xref: /openbmc/linux/drivers/acpi/arm64/iort.c (revision 23cb0767f0544858169c02cec445d066d4e02e2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22 
23 #define IORT_TYPE_MASK(type)	(1 << (type))
24 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
25 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
26 				(1 << ACPI_IORT_NODE_SMMU_V3))
27 
28 struct iort_its_msi_chip {
29 	struct list_head	list;
30 	struct fwnode_handle	*fw_node;
31 	phys_addr_t		base_addr;
32 	u32			translation_id;
33 };
34 
35 struct iort_fwnode {
36 	struct list_head list;
37 	struct acpi_iort_node *iort_node;
38 	struct fwnode_handle *fwnode;
39 };
40 static LIST_HEAD(iort_fwnode_list);
41 static DEFINE_SPINLOCK(iort_fwnode_lock);
42 
43 /**
44  * iort_set_fwnode() - Create iort_fwnode and use it to register
45  *		       iommu data in the iort_fwnode_list
46  *
47  * @iort_node: IORT table node associated with the IOMMU
48  * @fwnode: fwnode associated with the IORT node
49  *
50  * Returns: 0 on success
51  *          <0 on failure
52  */
53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
54 				  struct fwnode_handle *fwnode)
55 {
56 	struct iort_fwnode *np;
57 
58 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
59 
60 	if (WARN_ON(!np))
61 		return -ENOMEM;
62 
63 	INIT_LIST_HEAD(&np->list);
64 	np->iort_node = iort_node;
65 	np->fwnode = fwnode;
66 
67 	spin_lock(&iort_fwnode_lock);
68 	list_add_tail(&np->list, &iort_fwnode_list);
69 	spin_unlock(&iort_fwnode_lock);
70 
71 	return 0;
72 }
73 
74 /**
75  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
76  *
77  * @node: IORT table node to be looked-up
78  *
79  * Returns: fwnode_handle pointer on success, NULL on failure
80  */
81 static inline struct fwnode_handle *iort_get_fwnode(
82 			struct acpi_iort_node *node)
83 {
84 	struct iort_fwnode *curr;
85 	struct fwnode_handle *fwnode = NULL;
86 
87 	spin_lock(&iort_fwnode_lock);
88 	list_for_each_entry(curr, &iort_fwnode_list, list) {
89 		if (curr->iort_node == node) {
90 			fwnode = curr->fwnode;
91 			break;
92 		}
93 	}
94 	spin_unlock(&iort_fwnode_lock);
95 
96 	return fwnode;
97 }
98 
99 /**
100  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
101  *
102  * @node: IORT table node associated with fwnode to delete
103  */
104 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
105 {
106 	struct iort_fwnode *curr, *tmp;
107 
108 	spin_lock(&iort_fwnode_lock);
109 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
110 		if (curr->iort_node == node) {
111 			list_del(&curr->list);
112 			kfree(curr);
113 			break;
114 		}
115 	}
116 	spin_unlock(&iort_fwnode_lock);
117 }
118 
119 /**
120  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
121  *
122  * @fwnode: fwnode associated with device to be looked-up
123  *
124  * Returns: iort_node pointer on success, NULL on failure
125  */
126 static inline struct acpi_iort_node *iort_get_iort_node(
127 			struct fwnode_handle *fwnode)
128 {
129 	struct iort_fwnode *curr;
130 	struct acpi_iort_node *iort_node = NULL;
131 
132 	spin_lock(&iort_fwnode_lock);
133 	list_for_each_entry(curr, &iort_fwnode_list, list) {
134 		if (curr->fwnode == fwnode) {
135 			iort_node = curr->iort_node;
136 			break;
137 		}
138 	}
139 	spin_unlock(&iort_fwnode_lock);
140 
141 	return iort_node;
142 }
143 
144 typedef acpi_status (*iort_find_node_callback)
145 	(struct acpi_iort_node *node, void *context);
146 
147 /* Root pointer to the mapped IORT table */
148 static struct acpi_table_header *iort_table;
149 
150 static LIST_HEAD(iort_msi_chip_list);
151 static DEFINE_SPINLOCK(iort_msi_chip_lock);
152 
153 /**
154  * iort_register_domain_token() - register domain token along with related
155  * ITS ID and base address to the list from where we can get it back later on.
156  * @trans_id: ITS ID.
157  * @base: ITS base address.
158  * @fw_node: Domain token.
159  *
160  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
161  */
162 int iort_register_domain_token(int trans_id, phys_addr_t base,
163 			       struct fwnode_handle *fw_node)
164 {
165 	struct iort_its_msi_chip *its_msi_chip;
166 
167 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
168 	if (!its_msi_chip)
169 		return -ENOMEM;
170 
171 	its_msi_chip->fw_node = fw_node;
172 	its_msi_chip->translation_id = trans_id;
173 	its_msi_chip->base_addr = base;
174 
175 	spin_lock(&iort_msi_chip_lock);
176 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
177 	spin_unlock(&iort_msi_chip_lock);
178 
179 	return 0;
180 }
181 
182 /**
183  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
184  * @trans_id: ITS ID.
185  *
186  * Returns: none.
187  */
188 void iort_deregister_domain_token(int trans_id)
189 {
190 	struct iort_its_msi_chip *its_msi_chip, *t;
191 
192 	spin_lock(&iort_msi_chip_lock);
193 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
194 		if (its_msi_chip->translation_id == trans_id) {
195 			list_del(&its_msi_chip->list);
196 			kfree(its_msi_chip);
197 			break;
198 		}
199 	}
200 	spin_unlock(&iort_msi_chip_lock);
201 }
202 
203 /**
204  * iort_find_domain_token() - Find domain token based on given ITS ID
205  * @trans_id: ITS ID.
206  *
207  * Returns: domain token when find on the list, NULL otherwise
208  */
209 struct fwnode_handle *iort_find_domain_token(int trans_id)
210 {
211 	struct fwnode_handle *fw_node = NULL;
212 	struct iort_its_msi_chip *its_msi_chip;
213 
214 	spin_lock(&iort_msi_chip_lock);
215 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
216 		if (its_msi_chip->translation_id == trans_id) {
217 			fw_node = its_msi_chip->fw_node;
218 			break;
219 		}
220 	}
221 	spin_unlock(&iort_msi_chip_lock);
222 
223 	return fw_node;
224 }
225 
226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
227 					     iort_find_node_callback callback,
228 					     void *context)
229 {
230 	struct acpi_iort_node *iort_node, *iort_end;
231 	struct acpi_table_iort *iort;
232 	int i;
233 
234 	if (!iort_table)
235 		return NULL;
236 
237 	/* Get the first IORT node */
238 	iort = (struct acpi_table_iort *)iort_table;
239 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
240 				 iort->node_offset);
241 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
242 				iort_table->length);
243 
244 	for (i = 0; i < iort->node_count; i++) {
245 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
246 			       "IORT node pointer overflows, bad table!\n"))
247 			return NULL;
248 
249 		if (iort_node->type == type &&
250 		    ACPI_SUCCESS(callback(iort_node, context)))
251 			return iort_node;
252 
253 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
254 					 iort_node->length);
255 	}
256 
257 	return NULL;
258 }
259 
260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
261 					    void *context)
262 {
263 	struct device *dev = context;
264 	acpi_status status = AE_NOT_FOUND;
265 
266 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
267 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
268 		struct acpi_device *adev;
269 		struct acpi_iort_named_component *ncomp;
270 		struct device *nc_dev = dev;
271 
272 		/*
273 		 * Walk the device tree to find a device with an
274 		 * ACPI companion; there is no point in scanning
275 		 * IORT for a device matching a named component if
276 		 * the device does not have an ACPI companion to
277 		 * start with.
