xref: /openbmc/linux/drivers/accel/habanalabs/common/command_submission.c (revision 9b4469410cf9a0fcbccc92c480fd42f7c815a745)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2021 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13 
14 #define HL_CS_FLAGS_TYPE_MASK	(HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 			HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 			HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
17 			HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
18 
19 
20 #define MAX_TS_ITER_NUM 100
21 
22 /**
23  * enum hl_cs_wait_status - cs wait status
24  * @CS_WAIT_STATUS_BUSY: cs was not completed yet
25  * @CS_WAIT_STATUS_COMPLETED: cs completed
26  * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
27  */
28 enum hl_cs_wait_status {
29 	CS_WAIT_STATUS_BUSY,
30 	CS_WAIT_STATUS_COMPLETED,
31 	CS_WAIT_STATUS_GONE
32 };
33 
34 static void job_wq_completion(struct work_struct *work);
35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
36 				enum hl_cs_wait_status *status, s64 *timestamp);
37 static void cs_do_release(struct kref *ref);
38 
39 static void hl_push_cs_outcome(struct hl_device *hdev,
40 			       struct hl_cs_outcome_store *outcome_store,
41 			       u64 seq, ktime_t ts, int error)
42 {
43 	struct hl_cs_outcome *node;
44 	unsigned long flags;
45 
46 	/*
47 	 * CS outcome store supports the following operations:
48 	 * push outcome - store a recent CS outcome in the store
49 	 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
50 	 * It uses 2 lists: used list and free list.
51 	 * It has a pre-allocated amount of nodes, each node stores
52 	 * a single CS outcome.
53 	 * Initially, all the nodes are in the free list.
54 	 * On push outcome, a node (any) is taken from the free list, its
55 	 * information is filled in, and the node is moved to the used list.
56 	 * It is possible, that there are no nodes left in the free list.
57 	 * In this case, we will lose some information about old outcomes. We
58 	 * will pop the OLDEST node from the used list, and make it free.
59 	 * On pop, the node is searched for in the used list (using a search
60 	 * index).
61 	 * If found, the node is then removed from the used list, and moved
62 	 * back to the free list. The outcome data that the node contained is
63 	 * returned back to the user.
64 	 */
65 
66 	spin_lock_irqsave(&outcome_store->db_lock, flags);
67 
68 	if (list_empty(&outcome_store->free_list)) {
69 		node = list_last_entry(&outcome_store->used_list,
70 				       struct hl_cs_outcome, list_link);
71 		hash_del(&node->map_link);
72 		dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
73 	} else {
74 		node = list_last_entry(&outcome_store->free_list,
75 				       struct hl_cs_outcome, list_link);
76 	}
77 
78 	list_del_init(&node->list_link);
79 
80 	node->seq = seq;
81 	node->ts = ts;
82 	node->error = error;
83 
84 	list_add(&node->list_link, &outcome_store->used_list);
85 	hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
86 
87 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
88 }
89 
90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
91 			       u64 seq, ktime_t *ts, int *error)
92 {
93 	struct hl_cs_outcome *node;
94 	unsigned long flags;
95 
96 	spin_lock_irqsave(&outcome_store->db_lock, flags);
97 
98 	hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
99 		if (node->seq == seq) {
100 			*ts = node->ts;
101 			*error = node->error;
102 
103 			hash_del(&node->map_link);
104 			list_del_init(&node->list_link);
105 			list_add(&node->list_link, &outcome_store->free_list);
106 
107 			spin_unlock_irqrestore(&outcome_store->db_lock, flags);
108 
109 			return true;
110 		}
111 
112 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
113 
114 	return false;
115 }
116 
117 static void hl_sob_reset(struct kref *ref)
118 {
119 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
120 							kref);
121 	struct hl_device *hdev = hw_sob->hdev;
122 
123 	dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
124 
125 	hdev->asic_funcs->reset_sob(hdev, hw_sob);
126 
127 	hw_sob->need_reset = false;
128 }
129 
130 void hl_sob_reset_error(struct kref *ref)
131 {
132 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
133 							kref);
134 	struct hl_device *hdev = hw_sob->hdev;
135 
136 	dev_crit(hdev->dev,
137 		"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
138 		hw_sob->q_idx, hw_sob->sob_id);
139 }
140 
141 void hw_sob_put(struct hl_hw_sob *hw_sob)
142 {
143 	if (hw_sob)
144 		kref_put(&hw_sob->kref, hl_sob_reset);
145 }
146 
147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
148 {
149 	if (hw_sob)
150 		kref_put(&hw_sob->kref, hl_sob_reset_error);
151 }
152 
153 void hw_sob_get(struct hl_hw_sob *hw_sob)
154 {
155 	if (hw_sob)
156 		kref_get(&hw_sob->kref);
157 }
158 
159 /**
160  * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
161  * @sob_base: sob base id
162  * @sob_mask: sob user mask, each bit represents a sob offset from sob base
163  * @mask: generated mask
164  *
165  * Return: 0 if given parameters are valid
166  */
167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
168 {
169 	int i;
170 
171 	if (sob_mask == 0)
172 		return -EINVAL;
173 
174 	if (sob_mask == 0x1) {
175 		*mask = ~(1 << (sob_base & 0x7));
176 	} else {
177 		/* find msb in order to verify sob range is valid */
178 		for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
179 			if (BIT(i) & sob_mask)
180 				break;
181 
182 		if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
183 			return -EINVAL;
184 
185 		*mask = ~sob_mask;
186 	}
187 
188 	return 0;
189 }
190 
191 static void hl_fence_release(struct kref *kref)
192 {
193 	struct hl_fence *fence =
194 		container_of(kref, struct hl_fence, refcount);
195 	struct hl_cs_compl *hl_cs_cmpl =
196 		container_of(fence, struct hl_cs_compl, base_fence);
197 
198 	kfree(hl_cs_cmpl);
199 }
200 
201 void hl_fence_put(struct hl_fence *fence)
202 {
203 	if (IS_ERR_OR_NULL(fence))
204 		return;
205 	kref_put(&fence->refcount, hl_fence_release);
206 }
207 
208 void hl_fences_put(struct hl_fence **fence, int len)
209 {
210 	int i;
211 
212 	for (i = 0; i < len; i++, fence++)
213 		hl_fence_put(*fence);
214 }
215 
216 void hl_fence_get(struct hl_fence *fence)
217 {
218 	if (fence)
219 		kref_get(&fence->refcount);
220 }
221 
222 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
223 {
224 	kref_init(&fence->refcount);
225 	fence->cs_sequence = sequence;
226 	fence->error = 0;
227 	fence->timestamp = ktime_set(0, 0);
228 	fence->mcs_handling_done = false;
229 	init_completion(&fence->completion);
230 }
231 
232 void cs_get(struct hl_cs *cs)
233 {
234 	kref_get(&cs->refcount);
235 }
236 
237 static int cs_get_unless_zero(struct hl_cs *cs)
238 {
239 	return kref_get_unless_zero(&cs->refcount);
240 }
241 
242 static void cs_put(struct hl_cs *cs)
243 {
244 	kref_put(&cs->refcount, cs_do_release);
245 }
246 
247 static void cs_job_do_release(struct kref *ref)
248 {
249 	struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
250 
251 	kfree(job);
252 }
253 
254 static void hl_cs_job_put(struct hl_cs_job *job)
255 {
256 	kref_put(&job->refcount, cs_job_do_release);
257 }
258 
259 bool cs_needs_completion(struct hl_cs *cs)
260 {
261 	/* In case this is a staged CS, only the last CS in sequence should
262 	 * get a completion, any non staged CS will always get a completion
263 	 */
264 	if (cs->staged_cs && !cs->staged_last)
265 		return false;
266 
267 	return true;
268 }
269 
270 bool cs_needs_timeout(struct hl_cs *cs)
271 {
272 	/* In case this is a staged CS, only the first CS in sequence should
273 	 * get a timeout, any non staged CS will always get a timeout
274 	 */
275 	if (cs->staged_cs && !cs->staged_first)
276 		return false;
277 
278 	return true;
279 }
280 
281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
282 {
283 	/*
284 	 * Patched CB is created for external queues jobs, and for H/W queues
285 	 * jobs if the user CB was allocated by driver and MMU is disabled.
