched_clock_idle_sleep_event();
563 		acpi_cstate_enter(cx);
564 		/* Get end time (ticks) */
565 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
566 		if (pr->flags.bm_check && pr->flags.bm_control) {
567 			/* Enable bus master arbitration */
568 			atomic_dec(&c3_cpu_count);
569 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
570 		}
571 
572 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
573 		/* TSC halts in C3, so notify users */
574 		mark_tsc_unstable("TSC halts in C3");
575 #endif
576 		/* Compute time (ticks) that we were actually asleep */
577 		sleep_ticks = ticks_elapsed(t1, t2);
578 		/* Tell the scheduler how much we idled: */
579 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
580 
581 		/* Re-enable interrupts */
582 		local_irq_enable();
583 		/* Do not account our idle-switching overhead: */
584 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
585 
586 		current_thread_info()->status |= TS_POLLING;
587 		acpi_state_timer_broadcast(pr, cx, 0);
588 		break;
589 
590 	default:
591 		local_irq_enable();
592 		return;
593 	}
594 	cx->usage++;
595 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
596 		cx->time += sleep_ticks;
597 
598 	next_state = pr->power.state;
599 
600 #ifdef CONFIG_HOTPLUG_CPU
601 	/* Don't do promotion/demotion */
602 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
603 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
604 		next_state = cx;
605 		goto end;
606 	}
607 #endif
608 
609 	/*
610 	 * Promotion?
611 	 * ----------
612 	 * Track the number of longs (time asleep is greater than threshold)
613 	 * and promote when the count threshold is reached.  Note that bus
614 	 * mastering activity may prevent promotions.
615 	 * Do not promote above max_cstate.
616 	 */
617 	if (cx->promotion.state &&
618 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
619 		if (sleep_ticks > cx->promotion.threshold.ticks &&
620 		  cx->promotion.state->latency <= system_latency_constraint()) {
621 			cx->promotion.count++;
622 			cx->demotion.count = 0;
623 			if (cx->promotion.count >=
624 			    cx->promotion.threshold.count) {
625 				if (pr->flags.bm_check) {
626 					if (!
627 					    (pr->power.bm_activity & cx->
628 					     promotion.threshold.bm)) {
629 						next_state =
630 						    cx->promotion.state;
631 						goto end;
632 					}
633 				} else {
634 					next_state = cx->promotion.state;
635 					goto end;
636 				}
637 			}
638 		}
639 	}
640 
641 	/*
642 	 * Demotion?
643 	 * ---------
644 	 * Track the number of shorts (time asleep is less than time threshold)
645 	 * and demote when the usage threshold is reached.
646 	 */
647 	if (cx->demotion.state) {
648 		if (sleep_ticks < cx->demotion.threshold.ticks) {
649 			cx->demotion.count++;
650 			cx->promotion.count = 0;
651 			if (cx->demotion.count >= cx->demotion.threshold.count) {
652 				next_state = cx->demotion.state;
653 				goto end;
654 			}
655 		}
656 	}
657 
658       end:
659 	/*
660 	 * Demote if current state exceeds max_cstate
661 	 * or if the latency of the current state is unacceptable
662 	 */
663 	if ((pr->power.state - pr->power.states) > max_cstate ||
664 		pr->power.state->latency > system_latency_constraint()) {
665 		if (cx->demotion.state)
666 			next_state = cx->demotion.state;
667 	}
668 
669 	/*
670 	 * New Cx State?
671 	 * -------------
672 	 * If we're going to start using a new Cx state we must clean up
673 	 * from the previous and prepare to use the new.
674 	 */
675 	if (next_state != pr->power.state)
676 		acpi_processor_power_activate(pr, next_state);
677 }
678 
679 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
680 {
681 	unsigned int i;
682 	unsigned int state_is_set = 0;
683 	struct acpi_processor_cx *lower = NULL;
684 	struct acpi_processor_cx *higher = NULL;
685 	struct acpi_processor_cx *cx;
686 
687 
688 	if (!pr)
689 		return -EINVAL;
690 
691 	/*
692 	 * This function sets the default Cx state policy (OS idle handler).
693 	 * Our scheme is to promote quickly to C2 but more conservatively
694 	 * to C3.  We're favoring C2  for its characteristics of low latency
695 	 * (quick response), good power savings, and ability to allow bus
696 	 * mastering activity.  Note that the Cx state policy is completely
697 	 * customizable and can be altered dynamically.