278 		 */
279 		do {
280 			adev = ACPI_COMPANION(nc_dev);
281 			if (adev)
282 				break;
283 
284 			nc_dev = nc_dev->parent;
285 		} while (nc_dev);
286 
287 		if (!adev)
288 			goto out;
289 
290 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
291 		if (ACPI_FAILURE(status)) {
292 			dev_warn(nc_dev, "Can't get device full path name\n");
293 			goto out;
294 		}
295 
296 		ncomp = (struct acpi_iort_named_component *)node->node_data;
297 		status = !strcmp(ncomp->device_name, buf.pointer) ?
298 							AE_OK : AE_NOT_FOUND;
299 		acpi_os_free(buf.pointer);
300 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
301 		struct acpi_iort_root_complex *pci_rc;
302 		struct pci_bus *bus;
303 
304 		bus = to_pci_bus(dev);
305 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
306 
307 		/*
308 		 * It is assumed that PCI segment numbers maps one-to-one
309 		 * with root complexes. Each segment number can represent only
310 		 * one root complex.
311 		 */
312 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
313 							AE_OK : AE_NOT_FOUND;
314 	}
315 out:
316 	return status;
317 }
318 
319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
320 		       u32 *rid_out, bool check_overlap)
321 {
322 	/* Single mapping does not care for input id */
323 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
324 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
325 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
326 			*rid_out = map->output_base;
327 			return 0;
328 		}
329 
330 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
331 			map, type);
332 		return -ENXIO;
333 	}
334 
335 	if (rid_in < map->input_base ||
336 	    (rid_in > map->input_base + map->id_count))
337 		return -ENXIO;
338 
339 	if (check_overlap) {
340 		/*
341 		 * We already found a mapping for this input ID at the end of
342 		 * another region. If it coincides with the start of this
343 		 * region, we assume the prior match was due to the off-by-1
344 		 * issue mentioned below, and allow it to be superseded.
345 		 * Otherwise, things are *really* broken, and we just disregard
346 		 * duplicate matches entirely to retain compatibility.
347 		 */
348 		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
349 		       map, rid_in);
350 		if (rid_in != map->input_base)
351 			return -ENXIO;
352 
353 		pr_err(FW_BUG "applying workaround.\n");
354 	}
355 
356 	*rid_out = map->output_base + (rid_in - map->input_base);
357 
358 	/*
359 	 * Due to confusion regarding the meaning of the id_count field (which
360 	 * carries the number of IDs *minus 1*), we may have to disregard this
361 	 * match if it is at the end of the range, and overlaps with the start
362 	 * of another one.
363 	 */
364 	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
365 		return -EAGAIN;
366 	return 0;
367 }
368 
369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
370 					       u32 *id_out, int index)
371 {
372 	struct acpi_iort_node *parent;
373 	struct acpi_iort_id_mapping *map;
374 
375 	if (!node->mapping_offset || !node->mapping_count ||
376 				     index >= node->mapping_count)
377 		return NULL;
378 
379 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
380 			   node->mapping_offset + index * sizeof(*map));
381 
382 	/* Firmware bug! */
383 	if (!map->output_reference) {
384 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
385 		       node, node->type);
386 		return NULL;
387 	}
388 
389 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
390 			       map->output_reference);
391 
392 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
393 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
394 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
395 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
396 		    node->type == ACPI_IORT_NODE_PMCG) {
397 			*id_out = map->output_base;
398 			return parent;
399 		}
400 	}
401 
402 	return NULL;
403 }
404 
405 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
406 {
407 	struct acpi_iort_smmu_v3 *smmu;
408 	struct acpi_iort_pmcg *pmcg;
409 
410 	switch (node->type) {
411 	case ACPI_IORT_NODE_SMMU_V3:
412 		/*
413 		 * SMMUv3 dev ID mapping index was introduced in revision 1
414 		 * table, not available in revision 0
415 		 */
416 		if (node->revision < 1)
417 			return -EINVAL;
418 
419 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
420 		/*
421 		 * ID mapping index is only ignored if all interrupts are
422 		 * GSIV based
423 		 */
424 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
425 		    && smmu->sync_gsiv)
426 			return -EINVAL;
427 
428 		if (smmu->id_mapping_index >= node->mapping_count) {
429 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
430 			       node, node->type);
431 			return -EINVAL;
432 		}
433 
434 		return smmu->id_mapping_index;
435 	case ACPI_IORT_NODE_PMCG:
436 		pmcg = (struct acpi_iort_pmcg *)node->node_data;
437 		if (pmcg->overflow_gsiv || node->mapping_count == 0)
438 			return -EINVAL;
439 
440 		return 0;
441 	default:
442 		return -EINVAL;
443 	}
444 }
445 
446 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
447 					       u32 id_in, u32 *id_out,
448 					       u8 type_mask)
449 {
450 	u32 id = id_in;
451 
452 	/* Parse the ID mapping tree to find specified node type */
453 	while (node) {
454 		struct acpi_iort_id_mapping *map;
455 		int i, index, rc = 0;
456 		u32 out_ref = 0, map_id = id;
457 
458 		if (IORT_TYPE_MASK(node->type) & type_mask) {
459 			if (id_out)
460 				*id_out = id;
461 			return node;
462 		}
463 
464 		if (!node->mapping_offset || !node->mapping_count)
465 			goto fail_map;
466 
467 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
468 				   node->mapping_offset);
469 
470 		/* Firmware bug! */
471 		if (!map->output_reference) {
472 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
473 			       node, node->type);
474 			goto fail_map;
475 		}
476 
477 		/*
478 		 * Get the special ID mapping index (if any) and skip its
479 		 * associated ID map to prevent erroneous multi-stage
480 		 * IORT ID translations.
481 		 */
482 		index = iort_get_id_mapping_index(node);
483 
484 		/* Do the ID translation */
485 		for (i = 0; i < node->mapping_count; i++, map++) {
486 			/* if it is special mapping index, skip it */
487 			if (i == index)
488 				continue;
489 
490 			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
491 			if (!rc)
492 				break;
493 			if (rc == -EAGAIN)
494 				out_ref = map->output_reference;
495 		}
496 
497 		if (i == node->mapping_count && !out_ref)
498 			goto fail_map;
499 
500 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
501 				    rc ? out_ref : map->output_reference);
502 	}
503 
504 fail_map:
505 	/* Map input ID to output ID unchanged on mapping failure */
506 	if (id_out)
507 		*id_out = id_in;
508 
509 	return NULL;
510 }
511 
512 static struct acpi_iort_node *iort_node_map_platform_id(
513 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
514 		int index)
515 {
516 	struct acpi_iort_node *parent;
517 	u32 id;
518 
519 	/* step 1: retrieve the initial dev id */
520 	parent = iort_node_get_id(node, &id, index);
521 	if (!parent)
522 		return NULL;
523 
524 	/*
525 	 * optional step 2: map the initial dev id if its parent is not
526 	 * the target type we want, map it again for the use cases such
527 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
528 	 * return the initial dev id and its parent pointer directly.