286 	 */
287 	return (job->queue_type == QUEUE_TYPE_EXT ||
288 			(job->queue_type == QUEUE_TYPE_HW &&
289 					job->is_kernel_allocated_cb &&
290 					!hdev->mmu_enable));
291 }
292 
293 /*
294  * cs_parser - parse the user command submission
295  *
296  * @hpriv	: pointer to the private data of the fd
297  * @job        : pointer to the job that holds the command submission info
298  *
299  * The function parses the command submission of the user. It calls the
300  * ASIC specific parser, which returns a list of memory blocks to send
301  * to the device as different command buffers
302  *
303  */
304 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
305 {
306 	struct hl_device *hdev = hpriv->hdev;
307 	struct hl_cs_parser parser;
308 	int rc;
309 
310 	parser.ctx_id = job->cs->ctx->asid;
311 	parser.cs_sequence = job->cs->sequence;
312 	parser.job_id = job->id;
313 
314 	parser.hw_queue_id = job->hw_queue_id;
315 	parser.job_userptr_list = &job->userptr_list;
316 	parser.patched_cb = NULL;
317 	parser.user_cb = job->user_cb;
318 	parser.user_cb_size = job->user_cb_size;
319 	parser.queue_type = job->queue_type;
320 	parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
321 	job->patched_cb = NULL;
322 	parser.completion = cs_needs_completion(job->cs);
323 
324 	rc = hdev->asic_funcs->cs_parser(hdev, &parser);
325 
326 	if (is_cb_patched(hdev, job)) {
327 		if (!rc) {
328 			job->patched_cb = parser.patched_cb;
329 			job->job_cb_size = parser.patched_cb_size;
330 			job->contains_dma_pkt = parser.contains_dma_pkt;
331 			atomic_inc(&job->patched_cb->cs_cnt);
332 		}
333 
334 		/*
335 		 * Whether the parsing worked or not, we don't need the
336 		 * original CB anymore because it was already parsed and
337 		 * won't be accessed again for this CS
338 		 */
339 		atomic_dec(&job->user_cb->cs_cnt);
340 		hl_cb_put(job->user_cb);
341 		job->user_cb = NULL;
342 	} else if (!rc) {
343 		job->job_cb_size = job->user_cb_size;
344 	}
345 
346 	return rc;
347 }
348 
349 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
350 {
351 	struct hl_cs *cs = job->cs;
352 
353 	if (is_cb_patched(hdev, job)) {
354 		hl_userptr_delete_list(hdev, &job->userptr_list);
355 
356 		/*
357 		 * We might arrive here from rollback and patched CB wasn't
358 		 * created, so we need to check it's not NULL
359 		 */
360 		if (job->patched_cb) {
361 			atomic_dec(&job->patched_cb->cs_cnt);
362 			hl_cb_put(job->patched_cb);
363 		}
364 	}
365 
366 	/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
367 	 * enabled, the user CB isn't released in cs_parser() and thus should be
368 	 * released here. This is also true for INT queues jobs which were
369 	 * allocated by driver.
370 	 */
371 	if ((job->is_kernel_allocated_cb &&
372 		((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
373 				job->queue_type == QUEUE_TYPE_INT))) {
374 		atomic_dec(&job->user_cb->cs_cnt);
375 		hl_cb_put(job->user_cb);
376 	}
377 
378 	/*
379 	 * This is the only place where there can be multiple threads
380 	 * modifying the list at the same time
381 	 */
382 	spin_lock(&cs->job_lock);
383 	list_del(&job->cs_node);
384 	spin_unlock(&cs->job_lock);
385 
386 	hl_debugfs_remove_job(hdev, job);
387 
388 	/* We decrement reference only for a CS that gets completion
389 	 * because the reference was incremented only for this kind of CS
390 	 * right before it was scheduled.
391 	 *
392 	 * In staged submission, only the last CS marked as 'staged_last'
393 	 * gets completion, hence its release function will be called from here.
394 	 * As for all the rest CS's in the staged submission which do not get
395 	 * completion, their CS reference will be decremented by the
396 	 * 'staged_last' CS during the CS release flow.
397 	 * All relevant PQ CI counters will be incremented during the CS release
398 	 * flow by calling 'hl_hw_queue_update_ci'.
399 	 */
400 	if (cs_needs_completion(cs) &&
401 			(job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
402 
403 		/* In CS based completions, the timestamp is already available,
404 		 * so no need to extract it from job
405 		 */
406 		if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
407 			cs->completion_timestamp = job->timestamp;
408 
409 		cs_put(cs);
410 	}
411 
412 	hl_cs_job_put(job);
413 }
414 
415 /*
416  * hl_staged_cs_find_first - locate the first CS in this staged submission
417  *
418  * @hdev: pointer to device structure
419  * @cs_seq: staged submission sequence number
420  *
421  * @note: This function must be called under 'hdev->cs_mirror_lock'
422  *
423  * Find and return a CS pointer with the given sequence
424  */
425 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
426 {
427 	struct hl_cs *cs;
428 
429 	list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
430 		if (cs->staged_cs && cs->staged_first &&
431 				cs->sequence == cs_seq)
432 			return cs;
433 
434 	return NULL;
435 }
436 
437 /*
438  * is_staged_cs_last_exists - returns true if the last CS in sequence exists
439  *
440  * @hdev: pointer to device structure
441  * @cs: staged submission member
442  *
443  */
444 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
445 {
446 	struct hl_cs *last_entry;
447 
448 	last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
449 								staged_cs_node);
450 
451 	if (last_entry->staged_last)
452 		return true;
453 
454 	return false;
455 }
456 
457 /*
458  * staged_cs_get - get CS reference if this CS is a part of a staged CS
459  *
460  * @hdev: pointer to device structure
461  * @cs: current CS
462  * @cs_seq: staged submission sequence number
463  *
464  * Increment CS reference for every CS in this staged submission except for
465  * the CS which get completion.
466  */
467 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
468 {
469 	/* Only the last CS in this staged submission will get a completion.
470 	 * We must increment the reference for all other CS's in this
471 	 * staged submission.
472 	 * Once we get a completion we will release the whole staged submission.
473 	 */
474 	if (!cs->staged_last)
475 		cs_get(cs);
476 }
477 
478 /*
479  * staged_cs_put - put a CS in case it is part of staged submission
480  *
481  * @hdev: pointer to device structure
482  * @cs: CS to put
483  *
484  * This function decrements a CS reference (for a non completion CS)
485  */
486 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
487 {
488 	/* We release all CS's in a staged submission except the last
489 	 * CS which we have never incremented its reference.
490 	 */
491 	if (!cs_needs_completion(cs))
492 		cs_put(cs);
493 }
494 
495 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
496 {
497 	struct hl_cs *next = NULL, *iter, *first_cs;
498 
499 	if (!cs_needs_timeout(cs))
500 		return;
501 
502 	spin_lock(&hdev->cs_mirror_lock);
503 
504 	/* We need to handle tdr only once for the complete staged submission.
505 	 * Hence, we choose the CS that reaches this function first which is
506 	 * the CS marked as 'staged_last'.
507 	 * In case single staged cs was submitted which has both first and last
508 	 * indications, then "cs_find_first" below will return NULL, since we
509 	 * removed the cs node from the list before getting here,
510 	 * in such cases just continue with the cs to cancel it's TDR work.
511 	 */
512 	if (cs->staged_cs && cs->staged_last) {
513 		first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
514 		if (first_cs)
515 			cs = first_cs;
516 	}
517 
518 	spin_unlock(&hdev->cs_mirror_lock);
519 
520 	/* Don't cancel TDR in case this CS was timedout because we might be
521 	 * running from the TDR context
522 	 */
523 	if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
524 		return;
525 
526 	if (cs->tdr_active)
527 		cancel_delayed_work_sync(&cs->work_tdr);
528 
529 	spin_lock(&hdev->cs_mirror_lock);
530 
531 	/* queue TDR for next CS */
532 	list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
533 		if (cs_needs_timeout(iter)) {
534 			next = iter;
535 			break;
536 		}
537 
538 	if (next && !next->tdr_active) {
539 		next->tdr_active = true;
540 		schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
541 	}
542 
543 	spin_unlock(&hdev->cs_mirror_lock);
544 }
545 
546 /*
547  * force_complete_multi_cs - complete all contexts that wait on multi-CS
548  *
549  * @hdev: pointer to habanalabs device structure
550  */
551 static void force_complete_multi_cs(struct hl_device *hdev)
552 {
553 	int i;
554 
555 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
556 		struct multi_cs_completion *mcs_compl;
557 
558 		mcs_compl = &hdev->multi_cs_completion[i];
559 
560 		spin_lock(&mcs_compl->lock);
561 
562 		if (!mcs_compl->used) {
563 			spin_unlock(&mcs_compl->lock);
564 			continue;
565 		}
566 
567 		/* when calling force complete no context should be waiting on
568 		 * multi-cS.