698 	 */
699 
700 	/* startup state */
701 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
702 		cx = &pr->power.states[i];
703 		if (!cx->valid)
704 			continue;
705 
706 		if (!state_is_set)
707 			pr->power.state = cx;
708 		state_is_set++;
709 		break;
710 	}
711 
712 	if (!state_is_set)
713 		return -ENODEV;
714 
715 	/* demotion */
716 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
717 		cx = &pr->power.states[i];
718 		if (!cx->valid)
719 			continue;
720 
721 		if (lower) {
722 			cx->demotion.state = lower;
723 			cx->demotion.threshold.ticks = cx->latency_ticks;
724 			cx->demotion.threshold.count = 1;
725 			if (cx->type == ACPI_STATE_C3)
726 				cx->demotion.threshold.bm = bm_history;
727 		}
728 
729 		lower = cx;
730 	}
731 
732 	/* promotion */
733 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
734 		cx = &pr->power.states[i];
735 		if (!cx->valid)
736 			continue;
737 
738 		if (higher) {
739 			cx->promotion.state = higher;
740 			cx->promotion.threshold.ticks = cx->latency_ticks;
741 			if (cx->type >= ACPI_STATE_C2)
742 				cx->promotion.threshold.count = 4;
743 			else
744 				cx->promotion.threshold.count = 10;
745 			if (higher->type == ACPI_STATE_C3)
746 				cx->promotion.threshold.bm = bm_history;
747 		}
748 
749 		higher = cx;
750 	}
751 
752 	return 0;
753 }
754 #endif /* !CONFIG_CPU_IDLE */
755 
756 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
757 {
758 
759 	if (!pr)
760 		return -EINVAL;
761 
762 	if (!pr->pblk)
763 		return -ENODEV;
764 
765 	/* if info is obtained from pblk/fadt, type equals state */
766 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
767 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
768 
769 #ifndef CONFIG_HOTPLUG_CPU
770 	/*
771 	 * Check for P_LVL2_UP flag before entering C2 and above on
772 	 * an SMP system.
773 	 */
774 	if ((num_online_cpus() > 1) &&
775 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
776 		return -ENODEV;
777 #endif
778 
779 	/* determine C2 and C3 address from pblk */
780 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
781 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
782 
783 	/* determine latencies from FADT */
784 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
785 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
786 
787 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
788 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
789 			  pr->power.states[ACPI_STATE_C2].address,
790 			  pr->power.states[ACPI_STATE_C3].address));
791 
792 	return 0;
793 }
794 
795 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
796 {
797 	if (!pr->power.states[ACPI_STATE_C1].valid) {
798 		/* set the first C-State to C1 */
799 		/* all processors need to support C1 */
800 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
801 		pr->power.states[ACPI_STATE_C1].valid = 1;
802 	}
803 	/* the C0 state only exists as a filler in our array */
804 	pr->power.states[ACPI_STATE_C0].valid = 1;
805 	return 0;
806 }
807 
808 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
809 {
810 	acpi_status status = 0;
811 	acpi_integer count;
812 	int current_count;
813 	int i;
814 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
815 	union acpi_object *cst;
816 
817 
818 	if (nocst)
819 		return -ENODEV;
820 
821 	current_count = 0;
822 
823 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
824 	if (ACPI_FAILURE(status)) {
825 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
826 		return -ENODEV;
827 	}
828 
829 	cst = buffer.pointer;
830 
831 	/* There must be at least 2 elements */
832 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
833 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
834 		status = -EFAULT;
835 		goto end;
836 	}
837 
838 	count = cst->package.elements[0].integer.value;
839 
840 	/* Validate number of power states. */
841 	if (count < 1 || count != cst->package.count - 1) {
842 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
843 		status = -EFAULT;
844 		goto end;
845 	}
846 
847 	/* Tell driver that at least _CST is supported. */
848 	pr->flags.has_cst = 1;
849 
850 	for (i = 1; i <= count; i++) {
851 		union acpi_object *element;
852 		union acpi_object *obj;
853 		struct acpi_power_register *reg;
854 		struct acpi_processor_cx cx;
855 
856 		memset(&cx, 0, sizeof(cx));
857 
858 		element = &(cst->package.elements[i]);
859 		if (element->type != ACPI_TYPE_PACKAGE)
860 			continue;
861 
862 		if (element->package.count != 4)
863 			continue;
864 
865 		obj = &(element->package.elements[0]);
866 
867 		if (obj->type != ACPI_TYPE_BUFFER)
868 			continue;
869 
870 		reg = (struct acpi_power_register *)obj->buffer.pointer;
871 
872 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
873 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
874 			continue;
875 
876 		/* There should be an easy way to extract an integer... */
877 		obj = &(element->package.elements[1]);
878 		if (obj->type != ACPI_TYPE_INTEGER)
879 			continue;
880 
881 		cx.type = obj->integer.value;
882 		/*
883 		 * Some buggy BIOSes won't list C1 in _CST -
884 		 * Let acpi_processor_get_power_info_default() handle them later
885 		 */
886 		if (i == 1 && cx.type != ACPI_STATE_C1)
887 			current_count++;
888 
889 		cx.address = reg->address;
890 		cx.index = current_count + 1;
891 
892 		cx.space_id = ACPI_CSTATE_SYSTEMIO;
893 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
894 			if (acpi_processor_ffh_cstate_probe
895 					(pr->id, &cx, reg) == 0) {
896 				cx.space_id = ACPI_CSTATE_FFH;
897 			} else if (cx.type != ACPI_STATE_C1) {
898 				/*
899 				 * C1 is a special case where FIXED_HARDWARE
900 				 * can be handled in non-MWAIT way as well.
