xref: /openbmc/linux/drivers/acpi/pptt.c (revision 643e83501461763032ae51e4d540176e6a887d31)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4  *
5  * Copyright (C) 2018, ARM
6  *
7  * This file implements parsing of the Processor Properties Topology Table
8  * which is optionally used to describe the processor and cache topology.
9  * Due to the relative pointers used throughout the table, this doesn't
10  * leverage the existing subtable parsing in the kernel.
11  *
12  * The PPTT structure is an inverted tree, with each node potentially
13  * holding one or two inverted tree data structures describing
14  * the caches available at that level. Each cache structure optionally
15  * contains properties describing the cache at a given level which can be
16  * used to override hardware probed values.
17  */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19 
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23 
24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 							u32 pptt_ref)
26 {
27 	struct acpi_subtable_header *entry;
28 
29 	/* there isn't a subtable at reference 0 */
30 	if (pptt_ref < sizeof(struct acpi_subtable_header))
31 		return NULL;
32 
33 	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 		return NULL;
35 
36 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37 
38 	if (entry->length == 0)
39 		return NULL;
40 
41 	if (pptt_ref + entry->length > table_hdr->length)
42 		return NULL;
43 
44 	return entry;
45 }
46 
47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 						   u32 pptt_ref)
49 {
50 	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51 }
52 
53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 						u32 pptt_ref)
55 {
56 	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57 }
58 
59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 							   struct acpi_pptt_processor *node,
61 							   int resource)
62 {
63 	u32 *ref;
64 
65 	if (resource >= node->number_of_priv_resources)
66 		return NULL;
67 
68 	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 	ref += resource;
70 
71 	return fetch_pptt_subtable(table_hdr, *ref);
72 }
73 
74 static inline bool acpi_pptt_match_type(int table_type, int type)
75 {
76 	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78 }
79 
80 /**
81  * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82  * @table_hdr: Pointer to the head of the PPTT table
83  * @local_level: passed res reflects this cache level
84  * @split_levels: Number of split cache levels (data/instruction).
85  * @res: cache resource in the PPTT we want to walk
86  * @found: returns a pointer to the requested level if found
87  * @level: the requested cache level
88  * @type: the requested cache type
89  *
90  * Attempt to find a given cache level, while counting the max number
91  * of cache levels for the cache node.
92  *
93  * Given a pptt resource, verify that it is a cache node, then walk
94  * down each level of caches, counting how many levels are found
95  * as well as checking the cache type (icache, dcache, unified). If a
96  * level & type match, then we set found, and continue the search.
97  * Once the entire cache branch has been walked return its max
98  * depth.
99  *
100  * Return: The cache structure and the level we terminated with.
101  */
102 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
103 					 unsigned int local_level,
104 					 unsigned int *split_levels,
105 					 struct acpi_subtable_header *res,
106 					 struct acpi_pptt_cache **found,
107 					 unsigned int level, int type)
108 {
109 	struct acpi_pptt_cache *cache;
110 
111 	if (res->type != ACPI_PPTT_TYPE_CACHE)
112 		return 0;
113 
114 	cache = (struct acpi_pptt_cache *) res;
115 	while (cache) {
116 		local_level++;
117 
118 		if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) {
119 			cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
120 			continue;
121 		}
122 
123 		if (split_levels &&
124 		    (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) ||
125 		     acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR)))
126 			*split_levels = local_level;
127 
128 		if (local_level == level &&
129 		    acpi_pptt_match_type(cache->attributes, type)) {
130 			if (*found != NULL && cache != *found)
131 				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
132 
133 			pr_debug("Found cache @ level %u\n", level);
134 			*found = cache;
135 			/*
136 			 * continue looking at this node's resource list
137 			 * to verify that we don't find a duplicate
138 			 * cache node.