569 		 * We are calling the function as a protection for such case
570 		 * to free any pending context and print error message
571 		 */
572 		dev_err(hdev->dev,
573 				"multi-CS completion context %d still waiting when calling force completion\n",
574 				i);
575 		complete_all(&mcs_compl->completion);
576 		spin_unlock(&mcs_compl->lock);
577 	}
578 }
579 
580 /*
581  * complete_multi_cs - complete all waiting entities on multi-CS
582  *
583  * @hdev: pointer to habanalabs device structure
584  * @cs: CS structure
585  * The function signals a waiting entity that has an overlapping stream masters
586  * with the completed CS.
587  * For example:
588  * - a completed CS worked on stream master QID 4, multi CS completion
589  *   is actively waiting on stream master QIDs 3, 5. don't send signal as no
590  *   common stream master QID
591  * - a completed CS worked on stream master QID 4, multi CS completion
592  *   is actively waiting on stream master QIDs 3, 4. send signal as stream
593  *   master QID 4 is common
594  */
595 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
596 {
597 	struct hl_fence *fence = cs->fence;
598 	int i;
599 
600 	/* in case of multi CS check for completion only for the first CS */
601 	if (cs->staged_cs && !cs->staged_first)
602 		return;
603 
604 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
605 		struct multi_cs_completion *mcs_compl;
606 
607 		mcs_compl = &hdev->multi_cs_completion[i];
608 		if (!mcs_compl->used)
609 			continue;
610 
611 		spin_lock(&mcs_compl->lock);
612 
613 		/*
614 		 * complete if:
615 		 * 1. still waiting for completion
616 		 * 2. the completed CS has at least one overlapping stream
617 		 *    master with the stream masters in the completion
618 		 */
619 		if (mcs_compl->used &&
620 				(fence->stream_master_qid_map &
621 					mcs_compl->stream_master_qid_map)) {
622 			/* extract the timestamp only of first completed CS */
623 			if (!mcs_compl->timestamp)
624 				mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
625 
626 			complete_all(&mcs_compl->completion);
627 
628 			/*
629 			 * Setting mcs_handling_done inside the lock ensures
630 			 * at least one fence have mcs_handling_done set to
631 			 * true before wait for mcs finish. This ensures at
632 			 * least one CS will be set as completed when polling
633 			 * mcs fences.
634 			 */
635 			fence->mcs_handling_done = true;
636 		}
637 
638 		spin_unlock(&mcs_compl->lock);
639 	}
640 	/* In case CS completed without mcs completion initialized */
641 	fence->mcs_handling_done = true;
642 }
643 
644 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
645 					struct hl_cs *cs,
646 					struct hl_cs_compl *hl_cs_cmpl)
647 {
648 	/* Skip this handler if the cs wasn't submitted, to avoid putting
649 	 * the hw_sob twice, since this case already handled at this point,
650 	 * also skip if the hw_sob pointer wasn't set.
651 	 */
652 	if (!hl_cs_cmpl->hw_sob || !cs->submitted)
653 		return;
654 
655 	spin_lock(&hl_cs_cmpl->lock);
656 
657 	/*
658 	 * we get refcount upon reservation of signals or signal/wait cs for the
659 	 * hw_sob object, and need to put it when the first staged cs
660 	 * (which contains the encaps signals) or cs signal/wait is completed.
661 	 */
662 	if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
663 			(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
664 			(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
665 			(!!hl_cs_cmpl->encaps_signals)) {
666 		dev_dbg(hdev->dev,
667 				"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
668 				hl_cs_cmpl->cs_seq,
669 				hl_cs_cmpl->type,
670 				hl_cs_cmpl->hw_sob->sob_id,
671 				hl_cs_cmpl->sob_val);
672 
673 		hw_sob_put(hl_cs_cmpl->hw_sob);
674 
675 		if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
676 			hdev->asic_funcs->reset_sob_group(hdev,
677 					hl_cs_cmpl->sob_group);
678 	}
679 
680 	spin_unlock(&hl_cs_cmpl->lock);
681 }
682 
683 static void cs_do_release(struct kref *ref)
684 {
685 	struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
686 	struct hl_device *hdev = cs->ctx->hdev;
687 	struct hl_cs_job *job, *tmp;
688 	struct hl_cs_compl *hl_cs_cmpl =
689 			container_of(cs->fence, struct hl_cs_compl, base_fence);
690 
691 	cs->completed = true;
692 
693 	/*
694 	 * Although if we reached here it means that all external jobs have
695 	 * finished, because each one of them took refcnt to CS, we still
696 	 * need to go over the internal jobs and complete them. Otherwise, we
697 	 * will have leaked memory and what's worse, the CS object (and
698 	 * potentially the CTX object) could be released, while the JOB
699 	 * still holds a pointer to them (but no reference).
700 	 */
701 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
702 		hl_complete_job(hdev, job);
703 
704 	if (!cs->submitted) {
705 		/*
706 		 * In case the wait for signal CS was submitted, the fence put
707 		 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
708 		 * right before hanging on the PQ.
709 		 */
710 		if (cs->type == CS_TYPE_WAIT ||
711 				cs->type == CS_TYPE_COLLECTIVE_WAIT)
712 			hl_fence_put(cs->signal_fence);
713 
714 		goto out;
715 	}
716 
717 	/* Need to update CI for all queue jobs that does not get completion */
718 	hl_hw_queue_update_ci(cs);
719 
720 	/* remove CS from CS mirror list */
721 	spin_lock(&hdev->cs_mirror_lock);
722 	list_del_init(&cs->mirror_node);
723 	spin_unlock(&hdev->cs_mirror_lock);
724 
725 	cs_handle_tdr(hdev, cs);
726 
727 	if (cs->staged_cs) {
728 		/* the completion CS decrements reference for the entire
729 		 * staged submission
730 		 */
731 		if (cs->staged_last) {
732 			struct hl_cs *staged_cs, *tmp_cs;
733 
734 			list_for_each_entry_safe(staged_cs, tmp_cs,
735 					&cs->staged_cs_node, staged_cs_node)
736 				staged_cs_put(hdev, staged_cs);
737 		}
738 
739 		/* A staged CS will be a member in the list only after it
740 		 * was submitted. We used 'cs_mirror_lock' when inserting
741 		 * it to list so we will use it again when removing it
742 		 */
743 		if (cs->submitted) {
744 			spin_lock(&hdev->cs_mirror_lock);
745 			list_del(&cs->staged_cs_node);
746 			spin_unlock(&hdev->cs_mirror_lock);
747 		}
748 
749 		/* decrement refcount to handle when first staged cs
750 		 * with encaps signals is completed.