901 				 * In that case, save this _CST entry info.
902 				 * That is, we retain space_id of SYSTEM_IO for
903 				 * halt based C1.
904 				 * Otherwise, ignore this info and continue.
905 				 */
906 				continue;
907 			}
908 		}
909 
910 		obj = &(element->package.elements[2]);
911 		if (obj->type != ACPI_TYPE_INTEGER)
912 			continue;
913 
914 		cx.latency = obj->integer.value;
915 
916 		obj = &(element->package.elements[3]);
917 		if (obj->type != ACPI_TYPE_INTEGER)
918 			continue;
919 
920 		cx.power = obj->integer.value;
921 
922 		current_count++;
923 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
924 
925 		/*
926 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
927 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
928 		 */
929 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
930 			printk(KERN_WARNING
931 			       "Limiting number of power states to max (%d)\n",
932 			       ACPI_PROCESSOR_MAX_POWER);
933 			printk(KERN_WARNING
934 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
935 			break;
936 		}
937 	}
938 
939 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
940 			  current_count));
941 
942 	/* Validate number of power states discovered */
943 	if (current_count < 2)
944 		status = -EFAULT;
945 
946       end:
947 	kfree(buffer.pointer);
948 
949 	return status;
950 }
951 
952 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
953 {
954 
955 	if (!cx->address)
956 		return;
957 
958 	/*
959 	 * C2 latency must be less than or equal to 100
960 	 * microseconds.
961 	 */
962 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
963 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
964 				  "latency too large [%d]\n", cx->latency));
965 		return;
966 	}
967 
968 	/*
969 	 * Otherwise we've met all of our C2 requirements.
970 	 * Normalize the C2 latency to expidite policy
971 	 */
972 	cx->valid = 1;
973 
974 #ifndef CONFIG_CPU_IDLE
975 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
976 #else
977 	cx->latency_ticks = cx->latency;
978 #endif
979 
980 	return;
981 }
982 
983 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
984 					   struct acpi_processor_cx *cx)
985 {
986 	static int bm_check_flag;
987 
988 
989 	if (!cx->address)
990 		return;
991 
992 	/*
993 	 * C3 latency must be less than or equal to 1000
994 	 * microseconds.
995 	 */
996 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
997 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
998 				  "latency too large [%d]\n", cx->latency));
999 		return;
1000 	}
1001 
1002 	/*
1003 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1004 	 * DMA transfers are used by any ISA device to avoid livelock.
1005 	 * Note that we could disable Type-F DMA (as recommended by
1006 	 * the erratum), but this is known to disrupt certain ISA
1007 	 * devices thus we take the conservative approach.
1008 	 */
1009 	else if (errata.piix4.fdma) {
1010 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1011 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
1012 		return;
1013 	}
1014 
1015 	/* All the logic here assumes flags.bm_check is same across all CPUs */
1016 	if (!bm_check_flag) {
1017 		/* Determine whether bm_check is needed based on CPU  */
1018 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1019 		bm_check_flag = pr->flags.bm_check;
1020 	} else {
1021 		pr->flags.bm_check = bm_check_flag;
1022 	}
1023 
1024 	if (pr->flags.bm_check) {
1025 		if (!pr->flags.bm_control) {
1026 			if (pr->flags.has_cst != 1) {
1027 				/* bus mastering control is necessary */
1028 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1029 					"C3 support requires BM control\n"));
1030 				return;
1031 			} else {
1032 				/* Here we enter C3 without bus mastering */
1033 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1034 					"C3 support without BM control\n"));
1035 			}
1036 		}
1037 	} else {
1038 		/*
1039 		 * WBINVD should be set in fadt, for C3 state to be
1040 		 * supported on when bm_check is not required.
