xref: /openbmc/linux/drivers/acpi/osl.c (revision c0c45238fcf44b05c86f2f7d1dda136df7a83ff9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33 
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37 
38 #include "acpica/accommon.h"
39 #include "acpica/acnamesp.h"
40 #include "internal.h"
41 
42 /* Definitions for ACPI_DEBUG_PRINT() */
43 #define _COMPONENT		ACPI_OS_SERVICES
44 ACPI_MODULE_NAME("osl");
45 
46 struct acpi_os_dpc {
47 	acpi_osd_exec_callback function;
48 	void *context;
49 	struct work_struct work;
50 };
51 
52 #ifdef ENABLE_DEBUGGER
53 #include <linux/kdb.h>
54 
55 /* stuff for debugger support */
56 int acpi_in_debugger;
57 EXPORT_SYMBOL(acpi_in_debugger);
58 #endif				/*ENABLE_DEBUGGER */
59 
60 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
61 				      u32 pm1b_ctrl);
62 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
63 				      u32 val_b);
64 
65 static acpi_osd_handler acpi_irq_handler;
66 static void *acpi_irq_context;
67 static struct workqueue_struct *kacpid_wq;
68 static struct workqueue_struct *kacpi_notify_wq;
69 static struct workqueue_struct *kacpi_hotplug_wq;
70 static bool acpi_os_initialized;
71 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
72 bool acpi_permanent_mmap = false;
73 
74 /*
75  * This list of permanent mappings is for memory that may be accessed from
76  * interrupt context, where we can't do the ioremap().
77  */
78 struct acpi_ioremap {
79 	struct list_head list;
80 	void __iomem *virt;
81 	acpi_physical_address phys;
82 	acpi_size size;
83 	union {
84 		unsigned long refcount;
85 		struct rcu_work rwork;
86 	} track;
87 };
88 
89 static LIST_HEAD(acpi_ioremaps);
90 static DEFINE_MUTEX(acpi_ioremap_lock);
91 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
92 
93 static void __init acpi_request_region (struct acpi_generic_address *gas,
94 	unsigned int length, char *desc)
95 {
96 	u64 addr;
97 
98 	/* Handle possible alignment issues */
99 	memcpy(&addr, &gas->address, sizeof(addr));
100 	if (!addr || !length)
101 		return;
102 
103 	/* Resources are never freed */
104 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
105 		request_region(addr, length, desc);
106 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 		request_mem_region(addr, length, desc);
108 }
109 
110 static int __init acpi_reserve_resources(void)
111 {
112 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
113 		"ACPI PM1a_EVT_BLK");
114 
115 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
116 		"ACPI PM1b_EVT_BLK");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
119 		"ACPI PM1a_CNT_BLK");
120 
121 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
122 		"ACPI PM1b_CNT_BLK");
123 
124 	if (acpi_gbl_FADT.pm_timer_length == 4)
125 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
126 
127 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
128 		"ACPI PM2_CNT_BLK");
129 
130 	/* Length of GPE blocks must be a non-negative multiple of 2 */
131 
132 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
133 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
134 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
135 
136 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
137 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
138 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
139 
140 	return 0;
141 }
142 fs_initcall_sync(acpi_reserve_resources);
143 
144 void acpi_os_printf(const char *fmt, ...)
145 {
146 	va_list args;
147 	va_start(args, fmt);
148 	acpi_os_vprintf(fmt, args);
149 	va_end(args);
150 }
151 EXPORT_SYMBOL(acpi_os_printf);
152 
153 void acpi_os_vprintf(const char *fmt, va_list args)
154 {
155 	static char buffer[512];
156 
157 	vsprintf(buffer, fmt, args);
158 
159 #ifdef ENABLE_DEBUGGER
160 	if (acpi_in_debugger) {
161 		kdb_printf("%s", buffer);
162 	} else {
163 		if (printk_get_level(buffer))
164 			printk("%s", buffer);
165 		else
166 			printk(KERN_CONT "%s", buffer);
167 	}
168 #else
169 	if (acpi_debugger_write_log(buffer) < 0) {
170 		if (printk_get_level(buffer))
171 			printk("%s", buffer);
172 		else
173 			printk(KERN_CONT "%s", buffer);
174 	}
175 #endif
176 }
177 
178 #ifdef CONFIG_KEXEC
179 static unsigned long acpi_rsdp;
180 static int __init setup_acpi_rsdp(char *arg)
181 {
182 	return kstrtoul(arg, 16, &acpi_rsdp);
183 }
184 early_param("acpi_rsdp", setup_acpi_rsdp);
185 #endif
186 
187 acpi_physical_address __init acpi_os_get_root_pointer(void)
188 {
189 	acpi_physical_address pa;
190 
191 #ifdef CONFIG_KEXEC
192 	/*
193 	 * We may have been provided with an RSDP on the command line,
194 	 * but if a malicious user has done so they may be pointing us
195 	 * at modified ACPI tables that could alter kernel behaviour -
196 	 * so, we check the lockdown status before making use of
197 	 * it. If we trust it then also stash it in an architecture
198 	 * specific location (if appropriate) so it can be carried
199 	 * over further kexec()s.