529 	 */
530 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
531 		parent = iort_node_map_id(parent, id, id_out, type_mask);
532 	else
533 		if (id_out)
534 			*id_out = id;
535 
536 	return parent;
537 }
538 
539 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
540 {
541 	struct pci_bus *pbus;
542 
543 	if (!dev_is_pci(dev)) {
544 		struct acpi_iort_node *node;
545 		/*
546 		 * scan iort_fwnode_list to see if it's an iort platform
547 		 * device (such as SMMU, PMCG),its iort node already cached
548 		 * and associated with fwnode when iort platform devices
549 		 * were initialized.
550 		 */
551 		node = iort_get_iort_node(dev->fwnode);
552 		if (node)
553 			return node;
554 		/*
555 		 * if not, then it should be a platform device defined in
556 		 * DSDT/SSDT (with Named Component node in IORT)
557 		 */
558 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
559 				      iort_match_node_callback, dev);
560 	}
561 
562 	pbus = to_pci_dev(dev)->bus;
563 
564 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
565 			      iort_match_node_callback, &pbus->dev);
566 }
567 
568 /**
569  * iort_msi_map_id() - Map a MSI input ID for a device
570  * @dev: The device for which the mapping is to be done.
571  * @input_id: The device input ID.
572  *
573  * Returns: mapped MSI ID on success, input ID otherwise
574  */
575 u32 iort_msi_map_id(struct device *dev, u32 input_id)
576 {
577 	struct acpi_iort_node *node;
578 	u32 dev_id;
579 
580 	node = iort_find_dev_node(dev);
581 	if (!node)
582 		return input_id;
583 
584 	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
585 	return dev_id;
586 }
587 
588 /**
589  * iort_pmsi_get_dev_id() - Get the device id for a device
590  * @dev: The device for which the mapping is to be done.
591  * @dev_id: The device ID found.
592  *
593  * Returns: 0 for successful find a dev id, -ENODEV on error
594  */
595 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
596 {
597 	int i, index;
598 	struct acpi_iort_node *node;
599 
600 	node = iort_find_dev_node(dev);
601 	if (!node)
602 		return -ENODEV;
603 
604 	index = iort_get_id_mapping_index(node);
605 	/* if there is a valid index, go get the dev_id directly */
606 	if (index >= 0) {
607 		if (iort_node_get_id(node, dev_id, index))
608 			return 0;
609 	} else {
610 		for (i = 0; i < node->mapping_count; i++) {
611 			if (iort_node_map_platform_id(node, dev_id,
612 						      IORT_MSI_TYPE, i))
613 				return 0;
614 		}
615 	}
616 
617 	return -ENODEV;
618 }
619 
620 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
621 {
622 	struct iort_its_msi_chip *its_msi_chip;
623 	int ret = -ENODEV;
624 
625 	spin_lock(&iort_msi_chip_lock);
626 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
627 		if (its_msi_chip->translation_id == its_id) {
628 			*base = its_msi_chip->base_addr;
629 			ret = 0;
630 			break;
631 		}
632 	}
633 	spin_unlock(&iort_msi_chip_lock);
634 
635 	return ret;
636 }
637 
638 /**
639  * iort_dev_find_its_id() - Find the ITS identifier for a device
640  * @dev: The device.
641  * @id: Device's ID
642  * @idx: Index of the ITS identifier list.
643  * @its_id: ITS identifier.
644  *
645  * Returns: 0 on success, appropriate error value otherwise
646  */
647 static int iort_dev_find_its_id(struct device *dev, u32 id,
648 				unsigned int idx, int *its_id)
649 {
650 	struct acpi_iort_its_group *its;
651 	struct acpi_iort_node *node;
652 
653 	node = iort_find_dev_node(dev);
654 	if (!node)
655 		return -ENXIO;
656 
657 	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
658 	if (!node)
659 		return -ENXIO;
660 
661 	/* Move to ITS specific data */
662 	its = (struct acpi_iort_its_group *)node->node_data;
663 	if (idx >= its->its_count) {
664 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
665 			idx, its->its_count);
666 		return -ENXIO;
667 	}
668 
669 	*its_id = its->identifiers[idx];
670 	return 0;
671 }
672 
673 /**
674  * iort_get_device_domain() - Find MSI domain related to a device
675  * @dev: The device.
676  * @id: Requester ID for the device.
677  * @bus_token: irq domain bus token.
678  *
679  * Returns: the MSI domain for this device, NULL otherwise
680  */
681 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
682 					  enum irq_domain_bus_token bus_token)
683 {
684 	struct fwnode_handle *handle;
685 	int its_id;
686 
687 	if (iort_dev_find_its_id(dev, id, 0, &its_id))
688 		return NULL;
689 
690 	handle = iort_find_domain_token(its_id);
691 	if (!handle)
692 		return NULL;
693 
694 	return irq_find_matching_fwnode(handle, bus_token);
695 }
696 
697 static void iort_set_device_domain(struct device *dev,
698 				   struct acpi_iort_node *node)
699 {
700 	struct acpi_iort_its_group *its;
701 	struct acpi_iort_node *msi_parent;
702 	struct acpi_iort_id_mapping *map;
703 	struct fwnode_handle *iort_fwnode;
704 	struct irq_domain *domain;
705 	int index;
706 
707 	index = iort_get_id_mapping_index(node);
708 	if (index < 0)
709 		return;
710 
711 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
712 			   node->mapping_offset + index * sizeof(*map));
713 
714 	/* Firmware bug! */
715 	if (!map->output_reference ||
716 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
717 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
718 		       node, node->type);
719 		return;
720 	}
721 
722 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
723 				  map->output_reference);
724 
725 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
726 		return;
727 
728 	/* Move to ITS specific data */
729 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
730 
731 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
732 	if (!iort_fwnode)
733 		return;
734 
735 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
736 	if (domain)
737 		dev_set_msi_domain(dev, domain);
738 }
739 
740 /**
741  * iort_get_platform_device_domain() - Find MSI domain related to a
742  * platform device
743  * @dev: the dev pointer associated with the platform device
744  *
745  * Returns: the MSI domain for this device, NULL otherwise
746  */
747 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
748 {
749 	struct acpi_iort_node *node, *msi_parent = NULL;
750 	struct fwnode_handle *iort_fwnode;
751 	struct acpi_iort_its_group *its;
752 	int i;
753 
754 	/* find its associated iort node */
755 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
756 			      iort_match_node_callback, dev);
757 	if (!node)
758 		return NULL;
759 
760 	/* then find its msi parent node */
761 	for (i = 0; i < node->mapping_count; i++) {
762 		msi_parent = iort_node_map_platform_id(node, NULL,
763 						       IORT_MSI_TYPE, i);
764 		if (msi_parent)
765 			break;
766 	}
767 
768 	if (!msi_parent)
769 		return NULL;
770 
771 	/* Move to ITS specific data */
772 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
773 
774 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
775 	if (!iort_fwnode)
776 		return NULL;
777 
778 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
779 }
780 
781 void acpi_configure_pmsi_domain(struct device *dev)
782 {
783 	struct irq_domain *msi_domain;
784 
785 	msi_domain = iort_get_platform_device_domain(dev);
786 	if (msi_domain)
787 		dev_set_msi_domain(dev, msi_domain);
788 }
789 
790 #ifdef CONFIG_IOMMU_API
791 static void iort_rmr_free(struct device *dev,
792 			  struct iommu_resv_region *region)
793 {
794 	struct iommu_iort_rmr_data *rmr_data;
795 
796 	rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
797 	kfree(rmr_data->sids);
798 	kfree(rmr_data);
799 }
800 
801 static struct iommu_iort_rmr_data *iort_rmr_alloc(
802 					struct acpi_iort_rmr_desc *rmr_desc,