751 		 */
752 		if (hl_cs_cmpl->encaps_signals)
753 			kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
754 					hl_encaps_release_handle_and_put_ctx);
755 	}
756 
757 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
758 		kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
759 
760 out:
761 	/* Must be called before hl_ctx_put because inside we use ctx to get
762 	 * the device
763 	 */
764 	hl_debugfs_remove_cs(cs);
765 
766 	hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
767 
768 	/* We need to mark an error for not submitted because in that case
769 	 * the hl fence release flow is different. Mainly, we don't need
770 	 * to handle hw_sob for signal/wait
771 	 */
772 	if (cs->timedout)
773 		cs->fence->error = -ETIMEDOUT;
774 	else if (cs->aborted)
775 		cs->fence->error = -EIO;
776 	else if (!cs->submitted)
777 		cs->fence->error = -EBUSY;
778 
779 	if (unlikely(cs->skip_reset_on_timeout)) {
780 		dev_err(hdev->dev,
781 			"Command submission %llu completed after %llu (s)\n",
782 			cs->sequence,
783 			div_u64(jiffies - cs->submission_time_jiffies, HZ));
784 	}
785 
786 	if (cs->timestamp) {
787 		cs->fence->timestamp = cs->completion_timestamp;
788 		hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
789 				   cs->fence->timestamp, cs->fence->error);
790 	}
791 
792 	hl_ctx_put(cs->ctx);
793 
794 	complete_all(&cs->fence->completion);
795 	complete_multi_cs(hdev, cs);
796 
797 	cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
798 
799 	hl_fence_put(cs->fence);
800 
801 	kfree(cs->jobs_in_queue_cnt);
802 	kfree(cs);
803 }
804 
805 static void cs_timedout(struct work_struct *work)
806 {
807 	struct hl_device *hdev;
808 	u64 event_mask = 0x0;
809 	int rc;
810 	struct hl_cs *cs = container_of(work, struct hl_cs,
811 						 work_tdr.work);
812 	bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false;
813 
814 	rc = cs_get_unless_zero(cs);
815 	if (!rc)
816 		return;
817 
818 	if ((!cs->submitted) || (cs->completed)) {
819 		cs_put(cs);
820 		return;
821 	}
822 
823 	hdev = cs->ctx->hdev;
824 
825 	if (likely(!skip_reset_on_timeout)) {
826 		if (hdev->reset_on_lockup)
827 			device_reset = true;
828 		else
829 			hdev->reset_info.needs_reset = true;
830 
831 		/* Mark the CS is timed out so we won't try to cancel its TDR */
832 		cs->timedout = true;
833 	}
834 
835 	/* Save only the first CS timeout parameters */
836 	rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
837 	if (rc) {
838 		hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
839 		hdev->captured_err_info.cs_timeout.seq = cs->sequence;
840 		event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
841 	}
842 
843 	switch (cs->type) {
844 	case CS_TYPE_SIGNAL:
845 		dev_err(hdev->dev,
846 			"Signal command submission %llu has not finished in time!\n",
847 			cs->sequence);
848 		break;
849 
850 	case CS_TYPE_WAIT:
851 		dev_err(hdev->dev,
852 			"Wait command submission %llu has not finished in time!\n",
853 			cs->sequence);
854 		break;
855 
856 	case CS_TYPE_COLLECTIVE_WAIT:
857 		dev_err(hdev->dev,
858 			"Collective Wait command submission %llu has not finished in time!\n",
859 			cs->sequence);
860 		break;
861 
862 	default:
863 		dev_err(hdev->dev,
864 			"Command submission %llu has not finished in time!\n",
865 			cs->sequence);
866 		break;
867 	}
868 
869 	rc = hl_state_dump(hdev);
870 	if (rc)
871 		dev_err(hdev->dev, "Error during system state dump %d\n", rc);
872 
873 	cs_put(cs);
874 
875 	if (device_reset) {
876 		event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
877 		hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
878 	} else if (event_mask) {
879 		hl_notifier_event_send_all(hdev, event_mask);
880 	}
881 }
882 
883 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
884 			enum hl_cs_type cs_type, u64 user_sequence,
885 			struct hl_cs **cs_new, u32 flags, u32 timeout)
886 {
887 	struct hl_cs_counters_atomic *cntr;
888 	struct hl_fence *other = NULL;
889 	struct hl_cs_compl *cs_cmpl;
890 	struct hl_cs *cs;
891 	int rc;
892 
893 	cntr = &hdev->aggregated_cs_counters;
894 
895 	cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
896 	if (!cs)
897 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
898 
899 	if (!cs) {
900 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
901 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
902 		return -ENOMEM;
903 	}
904 
905 	/* increment refcnt for context */
906 	hl_ctx_get(ctx);
907 
908 	cs->ctx = ctx;
909 	cs->submitted = false;
910 	cs->completed = false;
911 	cs->type = cs_type;
912 	cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
913 	cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
914 	cs->timeout_jiffies = timeout;
915 	cs->skip_reset_on_timeout =
916 		hdev->reset_info.skip_reset_on_timeout ||
917 		!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
918 	cs->submission_time_jiffies = jiffies;
919 	INIT_LIST_HEAD(&cs->job_list);
920 	INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
921 	kref_init(&cs->refcount);
922 	spin_lock_init(&cs->job_lock);
923 
924 	cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
925 	if (!cs_cmpl)
926 		cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
927 
928 	if (!cs_cmpl) {
929 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
930 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
931 		rc = -ENOMEM;
932 		goto free_cs;
933 	}
934 
935 	cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
936 			sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
937 	if (!cs->jobs_in_queue_cnt)
938 		cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
939 				sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
940 
941 	if (!cs->jobs_in_queue_cnt) {
942 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
943 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
944 		rc = -ENOMEM;
945 		goto free_cs_cmpl;
946 	}
947 
948 	cs_cmpl->hdev = hdev;
949 	cs_cmpl->type = cs->type;
950 	spin_lock_init(&cs_cmpl->lock);
951 	cs->fence = &cs_cmpl->base_fence;
952 
953 	spin_lock(&ctx->cs_lock);
954 
955 	cs_cmpl->cs_seq = ctx->cs_sequence;
956 	other = ctx->cs_pending[cs_cmpl->cs_seq &
957 				(hdev->asic_prop.max_pending_cs - 1)];
958 
959 	if (other && !completion_done(&other->completion)) {
960 		/* If the following statement is true, it means we have reached
961 		 * a point in which only part of the staged submission was
962 		 * submitted and we don't have enough room in the 'cs_pending'
963 		 * array for the rest of the submission.
964 		 * This causes a deadlock because this CS will never be
965 		 * completed as it depends on future CS's for completion.
966 		 */
967 		if (other->cs_sequence == user_sequence)
968 			dev_crit_ratelimited(hdev->dev,
969 				"Staged CS %llu deadlock due to lack of resources",
970 				user_sequence);
971 
972 		dev_dbg_ratelimited(hdev->dev,
973 			"Rejecting CS because of too many in-flights CS\n");
974 		atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
975 		atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
976 		rc = -EAGAIN;
977 		goto free_fence;
978 	}
979 
980 	/* init hl_fence */
981 	hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
982 
983 	cs->sequence = cs_cmpl->cs_seq;
984 
985 	ctx->cs_pending[cs_cmpl->cs_seq &
986 			(hdev->asic_prop.max_pending_cs - 1)] =
987 							&cs_cmpl->base_fence;
988 	ctx->cs_sequence++;
989 
990 	hl_fence_get(&cs_cmpl->base_fence);
991 
992 	hl_fence_put(other);
993 
994 	spin_unlock(&ctx->cs_lock);
995 
996 	*cs_new = cs;
997 
998 	return 0;
999 
1000 free_fence:
1001 	spin_unlock(&ctx->cs_lock);
1002 	kfree(cs->jobs_in_queue_cnt);
1003 free_cs_cmpl:
1004 	kfree(cs_cmpl);
1005 free_cs:
1006 	kfree(cs);
1007 	hl_ctx_put(ctx);
1008 	return rc;
1009 }
1010 
1011 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1012 {
1013 	struct hl_cs_job *job, *tmp;
1014 
1015 	staged_cs_put(hdev, cs);
1016 
1017 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1018 		hl_complete_job(hdev, job);
1019 }
1020 
1021 /*
1022  * release_reserved_encaps_signals() - release reserved encapsulated signals.
1023  * @hdev: pointer to habanalabs device structure
1024  *
1025  * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
1026  * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
1027  * For these signals need also to put the refcount of the H/W SOB which was taken at the
1028  * reservation.