139 			 */
140 		}
141 		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
142 	}
143 	return local_level;
144 }
145 
146 static struct acpi_pptt_cache *
147 acpi_find_cache_level(struct acpi_table_header *table_hdr,
148 		      struct acpi_pptt_processor *cpu_node,
149 		      unsigned int *starting_level, unsigned int *split_levels,
150 		      unsigned int level, int type)
151 {
152 	struct acpi_subtable_header *res;
153 	unsigned int number_of_levels = *starting_level;
154 	int resource = 0;
155 	struct acpi_pptt_cache *ret = NULL;
156 	unsigned int local_level;
157 
158 	/* walk down from processor node */
159 	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
160 		resource++;
161 
162 		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
163 						   split_levels, res, &ret,
164 						   level, type);
165 		/*
166 		 * we are looking for the max depth. Since its potentially
167 		 * possible for a given node to have resources with differing
168 		 * depths verify that the depth we have found is the largest.
169 		 */
170 		if (number_of_levels < local_level)
171 			number_of_levels = local_level;
172 	}
173 	if (number_of_levels > *starting_level)
174 		*starting_level = number_of_levels;
175 
176 	return ret;
177 }
178 
179 /**
180  * acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache
181  * levels and split cache levels (data/instruction).
182  * @table_hdr: Pointer to the head of the PPTT table
183  * @cpu_node: processor node we wish to count caches for
184  * @levels: Number of levels if success.
185  * @split_levels:	Number of split cache levels (data/instruction) if
186  *			success. Can by NULL.
187  *
188  * Given a processor node containing a processing unit, walk into it and count
189  * how many levels exist solely for it, and then walk up each level until we hit
190  * the root node (ignore the package level because it may be possible to have
191  * caches that exist across packages). Count the number of cache levels and
192  * split cache levels (data/instruction) that exist at each level on the way
193  * up.
194  */
195 static void acpi_count_levels(struct acpi_table_header *table_hdr,
196 			      struct acpi_pptt_processor *cpu_node,
197 			      unsigned int *levels, unsigned int *split_levels)
198 {
199 	do {
200 		acpi_find_cache_level(table_hdr, cpu_node, levels, split_levels, 0, 0);
201 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
202 	} while (cpu_node);
203 }
204 
205 /**
206  * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
207  * @table_hdr: Pointer to the head of the PPTT table
208  * @node: passed node is checked to see if its a leaf
209  *
210  * Determine if the *node parameter is a leaf node by iterating the
211  * PPTT table, looking for nodes which reference it.
212  *
213  * Return: 0 if we find a node referencing the passed node (or table error),
214  * or 1 if we don't.
215  */
216 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
217 			       struct acpi_pptt_processor *node)
218 {
219 	struct acpi_subtable_header *entry;
220 	unsigned long table_end;
221 	u32 node_entry;
222 	struct acpi_pptt_processor *cpu_node;
223 	u32 proc_sz;
224 
225 	if (table_hdr->revision > 1)
226 		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
227 
228 	table_end = (unsigned long)table_hdr + table_hdr->length;
229 	node_entry = ACPI_PTR_DIFF(node, table_hdr);
230 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
231 			     sizeof(struct acpi_table_pptt));
232 	proc_sz = sizeof(struct acpi_pptt_processor *);
233 
234 	while ((unsigned long)entry + proc_sz < table_end) {
235 		cpu_node = (struct acpi_pptt_processor *)entry;
236 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
237 		    cpu_node->parent == node_entry)
238 			return 0;
239 		if (entry->length == 0)
240 			return 0;
241 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
242 				     entry->length);
243 
244 	}
245 	return 1;
246 }
247 
248 /**
249  * acpi_find_processor_node() - Given a PPTT table find the requested processor
250  * @table_hdr:  Pointer to the head of the PPTT table
251  * @acpi_cpu_id: CPU we are searching for
252  *
253  * Find the subtable entry describing the provided processor.
254  * This is done by iterating the PPTT table looking for processor nodes
255  * which have an acpi_processor_id that matches the acpi_cpu_id parameter
256  * passed into the function. If we find a node that matches this criteria
257  * we verify that its a leaf node in the topology rather than depending
258  * on the valid flag, which doesn't need to be set for leaf nodes.