200 	 */
201 	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
202 		acpi_arch_set_root_pointer(acpi_rsdp);
203 		return acpi_rsdp;
204 	}
205 #endif
206 	pa = acpi_arch_get_root_pointer();
207 	if (pa)
208 		return pa;
209 
210 	if (efi_enabled(EFI_CONFIG_TABLES)) {
211 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
212 			return efi.acpi20;
213 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
214 			return efi.acpi;
215 		pr_err("System description tables not found\n");
216 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
217 		acpi_find_root_pointer(&pa);
218 	}
219 
220 	return pa;
221 }
222 
223 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
224 static struct acpi_ioremap *
225 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
226 {
227 	struct acpi_ioremap *map;
228 
229 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
230 		if (map->phys <= phys &&
231 		    phys + size <= map->phys + map->size)
232 			return map;
233 
234 	return NULL;
235 }
236 
237 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
238 static void __iomem *
239 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
240 {
241 	struct acpi_ioremap *map;
242 
243 	map = acpi_map_lookup(phys, size);
244 	if (map)
245 		return map->virt + (phys - map->phys);
246 
247 	return NULL;
248 }
249 
250 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
251 {
252 	struct acpi_ioremap *map;
253 	void __iomem *virt = NULL;
254 
255 	mutex_lock(&acpi_ioremap_lock);
256 	map = acpi_map_lookup(phys, size);
257 	if (map) {
258 		virt = map->virt + (phys - map->phys);
259 		map->track.refcount++;
260 	}
261 	mutex_unlock(&acpi_ioremap_lock);
262 	return virt;
263 }
264 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
265 
266 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
267 static struct acpi_ioremap *
268 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
269 {
270 	struct acpi_ioremap *map;
271 
272 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
273 		if (map->virt <= virt &&
274 		    virt + size <= map->virt + map->size)
275 			return map;
276 
277 	return NULL;
278 }
279 
280 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
281 /* ioremap will take care of cache attributes */
282 #define should_use_kmap(pfn)   0
283 #else
284 #define should_use_kmap(pfn)   page_is_ram(pfn)
285 #endif
286 
287 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
288 {
289 	unsigned long pfn;
290 
291 	pfn = pg_off >> PAGE_SHIFT;
292 	if (should_use_kmap(pfn)) {
293 		if (pg_sz > PAGE_SIZE)
294 			return NULL;
295 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
296 	} else
297 		return acpi_os_ioremap(pg_off, pg_sz);
298 }
299 
300 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
301 {
302 	unsigned long pfn;
303 
304 	pfn = pg_off >> PAGE_SHIFT;
305 	if (should_use_kmap(pfn))
306 		kunmap(pfn_to_page(pfn));
307 	else
308 		iounmap(vaddr);
309 }
310 
311 /**
312  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
313  * @phys: Start of the physical address range to map.
314  * @size: Size of the physical address range to map.
315  *
316  * Look up the given physical address range in the list of existing ACPI memory
317  * mappings.  If found, get a reference to it and return a pointer to it (its
318  * virtual address).  If not found, map it, add it to that list and return a
319  * pointer to it.
320  *
321  * During early init (when acpi_permanent_mmap has not been set yet) this
322  * routine simply calls __acpi_map_table() to get the job done.
323  */
324 void __iomem __ref
325 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
326 {
327 	struct acpi_ioremap *map;
328 	void __iomem *virt;
329 	acpi_physical_address pg_off;
330 	acpi_size pg_sz;
331 
332 	if (phys > ULONG_MAX) {
333 		pr_err("Cannot map memory that high: 0x%llx\n", phys);
334 		return NULL;
335 	}
336 
337 	if (!acpi_permanent_mmap)
338 		return __acpi_map_table((unsigned long)phys, size);
339 
340 	mutex_lock(&acpi_ioremap_lock);
341 	/* Check if there's a suitable mapping already. */
342 	map = acpi_map_lookup(phys, size);
343 	if (map) {
344 		map->track.refcount++;
345 		goto out;
346 	}
347 
348 	map = kzalloc(sizeof(*map), GFP_KERNEL);
349 	if (!map) {
350 		mutex_unlock(&acpi_ioremap_lock);
351 		return NULL;
352 	}
353 
354 	pg_off = round_down(phys, PAGE_SIZE);
355 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
356 	virt = acpi_map(phys, size);
357 	if (!virt) {
358 		mutex_unlock(&acpi_ioremap_lock);
359 		kfree(map);
360 		return NULL;
361 	}
362 
363 	INIT_LIST_HEAD(&map->list);
364 	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
365 	map->phys = pg_off;
366 	map->size = pg_sz;
367 	map->track.refcount = 1;
368 
369 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
370 
371 out:
372 	mutex_unlock(&acpi_ioremap_lock);
373 	return map->virt + (phys - map->phys);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
376 
377 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
378 {
379 	return (void *)acpi_os_map_iomem(phys, size);
380 }
381 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
382 
383 static void acpi_os_map_remove(struct work_struct *work)
384 {
385 	struct acpi_ioremap *map = container_of(to_rcu_work(work),
386 						struct acpi_ioremap,
387 						track.rwork);
388 
389 	acpi_unmap(map->phys, map->virt);
390 	kfree(map);
391 }
392 
393 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
394 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
395 {
396 	if (--map->track.refcount)
397 		return;
398 
399 	list_del_rcu(&map->list);
400 
401 	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
402 	queue_rcu_work(system_wq, &map->track.rwork);
403 }
404 
405 /**
406  * acpi_os_unmap_iomem - Drop a memory mapping reference.
407  * @virt: Start of the address range to drop a reference to.
408  * @size: Size of the address range to drop a reference to.
409  *
410  * Look up the given virtual address range in the list of existing ACPI memory
411  * mappings, drop a reference to it and if there are no more active references
412  * to it, queue it up for later removal.
413  *
414  * During early init (when acpi_permanent_mmap has not been set yet) this
415  * routine simply calls __acpi_unmap_table() to get the job done.  Since
416  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
417  * here.
418  */
419 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
420 {
421 	struct acpi_ioremap *map;
422 
423 	if (!acpi_permanent_mmap) {
424 		__acpi_unmap_table(virt, size);
425 		return;
426 	}
427 
428 	mutex_lock(&acpi_ioremap_lock);
429 
430 	map = acpi_map_lookup_virt(virt, size);
431 	if (!map) {
432 		mutex_unlock(&acpi_ioremap_lock);
433 		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
434 		return;
435 	}
436 	acpi_os_drop_map_ref(map);
437 
438 	mutex_unlock(&acpi_ioremap_lock);
439 }
440 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
441 
442 /**
443  * acpi_os_unmap_memory - Drop a memory mapping reference.
444  * @virt: Start of the address range to drop a reference to.
445  * @size: Size of the address range to drop a reference to.