803 					int prot, enum iommu_resv_type type,
804 					u32 *sids, u32 num_sids)
805 {
806 	struct iommu_iort_rmr_data *rmr_data;
807 	struct iommu_resv_region *region;
808 	u32 *sids_copy;
809 	u64 addr = rmr_desc->base_address, size = rmr_desc->length;
810 
811 	rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
812 	if (!rmr_data)
813 		return NULL;
814 
815 	/* Create a copy of SIDs array to associate with this rmr_data */
816 	sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL);
817 	if (!sids_copy) {
818 		kfree(rmr_data);
819 		return NULL;
820 	}
821 	rmr_data->sids = sids_copy;
822 	rmr_data->num_sids = num_sids;
823 
824 	if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
825 		/* PAGE align base addr and size */
826 		addr &= PAGE_MASK;
827 		size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
828 
829 		pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
830 		       rmr_desc->base_address,
831 		       rmr_desc->base_address + rmr_desc->length - 1,
832 		       addr, addr + size - 1);
833 	}
834 
835 	region = &rmr_data->rr;
836 	INIT_LIST_HEAD(&region->list);
837 	region->start = addr;
838 	region->length = size;
839 	region->prot = prot;
840 	region->type = type;
841 	region->free = iort_rmr_free;
842 
843 	return rmr_data;
844 }
845 
846 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
847 					u32 count)
848 {
849 	int i, j;
850 
851 	for (i = 0; i < count; i++) {
852 		u64 end, start = desc[i].base_address, length = desc[i].length;
853 
854 		if (!length) {
855 			pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
856 			       start);
857 			continue;
858 		}
859 
860 		end = start + length - 1;
861 
862 		/* Check for address overlap */
863 		for (j = i + 1; j < count; j++) {
864 			u64 e_start = desc[j].base_address;
865 			u64 e_end = e_start + desc[j].length - 1;
866 
867 			if (start <= e_end && end >= e_start)
868 				pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
869 				       start, end);
870 		}
871 	}
872 }
873 
874 /*
875  * Please note, we will keep the already allocated RMR reserve
876  * regions in case of a memory allocation failure.
877  */
878 static void iort_get_rmrs(struct acpi_iort_node *node,
879 			  struct acpi_iort_node *smmu,
880 			  u32 *sids, u32 num_sids,
881 			  struct list_head *head)
882 {
883 	struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
884 	struct acpi_iort_rmr_desc *rmr_desc;
885 	int i;
886 
887 	rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
888 				rmr->rmr_offset);
889 
890 	iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
891 
892 	for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
893 		struct iommu_iort_rmr_data *rmr_data;
894 		enum iommu_resv_type type;
895 		int prot = IOMMU_READ | IOMMU_WRITE;
896 
897 		if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
898 			type = IOMMU_RESV_DIRECT_RELAXABLE;
899 		else
900 			type = IOMMU_RESV_DIRECT;
901 
902 		if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
903 			prot |= IOMMU_PRIV;
904 
905 		/* Attributes 0x00 - 0x03 represents device memory */
906 		if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
907 				ACPI_IORT_RMR_ATTR_DEVICE_GRE)
908 			prot |= IOMMU_MMIO;
909 		else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
910 				ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
911 			prot |= IOMMU_CACHE;
912 
913 		rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
914 					  sids, num_sids);
915 		if (!rmr_data)
916 			return;
917 
918 		list_add_tail(&rmr_data->rr.list, head);
919 	}
920 }
921 
922 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
923 				u32 new_count)
924 {
925 	u32 *new_sids;
926 	u32 total_count = count + new_count;
927 	int i;
928 
929 	new_sids = krealloc_array(sids, count + new_count,
930 				  sizeof(*new_sids), GFP_KERNEL);
931 	if (!new_sids)
932 		return NULL;
933 
934 	for (i = count; i < total_count; i++)
935 		new_sids[i] = id_start++;
936 
937 	return new_sids;
938 }
939 
940 static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
941 			     u32 id_count)
942 {
943 	int i;
944 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
945 
946 	/*
947 	 * Make sure the kernel has preserved the boot firmware PCIe
948 	 * configuration. This is required to ensure that the RMR PCIe
949 	 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
950 	 */
951 	if (dev_is_pci(dev)) {
952 		struct pci_dev *pdev = to_pci_dev(dev);
953 		struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
954 
955 		if (!host->preserve_config)
956 			return false;
957 	}
958 
959 	for (i = 0; i < fwspec->num_ids; i++) {
960 		if (fwspec->ids[i] >= id_start &&
961 		    fwspec->ids[i] <= id_start + id_count)
962 			return true;
963 	}
964 
965 	return false;
966 }
967 
968 static void iort_node_get_rmr_info(struct acpi_iort_node *node,
969 				   struct acpi_iort_node *iommu,
970 				   struct device *dev, struct list_head *head)
971 {
972 	struct acpi_iort_node *smmu = NULL;
973 	struct acpi_iort_rmr *rmr;
974 	struct acpi_iort_id_mapping *map;
975 	u32 *sids = NULL;
976 	u32 num_sids = 0;
977 	int i;
978 
979 	if (!node->mapping_offset || !node->mapping_count) {
980 		pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
981 		       node);
982 		return;
983 	}
984 
985 	rmr = (struct acpi_iort_rmr *)node->node_data;
986 	if (!rmr->rmr_offset || !rmr->rmr_count)
987 		return;
988 
989 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
990 			   node->mapping_offset);
991 
992 	/*
993 	 * Go through the ID mappings and see if we have a match for SMMU
994 	 * and dev(if !NULL). If found, get the sids for the Node.
995 	 * Please note, id_count is equal to the number of IDs  in the
996 	 * range minus one.
997 	 */
998 	for (i = 0; i < node->mapping_count; i++, map++) {
999 		struct acpi_iort_node *parent;
1000 
1001 		if (!map->id_count)
1002 			continue;
1003 
1004 		parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1005 				      map->output_reference);
1006 		if (parent != iommu)
1007 			continue;
1008 
1009 		/* If dev is valid, check RMR node corresponds to the dev SID */
1010 		if (dev && !iort_rmr_has_dev(dev, map->output_base,
1011 					     map->id_count))
1012 			continue;
1013 
1014 		/* Retrieve SIDs associated with the Node. */
1015 		sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1016 					   map->id_count + 1);
1017 		if (!sids)
1018 			return;
1019 
1020 		num_sids += map->id_count + 1;
1021 	}
1022 
1023 	if (!sids)
1024 		return;
1025 
1026 	iort_get_rmrs(node, smmu, sids, num_sids, head);
1027 	kfree(sids);
1028 }
1029 
1030 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1031 			   struct list_head *head)
1032 {
1033 	struct acpi_table_iort *iort;
1034 	struct acpi_iort_node *iort_node, *iort_end;
1035 	int i;
1036 
1037 	/* Only supports ARM DEN 0049E.d onwards */
1038 	if (iort_table->revision < 5)
1039 		return;
1040 
1041 	iort = (struct acpi_table_iort *)iort_table;
1042 
1043 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1044 				 iort->node_offset);
1045 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1046 				iort_table->length);
1047 
1048 	for (i = 0; i < iort->node_count; i++) {
1049 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1050 			       "IORT node pointer overflows, bad table!\n"))
1051 			return;
1052 
1053 		if (iort_node->type == ACPI_IORT_NODE_RMR)
1054 			iort_node_get_rmr_info(iort_node, iommu, dev, head);
1055 
1056 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1057 					 iort_node->length);
1058 	}
1059 }
1060 
1061 /*
1062  * Populate the RMR list associated with a given IOMMU and dev(if provided).