1041 		 */
1042 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1043 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1044 					  "Cache invalidation should work properly"
1045 					  " for C3 to be enabled on SMP systems\n"));
1046 			return;
1047 		}
1048 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1049 	}
1050 
1051 	/*
1052 	 * Otherwise we've met all of our C3 requirements.
1053 	 * Normalize the C3 latency to expidite policy.  Enable
1054 	 * checking of bus mastering status (bm_check) so we can
1055 	 * use this in our C3 policy
1056 	 */
1057 	cx->valid = 1;
1058 
1059 #ifndef CONFIG_CPU_IDLE
1060 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1061 #else
1062 	cx->latency_ticks = cx->latency;
1063 #endif
1064 
1065 	return;
1066 }
1067 
1068 static int acpi_processor_power_verify(struct acpi_processor *pr)
1069 {
1070 	unsigned int i;
1071 	unsigned int working = 0;
1072 
1073 	pr->power.timer_broadcast_on_state = INT_MAX;
1074 
1075 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1076 		struct acpi_processor_cx *cx = &pr->power.states[i];
1077 
1078 		switch (cx->type) {
1079 		case ACPI_STATE_C1:
1080 			cx->valid = 1;
1081 			break;
1082 
1083 		case ACPI_STATE_C2:
1084 			acpi_processor_power_verify_c2(cx);
1085 			if (cx->valid)
1086 				acpi_timer_check_state(i, pr, cx);
1087 			break;
1088 
1089 		case ACPI_STATE_C3:
1090 			acpi_processor_power_verify_c3(pr, cx);
1091 			if (cx->valid)
1092 				acpi_timer_check_state(i, pr, cx);
1093 			break;
1094 		}
1095 
1096 		if (cx->valid)
1097 			working++;
1098 	}
1099 
1100 	acpi_propagate_timer_broadcast(pr);
1101 
1102 	return (working);
1103 }
1104 
1105 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1106 {
1107 	unsigned int i;
1108 	int result;
1109 
1110 
1111 	/* NOTE: the idle thread may not be running while calling
1112 	 * this function */
1113 
1114 	/* Zero initialize all the C-states info. */
1115 	memset(pr->power.states, 0, sizeof(pr->power.states));
1116 
1117 	result = acpi_processor_get_power_info_cst(pr);
1118 	if (result == -ENODEV)
1119 		result = acpi_processor_get_power_info_fadt(pr);
1120 
1121 	if (result)
1122 		return result;
1123 
1124 	acpi_processor_get_power_info_default(pr);
1125 
1126 	pr->power.count = acpi_processor_power_verify(pr);
1127 
1128 #ifndef CONFIG_CPU_IDLE
1129 	/*
1130 	 * Set Default Policy
1131 	 * ------------------
1132 	 * Now that we know which states are supported, set the default
1133 	 * policy.  Note that this policy can be changed dynamically
1134 	 * (e.g. encourage deeper sleeps to conserve battery life when
1135 	 * not on AC).