446  */
447 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
448 {
449 	acpi_os_unmap_iomem((void __iomem *)virt, size);
450 }
451 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
452 
453 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
454 {
455 	u64 addr;
456 
457 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
458 		return NULL;
459 
460 	/* Handle possible alignment issues */
461 	memcpy(&addr, &gas->address, sizeof(addr));
462 	if (!addr || !gas->bit_width)
463 		return NULL;
464 
465 	return acpi_os_map_iomem(addr, gas->bit_width / 8);
466 }
467 EXPORT_SYMBOL(acpi_os_map_generic_address);
468 
469 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
470 {
471 	u64 addr;
472 	struct acpi_ioremap *map;
473 
474 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
475 		return;
476 
477 	/* Handle possible alignment issues */
478 	memcpy(&addr, &gas->address, sizeof(addr));
479 	if (!addr || !gas->bit_width)
480 		return;
481 
482 	mutex_lock(&acpi_ioremap_lock);
483 
484 	map = acpi_map_lookup(addr, gas->bit_width / 8);
485 	if (!map) {
486 		mutex_unlock(&acpi_ioremap_lock);
487 		return;
488 	}
489 	acpi_os_drop_map_ref(map);
490 
491 	mutex_unlock(&acpi_ioremap_lock);
492 }
493 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
494 
495 #ifdef ACPI_FUTURE_USAGE
496 acpi_status
497 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
498 {
499 	if (!phys || !virt)
500 		return AE_BAD_PARAMETER;
501 
502 	*phys = virt_to_phys(virt);
503 
504 	return AE_OK;
505 }
506 #endif
507 
508 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
509 static bool acpi_rev_override;
510 
511 int __init acpi_rev_override_setup(char *str)
512 {
513 	acpi_rev_override = true;
514 	return 1;
515 }
516 __setup("acpi_rev_override", acpi_rev_override_setup);
517 #else
518 #define acpi_rev_override	false
519 #endif
520 
521 #define ACPI_MAX_OVERRIDE_LEN 100
522 
523 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
524 
525 acpi_status
526 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
527 			    acpi_string *new_val)
528 {
529 	if (!init_val || !new_val)
530 		return AE_BAD_PARAMETER;
531 
532 	*new_val = NULL;
533 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
534 		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
535 		*new_val = acpi_os_name;
536 	}
537 
538 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
539 		pr_info("Overriding _REV return value to 5\n");
540 		*new_val = (char *)5;
541 	}
542 
543 	return AE_OK;
544 }
545 
546 static irqreturn_t acpi_irq(int irq, void *dev_id)
547 {
548 	u32 handled;
549 
550 	handled = (*acpi_irq_handler) (acpi_irq_context);
551 
552 	if (handled) {
553 		acpi_irq_handled++;
554 		return IRQ_HANDLED;
555 	} else {
556 		acpi_irq_not_handled++;
557 		return IRQ_NONE;
558 	}
559 }
560 
561 acpi_status
562 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
563 				  void *context)
564 {
565 	unsigned int irq;
566 
567 	acpi_irq_stats_init();
568 
569 	/*
570 	 * ACPI interrupts different from the SCI in our copy of the FADT are
571 	 * not supported.
572 	 */
573 	if (gsi != acpi_gbl_FADT.sci_interrupt)
574 		return AE_BAD_PARAMETER;
575 
576 	if (acpi_irq_handler)
577 		return AE_ALREADY_ACQUIRED;
578 
579 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
580 		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
581 		return AE_OK;
582 	}
583 
584 	acpi_irq_handler = handler;
585 	acpi_irq_context = context;
586 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
587 		pr_err("SCI (IRQ%d) allocation failed\n", irq);
588 		acpi_irq_handler = NULL;
589 		return AE_NOT_ACQUIRED;
590 	}
591 	acpi_sci_irq = irq;
592 
593 	return AE_OK;
594 }
595 
596 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
597 {
598 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
599 		return AE_BAD_PARAMETER;
600 
601 	free_irq(acpi_sci_irq, acpi_irq);
602 	acpi_irq_handler = NULL;
603 	acpi_sci_irq = INVALID_ACPI_IRQ;
604 
605 	return AE_OK;
606 }
607 
608 /*
609  * Running in interpreter thread context, safe to sleep
610  */
611 
612 void acpi_os_sleep(u64 ms)
613 {
614 	msleep(ms);
615 }
616 
617 void acpi_os_stall(u32 us)
618 {
619 	while (us) {
620 		u32 delay = 1000;
621 
622 		if (delay > us)
623 			delay = us;
624 		udelay(delay);
625 		touch_nmi_watchdog();
626 		us -= delay;
627 	}
628 }
629 
630 /*
631  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
632  * monotonically increasing timer with 100ns granularity. Do not use
633  * ktime_get() to implement this function because this function may get
634  * called after timekeeping has been suspended. Note: calling this function
635  * after timekeeping has been suspended may lead to unexpected results
636  * because when timekeeping is suspended the jiffies counter is not
637  * incremented. See also timekeeping_suspend().
638  */
639 u64 acpi_os_get_timer(void)
640 {
641 	return (get_jiffies_64() - INITIAL_JIFFIES) *
642 		(ACPI_100NSEC_PER_SEC / HZ);
643 }
644 
645 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
646 {
647 	u32 dummy;
648 
649 	if (value)
650 		*value = 0;
651 	else
652 		value = &dummy;
653 
654 	if (width <= 8) {
655 		*value = inb(port);
656 	} else if (width <= 16) {
657 		*value = inw(port);
658 	} else if (width <= 32) {
659 		*value = inl(port);
660 	} else {
661 		pr_debug("%s: Access width %d not supported\n", __func__, width);
662 		return AE_BAD_PARAMETER;
663 	}
664 
665 	return AE_OK;
666 }
667 
668 EXPORT_SYMBOL(acpi_os_read_port);
669 
670 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
671 {
672 	if (width <= 8) {
673 		outb(value, port);
674 	} else if (width <= 16) {
675 		outw(value, port);
676 	} else if (width <= 32) {
677 		outl(value, port);
678 	} else {
679 		pr_debug("%s: Access width %d not supported\n", __func__, width);
680 		return AE_BAD_PARAMETER;
681 	}
682 
683 	return AE_OK;
684 }
685 
686 EXPORT_SYMBOL(acpi_os_write_port);
687 
688 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
689 {
690 
691 	switch (width) {
692 	case 8:
693 		*(u8 *) value = readb(virt_addr);
694 		break;
695 	case 16:
696 		*(u16 *) value = readw(virt_addr);
697 		break;
698 	case 32:
699 		*(u32 *) value = readl(virt_addr);
700 		break;