1063  * If dev is NULL, the function populates all the RMRs associated with the
1064  * given IOMMU.
1065  */
1066 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1067 					    struct device *dev,
1068 					    struct list_head *head)
1069 {
1070 	struct acpi_iort_node *iommu;
1071 
1072 	iommu = iort_get_iort_node(iommu_fwnode);
1073 	if (!iommu)
1074 		return;
1075 
1076 	iort_find_rmrs(iommu, dev, head);
1077 }
1078 
1079 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1080 {
1081 	struct acpi_iort_node *iommu;
1082 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1083 
1084 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1085 
1086 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1087 		struct acpi_iort_smmu_v3 *smmu;
1088 
1089 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1090 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1091 			return iommu;
1092 	}
1093 
1094 	return NULL;
1095 }
1096 
1097 /*
1098  * Retrieve platform specific HW MSI reserve regions.
1099  * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1100  * associated with the device are the HW MSI reserved regions.
1101  */
1102 static void iort_iommu_msi_get_resv_regions(struct device *dev,
1103 					    struct list_head *head)
1104 {
1105 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1106 	struct acpi_iort_its_group *its;
1107 	struct acpi_iort_node *iommu_node, *its_node = NULL;
1108 	int i;
1109 
1110 	iommu_node = iort_get_msi_resv_iommu(dev);
1111 	if (!iommu_node)
1112 		return;
1113 
1114 	/*
1115 	 * Current logic to reserve ITS regions relies on HW topologies
1116 	 * where a given PCI or named component maps its IDs to only one
1117 	 * ITS group; if a PCI or named component can map its IDs to
1118 	 * different ITS groups through IORT mappings this function has
1119 	 * to be reworked to ensure we reserve regions for all ITS groups
1120 	 * a given PCI or named component may map IDs to.
1121 	 */
1122 
1123 	for (i = 0; i < fwspec->num_ids; i++) {
1124 		its_node = iort_node_map_id(iommu_node,
1125 					fwspec->ids[i],
1126 					NULL, IORT_MSI_TYPE);
1127 		if (its_node)
1128 			break;
1129 	}
1130 
1131 	if (!its_node)
1132 		return;
1133 
1134 	/* Move to ITS specific data */
1135 	its = (struct acpi_iort_its_group *)its_node->node_data;
1136 
1137 	for (i = 0; i < its->its_count; i++) {
1138 		phys_addr_t base;
1139 
1140 		if (!iort_find_its_base(its->identifiers[i], &base)) {
1141 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1142 			struct iommu_resv_region *region;
1143 
1144 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1145 							 prot, IOMMU_RESV_MSI);
1146 			if (region)
1147 				list_add_tail(&region->list, head);
1148 		}
1149 	}
1150 }
1151 
1152 /**
1153  * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1154  * @dev: Device from iommu_get_resv_regions()
1155  * @head: Reserved region list from iommu_get_resv_regions()
1156  */
1157 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1158 {
1159 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1160 
1161 	iort_iommu_msi_get_resv_regions(dev, head);
1162 	iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1163 }
1164 
1165 /**
1166  * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1167  *                     associated StreamIDs information.
1168  * @iommu_fwnode: fwnode associated with IOMMU
1169  * @head: Resereved region list
1170  */
1171 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1172 		       struct list_head *head)
1173 {
1174 	iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1175 }
1176 EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1177 
1178 /**
1179  * iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1180  * @iommu_fwnode: fwnode associated with IOMMU
1181  * @head: Resereved region list
1182  */
1183 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1184 		       struct list_head *head)
1185 {
1186 	struct iommu_resv_region *entry, *next;
1187 
1188 	list_for_each_entry_safe(entry, next, head, list)
1189 		entry->free(NULL, entry);
1190 }
1191 EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1192 
1193 static inline bool iort_iommu_driver_enabled(u8 type)
1194 {
1195 	switch (type) {
1196 	case ACPI_IORT_NODE_SMMU_V3:
1197 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1198 	case ACPI_IORT_NODE_SMMU:
1199 		return IS_ENABLED(CONFIG_ARM_SMMU);
1200 	default:
1201 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
1202 		return false;
1203 	}
1204 }
1205 
1206 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1207 {
1208 	struct acpi_iort_root_complex *pci_rc;
1209 
1210 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1211 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1212 }
1213 
1214 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1215 			    u32 streamid)
1216 {
1217 	const struct iommu_ops *ops;
1218 	struct fwnode_handle *iort_fwnode;
1219 
1220 	if (!node)
1221 		return -ENODEV;
1222 
1223 	iort_fwnode = iort_get_fwnode(node);
1224 	if (!iort_fwnode)
1225 		return -ENODEV;
1226 
1227 	/*
1228 	 * If the ops look-up fails, this means that either
1229 	 * the SMMU drivers have not been probed yet or that
1230 	 * the SMMU drivers are not built in the kernel;
1231 	 * Depending on whether the SMMU drivers are built-in
1232 	 * in the kernel or not, defer the IOMMU configuration
1233 	 * or just abort it.
1234 	 */
1235 	ops = iommu_ops_from_fwnode(iort_fwnode);
1236 	if (!ops)
1237 		return iort_iommu_driver_enabled(node->type) ?