1136 	 */
1137 	result = acpi_processor_set_power_policy(pr);
1138 	if (result)
1139 		return result;
1140 #endif
1141 
1142 	/*
1143 	 * if one state of type C2 or C3 is available, mark this
1144 	 * CPU as being "idle manageable"
1145 	 */
1146 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1147 		if (pr->power.states[i].valid) {
1148 			pr->power.count = i;
1149 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1150 				pr->flags.power = 1;
1151 		}
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1158 {
1159 	struct acpi_processor *pr = seq->private;
1160 	unsigned int i;
1161 
1162 
1163 	if (!pr)
1164 		goto end;
1165 
1166 	seq_printf(seq, "active state:            C%zd\n"
1167 		   "max_cstate:              C%d\n"
1168 		   "bus master activity:     %08x\n"
1169 		   "maximum allowed latency: %d usec\n",
1170 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1171 		   max_cstate, (unsigned)pr->power.bm_activity,
1172 		   system_latency_constraint());
1173 
1174 	seq_puts(seq, "states:\n");
1175 
1176 	for (i = 1; i <= pr->power.count; i++) {
1177 		seq_printf(seq, "   %cC%d:                  ",
1178 			   (&pr->power.states[i] ==
1179 			    pr->power.state ? '*' : ' '), i);
1180 
1181 		if (!pr->power.states[i].valid) {
1182 			seq_puts(seq, "<not supported>\n");
1183 			continue;
1184 		}
1185 
1186 		switch (pr->power.states[i].type) {
1187 		case ACPI_STATE_C1:
1188 			seq_printf(seq, "type[C1] ");
1189 			break;
1190 		case ACPI_STATE_C2:
1191 			seq_printf(seq, "type[C2] ");
1192 			break;
1193 		case ACPI_STATE_C3:
1194 			seq_printf(seq, "type[C3] ");
1195 			break;
1196 		default:
1197 			seq_printf(seq, "type[--] ");
1198 			break;
1199 		}
1200 
1201 		if (pr->power.states[i].promotion.state)
1202 			seq_printf(seq, "promotion[C%zd] ",
1203 				   (pr->power.states[i].promotion.state -
1204 				    pr->power.states));
1205 		else
1206 			seq_puts(seq, "promotion[--] ");
1207 
1208 		if (pr->power.states[i].demotion.state)
1209 			seq_printf(seq, "demotion[C%zd] ",
1210 				   (pr->power.states[i].demotion.state -
1211 				    pr->power.states));
1212 		else
1213 			seq_puts(seq, "demotion[--] ");
1214 
1215 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1216 			   pr->power.states[i].latency,
1217 			   pr->power.states[i].usage,
1218 			   (unsigned long long)pr->power.states[i].time);
1219 	}
1220 
1221       end:
1222 	return 0;
1223 }
1224 
1225 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1226 {
1227 	return single_open(file, acpi_processor_power_seq_show,
1228 			   PDE(inode)->data);
1229 }
1230 
1231 static const struct file_operations acpi_processor_power_fops = {
1232 	.open = acpi_processor_power_open_fs,
1233 	.read = seq_read,
1234 	.llseek = seq_lseek,
1235 	.release = single_release,
1236 };
1237 
1238 #ifndef CONFIG_CPU_IDLE
1239 
1240 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1241 {
1242 	int result = 0;
1243 
1244 
1245 	if (!pr)
1246 		return -EINVAL;
1247 
1248 	if (nocst) {
1249 		return -ENODEV;
1250 	}
1251 
1252 	if (!pr->flags.power_setup_done)
1253 		return -ENODEV;
1254 
1255 	/* Fall back to the default idle loop */
1256 	pm_idle = pm_idle_save;
1257 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1258 
1259 	pr->flags.power = 0;
1260 	result = acpi_processor_get_power_info(pr);
1261 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1262 		pm_idle = acpi_processor_idle;
1263 
1264 	return result;
1265 }
1266 
1267 #ifdef CONFIG_SMP
1268 static void smp_callback(void *v)
1269 {
1270 	/* we already woke the CPU up, nothing more to do */
1271 }
1272 
1273 /*
1274  * This function gets called when a part of the kernel has a new latency
1275  * requirement.  This means we need to get all processors out of their C-state,
1276  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1277  * wakes them all right up.
1278  */
1279 static int acpi_processor_latency_notify(struct notifier_block *b,
1280 		unsigned long l, void *v)
1281 {
1282 	smp_call_function(smp_callback, NULL, 0, 1);
1283 	return NOTIFY_OK;
1284 }
1285 
1286 static struct notifier_block acpi_processor_latency_notifier = {
1287 	.notifier_call = acpi_processor_latency_notify,
1288 };
1289 
1290 #endif
1291 
1292 #else /* CONFIG_CPU_IDLE */
1293 
1294 /**
1295  * acpi_idle_bm_check - checks if bus master activity was detected
1296  */
1297 static int acpi_idle_bm_check(void)
1298 {
1299 	u32 bm_status = 0;
1300 
1301 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1302 	if (bm_status)
1303 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1304 	/*
1305 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1306 	 * the true state of bus mastering activity; forcing us to
1307 	 * manually check the BMIDEA bit of each IDE channel.