701 	case 64:
702 		*(u64 *) value = readq(virt_addr);
703 		break;
704 	default:
705 		return -EINVAL;
706 	}
707 
708 	return 0;
709 }
710 
711 acpi_status
712 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
713 {
714 	void __iomem *virt_addr;
715 	unsigned int size = width / 8;
716 	bool unmap = false;
717 	u64 dummy;
718 	int error;
719 
720 	rcu_read_lock();
721 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
722 	if (!virt_addr) {
723 		rcu_read_unlock();
724 		virt_addr = acpi_os_ioremap(phys_addr, size);
725 		if (!virt_addr)
726 			return AE_BAD_ADDRESS;
727 		unmap = true;
728 	}
729 
730 	if (!value)
731 		value = &dummy;
732 
733 	error = acpi_os_read_iomem(virt_addr, value, width);
734 	BUG_ON(error);
735 
736 	if (unmap)
737 		iounmap(virt_addr);
738 	else
739 		rcu_read_unlock();
740 
741 	return AE_OK;
742 }
743 
744 acpi_status
745 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
746 {
747 	void __iomem *virt_addr;
748 	unsigned int size = width / 8;
749 	bool unmap = false;
750 
751 	rcu_read_lock();
752 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
753 	if (!virt_addr) {
754 		rcu_read_unlock();
755 		virt_addr = acpi_os_ioremap(phys_addr, size);
756 		if (!virt_addr)
757 			return AE_BAD_ADDRESS;
758 		unmap = true;
759 	}
760 
761 	switch (width) {
762 	case 8:
763 		writeb(value, virt_addr);
764 		break;
765 	case 16:
766 		writew(value, virt_addr);
767 		break;
768 	case 32:
769 		writel(value, virt_addr);
770 		break;
771 	case 64:
772 		writeq(value, virt_addr);
773 		break;
774 	default:
775 		BUG();
776 	}
777 
778 	if (unmap)
779 		iounmap(virt_addr);
780 	else
781 		rcu_read_unlock();
782 
783 	return AE_OK;
784 }
785 
786 #ifdef CONFIG_PCI
787 acpi_status
788 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
789 			       u64 *value, u32 width)
790 {
791 	int result, size;
792 	u32 value32;
793 
794 	if (!value)
795 		return AE_BAD_PARAMETER;
796 
797 	switch (width) {
798 	case 8:
799 		size = 1;
800 		break;
801 	case 16:
802 		size = 2;
803 		break;
804 	case 32:
805 		size = 4;
806 		break;
807 	default:
808 		return AE_ERROR;
809 	}
810 
811 	result = raw_pci_read(pci_id->segment, pci_id->bus,
812 				PCI_DEVFN(pci_id->device, pci_id->function),
813 				reg, size, &value32);
814 	*value = value32;
815 
816 	return (result ? AE_ERROR : AE_OK);
817 }
818 
819 acpi_status
820 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
821 				u64 value, u32 width)
822 {
823 	int result, size;
824 
825 	switch (width) {
826 	case 8:
827 		size = 1;
828 		break;
829 	case 16:
830 		size = 2;
831 		break;
832 	case 32:
833 		size = 4;
834 		break;
835 	default:
836 		return AE_ERROR;
837 	}
838 
839 	result = raw_pci_write(pci_id->segment, pci_id->bus,
840 				PCI_DEVFN(pci_id->device, pci_id->function),
841 				reg, size, value);
842 
843 	return (result ? AE_ERROR : AE_OK);
844 }
845 #endif
846 
847 static void acpi_os_execute_deferred(struct work_struct *work)
848 {
849 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
850 
851 	dpc->function(dpc->context);
852 	kfree(dpc);
853 }
854 
855 #ifdef CONFIG_ACPI_DEBUGGER
856 static struct acpi_debugger acpi_debugger;
857 static bool acpi_debugger_initialized;
858 
859 int acpi_register_debugger(struct module *owner,
860 			   const struct acpi_debugger_ops *ops)
861 {
862 	int ret = 0;
863 
864 	mutex_lock(&acpi_debugger.lock);
865 	if (acpi_debugger.ops) {
866 		ret = -EBUSY;
867 		goto err_lock;
868 	}
869 
870 	acpi_debugger.owner = owner;
871 	acpi_debugger.ops = ops;
872 
873 err_lock:
874 	mutex_unlock(&acpi_debugger.lock);
875 	return ret;
876 }
877 EXPORT_SYMBOL(acpi_register_debugger);
878 
879 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
880 {
881 	mutex_lock(&acpi_debugger.lock);
882 	if (ops == acpi_debugger.ops) {
883 		acpi_debugger.ops = NULL;
884 		acpi_debugger.owner = NULL;
885 	}
886 	mutex_unlock(&acpi_debugger.lock);
887 }
888 EXPORT_SYMBOL(acpi_unregister_debugger);
889 
890 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
891 {
892 	int ret;
893 	int (*func)(acpi_osd_exec_callback, void *);
894 	struct module *owner;
895 
896 	if (!acpi_debugger_initialized)
897 		return -ENODEV;
898 	mutex_lock(&acpi_debugger.lock);
899 	if (!acpi_debugger.ops) {
900 		ret = -ENODEV;
901 		goto err_lock;
902 	}
903 	if (!try_module_get(acpi_debugger.owner)) {
904 		ret = -ENODEV;
905 		goto err_lock;
906 	}
907 	func = acpi_debugger.ops->create_thread;
908 	owner = acpi_debugger.owner;
909 	mutex_unlock(&acpi_debugger.lock);
910 
911 	ret = func(function, context);
912 
913 	mutex_lock(&acpi_debugger.lock);
914 	module_put(owner);
915 err_lock:
916 	mutex_unlock(&acpi_debugger.lock);
917 	return ret;
918 }
919 
920 ssize_t acpi_debugger_write_log(const char *msg)
921 {
922 	ssize_t ret;
923 	ssize_t (*func)(const char *);
924 	struct module *owner;
925 
926 	if (!acpi_debugger_initialized)
927 		return -ENODEV;
928 	mutex_lock(&acpi_debugger.lock);
929 	if (!acpi_debugger.ops) {
930 		ret = -ENODEV;
931 		goto err_lock;
932 	}
933 	if (!try_module_get(acpi_debugger.owner)) {
934 		ret = -ENODEV;
935 		goto err_lock;
936 	}
937 	func = acpi_debugger.ops->write_log;
938 	owner = acpi_debugger.owner;
939 	mutex_unlock(&acpi_debugger.lock);
940 
941 	ret = func(msg);
942 
943 	mutex_lock(&acpi_debugger.lock);
944 	module_put(owner);
945 err_lock:
946 	mutex_unlock(&acpi_debugger.lock);
947 	return ret;
948 }
949 
950 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
951 {
952 	ssize_t ret;
953 	ssize_t (*func)(char *, size_t);
954 	struct module *owner;
955 
956 	if (!acpi_debugger_initialized)
957 		return -ENODEV;
958 	mutex_lock(&acpi_debugger.lock);
959 	if (!acpi_debugger.ops) {
960 		ret = -ENODEV;
961 		goto err_lock;
962 	}
963 	if (!try_module_get(acpi_debugger.owner)) {
964 		ret = -ENODEV;
965 		goto err_lock;
966 	}
967 	func = acpi_debugger.ops->read_cmd;
968 	owner = acpi_debugger.owner;
969 	mutex_unlock(&acpi_debugger.lock);
970 
971 	ret = func(buffer, buffer_length);
972 
973 	mutex_lock(&acpi_debugger.lock);
974 	module_put(owner);
975 err_lock:
976 	mutex_unlock(&acpi_debugger.lock);
977 	return ret;
978 }
979 
980 int acpi_debugger_wait_command_ready(void)
981 {
982 	int ret;