1029  */
1030 static void release_reserved_encaps_signals(struct hl_device *hdev)
1031 {
1032 	struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
1033 	struct hl_cs_encaps_sig_handle *handle;
1034 	struct hl_encaps_signals_mgr *mgr;
1035 	u32 id;
1036 
1037 	if (!ctx)
1038 		return;
1039 
1040 	mgr = &ctx->sig_mgr;
1041 
1042 	idr_for_each_entry(&mgr->handles, handle, id)
1043 		if (handle->cs_seq == ULLONG_MAX)
1044 			kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
1045 
1046 	hl_ctx_put(ctx);
1047 }
1048 
1049 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1050 {
1051 	int i;
1052 	struct hl_cs *cs, *tmp;
1053 
1054 	if (!skip_wq_flush) {
1055 		flush_workqueue(hdev->ts_free_obj_wq);
1056 
1057 		/* flush all completions before iterating over the CS mirror list in
1058 		 * order to avoid a race with the release functions
1059 		 */
1060 		for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1061 			flush_workqueue(hdev->cq_wq[i]);
1062 
1063 		flush_workqueue(hdev->cs_cmplt_wq);
1064 	}
1065 
1066 	/* Make sure we don't have leftovers in the CS mirror list */
1067 	list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1068 		cs_get(cs);
1069 		cs->aborted = true;
1070 		dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1071 					cs->ctx->asid, cs->sequence);
1072 		cs_rollback(hdev, cs);
1073 		cs_put(cs);
1074 	}
1075 
1076 	force_complete_multi_cs(hdev);
1077 
1078 	release_reserved_encaps_signals(hdev);
1079 }
1080 
1081 static void
1082 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1083 {
1084 	struct hl_user_pending_interrupt *pend, *temp;
1085 
1086 	spin_lock(&interrupt->wait_list_lock);
1087 	list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
1088 		if (pend->ts_reg_info.buf) {
1089 			list_del(&pend->wait_list_node);
1090 			hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
1091 			hl_cb_put(pend->ts_reg_info.cq_cb);
1092 		} else {
1093 			pend->fence.error = -EIO;
1094 			complete_all(&pend->fence.completion);
1095 		}
1096 	}
1097 	spin_unlock(&interrupt->wait_list_lock);
1098 }
1099 
1100 void hl_release_pending_user_interrupts(struct hl_device *hdev)
1101 {
1102 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1103 	struct hl_user_interrupt *interrupt;
1104 	int i;
1105 
1106 	if (!prop->user_interrupt_count)
1107 		return;
1108 
1109 	/* We iterate through the user interrupt requests and waking up all
1110 	 * user threads waiting for interrupt completion. We iterate the
1111 	 * list under a lock, this is why all user threads, once awake,
1112 	 * will wait on the same lock and will release the waiting object upon
1113 	 * unlock.
1114 	 */
1115 
1116 	for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1117 		interrupt = &hdev->user_interrupt[i];
1118 		wake_pending_user_interrupt_threads(interrupt);
1119 	}
1120 
1121 	interrupt = &hdev->common_user_cq_interrupt;
1122 	wake_pending_user_interrupt_threads(interrupt);
1123 
1124 	interrupt = &hdev->common_decoder_interrupt;
1125 	wake_pending_user_interrupt_threads(interrupt);
1126 }
1127 
1128 static void force_complete_cs(struct hl_device *hdev)
1129 {
1130 	struct hl_cs *cs;
1131 
1132 	spin_lock(&hdev->cs_mirror_lock);
1133 
1134 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
1135 		cs->fence->error = -EIO;
1136 		complete_all(&cs->fence->completion);
1137 	}
1138 
1139 	spin_unlock(&hdev->cs_mirror_lock);
1140 }
1141 
1142 void hl_abort_waitings_for_completion(struct hl_device *hdev)
1143 {
1144 	force_complete_cs(hdev);
1145 	force_complete_multi_cs(hdev);
1146 	hl_release_pending_user_interrupts(hdev);
1147 }
1148 
1149 static void job_wq_completion(struct work_struct *work)
1150 {
1151 	struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1152 						finish_work);
1153 	struct hl_cs *cs = job->cs;
1154 	struct hl_device *hdev = cs->ctx->hdev;
1155 
1156 	/* job is no longer needed */
1157 	hl_complete_job(hdev, job);
1158 }
1159 
1160 static void cs_completion(struct work_struct *work)
1161 {
1162 	struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1163 	struct hl_device *hdev = cs->ctx->hdev;
1164 	struct hl_cs_job *job, *tmp;
1165 
1166 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1167 		hl_complete_job(hdev, job);
1168 }
1169 
1170 u32 hl_get_active_cs_num(struct hl_device *hdev)
1171 {
1172 	u32 active_cs_num = 0;
1173 	struct hl_cs *cs;
1174 
1175 	spin_lock(&hdev->cs_mirror_lock);
1176 
1177 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node)
1178 		if (!cs->completed)
1179 			active_cs_num++;
1180 
1181 	spin_unlock(&hdev->cs_mirror_lock);
1182 
1183 	return active_cs_num;
1184 }
1185 
1186 static int validate_queue_index(struct hl_device *hdev,
1187 				struct hl_cs_chunk *chunk,
1188 				enum hl_queue_type *queue_type,
1189 				bool *is_kernel_allocated_cb)
1190 {
1191 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1192 	struct hw_queue_properties *hw_queue_prop;
1193 
1194 	/* This must be checked here to prevent out-of-bounds access to
1195 	 * hw_queues_props array
1196 	 */
1197 	if (chunk->queue_index >= asic->max_queues) {
1198 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1199 			chunk->queue_index);
1200 		return -EINVAL;
1201 	}
1202 
1203 	hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1204 
1205 	if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1206 		dev_err(hdev->dev, "Queue index %d is not applicable\n",
1207 			chunk->queue_index);
1208 		return -EINVAL;
1209 	}
1210 
1211 	if (hw_queue_prop->binned) {
1212 		dev_err(hdev->dev, "Queue index %d is binned out\n",
1213 			chunk->queue_index);
1214 		return -EINVAL;
1215 	}
1216 
1217 	if (hw_queue_prop->driver_only) {
1218 		dev_err(hdev->dev,
1219 			"Queue index %d is restricted for the kernel driver\n",
1220 			chunk->queue_index);
1221 		return -EINVAL;
1222 	}
1223 
1224 	/* When hw queue type isn't QUEUE_TYPE_HW,
1225 	 * USER_ALLOC_CB flag shall be referred as "don't care".
1226 	 */
1227 	if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1228 		if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1229 			if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1230 				dev_err(hdev->dev,
1231 					"Queue index %d doesn't support user CB\n",
1232 					chunk->queue_index);
1233 				return -EINVAL;
1234 			}
1235 
1236 			*is_kernel_allocated_cb = false;
1237 		} else {
1238 			if (!(hw_queue_prop->cb_alloc_flags &
1239 					CB_ALLOC_KERNEL)) {
1240 				dev_err(hdev->dev,
1241 					"Queue index %d doesn't support kernel CB\n",
1242 					chunk->queue_index);
1243 				return -EINVAL;
1244 			}
1245 
1246 			*is_kernel_allocated_cb = true;
1247 		}
1248 	} else {
1249 		*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1250 						& CB_ALLOC_KERNEL);
1251 	}
1252 
1253 	*queue_type = hw_queue_prop->type;
1254 	return 0;
1255 }
1256 
1257 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1258 					struct hl_mem_mgr *mmg,
1259 					struct hl_cs_chunk *chunk)
1260 {
1261 	struct hl_cb *cb;
1262 
1263 	cb = hl_cb_get(mmg, chunk->cb_handle);
1264 	if (!cb) {
1265 		dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1266 		return NULL;
1267 	}
1268 
1269 	if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1270 		dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1271 		goto release_cb;
1272 	}
1273 
1274 	atomic_inc(&cb->cs_cnt);
1275 
1276 	return cb;
1277 
1278 release_cb:
1279 	hl_cb_put(cb);
1280 	return NULL;
1281 }
1282 
1283 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1284 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1285 {
1286 	struct hl_cs_job *job;
1287 
1288 	job = kzalloc(sizeof(*job), GFP_ATOMIC);
1289 	if (!job)
1290 		job = kzalloc(sizeof(*job), GFP_KERNEL);
1291 
1292 	if (!job)
1293 		return NULL;
1294 
1295 	kref_init(&job->refcount);
1296 	job->queue_type = queue_type;
1297 	job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1298 
1299 	if (is_cb_patched(hdev, job))
1300 		INIT_LIST_HEAD(&job->userptr_list);
1301 
1302 	if (job->queue_type == QUEUE_TYPE_EXT)
1303 		INIT_WORK(&job->finish_work, job_wq_completion);
1304 
1305 	return job;
1306 }
1307 
1308 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1309 {