259  *
260  * Return: NULL, or the processors acpi_pptt_processor*
261  */
262 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
263 							    u32 acpi_cpu_id)
264 {
265 	struct acpi_subtable_header *entry;
266 	unsigned long table_end;
267 	struct acpi_pptt_processor *cpu_node;
268 	u32 proc_sz;
269 
270 	table_end = (unsigned long)table_hdr + table_hdr->length;
271 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
272 			     sizeof(struct acpi_table_pptt));
273 	proc_sz = sizeof(struct acpi_pptt_processor *);
274 
275 	/* find the processor structure associated with this cpuid */
276 	while ((unsigned long)entry + proc_sz < table_end) {
277 		cpu_node = (struct acpi_pptt_processor *)entry;
278 
279 		if (entry->length == 0) {
280 			pr_warn("Invalid zero length subtable\n");
281 			break;
282 		}
283 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
284 		    acpi_cpu_id == cpu_node->acpi_processor_id &&
285 		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
286 			return (struct acpi_pptt_processor *)entry;
287 		}
288 
289 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
290 				     entry->length);
291 	}
292 
293 	return NULL;
294 }
295 
296 static u8 acpi_cache_type(enum cache_type type)
297 {
298 	switch (type) {
299 	case CACHE_TYPE_DATA:
300 		pr_debug("Looking for data cache\n");
301 		return ACPI_PPTT_CACHE_TYPE_DATA;
302 	case CACHE_TYPE_INST:
303 		pr_debug("Looking for instruction cache\n");
304 		return ACPI_PPTT_CACHE_TYPE_INSTR;
305 	default:
306 	case CACHE_TYPE_UNIFIED:
307 		pr_debug("Looking for unified cache\n");
308 		/*
309 		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
310 		 * contains the bit pattern that will match both
311 		 * ACPI unified bit patterns because we use it later
312 		 * to match both cases.
313 		 */
314 		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
315 	}
316 }
317 
318 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
319 						    u32 acpi_cpu_id,
320 						    enum cache_type type,
321 						    unsigned int level,
322 						    struct acpi_pptt_processor **node)
323 {
324 	unsigned int total_levels = 0;
325 	struct acpi_pptt_cache *found = NULL;
326 	struct acpi_pptt_processor *cpu_node;
327 	u8 acpi_type = acpi_cache_type(type);
328 
329 	pr_debug("Looking for CPU %d's level %u cache type %d\n",
330 		 acpi_cpu_id, level, acpi_type);
331 
332 	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
333 
334 	while (cpu_node && !found) {
335 		found = acpi_find_cache_level(table_hdr, cpu_node,
336 					      &total_levels, NULL, level, acpi_type);
337 		*node = cpu_node;
338 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
339 	}
340 
341 	return found;
342 }
343 
344 /**
345  * update_cache_properties() - Update cacheinfo for the given processor
346  * @this_leaf: Kernel cache info structure being updated
347  * @found_cache: The PPTT node describing this cache instance
348  * @cpu_node: A unique reference to describe this cache instance
349  * @revision: The revision of the PPTT table
350  *
351  * The ACPI spec implies that the fields in the cache structures are used to
352  * extend and correct the information probed from the hardware. Lets only
353  * set fields that we determine are VALID.
354  *
355  * Return: nothing. Side effect of updating the global cacheinfo
356  */
357 static void update_cache_properties(struct cacheinfo *this_leaf,
358 				    struct acpi_pptt_cache *found_cache,
359 				    struct acpi_pptt_processor *cpu_node,
360 				    u8 revision)
361 {
362 	struct acpi_pptt_cache_v1* found_cache_v1;
363 
364 	this_leaf->fw_token = cpu_node;
365 	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
366 		this_leaf->size = found_cache->size;
367 	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
368 		this_leaf->coherency_line_size = found_cache->line_size;
369 	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
370 		this_leaf->number_of_sets = found_cache->number_of_sets;
371 	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
372 		this_leaf->ways_of_associativity = found_cache->associativity;
373 	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
374 		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
375 		case ACPI_PPTT_CACHE_POLICY_WT:
376 			this_leaf->attributes = CACHE_WRITE_THROUGH;
377 			break;
378 		case ACPI_PPTT_CACHE_POLICY_WB:
379 			this_leaf->attributes = CACHE_WRITE_BACK;
380 			break;
381 		}
382 	}
383 	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
384 		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
385 		case ACPI_PPTT_CACHE_READ_ALLOCATE:
386 			this_leaf->attributes |= CACHE_READ_ALLOCATE;
387 			break;
388 		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
389 			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
390 			break;
391 		case ACPI_PPTT_CACHE_RW_ALLOCATE:
392 		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
393 			this_leaf->attributes |=
394 				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
395 			break;
396 		}
397 	}
398 	/*
399 	 * If cache type is NOCACHE, then the cache hasn't been specified
400 	 * via other mechanisms.  Update the type if a cache type has been
401 	 * provided.