983 	int (*func)(bool, char *, size_t);
984 	struct module *owner;
985 
986 	if (!acpi_debugger_initialized)
987 		return -ENODEV;
988 	mutex_lock(&acpi_debugger.lock);
989 	if (!acpi_debugger.ops) {
990 		ret = -ENODEV;
991 		goto err_lock;
992 	}
993 	if (!try_module_get(acpi_debugger.owner)) {
994 		ret = -ENODEV;
995 		goto err_lock;
996 	}
997 	func = acpi_debugger.ops->wait_command_ready;
998 	owner = acpi_debugger.owner;
999 	mutex_unlock(&acpi_debugger.lock);
1000 
1001 	ret = func(acpi_gbl_method_executing,
1002 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1003 
1004 	mutex_lock(&acpi_debugger.lock);
1005 	module_put(owner);
1006 err_lock:
1007 	mutex_unlock(&acpi_debugger.lock);
1008 	return ret;
1009 }
1010 
1011 int acpi_debugger_notify_command_complete(void)
1012 {
1013 	int ret;
1014 	int (*func)(void);
1015 	struct module *owner;
1016 
1017 	if (!acpi_debugger_initialized)
1018 		return -ENODEV;
1019 	mutex_lock(&acpi_debugger.lock);
1020 	if (!acpi_debugger.ops) {
1021 		ret = -ENODEV;
1022 		goto err_lock;
1023 	}
1024 	if (!try_module_get(acpi_debugger.owner)) {
1025 		ret = -ENODEV;
1026 		goto err_lock;
1027 	}
1028 	func = acpi_debugger.ops->notify_command_complete;
1029 	owner = acpi_debugger.owner;
1030 	mutex_unlock(&acpi_debugger.lock);
1031 
1032 	ret = func();
1033 
1034 	mutex_lock(&acpi_debugger.lock);
1035 	module_put(owner);
1036 err_lock:
1037 	mutex_unlock(&acpi_debugger.lock);
1038 	return ret;
1039 }
1040 
1041 int __init acpi_debugger_init(void)
1042 {
1043 	mutex_init(&acpi_debugger.lock);
1044 	acpi_debugger_initialized = true;
1045 	return 0;
1046 }
1047 #endif
1048 
1049 /*******************************************************************************
1050  *
1051  * FUNCTION:    acpi_os_execute
1052  *
1053  * PARAMETERS:  Type               - Type of the callback
1054  *              Function           - Function to be executed
1055  *              Context            - Function parameters
1056  *
1057  * RETURN:      Status
1058  *
1059  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1060  *              immediately executes function on a separate thread.
1061  *
1062  ******************************************************************************/
1063 
1064 acpi_status acpi_os_execute(acpi_execute_type type,
1065 			    acpi_osd_exec_callback function, void *context)
1066 {
1067 	acpi_status status = AE_OK;
1068 	struct acpi_os_dpc *dpc;
1069 	struct workqueue_struct *queue;
1070 	int ret;
1071 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1072 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1073 			  function, context));
1074 
1075 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1076 		ret = acpi_debugger_create_thread(function, context);
1077 		if (ret) {
1078 			pr_err("Kernel thread creation failed\n");
1079 			status = AE_ERROR;
1080 		}
1081 		goto out_thread;
1082 	}
1083 
1084 	/*
1085 	 * Allocate/initialize DPC structure.  Note that this memory will be
1086 	 * freed by the callee.  The kernel handles the work_struct list  in a
1087 	 * way that allows us to also free its memory inside the callee.
1088 	 * Because we may want to schedule several tasks with different
1089 	 * parameters we can't use the approach some kernel code uses of
1090 	 * having a static work_struct.
1091 	 */
1092 
1093 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1094 	if (!dpc)
1095 		return AE_NO_MEMORY;
1096 
1097 	dpc->function = function;
1098 	dpc->context = context;
1099 
1100 	/*
1101 	 * To prevent lockdep from complaining unnecessarily, make sure that
1102 	 * there is a different static lockdep key for each workqueue by using
1103 	 * INIT_WORK() for each of them separately.
1104 	 */
1105 	if (type == OSL_NOTIFY_HANDLER) {
1106 		queue = kacpi_notify_wq;
1107 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108 	} else if (type == OSL_GPE_HANDLER) {
1109 		queue = kacpid_wq;
1110 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1111 	} else {
1112 		pr_err("Unsupported os_execute type %d.\n", type);
1113 		status = AE_ERROR;
1114 	}
1115 
1116 	if (ACPI_FAILURE(status))
1117 		goto err_workqueue;
1118 
1119 	/*
1120 	 * On some machines, a software-initiated SMI causes corruption unless
1121 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1122 	 * typically it's done in GPE-related methods that are run via
1123 	 * workqueues, so we can avoid the known corruption cases by always
1124 	 * queueing on CPU 0.
1125 	 */
1126 	ret = queue_work_on(0, queue, &dpc->work);
1127 	if (!ret) {
1128 		pr_err("Unable to queue work\n");
1129 		status = AE_ERROR;
1130 	}
1131 err_workqueue:
1132 	if (ACPI_FAILURE(status))
1133 		kfree(dpc);
1134 out_thread:
1135 	return status;
1136 }
1137 EXPORT_SYMBOL(acpi_os_execute);
1138 
1139 void acpi_os_wait_events_complete(void)
1140 {
1141 	/*
1142 	 * Make sure the GPE handler or the fixed event handler is not used
1143 	 * on another CPU after removal.
1144 	 */
1145 	if (acpi_sci_irq_valid())
1146 		synchronize_hardirq(acpi_sci_irq);
1147 	flush_workqueue(kacpid_wq);
1148 	flush_workqueue(kacpi_notify_wq);
1149 }
1150 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1151 
1152 struct acpi_hp_work {
1153 	struct work_struct work;
1154 	struct acpi_device *adev;
1155 	u32 src;
1156 };
1157 
1158 static void acpi_hotplug_work_fn(struct work_struct *work)
1159 {
1160 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1161 
1162 	acpi_os_wait_events_complete();
1163 	acpi_device_hotplug(hpw->adev, hpw->src);
1164 	kfree(hpw);
1165 }
1166 
1167 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1168 {
1169 	struct acpi_hp_work *hpw;
1170 
1171 	acpi_handle_debug(adev->handle,
1172 			  "Scheduling hotplug event %u for deferred handling\n",
1173 			   src);
1174 
1175 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1176 	if (!hpw)
1177 		return AE_NO_MEMORY;
1178 
1179 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1180 	hpw->adev = adev;
1181 	hpw->src = src;
1182 	/*
1183 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1184 	 * the hotplug code may call driver .remove() functions, which may
1185 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1186 	 * these workqueues.