1310 	if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1311 		return CS_TYPE_SIGNAL;
1312 	else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1313 		return CS_TYPE_WAIT;
1314 	else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1315 		return CS_TYPE_COLLECTIVE_WAIT;
1316 	else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1317 		return CS_RESERVE_SIGNALS;
1318 	else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1319 		return CS_UNRESERVE_SIGNALS;
1320 	else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1321 		return CS_TYPE_ENGINE_CORE;
1322 	else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND)
1323 		return CS_TYPE_ENGINES;
1324 	else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
1325 		return CS_TYPE_FLUSH_PCI_HBW_WRITES;
1326 	else
1327 		return CS_TYPE_DEFAULT;
1328 }
1329 
1330 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1331 {
1332 	struct hl_device *hdev = hpriv->hdev;
1333 	struct hl_ctx *ctx = hpriv->ctx;
1334 	u32 cs_type_flags, num_chunks;
1335 	enum hl_device_status status;
1336 	enum hl_cs_type cs_type;
1337 	bool is_sync_stream;
1338 	int i;
1339 
1340 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
1341 		if (args->in.pad[i]) {
1342 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
1343 			return -EINVAL;
1344 		}
1345 
1346 	if (!hl_device_operational(hdev, &status)) {
1347 		return -EBUSY;
1348 	}
1349 
1350 	if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1351 			!hdev->supports_staged_submission) {
1352 		dev_err(hdev->dev, "staged submission not supported");
1353 		return -EPERM;
1354 	}
1355 
1356 	cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1357 
1358 	if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1359 		dev_err(hdev->dev,
1360 			"CS type flags are mutually exclusive, context %d\n",
1361 			ctx->asid);
1362 		return -EINVAL;
1363 	}
1364 
1365 	cs_type = hl_cs_get_cs_type(cs_type_flags);
1366 	num_chunks = args->in.num_chunks_execute;
1367 
1368 	is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1369 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
1370 
1371 	if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1372 		dev_err(hdev->dev, "Sync stream CS is not supported\n");
1373 		return -EINVAL;
1374 	}
1375 
1376 	if (cs_type == CS_TYPE_DEFAULT) {
1377 		if (!num_chunks) {
1378 			dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1379 			return -EINVAL;
1380 		}
1381 	} else if (is_sync_stream && num_chunks != 1) {
1382 		dev_err(hdev->dev,
1383 			"Sync stream CS mandates one chunk only, context %d\n",
1384 			ctx->asid);
1385 		return -EINVAL;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1392 					struct hl_cs_chunk **cs_chunk_array,
1393 					void __user *chunks, u32 num_chunks,
1394 					struct hl_ctx *ctx)
1395 {
1396 	u32 size_to_copy;
1397 
1398 	if (num_chunks > HL_MAX_JOBS_PER_CS) {
1399 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1400 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1401 		dev_err(hdev->dev,
1402 			"Number of chunks can NOT be larger than %d\n",
1403 			HL_MAX_JOBS_PER_CS);
1404 		return -EINVAL;
1405 	}
1406 
1407 	*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1408 					GFP_ATOMIC);
1409 	if (!*cs_chunk_array)
1410 		*cs_chunk_array = kmalloc_array(num_chunks,
1411 					sizeof(**cs_chunk_array), GFP_KERNEL);
1412 	if (!*cs_chunk_array) {
1413 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1414 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1415 		return -ENOMEM;
1416 	}
1417 
1418 	size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1419 	if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1420 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1421 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1422 		dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1423 		kfree(*cs_chunk_array);
1424 		return -EFAULT;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1431 				u64 sequence, u32 flags,
1432 				u32 encaps_signal_handle)
1433 {
1434 	if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1435 		return 0;
1436 
1437 	cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1438 	cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1439 
1440 	if (cs->staged_first) {
1441 		/* Staged CS sequence is the first CS sequence */
1442 		INIT_LIST_HEAD(&cs->staged_cs_node);
1443 		cs->staged_sequence = cs->sequence;
1444 
1445 		if (cs->encaps_signals)
1446 			cs->encaps_sig_hdl_id = encaps_signal_handle;
1447 	} else {
1448 		/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1449 		 * under the cs_mirror_lock
1450 		 */
1451 		cs->staged_sequence = sequence;
1452 	}
1453 
1454 	/* Increment CS reference if needed */
1455 	staged_cs_get(hdev, cs);
1456 
1457 	cs->staged_cs = true;
1458 
1459 	return 0;
1460 }
1461 
1462 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1463 {
1464 	int i;
1465 
1466 	for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1467 		if (qid == hdev->stream_master_qid_arr[i])
1468 			return BIT(i);
1469 
1470 	return 0;
1471 }
1472 
1473 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1474 				u32 num_chunks, u64 *cs_seq, u32 flags,
1475 				u32 encaps_signals_handle, u32 timeout,
1476 				u16 *signal_initial_sob_count)
1477 {
1478 	bool staged_mid, int_queues_only = true, using_hw_queues = false;
1479 	struct hl_device *hdev = hpriv->hdev;
1480 	struct hl_cs_chunk *cs_chunk_array;
1481 	struct hl_cs_counters_atomic *cntr;
1482 	struct hl_ctx *ctx = hpriv->ctx;
1483 	struct hl_cs_job *job;
1484 	struct hl_cs *cs;
1485 	struct hl_cb *cb;
1486 	u64 user_sequence;
1487 	u8 stream_master_qid_map = 0;
1488 	int rc, i;
1489 
1490 	cntr = &hdev->aggregated_cs_counters;
1491 	user_sequence = *cs_seq;
1492 	*cs_seq = ULLONG_MAX;
1493 
1494 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1495 			hpriv->ctx);
1496 	if (rc)
1497 		goto out;
1498 
1499 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1500 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1501 		staged_mid = true;
1502 	else
1503 		staged_mid = false;
1504 
1505 	rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1506 			staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1507 			timeout);
1508 	if (rc)
1509 		goto free_cs_chunk_array;
1510 
1511 	*cs_seq = cs->sequence;
1512 
1513 	hl_debugfs_add_cs(cs);
1514 
1515 	rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1516 						encaps_signals_handle);
1517 	if (rc)
1518 		goto free_cs_object;
1519 
1520 	/* If this is a staged submission we must return the staged sequence
1521 	 * rather than the internal CS sequence
1522 	 */
1523 	if (cs->staged_cs)
1524 		*cs_seq = cs->staged_sequence;
1525 
1526 	/* Validate ALL the CS chunks before submitting the CS */
1527 	for (i = 0 ; i < num_chunks ; i++) {
1528 		struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1529 		enum hl_queue_type queue_type;
1530 		bool is_kernel_allocated_cb;
1531 
1532 		rc = validate_queue_index(hdev, chunk, &queue_type,
1533 						&is_kernel_allocated_cb);
1534 		if (rc) {
1535 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1536 			atomic64_inc(&cntr->validation_drop_cnt);
1537 			goto free_cs_object;
1538 		}
1539 
1540 		if (is_kernel_allocated_cb) {
1541 			cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
1542 			if (!cb) {
1543 				atomic64_inc(
1544 					&ctx->cs_counters.validation_drop_cnt);
1545 				atomic64_inc(&cntr->validation_drop_cnt);
1546 				rc = -EINVAL;
1547 				goto free_cs_object;
1548 			}
1549 		} else {
1550 			cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1551 		}
1552 
1553 		if (queue_type == QUEUE_TYPE_EXT ||
1554 						queue_type == QUEUE_TYPE_HW) {
1555 			int_queues_only = false;
1556 
1557 			/*
1558 			 * store which stream are being used for external/HW
1559 			 * queues of this CS
1560 			 */
1561 			if (hdev->supports_wait_for_multi_cs)
1562 				stream_master_qid_map |=
1563 					get_stream_master_qid_mask(hdev,
1564 							chunk->queue_index);
1565 		}
1566 
1567 		if (queue_type == QUEUE_TYPE_HW)
1568 			using_hw_queues = true;
1569 
1570 		job = hl_cs_allocate_job(hdev, queue_type,