1308 	 */
1309 	else if (errata.piix4.bmisx) {
1310 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1311 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1312 			bm_status = 1;
1313 	}
1314 	return bm_status;
1315 }
1316 
1317 /**
1318  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1319  * @pr: the processor
1320  * @target: the new target state
1321  */
1322 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1323 					   struct acpi_processor_cx *target)
1324 {
1325 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1326 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1327 		pr->flags.bm_rld_set = 0;
1328 	}
1329 
1330 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1331 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1332 		pr->flags.bm_rld_set = 1;
1333 	}
1334 }
1335 
1336 /**
1337  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1338  * @cx: cstate data
1339  */
1340 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1341 {
1342 	if (cx->space_id == ACPI_CSTATE_FFH) {
1343 		/* Call into architectural FFH based C-state */
1344 		acpi_processor_ffh_cstate_enter(cx);
1345 	} else {
1346 		int unused;
1347 		/* IO port based C-state */
1348 		inb(cx->address);
1349 		/* Dummy wait op - must do something useless after P_LVL2 read
1350 		   because chipsets cannot guarantee that STPCLK# signal
1351 		   gets asserted in time to freeze execution properly. */
1352 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1353 	}
1354 }
1355 
1356 /**
1357  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1358  * @dev: the target CPU
1359  * @state: the state data
1360  *
1361  * This is equivalent to the HALT instruction.
1362  */
1363 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1364 			      struct cpuidle_state *state)
1365 {
1366 	struct acpi_processor *pr;
1367 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1368 	pr = processors[smp_processor_id()];
1369 
1370 	if (unlikely(!pr))
1371 		return 0;
1372 
1373 	if (pr->flags.bm_check)
1374 		acpi_idle_update_bm_rld(pr, cx);
1375 
1376 	current_thread_info()->status &= ~TS_POLLING;
1377 	/*
1378 	 * TS_POLLING-cleared state must be visible before we test
1379 	 * NEED_RESCHED:
1380 	 */
1381 	smp_mb();
1382 	if (!need_resched())
1383 		safe_halt();
1384 	current_thread_info()->status |= TS_POLLING;
1385 
1386 	cx->usage++;
1387 
1388 	return 0;
1389 }
1390 
1391 /**
1392  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1393  * @dev: the target CPU
1394  * @state: the state data
1395  */
1396 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1397 				  struct cpuidle_state *state)
1398 {
1399 	struct acpi_processor *pr;
1400 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1401 	u32 t1, t2;
1402 	pr = processors[smp_processor_id()];
1403 
1404 	if (unlikely(!pr))
1405 		return 0;
1406 
1407 	if (acpi_idle_suspend)
1408 		return(acpi_idle_enter_c1(dev, state));
1409 
1410 	if (pr->flags.bm_check)
1411 		acpi_idle_update_bm_rld(pr, cx);
1412 
1413 	local_irq_disable();
1414 	current_thread_info()->status &= ~TS_POLLING;
1415 	/*
1416 	 * TS_POLLING-cleared state must be visible before we test
1417 	 * NEED_RESCHED:
1418 	 */
1419 	smp_mb();
1420 
1421 	if (unlikely(need_resched())) {
1422 		current_thread_info()->status |= TS_POLLING;
1423 		local_irq_enable();
1424 		return 0;
1425 	}
1426 
1427 	if (cx->type == ACPI_STATE_C3)
1428 		ACPI_FLUSH_CPU_CACHE();
1429 
1430 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1431 	acpi_state_timer_broadcast(pr, cx, 1);
1432 	acpi_idle_do_entry(cx);
1433 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1434 
1435 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1436 	/* TSC could halt in idle, so notify users */
1437 	mark_tsc_unstable("TSC halts in idle");;
1438 #endif
1439 
1440 	local_irq_enable();
1441 	current_thread_info()->status |= TS_POLLING;
1442 
1443 	cx->usage++;
1444 
1445 	acpi_state_timer_broadcast(pr, cx, 0);
1446 	cx->time += ticks_elapsed(t1, t2);
1447 	return ticks_elapsed_in_us(t1, t2);
1448 }
1449 
1450 static int c3_cpu_count;
1451 static DEFINE_SPINLOCK(c3_lock);
1452 
1453 /**
1454  * acpi_idle_enter_bm - enters C3 with proper BM handling
1455  * @dev: the target CPU
1456  * @state: the state data
1457  *
1458  * If BM is detected, the deepest non-C3 idle state is entered instead.
1459  */
1460 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1461 			      struct cpuidle_state *state)
1462 {
1463 	struct acpi_processor *pr;
1464 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1465 	u32 t1, t2;
1466 	pr = processors[smp_processor_id()];
1467 
1468 	if (unlikely(!pr))
1469 		return 0;
1470 
1471 	if (acpi_idle_suspend)
1472 		return(acpi_idle_enter_c1(dev, state));
1473 
1474 	local_irq_disable();
1475 	current_thread_info()->status &= ~TS_POLLING;
1476 	/*
1477 	 * TS_POLLING-cleared state must be visible before we test
1478 	 * NEED_RESCHED:
1479 	 */
1480 	smp_mb();
1481 
1482 	if (unlikely(need_resched())) {
1483 		current_thread_info()->status |= TS_POLLING;
1484 		local_irq_enable();
1485 		return 0;
1486 	}
1487 
1488 	/*
1489 	 * Must be done before busmaster disable as we might need to
1490 	 * access HPET !