1187 	 */
1188 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1189 		kfree(hpw);
1190 		return AE_ERROR;
1191 	}
1192 	return AE_OK;
1193 }
1194 
1195 bool acpi_queue_hotplug_work(struct work_struct *work)
1196 {
1197 	return queue_work(kacpi_hotplug_wq, work);
1198 }
1199 
1200 acpi_status
1201 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1202 {
1203 	struct semaphore *sem = NULL;
1204 
1205 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1206 	if (!sem)
1207 		return AE_NO_MEMORY;
1208 
1209 	sema_init(sem, initial_units);
1210 
1211 	*handle = (acpi_handle *) sem;
1212 
1213 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1214 			  *handle, initial_units));
1215 
1216 	return AE_OK;
1217 }
1218 
1219 /*
1220  * TODO: A better way to delete semaphores?  Linux doesn't have a
1221  * 'delete_semaphore()' function -- may result in an invalid
1222  * pointer dereference for non-synchronized consumers.	Should
1223  * we at least check for blocked threads and signal/cancel them?
1224  */
1225 
1226 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1227 {
1228 	struct semaphore *sem = (struct semaphore *)handle;
1229 
1230 	if (!sem)
1231 		return AE_BAD_PARAMETER;
1232 
1233 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1234 
1235 	BUG_ON(!list_empty(&sem->wait_list));
1236 	kfree(sem);
1237 	sem = NULL;
1238 
1239 	return AE_OK;
1240 }
1241 
1242 /*
1243  * TODO: Support for units > 1?
1244  */
1245 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1246 {
1247 	acpi_status status = AE_OK;
1248 	struct semaphore *sem = (struct semaphore *)handle;
1249 	long jiffies;
1250 	int ret = 0;
1251 
1252 	if (!acpi_os_initialized)
1253 		return AE_OK;
1254 
1255 	if (!sem || (units < 1))
1256 		return AE_BAD_PARAMETER;
1257 
1258 	if (units > 1)
1259 		return AE_SUPPORT;
1260 
1261 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1262 			  handle, units, timeout));
1263 
1264 	if (timeout == ACPI_WAIT_FOREVER)
1265 		jiffies = MAX_SCHEDULE_TIMEOUT;
1266 	else
1267 		jiffies = msecs_to_jiffies(timeout);
1268 
1269 	ret = down_timeout(sem, jiffies);
1270 	if (ret)
1271 		status = AE_TIME;
1272 
1273 	if (ACPI_FAILURE(status)) {
1274 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1275 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1276 				  handle, units, timeout,
1277 				  acpi_format_exception(status)));
1278 	} else {
1279 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280 				  "Acquired semaphore[%p|%d|%d]", handle,
1281 				  units, timeout));
1282 	}
1283 
1284 	return status;
1285 }
1286 
1287 /*
1288  * TODO: Support for units > 1?
1289  */
1290 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1291 {
1292 	struct semaphore *sem = (struct semaphore *)handle;
1293 
1294 	if (!acpi_os_initialized)
1295 		return AE_OK;
1296 
1297 	if (!sem || (units < 1))
1298 		return AE_BAD_PARAMETER;
1299 
1300 	if (units > 1)
1301 		return AE_SUPPORT;
1302 
1303 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1304 			  units));
1305 
1306 	up(sem);
1307 
1308 	return AE_OK;
1309 }
1310 
1311 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1312 {
1313 #ifdef ENABLE_DEBUGGER
1314 	if (acpi_in_debugger) {
1315 		u32 chars;
1316 
1317 		kdb_read(buffer, buffer_length);
1318 
1319 		/* remove the CR kdb includes */
1320 		chars = strlen(buffer) - 1;
1321 		buffer[chars] = '\0';
1322 	}
1323 #else
1324 	int ret;
1325 
1326 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1327 	if (ret < 0)
1328 		return AE_ERROR;
1329 	if (bytes_read)
1330 		*bytes_read = ret;
1331 #endif
1332 
1333 	return AE_OK;
1334 }
1335 EXPORT_SYMBOL(acpi_os_get_line);
1336 
1337 acpi_status acpi_os_wait_command_ready(void)
1338 {
1339 	int ret;
1340 
1341 	ret = acpi_debugger_wait_command_ready();
1342 	if (ret < 0)
1343 		return AE_ERROR;
1344 	return AE_OK;
1345 }
1346 
1347 acpi_status acpi_os_notify_command_complete(void)
1348 {
1349 	int ret;
1350 
1351 	ret = acpi_debugger_notify_command_complete();
1352 	if (ret < 0)
1353 		return AE_ERROR;
1354 	return AE_OK;
1355 }
1356 
1357 acpi_status acpi_os_signal(u32 function, void *info)
1358 {
1359 	switch (function) {
1360 	case ACPI_SIGNAL_FATAL:
1361 		pr_err("Fatal opcode executed\n");
1362 		break;
1363 	case ACPI_SIGNAL_BREAKPOINT:
1364 		/*
1365 		 * AML Breakpoint
1366 		 * ACPI spec. says to treat it as a NOP unless
1367 		 * you are debugging.  So if/when we integrate
1368 		 * AML debugger into the kernel debugger its
1369 		 * hook will go here.  But until then it is
1370 		 * not useful to print anything on breakpoints.
1371 		 */
1372 		break;
1373 	default:
1374 		break;
1375 	}
1376 
1377 	return AE_OK;
1378 }
1379 
1380 static int __init acpi_os_name_setup(char *str)
1381 {
1382 	char *p = acpi_os_name;
1383 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1384 
1385 	if (!str || !*str)
1386 		return 0;
1387 
1388 	for (; count-- && *str; str++) {
1389 		if (isalnum(*str) || *str == ' ' || *str == ':')
1390 			*p++ = *str;
1391 		else if (*str == '\'' || *str == '"')
1392 			continue;
1393 		else
1394 			break;
1395 	}
1396 	*p = 0;
1397 
1398 	return 1;
1399 
1400 }
1401 
1402 __setup("acpi_os_name=", acpi_os_name_setup);
1403 
1404 /*
1405  * Disable the auto-serialization of named objects creation methods.