1238 		       -EPROBE_DEFER : -ENODEV;
1239 
1240 	return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops);
1241 }
1242 
1243 struct iort_pci_alias_info {
1244 	struct device *dev;
1245 	struct acpi_iort_node *node;
1246 };
1247 
1248 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1249 {
1250 	struct iort_pci_alias_info *info = data;
1251 	struct acpi_iort_node *parent;
1252 	u32 streamid;
1253 
1254 	parent = iort_node_map_id(info->node, alias, &streamid,
1255 				  IORT_IOMMU_TYPE);
1256 	return iort_iommu_xlate(info->dev, parent, streamid);
1257 }
1258 
1259 static void iort_named_component_init(struct device *dev,
1260 				      struct acpi_iort_node *node)
1261 {
1262 	struct property_entry props[3] = {};
1263 	struct acpi_iort_named_component *nc;
1264 
1265 	nc = (struct acpi_iort_named_component *)node->node_data;
1266 	props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1267 				      FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1268 						nc->node_flags));
1269 	if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1270 		props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1271 
1272 	if (device_create_managed_software_node(dev, props, NULL))
1273 		dev_warn(dev, "Could not add device properties\n");
1274 }
1275 
1276 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1277 {
1278 	struct acpi_iort_node *parent;
1279 	int err = -ENODEV, i = 0;
1280 	u32 streamid = 0;
1281 
1282 	do {
1283 
1284 		parent = iort_node_map_platform_id(node, &streamid,
1285 						   IORT_IOMMU_TYPE,
1286 						   i++);
1287 
1288 		if (parent)
1289 			err = iort_iommu_xlate(dev, parent, streamid);
1290 	} while (parent && !err);
1291 
1292 	return err;
1293 }
1294 
1295 static int iort_nc_iommu_map_id(struct device *dev,
1296 				struct acpi_iort_node *node,
1297 				const u32 *in_id)
1298 {
1299 	struct acpi_iort_node *parent;
1300 	u32 streamid;
1301 
1302 	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1303 	if (parent)
1304 		return iort_iommu_xlate(dev, parent, streamid);
1305 
1306 	return -ENODEV;
1307 }
1308 
1309 
1310 /**
1311  * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1312  *
1313  * @dev: device to configure
1314  * @id_in: optional input id const value pointer
1315  *
1316  * Returns: 0 on success, <0 on failure
1317  */
1318 int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1319 {
1320 	struct acpi_iort_node *node;
1321 	int err = -ENODEV;
1322 
1323 	if (dev_is_pci(dev)) {
1324 		struct iommu_fwspec *fwspec;
1325 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1326 		struct iort_pci_alias_info info = { .dev = dev };
1327 
1328 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1329 				      iort_match_node_callback, &bus->dev);
1330 		if (!node)
1331 			return -ENODEV;
1332 
1333 		info.node = node;
1334 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1335 					     iort_pci_iommu_init, &info);
1336 
1337 		fwspec = dev_iommu_fwspec_get(dev);
1338 		if (fwspec && iort_pci_rc_supports_ats(node))
1339 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1340 	} else {
1341 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1342 				      iort_match_node_callback, dev);
1343 		if (!node)
1344 			return -ENODEV;
1345 
1346 		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1347 			      iort_nc_iommu_map(dev, node);
1348 
1349 		if (!err)
1350 			iort_named_component_init(dev, node);
1351 	}
1352 
1353 	return err;
1354 }
1355 
1356 #else
1357 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1358 { }
1359 int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1360 { return -ENODEV; }
1361 #endif
1362 
1363 static int nc_dma_get_range(struct device *dev, u64 *size)
1364 {
1365 	struct acpi_iort_node *node;
1366 	struct acpi_iort_named_component *ncomp;
1367 
1368 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1369 			      iort_match_node_callback, dev);
1370 	if (!node)
1371 		return -ENODEV;
1372 
1373 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1374 
1375 	if (!ncomp->memory_address_limit) {
1376 		pr_warn(FW_BUG "Named component missing memory address limit\n");
1377 		return -EINVAL;
1378 	}
1379 
1380 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1381 			1ULL<<ncomp->memory_address_limit;
1382 
1383 	return 0;
1384 }
1385 
1386 static int rc_dma_get_range(struct device *dev, u64 *size)
1387 {
1388 	struct acpi_iort_node *node;
1389 	struct acpi_iort_root_complex *rc;
1390 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1391 
1392 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1393 			      iort_match_node_callback, &pbus->dev);
1394 	if (!node || node->revision < 1)
1395 		return -ENODEV;
1396 
1397 	rc = (struct acpi_iort_root_complex *)node->node_data;
1398 
1399 	if (!rc->memory_address_limit) {
1400 		pr_warn(FW_BUG "Root complex missing memory address limit\n");
1401 		return -EINVAL;
1402 	}
1403 
1404 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1405 			1ULL<<rc->memory_address_limit;
1406 
1407 	return 0;
1408 }
1409 
1410 /**
1411  * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1412  * @dev: device to lookup
1413  * @size: DMA range size result pointer
1414  *
1415  * Return: 0 on success, an error otherwise.
1416  */
1417 int iort_dma_get_ranges(struct device *dev, u64 *size)
1418 {
1419 	if (dev_is_pci(dev))
1420 		return rc_dma_get_range(dev, size);
1421 	else
1422 		return nc_dma_get_range(dev, size);
1423 }
1424 
1425 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1426 					  int trigger,
1427 					  struct resource *res)
1428 {
1429 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1430 				    ACPI_ACTIVE_HIGH);
1431 
1432 	if (irq <= 0) {
1433 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1434 								      name);
1435 		return;
1436 	}
1437 
1438 	res->start = irq;
1439 	res->end = irq;
1440 	res->flags = IORESOURCE_IRQ;
1441 	res->name = name;
1442 }
1443 
1444 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1445 {
1446 	struct acpi_iort_smmu_v3 *smmu;
1447 	/* Always present mem resource */
1448 	int num_res = 1;
1449 
1450 	/* Retrieve SMMUv3 specific data */
1451 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1452 
1453 	if (smmu->event_gsiv)
1454 		num_res++;
1455 
1456 	if (smmu->pri_gsiv)
1457 		num_res++;
1458 
1459 	if (smmu->gerr_gsiv)
1460 		num_res++;
1461 
1462 	if (smmu->sync_gsiv)
1463 		num_res++;
1464 
1465 	return num_res;
1466 }
1467 
1468 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1469 {
1470 	/*
1471 	 * Cavium ThunderX2 implementation doesn't not support unique
1472 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1473 	 */
1474 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1475 		return false;
1476 
1477 	/*
1478 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1479 	 * SPI numbers here.
1480 	 */
1481 	return smmu->event_gsiv == smmu->pri_gsiv &&
1482 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1483 	       smmu->event_gsiv == smmu->sync_gsiv;
1484 }
1485 
1486 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1487 {
1488 	/*
1489 	 * Override the size, for Cavium ThunderX2 implementation
1490 	 * which doesn't support the page 1 SMMU register space.
1491 	 */
1492 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1493 		return SZ_64K;
1494 
1495 	return SZ_128K;
1496 }
1497 
1498 static void __init arm_smmu_v3_init_resources(struct resource *res,
1499 					      struct acpi_iort_node *node)
1500 {
1501 	struct acpi_iort_smmu_v3 *smmu;
1502 	int num_res = 0;
1503 
1504 	/* Retrieve SMMUv3 specific data */
1505 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1506 
1507 	res[num_res].start = smmu->base_address;
1508 	res[num_res].end = smmu->base_address +
1509 				arm_smmu_v3_resource_size(smmu) - 1;
1510 	res[num_res].flags = IORESOURCE_MEM;
1511 
1512 	num_res++;
1513 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1514 		if (smmu->event_gsiv)
1515 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1516 					       ACPI_EDGE_SENSITIVE,
1517 					       &res[num_res++]);
1518 	} else {
1519 
1520 		if (smmu->event_gsiv)
1521 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1522 					       ACPI_EDGE_SENSITIVE,
1523 					       &res[num_res++]);
1524 
1525 		if (smmu->pri_gsiv)
1526 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1527 					       ACPI_EDGE_SENSITIVE,
1528 					       &res[num_res++]);
1529 
1530 		if (smmu->gerr_gsiv)
1531 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1532 					       ACPI_EDGE_SENSITIVE,
1533 					       &res[num_res++]);
1534 
1535 		if (smmu->sync_gsiv)
1536 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1537 					       ACPI_EDGE_SENSITIVE,
1538 					       &res[num_res++]);
1539 	}
1540 }
1541 
1542 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1543 					     struct acpi_iort_node *node)
1544 {
1545 	struct acpi_iort_smmu_v3 *smmu;
1546 	enum dev_dma_attr attr;
1547 
1548 	/* Retrieve SMMUv3 specific data */
1549 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1550 
1551 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1552 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1553 
1554 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1555 	dev->dma_mask = &dev->coherent_dma_mask;
1556 
1557 	/* Configure DMA for the page table walker */
1558 	acpi_dma_configure(dev, attr);
1559 }
1560 
1561 #if defined(CONFIG_ACPI_NUMA)
1562 /*
1563  * set numa proximity domain for smmuv3 device
1564  */
1565 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1566 					      struct acpi_iort_node *node)
1567 {
1568 	struct acpi_iort_smmu_v3 *smmu;
1569 
1570 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1571 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1572 		int dev_node = pxm_to_node(smmu->pxm);
1573 
1574 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1575 			return -EINVAL;
1576 
1577 		set_dev_node(dev, dev_node);
1578 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1579 			smmu->base_address,
1580 			smmu->pxm);
1581 	}
1582 	return 0;
1583 }
1584 #else
1585 #define arm_smmu_v3_set_proximity NULL
1586 #endif
1587 
1588 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1589 {
1590 	struct acpi_iort_smmu *smmu;
1591 
1592 	/* Retrieve SMMU specific data */
1593 	smmu = (struct acpi_iort_smmu *)node->node_data;
1594 
1595 	/*
1596 	 * Only consider the global fault interrupt and ignore the
1597 	 * configuration access interrupt.