402 	 *
403 	 * Note, we assume such caches are unified based on conventional system
404 	 * design and known examples.  Significant work is required elsewhere to
405 	 * fully support data/instruction only type caches which are only
406 	 * specified in PPTT.
407 	 */
408 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
409 	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
410 		this_leaf->type = CACHE_TYPE_UNIFIED;
411 
412 	if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
413 		found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
414 	                                      found_cache, sizeof(struct acpi_pptt_cache));
415 		this_leaf->id = found_cache_v1->cache_id;
416 		this_leaf->attributes |= CACHE_ID;
417 	}
418 }
419 
420 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
421 				 unsigned int cpu)
422 {
423 	struct acpi_pptt_cache *found_cache;
424 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
425 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
426 	struct cacheinfo *this_leaf;
427 	unsigned int index = 0;
428 	struct acpi_pptt_processor *cpu_node = NULL;
429 
430 	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
431 		this_leaf = this_cpu_ci->info_list + index;
432 		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
433 						   this_leaf->type,
434 						   this_leaf->level,
435 						   &cpu_node);
436 		pr_debug("found = %p %p\n", found_cache, cpu_node);
437 		if (found_cache)
438 			update_cache_properties(this_leaf, found_cache,
439 						ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
440 						table->revision);
441 
442 		index++;
443 	}
444 }
445 
446 static bool flag_identical(struct acpi_table_header *table_hdr,
447 			   struct acpi_pptt_processor *cpu)
448 {
449 	struct acpi_pptt_processor *next;
450 
451 	/* heterogeneous machines must use PPTT revision > 1 */
452 	if (table_hdr->revision < 2)
453 		return false;
454 
455 	/* Locate the last node in the tree with IDENTICAL set */
456 	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
457 		next = fetch_pptt_node(table_hdr, cpu->parent);
458 		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
459 			return true;
460 	}
461 
462 	return false;
463 }
464 
465 /* Passing level values greater than this will result in search termination */
466 #define PPTT_ABORT_PACKAGE 0xFF
467 
468 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
469 							   struct acpi_pptt_processor *cpu,
470 							   int level, int flag)
471 {
472 	struct acpi_pptt_processor *prev_node;
473 
474 	while (cpu && level) {
475 		/* special case the identical flag to find last identical */
476 		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
477 			if (flag_identical(table_hdr, cpu))
478 				break;
479 		} else if (cpu->flags & flag)
480 			break;
481 		pr_debug("level %d\n", level);
482 		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
483 		if (prev_node == NULL)
484 			break;
485 		cpu = prev_node;
486 		level--;
487 	}
488 	return cpu;
489 }
490 
491 static void acpi_pptt_warn_missing(void)
492 {
493 	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
494 }
495 
496 /**
497  * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
498  * @table: Pointer to the head of the PPTT table
499  * @cpu: Kernel logical CPU number
500  * @level: A level that terminates the search
501  * @flag: A flag which terminates the search
502  *
503  * Get a unique value given a CPU, and a topology level, that can be
504  * matched to determine which cpus share common topological features
505  * at that level.
506  *
507  * Return: Unique value, or -ENOENT if unable to locate CPU
508  */
509 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
510 				     unsigned int cpu, int level, int flag)
511 {
512 	struct acpi_pptt_processor *cpu_node;
513 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
514 
515 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
516 	if (cpu_node) {
517 		cpu_node = acpi_find_processor_tag(table, cpu_node,
518 						   level, flag);
519 		/*
520 		 * As per specification if the processor structure represents
521 		 * an actual processor, then ACPI processor ID must be valid.