1406  *
1407  * This feature is enabled by default.  It marks the AML control methods
1408  * that contain the opcodes to create named objects as "Serialized".
1409  */
1410 static int __init acpi_no_auto_serialize_setup(char *str)
1411 {
1412 	acpi_gbl_auto_serialize_methods = FALSE;
1413 	pr_info("Auto-serialization disabled\n");
1414 
1415 	return 1;
1416 }
1417 
1418 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1419 
1420 /* Check of resource interference between native drivers and ACPI
1421  * OperationRegions (SystemIO and System Memory only).
1422  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1423  * in arbitrary AML code and can interfere with legacy drivers.
1424  * acpi_enforce_resources= can be set to:
1425  *
1426  *   - strict (default) (2)
1427  *     -> further driver trying to access the resources will not load
1428  *   - lax              (1)
1429  *     -> further driver trying to access the resources will load, but you
1430  *     get a system message that something might go wrong...
1431  *
1432  *   - no               (0)
1433  *     -> ACPI Operation Region resources will not be registered
1434  *
1435  */
1436 #define ENFORCE_RESOURCES_STRICT 2
1437 #define ENFORCE_RESOURCES_LAX    1
1438 #define ENFORCE_RESOURCES_NO     0
1439 
1440 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1441 
1442 static int __init acpi_enforce_resources_setup(char *str)
1443 {
1444 	if (str == NULL || *str == '\0')
1445 		return 0;
1446 
1447 	if (!strcmp("strict", str))
1448 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1449 	else if (!strcmp("lax", str))
1450 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1451 	else if (!strcmp("no", str))
1452 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1453 
1454 	return 1;
1455 }
1456 
1457 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1458 
1459 /* Check for resource conflicts between ACPI OperationRegions and native
1460  * drivers */
1461 int acpi_check_resource_conflict(const struct resource *res)
1462 {
1463 	acpi_adr_space_type space_id;
1464 
1465 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1466 		return 0;
1467 
1468 	if (res->flags & IORESOURCE_IO)
1469 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1470 	else if (res->flags & IORESOURCE_MEM)
1471 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1472 	else
1473 		return 0;
1474 
1475 	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1476 		return 0;
1477 
1478 	pr_info("Resource conflict; ACPI support missing from driver?\n");
1479 
1480 	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 		return -EBUSY;
1482 
1483 	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1484 		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1485 
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL(acpi_check_resource_conflict);
1489 
1490 int acpi_check_region(resource_size_t start, resource_size_t n,
1491 		      const char *name)
1492 {
1493 	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1494 
1495 	return acpi_check_resource_conflict(&res);
1496 }
1497 EXPORT_SYMBOL(acpi_check_region);
1498 
1499 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1500 					      void *_res, void **return_value)
1501 {
1502 	struct acpi_mem_space_context **mem_ctx;
1503 	union acpi_operand_object *handler_obj;
1504 	union acpi_operand_object *region_obj2;
1505 	union acpi_operand_object *region_obj;
1506 	struct resource *res = _res;
1507 	acpi_status status;
1508 
1509 	region_obj = acpi_ns_get_attached_object(handle);
1510 	if (!region_obj)
1511 		return AE_OK;
1512 
1513 	handler_obj = region_obj->region.handler;
1514 	if (!handler_obj)
1515 		return AE_OK;
1516 
1517 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1518 		return AE_OK;
1519 
1520 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1521 		return AE_OK;
1522 
1523 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1524 	if (!region_obj2)
1525 		return AE_OK;
1526 
1527 	mem_ctx = (void *)&region_obj2->extra.region_context;
1528 
1529 	if (!(mem_ctx[0]->address >= res->start &&
1530 	      mem_ctx[0]->address < res->end))
1531 		return AE_OK;
1532 
1533 	status = handler_obj->address_space.setup(region_obj,
1534 						  ACPI_REGION_DEACTIVATE,
1535 						  NULL, (void **)mem_ctx);
1536 	if (ACPI_SUCCESS(status))
1537 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1538 
1539 	return status;
1540 }
1541 
1542 /**
1543  * acpi_release_memory - Release any mappings done to a memory region
1544  * @handle: Handle to namespace node
1545  * @res: Memory resource
1546  * @level: A level that terminates the search
1547  *
1548  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1549  * overlap with @res and that have already been activated (mapped).
1550  *
1551  * This is a helper that allows drivers to place special requirements on memory
1552  * region that may overlap with operation regions, primarily allowing them to
1553  * safely map the region as non-cached memory.
1554  *
1555  * The unmapped Operation Regions will be automatically remapped next time they
1556  * are called, so the drivers do not need to do anything else.
1557  */
1558 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1559 				u32 level)
1560 {
1561 	acpi_status status;
1562 
1563 	if (!(res->flags & IORESOURCE_MEM))
1564 		return AE_TYPE;
1565 
1566 	status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567 				     acpi_deactivate_mem_region, NULL,
1568 				     res, NULL);
1569 	if (ACPI_FAILURE(status))
1570 		return status;
1571 
1572 	/*
1573 	 * Wait for all of the mappings queued up for removal by
1574 	 * acpi_deactivate_mem_region() to actually go away.
1575 	 */
1576 	synchronize_rcu();
1577 	rcu_barrier();
1578 	flush_scheduled_work();
1579 
1580 	return AE_OK;
1581 }
1582 EXPORT_SYMBOL_GPL(acpi_release_memory);
1583 
1584 /*
1585  * Let drivers know whether the resource checks are effective
1586  */
1587 int acpi_resources_are_enforced(void)
1588 {
1589 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1590 }
1591 EXPORT_SYMBOL(acpi_resources_are_enforced);
1592 
1593 /*
1594  * Deallocate the memory for a spinlock.
1595  */
1596 void acpi_os_delete_lock(acpi_spinlock handle)
1597 {
1598 	ACPI_FREE(handle);
1599 }
1600 
1601 /*
1602  * Acquire a spinlock.
1603  *
1604  * handle is a pointer to the spinlock_t.
1605  */
1606 
1607 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1608 	__acquires(lockp)
1609 {
1610 	acpi_cpu_flags flags;
1611 	spin_lock_irqsave(lockp, flags);
1612 	return flags;
1613 }
1614 
1615 /*
1616  * Release a spinlock. See above.