1571 						is_kernel_allocated_cb);
1572 		if (!job) {
1573 			atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1574 			atomic64_inc(&cntr->out_of_mem_drop_cnt);
1575 			dev_err(hdev->dev, "Failed to allocate a new job\n");
1576 			rc = -ENOMEM;
1577 			if (is_kernel_allocated_cb)
1578 				goto release_cb;
1579 
1580 			goto free_cs_object;
1581 		}
1582 
1583 		job->id = i + 1;
1584 		job->cs = cs;
1585 		job->user_cb = cb;
1586 		job->user_cb_size = chunk->cb_size;
1587 		job->hw_queue_id = chunk->queue_index;
1588 
1589 		cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1590 		cs->jobs_cnt++;
1591 
1592 		list_add_tail(&job->cs_node, &cs->job_list);
1593 
1594 		/*
1595 		 * Increment CS reference. When CS reference is 0, CS is
1596 		 * done and can be signaled to user and free all its resources
1597 		 * Only increment for JOB on external or H/W queues, because
1598 		 * only for those JOBs we get completion
1599 		 */
1600 		if (cs_needs_completion(cs) &&
1601 			(job->queue_type == QUEUE_TYPE_EXT ||
1602 				job->queue_type == QUEUE_TYPE_HW))
1603 			cs_get(cs);
1604 
1605 		hl_debugfs_add_job(hdev, job);
1606 
1607 		rc = cs_parser(hpriv, job);
1608 		if (rc) {
1609 			atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1610 			atomic64_inc(&cntr->parsing_drop_cnt);
1611 			dev_err(hdev->dev,
1612 				"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1613 				cs->ctx->asid, cs->sequence, job->id, rc);
1614 			goto free_cs_object;
1615 		}
1616 	}
1617 
1618 	/* We allow a CS with any queue type combination as long as it does
1619 	 * not get a completion
1620 	 */
1621 	if (int_queues_only && cs_needs_completion(cs)) {
1622 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1623 		atomic64_inc(&cntr->validation_drop_cnt);
1624 		dev_err(hdev->dev,
1625 			"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1626 			cs->ctx->asid, cs->sequence);
1627 		rc = -EINVAL;
1628 		goto free_cs_object;
1629 	}
1630 
1631 	if (using_hw_queues)
1632 		INIT_WORK(&cs->finish_work, cs_completion);
1633 
1634 	/*
1635 	 * store the (external/HW queues) streams used by the CS in the
1636 	 * fence object for multi-CS completion
1637 	 */
1638 	if (hdev->supports_wait_for_multi_cs)
1639 		cs->fence->stream_master_qid_map = stream_master_qid_map;
1640 
1641 	rc = hl_hw_queue_schedule_cs(cs);
1642 	if (rc) {
1643 		if (rc != -EAGAIN)
1644 			dev_err(hdev->dev,
1645 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
1646 				cs->ctx->asid, cs->sequence, rc);
1647 		goto free_cs_object;
1648 	}
1649 
1650 	*signal_initial_sob_count = cs->initial_sob_count;
1651 
1652 	rc = HL_CS_STATUS_SUCCESS;
1653 	goto put_cs;
1654 
1655 release_cb:
1656 	atomic_dec(&cb->cs_cnt);
1657 	hl_cb_put(cb);
1658 free_cs_object:
1659 	cs_rollback(hdev, cs);
1660 	*cs_seq = ULLONG_MAX;
1661 	/* The path below is both for good and erroneous exits */
1662 put_cs:
1663 	/* We finished with the CS in this function, so put the ref */
1664 	cs_put(cs);
1665 free_cs_chunk_array:
1666 	kfree(cs_chunk_array);
1667 out:
1668 	return rc;
1669 }
1670 
1671 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1672 				u64 *cs_seq)
1673 {
1674 	struct hl_device *hdev = hpriv->hdev;
1675 	struct hl_ctx *ctx = hpriv->ctx;
1676 	bool need_soft_reset = false;
1677 	int rc = 0, do_ctx_switch = 0;
1678 	void __user *chunks;
1679 	u32 num_chunks, tmp;
1680 	u16 sob_count;
1681 	int ret;
1682 
1683 	if (hdev->supports_ctx_switch)
1684 		do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1685 
1686 	if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1687 		mutex_lock(&hpriv->restore_phase_mutex);
1688 
1689 		if (do_ctx_switch) {
1690 			rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1691 			if (rc) {
1692 				dev_err_ratelimited(hdev->dev,
1693 					"Failed to switch to context %d, rejecting CS! %d\n",
1694 					ctx->asid, rc);
1695 				/*
1696 				 * If we timedout, or if the device is not IDLE
1697 				 * while we want to do context-switch (-EBUSY),
1698 				 * we need to soft-reset because QMAN is
1699 				 * probably stuck. However, we can't call to
1700 				 * reset here directly because of deadlock, so
1701 				 * need to do it at the very end of this
1702 				 * function
1703 				 */
1704 				if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1705 					need_soft_reset = true;
1706 				mutex_unlock(&hpriv->restore_phase_mutex);
1707 				goto out;
1708 			}
1709 		}
1710 
1711 		hdev->asic_funcs->restore_phase_topology(hdev);
1712 
1713 		chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1714 		num_chunks = args->in.num_chunks_restore;
1715 
1716 		if (!num_chunks) {
1717 			dev_dbg(hdev->dev,
1718 				"Need to run restore phase but restore CS is empty\n");
1719 			rc = 0;
1720 		} else {
1721 			rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1722 					cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
1723 		}
1724 
1725 		mutex_unlock(&hpriv->restore_phase_mutex);
1726 
1727 		if (rc) {
1728 			dev_err(hdev->dev,
1729 				"Failed to submit restore CS for context %d (%d)\n",
1730 				ctx->asid, rc);
1731 			goto out;
1732 		}
1733 
1734 		/* Need to wait for restore completion before execution phase */
1735 		if (num_chunks) {
1736 			enum hl_cs_wait_status status;
1737 wait_again:
1738 			ret = _hl_cs_wait_ioctl(hdev, ctx,
1739 					jiffies_to_usecs(hdev->timeout_jiffies),
1740 					*cs_seq, &status, NULL);
1741 			if (ret) {
1742 				if (ret == -ERESTARTSYS) {
1743 					usleep_range(100, 200);
1744 					goto wait_again;
1745 				}
1746 
1747 				dev_err(hdev->dev,
1748 					"Restore CS for context %d failed to complete %d\n",
1749 					ctx->asid, ret);
1750 				rc = -ENOEXEC;
1751 				goto out;
1752 			}
1753 		}
1754 
1755 		if (hdev->supports_ctx_switch)
1756 			ctx->thread_ctx_switch_wait_token = 1;
1757 
1758 	} else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1759 		rc = hl_poll_timeout_memory(hdev,
1760 			&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1761 			100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1762 
1763 		if (rc == -ETIMEDOUT) {
1764 			dev_err(hdev->dev,
1765 				"context switch phase timeout (%d)\n", tmp);
1766 			goto out;
1767 		}
1768 	}
1769 
1770 out:
1771 	if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1772 		hl_device_reset(hdev, 0);
1773 
1774 	return rc;
1775 }
1776 
1777 /*
1778  * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1779  * if the SOB value reaches the max value move to the other SOB reserved
1780  * to the queue.
1781  * @hdev: pointer to device structure
1782  * @q_idx: stream queue index
1783  * @hw_sob: the H/W SOB used in this signal CS.
1784  * @count: signals count
1785  * @encaps_sig: tells whether it's reservation for encaps signals or not.
1786  *
1787  * Note that this function must be called while hw_queues_lock is taken.
1788  */
1789 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1790 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1791 
1792 {
1793 	struct hl_sync_stream_properties *prop;
1794 	struct hl_hw_sob *sob = *hw_sob, *other_sob;
1795 	u8 other_sob_offset;
1796 
1797 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1798 
1799 	hw_sob_get(sob);
1800 
1801 	/* check for wraparound */
1802 	if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1803 		/*
1804 		 * Decrement as we reached the max value.
1805 		 * The release function won't be called here as we've
1806 		 * just incremented the refcount right before calling this
1807 		 * function.
1808 		 */
1809 		hw_sob_put_err(sob);
1810 
1811 		/*
1812 		 * check the other sob value, if it still in use then fail
1813 		 * otherwise make the switch
1814 		 */
1815 		other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1816 		other_sob = &prop->hw_sob[other_sob_offset];
1817 
1818 		if (kref_read(&other_sob->kref) != 1) {
1819 			dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1820 								q_idx);
1821 			return -EINVAL;
1822 		}
1823 
1824 		/*
1825 		 * next_sob_val always points to the next available signal
1826 		 * in the sob, so in encaps signals it will be the next one
1827 		 * after reserving the required amount.