522 		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
523 		 * should be set if the UID is valid
524 		 */
525 		if (level == 0 ||
526 		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
527 			return cpu_node->acpi_processor_id;
528 		return ACPI_PTR_DIFF(cpu_node, table);
529 	}
530 	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
531 		    cpu, acpi_cpu_id);
532 	return -ENOENT;
533 }
534 
535 
536 static struct acpi_table_header *acpi_get_pptt(void)
537 {
538 	static struct acpi_table_header *pptt;
539 	acpi_status status;
540 
541 	/*
542 	 * PPTT will be used at runtime on every CPU hotplug in path, so we
543 	 * don't need to call acpi_put_table() to release the table mapping.
544 	 */
545 	if (!pptt) {
546 		status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
547 		if (ACPI_FAILURE(status))
548 			acpi_pptt_warn_missing();
549 	}
550 
551 	return pptt;
552 }
553 
554 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
555 {
556 	struct acpi_table_header *table;
557 	int retval;
558 
559 	table = acpi_get_pptt();
560 	if (!table)
561 		return -ENOENT;
562 
563 	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
564 	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
565 		 cpu, level, retval);
566 
567 	return retval;
568 }
569 
570 /**
571  * check_acpi_cpu_flag() - Determine if CPU node has a flag set
572  * @cpu: Kernel logical CPU number
573  * @rev: The minimum PPTT revision defining the flag
574  * @flag: The flag itself
575  *
576  * Check the node representing a CPU for a given flag.
577  *
578  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
579  *	   the table revision isn't new enough.
580  *	   1, any passed flag set
581  *	   0, flag unset
582  */
583 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
584 {
585 	struct acpi_table_header *table;
586 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
587 	struct acpi_pptt_processor *cpu_node = NULL;
588 	int ret = -ENOENT;
589 
590 	table = acpi_get_pptt();
591 	if (!table)
592 		return -ENOENT;
593 
594 	if (table->revision >= rev)
595 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
596 
597 	if (cpu_node)
598 		ret = (cpu_node->flags & flag) != 0;
599 
600 	return ret;
601 }
602 
603 /**
604  * acpi_get_cache_info() - Determine the number of cache levels and
605  * split cache levels (data/instruction) and for a PE.
606  * @cpu: Kernel logical CPU number
607  * @levels: Number of levels if success.
608  * @split_levels:	Number of levels being split (i.e. data/instruction)
609  *			if success. Can by NULL.
610  *
611  * Given a logical CPU number, returns the number of levels of cache represented
612  * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
613  * indicating we didn't find any cache levels.
614  *
615  * Return: -ENOENT if no PPTT table or no PPTT processor struct found.
616  *	   0 on success.
617  */
618 int acpi_get_cache_info(unsigned int cpu, unsigned int *levels,
619 			unsigned int *split_levels)
620 {
621 	struct acpi_pptt_processor *cpu_node;
622 	struct acpi_table_header *table;
623 	u32 acpi_cpu_id;
624 
625 	*levels = 0;
626 	if (split_levels)
627 		*split_levels = 0;
628 
629 	table = acpi_get_pptt();
630 	if (!table)
631 		return -ENOENT;
632 
633 	pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu);
634 
635 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
636 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
637 	if (!cpu_node)
638 		return -ENOENT;
639 
640 	acpi_count_levels(table, cpu_node, levels, split_levels);
641 
642 	pr_debug("Cache Setup: last_level=%d split_levels=%d\n",
643 		 *levels, split_levels ? *split_levels : -1);
644 
645 	return 0;
646 }
647 
648 /**
649  * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
650  * @cpu: Kernel logical CPU number
651  *
652  * Updates the global cache info provided by cpu_get_cacheinfo()
653  * when there are valid properties in the acpi_pptt_cache nodes. A
654  * successful parse may not result in any updates if none of the
655  * cache levels have any valid flags set.  Further, a unique value is
656  * associated with each known CPU cache entry. This unique value
657  * can be used to determine whether caches are shared between CPUs.
658  *
659  * Return: -ENOENT on failure to find table, or 0 on success
660  */
661 int cache_setup_acpi(unsigned int cpu)
662 {
663 	struct acpi_table_header *table;
664 
665 	table = acpi_get_pptt();
666 	if (!table)
667 		return -ENOENT;
668 
669 	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
670 
671 	cache_setup_acpi_cpu(table, cpu);
672 
673 	return 0;
674 }
675 
676 /**
677  * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
678  * @cpu: Kernel logical CPU number
679  *
680  * Return: 1, a thread
681  *         0, not a thread
682  *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
683  *         the table revision isn't new enough.