1617  */
1618 
1619 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1620 	__releases(lockp)
1621 {
1622 	spin_unlock_irqrestore(lockp, flags);
1623 }
1624 
1625 #ifndef ACPI_USE_LOCAL_CACHE
1626 
1627 /*******************************************************************************
1628  *
1629  * FUNCTION:    acpi_os_create_cache
1630  *
1631  * PARAMETERS:  name      - Ascii name for the cache
1632  *              size      - Size of each cached object
1633  *              depth     - Maximum depth of the cache (in objects) <ignored>
1634  *              cache     - Where the new cache object is returned
1635  *
1636  * RETURN:      status
1637  *
1638  * DESCRIPTION: Create a cache object
1639  *
1640  ******************************************************************************/
1641 
1642 acpi_status
1643 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1644 {
1645 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1646 	if (*cache == NULL)
1647 		return AE_ERROR;
1648 	else
1649 		return AE_OK;
1650 }
1651 
1652 /*******************************************************************************
1653  *
1654  * FUNCTION:    acpi_os_purge_cache
1655  *
1656  * PARAMETERS:  Cache           - Handle to cache object
1657  *
1658  * RETURN:      Status
1659  *
1660  * DESCRIPTION: Free all objects within the requested cache.
1661  *
1662  ******************************************************************************/
1663 
1664 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1665 {
1666 	kmem_cache_shrink(cache);
1667 	return (AE_OK);
1668 }
1669 
1670 /*******************************************************************************
1671  *
1672  * FUNCTION:    acpi_os_delete_cache
1673  *
1674  * PARAMETERS:  Cache           - Handle to cache object
1675  *
1676  * RETURN:      Status
1677  *
1678  * DESCRIPTION: Free all objects within the requested cache and delete the
1679  *              cache object.
1680  *
1681  ******************************************************************************/
1682 
1683 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1684 {
1685 	kmem_cache_destroy(cache);
1686 	return (AE_OK);
1687 }
1688 
1689 /*******************************************************************************
1690  *
1691  * FUNCTION:    acpi_os_release_object
1692  *
1693  * PARAMETERS:  Cache       - Handle to cache object
1694  *              Object      - The object to be released
1695  *
1696  * RETURN:      None
1697  *
1698  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1699  *              the object is deleted.
1700  *
1701  ******************************************************************************/
1702 
1703 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1704 {
1705 	kmem_cache_free(cache, object);
1706 	return (AE_OK);
1707 }
1708 #endif
1709 
1710 static int __init acpi_no_static_ssdt_setup(char *s)
1711 {
1712 	acpi_gbl_disable_ssdt_table_install = TRUE;
1713 	pr_info("Static SSDT installation disabled\n");
1714 
1715 	return 0;
1716 }
1717 
1718 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1719 
1720 static int __init acpi_disable_return_repair(char *s)
1721 {
1722 	pr_notice("Predefined validation mechanism disabled\n");
1723 	acpi_gbl_disable_auto_repair = TRUE;
1724 
1725 	return 1;
1726 }
1727 
1728 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1729 
1730 acpi_status __init acpi_os_initialize(void)
1731 {
1732 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1733 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1734 
1735 	acpi_gbl_xgpe0_block_logical_address =
1736 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1737 	acpi_gbl_xgpe1_block_logical_address =
1738 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1739 
1740 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1741 		/*
1742 		 * Use acpi_os_map_generic_address to pre-map the reset
1743 		 * register if it's in system memory.
1744 		 */
1745 		void *rv;
1746 
1747 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1748 		pr_debug("%s: Reset register mapping %s\n", __func__,
1749 			 rv ? "successful" : "failed");
1750 	}
1751 	acpi_os_initialized = true;
1752 
1753 	return AE_OK;
1754 }
1755 
1756 acpi_status __init acpi_os_initialize1(void)
1757 {
1758 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1759 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1760 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1761 	BUG_ON(!kacpid_wq);
1762 	BUG_ON(!kacpi_notify_wq);
1763 	BUG_ON(!kacpi_hotplug_wq);
1764 	acpi_osi_init();
1765 	return AE_OK;
1766 }
1767 
1768 acpi_status acpi_os_terminate(void)
1769 {
1770 	if (acpi_irq_handler) {
1771 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1772 						 acpi_irq_handler);
1773 	}
1774 
1775 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1776 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1777 	acpi_gbl_xgpe0_block_logical_address = 0UL;
1778 	acpi_gbl_xgpe1_block_logical_address = 0UL;
1779 
1780 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1781 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1782 
1783 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1784 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1785 
1786 	destroy_workqueue(kacpid_wq);
1787 	destroy_workqueue(kacpi_notify_wq);
1788 	destroy_workqueue(kacpi_hotplug_wq);
1789 
1790 	return AE_OK;
1791 }
1792 
1793 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1794 				  u32 pm1b_control)
1795 {
1796 	int rc = 0;
1797 	if (__acpi_os_prepare_sleep)
1798 		rc = __acpi_os_prepare_sleep(sleep_state,
1799 					     pm1a_control, pm1b_control);
1800 	if (rc < 0)
1801 		return AE_ERROR;
1802 	else if (rc > 0)
1803 		return AE_CTRL_TERMINATE;
1804 
1805 	return AE_OK;
1806 }
1807 
1808 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1809 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1810 {
1811 	__acpi_os_prepare_sleep = func;
1812 }
1813 
1814 #if (ACPI_REDUCED_HARDWARE)
1815 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1816 				  u32 val_b)
1817 {
1818 	int rc = 0;
1819 	if (__acpi_os_prepare_extended_sleep)
1820 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1821 					     val_a, val_b);
1822 	if (rc < 0)
1823 		return AE_ERROR;
1824 	else if (rc > 0)
1825 		return AE_CTRL_TERMINATE;
1826 
1827 	return AE_OK;
1828 }
1829 #else
1830 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1831 				  u32 val_b)
1832 {
1833 	return AE_OK;
1834 }
1835 #endif
1836 
1837 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1838 			       u32 val_a, u32 val_b))
1839 {
1840 	__acpi_os_prepare_extended_sleep = func;
1841 }
1842 
1843 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1844 				u32 reg_a_value, u32 reg_b_value)
1845 {
1846 	acpi_status status;
1847 
1848 	if (acpi_gbl_reduced_hardware)
1849 		status = acpi_os_prepare_extended_sleep(sleep_state,
1850 							reg_a_value,
1851 							reg_b_value);
1852 	else
1853 		status = acpi_os_prepare_sleep(sleep_state,
1854 					       reg_a_value, reg_b_value);
1855 	return status;
1856 }
1857