1598 	 *
1599 	 * MMIO address and global fault interrupt resources are always
1600 	 * present so add them to the context interrupt count as a static
1601 	 * value.
1602 	 */
1603 	return smmu->context_interrupt_count + 2;
1604 }
1605 
1606 static void __init arm_smmu_init_resources(struct resource *res,
1607 					   struct acpi_iort_node *node)
1608 {
1609 	struct acpi_iort_smmu *smmu;
1610 	int i, hw_irq, trigger, num_res = 0;
1611 	u64 *ctx_irq, *glb_irq;
1612 
1613 	/* Retrieve SMMU specific data */
1614 	smmu = (struct acpi_iort_smmu *)node->node_data;
1615 
1616 	res[num_res].start = smmu->base_address;
1617 	res[num_res].end = smmu->base_address + smmu->span - 1;
1618 	res[num_res].flags = IORESOURCE_MEM;
1619 	num_res++;
1620 
1621 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1622 	/* Global IRQs */
1623 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1624 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1625 
1626 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1627 				     &res[num_res++]);
1628 
1629 	/* Context IRQs */
1630 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1631 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1632 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1633 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1634 
1635 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1636 				       &res[num_res++]);
1637 	}
1638 }
1639 
1640 static void __init arm_smmu_dma_configure(struct device *dev,
1641 					  struct acpi_iort_node *node)
1642 {
1643 	struct acpi_iort_smmu *smmu;
1644 	enum dev_dma_attr attr;
1645 
1646 	/* Retrieve SMMU specific data */
1647 	smmu = (struct acpi_iort_smmu *)node->node_data;
1648 
1649 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1650 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1651 
1652 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1653 	dev->dma_mask = &dev->coherent_dma_mask;
1654 
1655 	/* Configure DMA for the page table walker */
1656 	acpi_dma_configure(dev, attr);
1657 }
1658 
1659 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1660 {
1661 	struct acpi_iort_pmcg *pmcg;
1662 
1663 	/* Retrieve PMCG specific data */
1664 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1665 
1666 	/*
1667 	 * There are always 2 memory resources.
1668 	 * If the overflow_gsiv is present then add that for a total of 3.
1669 	 */
1670 	return pmcg->overflow_gsiv ? 3 : 2;
1671 }
1672 
1673 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1674 						   struct acpi_iort_node *node)
1675 {
1676 	struct acpi_iort_pmcg *pmcg;
1677 
1678 	/* Retrieve PMCG specific data */
1679 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1680 
1681 	res[0].start = pmcg->page0_base_address;
1682 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1683 	res[0].flags = IORESOURCE_MEM;
1684 	/*
1685 	 * The initial version in DEN0049C lacked a way to describe register
1686 	 * page 1, which makes it broken for most PMCG implementations; in
1687 	 * that case, just let the driver fail gracefully if it expects to
1688 	 * find a second memory resource.
1689 	 */
1690 	if (node->revision > 0) {
1691 		res[1].start = pmcg->page1_base_address;
1692 		res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1693 		res[1].flags = IORESOURCE_MEM;
1694 	}
1695 
1696 	if (pmcg->overflow_gsiv)
1697 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1698 				       ACPI_EDGE_SENSITIVE, &res[2]);
1699 }
1700 
1701 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1702 	/* HiSilicon Hip08 Platform */
1703 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1704 	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1705 	{ }
1706 };
1707 
1708 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1709 {
1710 	u32 model;
1711 	int idx;
1712 
1713 	idx = acpi_match_platform_list(pmcg_plat_info);
1714 	if (idx >= 0)
1715 		model = pmcg_plat_info[idx].data;
1716 	else
1717 		model = IORT_SMMU_V3_PMCG_GENERIC;
1718 
1719 	return platform_device_add_data(pdev, &model, sizeof(model));
1720 }
1721 
1722 struct iort_dev_config {
1723 	const char *name;
1724 	int (*dev_init)(struct acpi_iort_node *node);
1725 	void (*dev_dma_configure)(struct device *dev,
1726 				  struct acpi_iort_node *node);
1727 	int (*dev_count_resources)(struct acpi_iort_node *node);
1728 	void (*dev_init_resources)(struct resource *res,
1729 				     struct acpi_iort_node *node);
1730 	int (*dev_set_proximity)(struct device *dev,
1731 				    struct acpi_iort_node *node);
1732 	int (*dev_add_platdata)(struct platform_device *pdev);
1733 };
1734 
1735 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1736 	.name = "arm-smmu-v3",
1737 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1738 	.dev_count_resources = arm_smmu_v3_count_resources,
1739 	.dev_init_resources = arm_smmu_v3_init_resources,
1740 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1741 };
1742 
1743 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1744 	.name = "arm-smmu",
1745 	.dev_dma_configure = arm_smmu_dma_configure,
1746 	.dev_count_resources = arm_smmu_count_resources,
1747 	.dev_init_resources = arm_smmu_init_resources,
1748 };
1749 
1750 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1751 	.name = "arm-smmu-v3-pmcg",
1752 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1753 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1754 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1755 };
1756 
1757 static __init const struct iort_dev_config *iort_get_dev_cfg(
1758 			struct acpi_iort_node *node)
1759 {
1760 	switch (node->type) {
1761 	case ACPI_IORT_NODE_SMMU_V3:
1762 		return &iort_arm_smmu_v3_cfg;
1763 	case ACPI_IORT_NODE_SMMU:
1764 		return &iort_arm_smmu_cfg;
1765 	case ACPI_IORT_NODE_PMCG:
1766 		return &iort_arm_smmu_v3_pmcg_cfg;
1767 	default:
1768 		return NULL;
1769 	}
1770 }
1771 
1772 /**
1773  * iort_add_platform_device() - Allocate a platform device for IORT node
1774  * @node: Pointer to device ACPI IORT node
1775  * @ops: Pointer to IORT device config struct
1776  *
1777  * Returns: 0 on success, <0 failure
1778  */
1779 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1780 					   const struct iort_dev_config *ops)
1781 {
1782 	struct fwnode_handle *fwnode;
1783 	struct platform_device *pdev;
1784 	struct resource *r;
1785 	int ret, count;
1786 
1787 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1788 	if (!pdev)
1789 		return -ENOMEM;
1790 
1791 	if (ops->dev_set_proximity) {
1792 		ret = ops->dev_set_proximity(&pdev->dev, node);
1793 		if (ret)
1794 			goto dev_put;
1795 	}
1796 
1797 	count = ops->dev_count_resources(node);
1798 
1799 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1800 	if (!r) {
1801 		ret = -ENOMEM;
1802 		goto dev_put;
1803 	}
1804 
1805 	ops->dev_init_resources(r, node);
1806 
1807 	ret = platform_device_add_resources(pdev, r, count);
1808 	/*
1809 	 * Resources are duplicated in platform_device_add_resources,
1810 	 * free their allocated memory
1811 	 */
1812 	kfree(r);
1813 
1814 	if (ret)
1815 		goto dev_put;
1816 
1817 	/*
1818 	 * Platform devices based on PMCG nodes uses platform_data to
1819 	 * pass the hardware model info to the driver. For others, add
1820 	 * a copy of IORT node pointer to platform_data to be used to
1821 	 * retrieve IORT data information.