1491 	 */
1492 	acpi_state_timer_broadcast(pr, cx, 1);
1493 
1494 	if (acpi_idle_bm_check()) {
1495 		cx = pr->power.bm_state;
1496 
1497 		acpi_idle_update_bm_rld(pr, cx);
1498 
1499 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1500 		acpi_idle_do_entry(cx);
1501 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1502 	} else {
1503 		acpi_idle_update_bm_rld(pr, cx);
1504 
1505 		spin_lock(&c3_lock);
1506 		c3_cpu_count++;
1507 		/* Disable bus master arbitration when all CPUs are in C3 */
1508 		if (c3_cpu_count == num_online_cpus())
1509 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1510 		spin_unlock(&c3_lock);
1511 
1512 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1513 		acpi_idle_do_entry(cx);
1514 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1515 
1516 		spin_lock(&c3_lock);
1517 		/* Re-enable bus master arbitration */
1518 		if (c3_cpu_count == num_online_cpus())
1519 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1520 		c3_cpu_count--;
1521 		spin_unlock(&c3_lock);
1522 	}
1523 
1524 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1525 	/* TSC could halt in idle, so notify users */
1526 	mark_tsc_unstable("TSC halts in idle");
1527 #endif
1528 
1529 	local_irq_enable();
1530 	current_thread_info()->status |= TS_POLLING;
1531 
1532 	cx->usage++;
1533 
1534 	acpi_state_timer_broadcast(pr, cx, 0);
1535 	cx->time += ticks_elapsed(t1, t2);
1536 	return ticks_elapsed_in_us(t1, t2);
1537 }
1538 
1539 struct cpuidle_driver acpi_idle_driver = {
1540 	.name =		"acpi_idle",
1541 	.owner =	THIS_MODULE,
1542 };
1543 
1544 /**
1545  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1546  * @pr: the ACPI processor
1547  */
1548 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1549 {
1550 	int i, count = 0;
1551 	struct acpi_processor_cx *cx;
1552 	struct cpuidle_state *state;
1553 	struct cpuidle_device *dev = &pr->power.dev;
1554 
1555 	if (!pr->flags.power_setup_done)
1556 		return -EINVAL;
1557 
1558 	if (pr->flags.power == 0) {
1559 		return -EINVAL;
1560 	}
1561 
1562 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1563 		cx = &pr->power.states[i];
1564 		state = &dev->states[count];
1565 
1566 		if (!cx->valid)
1567 			continue;
1568 
1569 #ifdef CONFIG_HOTPLUG_CPU
1570 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1571 		    !pr->flags.has_cst &&
1572 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1573 			continue;
1574 #endif
1575 		cpuidle_set_statedata(state, cx);
1576 
1577 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1578 		state->exit_latency = cx->latency;
1579 		state->target_residency = cx->latency * 6;
1580 		state->power_usage = cx->power;
1581 
1582 		state->flags = 0;
1583 		switch (cx->type) {
1584 			case ACPI_STATE_C1:
1585 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1586 			state->enter = acpi_idle_enter_c1;
1587 			break;
1588 
1589 			case ACPI_STATE_C2:
1590 			state->flags |= CPUIDLE_FLAG_BALANCED;
1591 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1592 			state->enter = acpi_idle_enter_simple;
1593 			break;
1594 
1595 			case ACPI_STATE_C3:
1596 			state->flags |= CPUIDLE_FLAG_DEEP;
1597 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1598 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1599 			state->enter = pr->flags.bm_check ?