684  */
685 int acpi_pptt_cpu_is_thread(unsigned int cpu)
686 {
687 	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
688 }
689 
690 /**
691  * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
692  * @cpu: Kernel logical CPU number
693  * @level: The topological level for which we would like a unique ID
694  *
695  * Determine a topology unique ID for each thread/core/cluster/mc_grouping
696  * /socket/etc. This ID can then be used to group peers, which will have
697  * matching ids.
698  *
699  * The search terminates when either the requested level is found or
700  * we reach a root node. Levels beyond the termination point will return the
701  * same unique ID. The unique id for level 0 is the acpi processor id. All
702  * other levels beyond this use a generated value to uniquely identify
703  * a topological feature.
704  *
705  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
706  * Otherwise returns a value which represents a unique topological feature.
707  */
708 int find_acpi_cpu_topology(unsigned int cpu, int level)
709 {
710 	return find_acpi_cpu_topology_tag(cpu, level, 0);
711 }
712 
713 /**
714  * find_acpi_cpu_topology_package() - Determine a unique CPU package value
715  * @cpu: Kernel logical CPU number
716  *
717  * Determine a topology unique package ID for the given CPU.
718  * This ID can then be used to group peers, which will have matching ids.
719  *
720  * The search terminates when either a level is found with the PHYSICAL_PACKAGE
721  * flag set or we reach a root node.
722  *
723  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
724  * Otherwise returns a value which represents the package for this CPU.
725  */
726 int find_acpi_cpu_topology_package(unsigned int cpu)
727 {
728 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
729 					  ACPI_PPTT_PHYSICAL_PACKAGE);
730 }
731 
732 /**
733  * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
734  * @cpu: Kernel logical CPU number
735  *
736  * Determine a topology unique cluster ID for the given CPU/thread.
737  * This ID can then be used to group peers, which will have matching ids.
738  *
739  * The cluster, if present is the level of topology above CPUs. In a
740  * multi-thread CPU, it will be the level above the CPU, not the thread.
741  * It may not exist in single CPU systems. In simple multi-CPU systems,
742  * it may be equal to the package topology level.
743  *
744  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
745  * or there is no toplogy level above the CPU..
746  * Otherwise returns a value which represents the package for this CPU.
747  */
748 
749 int find_acpi_cpu_topology_cluster(unsigned int cpu)
750 {
751 	struct acpi_table_header *table;
752 	struct acpi_pptt_processor *cpu_node, *cluster_node;
753 	u32 acpi_cpu_id;
754 	int retval;
755 	int is_thread;
756 
757 	table = acpi_get_pptt();
758 	if (!table)
759 		return -ENOENT;
760 
761 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
762 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
763 	if (!cpu_node || !cpu_node->parent)
764 		return -ENOENT;
765 
766 	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
767 	cluster_node = fetch_pptt_node(table, cpu_node->parent);
768 	if (!cluster_node)
769 		return -ENOENT;
770 
771 	if (is_thread) {
772 		if (!cluster_node->parent)
773 			return -ENOENT;
774 
775 		cluster_node = fetch_pptt_node(table, cluster_node->parent);
776 		if (!cluster_node)
777 			return -ENOENT;
778 	}
779 	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
780 		retval = cluster_node->acpi_processor_id;
781 	else
782 		retval = ACPI_PTR_DIFF(cluster_node, table);
783 
784 	return retval;
785 }
786 
787 /**
788  * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
789  * @cpu: Kernel logical CPU number
790  *
791  * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
792  * implementation should have matching tags.
793  *
794  * The returned tag can be used to group peers with identical implementation.
795  *
796  * The search terminates when a level is found with the identical implementation
797  * flag set or we reach a root node.
798  *
799  * Due to limitations in the PPTT data structure, there may be rare situations
800  * where two cores in a heterogeneous machine may be identical, but won't have
801  * the same tag.
802  *
803  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
804  * Otherwise returns a value which represents a group of identical cores
805  * similar to this CPU.
806  */
807 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
808 {
809 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
810 					  ACPI_PPTT_ACPI_IDENTICAL);
811 }
812