1822 	 */
1823 	if (ops->dev_add_platdata)
1824 		ret = ops->dev_add_platdata(pdev);
1825 	else
1826 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1827 
1828 	if (ret)
1829 		goto dev_put;
1830 
1831 	fwnode = iort_get_fwnode(node);
1832 
1833 	if (!fwnode) {
1834 		ret = -ENODEV;
1835 		goto dev_put;
1836 	}
1837 
1838 	pdev->dev.fwnode = fwnode;
1839 
1840 	if (ops->dev_dma_configure)
1841 		ops->dev_dma_configure(&pdev->dev, node);
1842 
1843 	iort_set_device_domain(&pdev->dev, node);
1844 
1845 	ret = platform_device_add(pdev);
1846 	if (ret)
1847 		goto dma_deconfigure;
1848 
1849 	return 0;
1850 
1851 dma_deconfigure:
1852 	arch_teardown_dma_ops(&pdev->dev);
1853 dev_put:
1854 	platform_device_put(pdev);
1855 
1856 	return ret;
1857 }
1858 
1859 #ifdef CONFIG_PCI
1860 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1861 {
1862 	static bool acs_enabled __initdata;
1863 
1864 	if (acs_enabled)
1865 		return;
1866 
1867 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1868 		struct acpi_iort_node *parent;
1869 		struct acpi_iort_id_mapping *map;
1870 		int i;
1871 
1872 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1873 				   iort_node->mapping_offset);
1874 
1875 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1876 			if (!map->output_reference)
1877 				continue;
1878 
1879 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1880 					iort_table,  map->output_reference);
1881 			/*
1882 			 * If we detect a RC->SMMU mapping, make sure
1883 			 * we enable ACS on the system.
1884 			 */
1885 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1886 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1887 				pci_request_acs();
1888 				acs_enabled = true;
1889 				return;
1890 			}
1891 		}
1892 	}
1893 }
1894 #else
1895 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1896 #endif
1897 
1898 static void __init iort_init_platform_devices(void)
1899 {
1900 	struct acpi_iort_node *iort_node, *iort_end;
1901 	struct acpi_table_iort *iort;
1902 	struct fwnode_handle *fwnode;
1903 	int i, ret;
1904 	const struct iort_dev_config *ops;
1905 
1906 	/*
1907 	 * iort_table and iort both point to the start of IORT table, but
1908 	 * have different struct types
1909 	 */
1910 	iort = (struct acpi_table_iort *)iort_table;
1911 
1912 	/* Get the first IORT node */
1913 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1914 				 iort->node_offset);
1915 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1916 				iort_table->length);
1917 
1918 	for (i = 0; i < iort->node_count; i++) {
1919 		if (iort_node >= iort_end) {
1920 			pr_err("iort node pointer overflows, bad table\n");
1921 			return;
1922 		}
1923 
1924 		iort_enable_acs(iort_node);
1925 
1926 		ops = iort_get_dev_cfg(iort_node);
1927 		if (ops) {
1928 			fwnode = acpi_alloc_fwnode_static();
1929 			if (!fwnode)
1930 				return;
1931 
1932 			iort_set_fwnode(iort_node, fwnode);
1933 
1934 			ret = iort_add_platform_device(iort_node, ops);
1935 			if (ret) {
1936 				iort_delete_fwnode(iort_node);
1937 				acpi_free_fwnode_static(fwnode);
1938 				return;
1939 			}
1940 		}
1941 
1942 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1943 					 iort_node->length);
1944 	}
1945 }
1946 
1947 void __init acpi_iort_init(void)
1948 {
1949 	acpi_status status;
1950 
1951 	/* iort_table will be used at runtime after the iort init,
1952 	 * so we don't need to call acpi_put_table() to release
1953 	 * the IORT table mapping.
1954 	 */
1955 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1956 	if (ACPI_FAILURE(status)) {
1957 		if (status != AE_NOT_FOUND) {
1958 			const char *msg = acpi_format_exception(status);
1959 
1960 			pr_err("Failed to get table, %s\n", msg);
1961 		}
1962 
1963 		return;
1964 	}
1965 
1966 	iort_init_platform_devices();
1967 }
1968 
1969 #ifdef CONFIG_ZONE_DMA
1970 /*
1971  * Extract the highest CPU physical address accessible to all DMA masters in
1972  * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1973  */
1974 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1975 {
1976 	phys_addr_t limit = PHYS_ADDR_MAX;
1977 	struct acpi_iort_node *node, *end;
1978 	struct acpi_table_iort *iort;
1979 	acpi_status status;
1980 	int i;
1981 
1982 	if (acpi_disabled)
1983 		return limit;
1984 
1985 	status = acpi_get_table(ACPI_SIG_IORT, 0,
1986 				(struct acpi_table_header **)&iort);
1987 	if (ACPI_FAILURE(status))
1988 		return limit;
1989 
1990 	node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
1991 	end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
1992 
1993 	for (i = 0; i < iort->node_count; i++) {
1994 		if (node >= end)
1995 			break;
1996 
1997 		switch (node->type) {
1998 			struct acpi_iort_named_component *ncomp;
1999 			struct acpi_iort_root_complex *rc;
2000 			phys_addr_t local_limit;
2001 
2002 		case ACPI_IORT_NODE_NAMED_COMPONENT:
2003 			ncomp = (struct acpi_iort_named_component *)node->node_data;
2004 			local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2005 			limit = min_not_zero(limit, local_limit);
2006 			break;
2007 
2008 		case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2009 			if (node->revision < 1)
2010 				break;
2011 
2012 			rc = (struct acpi_iort_root_complex *)node->node_data;
2013 			local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2014 			limit = min_not_zero(limit, local_limit);
2015 			break;
2016 		}
2017 		node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2018 	}
2019 	acpi_put_table(&iort->header);
2020 	return limit;
2021 }
2022 #endif
2023