1600 					acpi_idle_enter_bm :
1601 					acpi_idle_enter_simple;
1602 			break;
1603 		}
1604 
1605 		count++;
1606 	}
1607 
1608 	dev->state_count = count;
1609 
1610 	if (!count)
1611 		return -EINVAL;
1612 
1613 	/* find the deepest state that can handle active BM */
1614 	if (pr->flags.bm_check) {
1615 		for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++)
1616 			if (pr->power.states[i].type == ACPI_STATE_C3)
1617 				break;
1618 		pr->power.bm_state = &pr->power.states[i-1];
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1625 {
1626 	int ret;
1627 
1628 	if (!pr)
1629 		return -EINVAL;
1630 
1631 	if (nocst) {
1632 		return -ENODEV;
1633 	}
1634 
1635 	if (!pr->flags.power_setup_done)
1636 		return -ENODEV;
1637 
1638 	cpuidle_pause_and_lock();
1639 	cpuidle_disable_device(&pr->power.dev);
1640 	acpi_processor_get_power_info(pr);
1641 	acpi_processor_setup_cpuidle(pr);
1642 	ret = cpuidle_enable_device(&pr->power.dev);
1643 	cpuidle_resume_and_unlock();
1644 
1645 	return ret;
1646 }
1647 
1648 #endif /* CONFIG_CPU_IDLE */
1649 
1650 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1651 			      struct acpi_device *device)
1652 {
1653 	acpi_status status = 0;
1654 	static int first_run;
1655 	struct proc_dir_entry *entry = NULL;
1656 	unsigned int i;
1657 
1658 
1659 	if (!first_run) {
1660 		dmi_check_system(processor_power_dmi_table);
1661 		if (max_cstate < ACPI_C_STATES_MAX)
1662 			printk(KERN_NOTICE
1663 			       "ACPI: processor limited to max C-state %d\n",
1664 			       max_cstate);
1665 		first_run++;
1666 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1667 		register_latency_notifier(&acpi_processor_latency_notifier);
1668 #endif
1669 	}
1670 
1671 	if (!pr)
1672 		return -EINVAL;
1673 
1674 	if (acpi_gbl_FADT.cst_control && !nocst) {
1675 		status =
1676 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1677 		if (ACPI_FAILURE(status)) {
1678 			ACPI_EXCEPTION((AE_INFO, status,
1679 					"Notifying BIOS of _CST ability failed"));
1680 		}
1681 	}
1682 
1683 	acpi_processor_get_power_info(pr);
1684 	pr->flags.power_setup_done = 1;
1685 
1686 	/*
1687 	 * Install the idle handler if processor power management is supported.
1688 	 * Note that we use previously set idle handler will be used on
1689 	 * platforms that only support C1.
1690 	 */
1691 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1692 #ifdef CONFIG_CPU_IDLE
1693 		acpi_processor_setup_cpuidle(pr);
1694 		pr->power.dev.cpu = pr->id;
1695 		if (cpuidle_register_device(&pr->power.dev))
1696 			return -EIO;
1697 #endif
1698 
1699 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1700 		for (i = 1; i <= pr->power.count; i++)
1701 			if (pr->power.states[i].valid)
1702 				printk(" C%d[C%d]", i,
1703 				       pr->power.states[i].type);
1704 		printk(")\n");
1705 
1706 #ifndef CONFIG_CPU_IDLE
1707 		if (pr->id == 0) {
1708 			pm_idle_save = pm_idle;
1709 			pm_idle = acpi_processor_idle;
1710 		}
1711 #endif
1712 	}
1713 
1714 	/* 'power' [R] */
1715 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1716 				  S_IRUGO, acpi_device_dir(device));
1717 	if (!entry)
1718 		return -EIO;
1719 	else {
1720 		entry->proc_fops = &acpi_processor_power_fops;
1721 		entry->data = acpi_driver_data(device);
1722 		entry->owner = THIS_MODULE;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 int acpi_processor_power_exit(struct acpi_processor *pr,
1729 			      struct acpi_device *device)
1730 {
1731 #ifdef CONFIG_CPU_IDLE
1732 	if ((pr->flags.power) && (!boot_option_idle_override))
1733 		cpuidle_unregister_device(&pr->power.dev);
1734 #endif
1735 	pr->flags.power_setup_done = 0;
1736 
1737 	if (acpi_device_dir(device))
1738 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1739 				  acpi_device_dir(device));
1740 
1741 #ifndef CONFIG_CPU_IDLE
1742 
1743 	/* Unregister the idle handler when processor #0 is removed. */
1744 	if (pr->id == 0) {
1745 		pm_idle = pm_idle_save;
1746 
1747 		/*
1748 		 * We are about to unload the current idle thread pm callback
1749 		 * (pm_idle), Wait for all processors to update cached/local
1750 		 * copies of pm_idle before proceeding.
1751 		 */
1752 		cpu_idle_wait();
1753 #ifdef CONFIG_SMP
1754 		unregister_latency_notifier(&acpi_processor_latency_notifier);
1755 #endif
1756 	}
1757 #endif
1758 
1759 	return 0;
1760 }
1761