1828 		 */
1829 		if (encaps_sig)
1830 			prop->next_sob_val = count + 1;
1831 		else
1832 			prop->next_sob_val = count;
1833 
1834 		/* only two SOBs are currently in use */
1835 		prop->curr_sob_offset = other_sob_offset;
1836 		*hw_sob = other_sob;
1837 
1838 		/*
1839 		 * check if other_sob needs reset, then do it before using it
1840 		 * for the reservation or the next signal cs.
1841 		 * we do it here, and for both encaps and regular signal cs
1842 		 * cases in order to avoid possible races of two kref_put
1843 		 * of the sob which can occur at the same time if we move the
1844 		 * sob reset(kref_put) to cs_do_release function.
1845 		 * in addition, if we have combination of cs signal and
1846 		 * encaps, and at the point we need to reset the sob there was
1847 		 * no more reservations and only signal cs keep coming,
1848 		 * in such case we need signal_cs to put the refcount and
1849 		 * reset the sob.
1850 		 */
1851 		if (other_sob->need_reset)
1852 			hw_sob_put(other_sob);
1853 
1854 		if (encaps_sig) {
1855 			/* set reset indication for the sob */
1856 			sob->need_reset = true;
1857 			hw_sob_get(other_sob);
1858 		}
1859 
1860 		dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1861 				prop->curr_sob_offset, q_idx);
1862 	} else {
1863 		prop->next_sob_val += count;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1870 		struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1871 		bool encaps_signals)
1872 {
1873 	u64 *signal_seq_arr = NULL;
1874 	u32 size_to_copy, signal_seq_arr_len;
1875 	int rc = 0;
1876 
1877 	if (encaps_signals) {
1878 		*signal_seq = chunk->encaps_signal_seq;
1879 		return 0;
1880 	}
1881 
1882 	signal_seq_arr_len = chunk->num_signal_seq_arr;
1883 
1884 	/* currently only one signal seq is supported */
1885 	if (signal_seq_arr_len != 1) {
1886 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1887 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1888 		dev_err(hdev->dev,
1889 			"Wait for signal CS supports only one signal CS seq\n");
1890 		return -EINVAL;
1891 	}
1892 
1893 	signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1894 					sizeof(*signal_seq_arr),
1895 					GFP_ATOMIC);
1896 	if (!signal_seq_arr)
1897 		signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1898 					sizeof(*signal_seq_arr),
1899 					GFP_KERNEL);
1900 	if (!signal_seq_arr) {
1901 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1902 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1903 		return -ENOMEM;
1904 	}
1905 
1906 	size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1907 	if (copy_from_user(signal_seq_arr,
1908 				u64_to_user_ptr(chunk->signal_seq_arr),
1909 				size_to_copy)) {
1910 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1911 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1912 		dev_err(hdev->dev,
1913 			"Failed to copy signal seq array from user\n");
1914 		rc = -EFAULT;
1915 		goto out;
1916 	}
1917 
1918 	/* currently it is guaranteed to have only one signal seq */
1919 	*signal_seq = signal_seq_arr[0];
1920 
1921 out:
1922 	kfree(signal_seq_arr);
1923 
1924 	return rc;
1925 }
1926 
1927 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1928 		struct hl_ctx *ctx, struct hl_cs *cs,
1929 		enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1930 {
1931 	struct hl_cs_counters_atomic *cntr;
1932 	struct hl_cs_job *job;
1933 	struct hl_cb *cb;
1934 	u32 cb_size;
1935 
1936 	cntr = &hdev->aggregated_cs_counters;
1937 
1938 	job = hl_cs_allocate_job(hdev, q_type, true);
1939 	if (!job) {
1940 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1941 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1942 		dev_err(hdev->dev, "Failed to allocate a new job\n");
1943 		return -ENOMEM;
1944 	}
1945 
1946 	if (cs->type == CS_TYPE_WAIT)
1947 		cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1948 	else
1949 		cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1950 
1951 	cb = hl_cb_kernel_create(hdev, cb_size,
1952 				q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
1953 	if (!cb) {
1954 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1955 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1956 		kfree(job);
1957 		return -EFAULT;
1958 	}
1959 
1960 	job->id = 0;
1961 	job->cs = cs;
1962 	job->user_cb = cb;
1963 	atomic_inc(&job->user_cb->cs_cnt);
1964 	job->user_cb_size = cb_size;
1965 	job->hw_queue_id = q_idx;
1966 
1967 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1968 			&& cs->encaps_signals)
1969 		job->encaps_sig_wait_offset = encaps_signal_offset;
1970 	/*
1971 	 * No need in parsing, user CB is the patched CB.
1972 	 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1973 	 * the CB idr anymore and to decrement its refcount as it was
1974 	 * incremented inside hl_cb_kernel_create().
1975 	 */
1976 	job->patched_cb = job->user_cb;
1977 	job->job_cb_size = job->user_cb_size;
1978 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
1979 
1980 	/* increment refcount as for external queues we get completion */
1981 	cs_get(cs);
1982 
1983 	cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1984 	cs->jobs_cnt++;
1985 
1986 	list_add_tail(&job->cs_node, &cs->job_list);
1987 
1988 	hl_debugfs_add_job(hdev, job);
1989 
1990 	return 0;
1991 }
1992 
1993 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
1994 				u32 q_idx, u32 count,
1995 				u32 *handle_id, u32 *sob_addr,
1996 				u32 *signals_count)
1997 {
1998 	struct hw_queue_properties *hw_queue_prop;
1999 	struct hl_sync_stream_properties *prop;
2000 	struct hl_device *hdev = hpriv->hdev;
2001 	struct hl_cs_encaps_sig_handle *handle;
2002 	struct hl_encaps_signals_mgr *mgr;
2003 	struct hl_hw_sob *hw_sob;
2004 	int hdl_id;
2005 	int rc = 0;
2006 
2007 	if (count >= HL_MAX_SOB_VAL) {
2008 		dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
2009 						count);
2010 		rc = -EINVAL;
2011 		goto out;
2012 	}
2013 
2014 	if (q_idx >= hdev->asic_prop.max_queues) {
2015 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2016 			q_idx);
2017 		rc = -EINVAL;
2018 		goto out;
2019 	}
2020 
2021 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2022 
2023 	if (!hw_queue_prop->supports_sync_stream) {
2024 		dev_err(hdev->dev,
2025 			"Queue index %d does not support sync stream operations\n",
2026 									q_idx);
2027 		rc = -EINVAL;
2028 		goto out;
2029 	}
2030 
2031 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2032 
2033 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
2034 	if (!handle) {
2035 		rc = -ENOMEM;
2036 		goto out;
2037 	}
2038 
2039 	handle->count = count;
2040 
2041 	hl_ctx_get(hpriv->ctx);
2042 	handle->ctx = hpriv->ctx;
2043 	mgr = &hpriv->ctx->sig_mgr;
2044 
2045 	spin_lock(&mgr->lock);
2046 	hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
2047 	spin_unlock(&mgr->lock);
2048 
2049 	if (hdl_id < 0) {
2050 		dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
2051 		rc = -EINVAL;
2052 		goto put_ctx;
2053 	}
2054 
2055 	handle->id = hdl_id;
2056 	handle->q_idx = q_idx;
2057 	handle->hdev = hdev;
2058 	kref_init(&handle->refcount);
2059 
2060 	hdev->asic_funcs->hw_queues_lock(hdev);
2061 
2062 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2063 
2064 	/*
2065 	 * Increment the SOB value by count by user request
2066 	 * to reserve those signals
2067 	 * check if the signals amount to reserve is not exceeding the max sob
2068 	 * value, if yes then switch sob.
2069 	 */
2070 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
2071 								true);
2072 	if (rc) {
2073 		dev_err(hdev->dev, "Failed to switch SOB\n");
2074 		hdev->asic_funcs->hw_queues_unlock(hdev);
2075 		rc = -EINVAL;
2076 		goto remove_idr;
2077 	}
2078 	/* set the hw_sob to the handle after calling the sob wraparound handler
2079 	 * since sob could have changed.
2080 	 */
2081 	handle->hw_sob = hw_sob;
2082 
2083 	/* store the current sob value for unreserve validity check, and
2084 	 * signal offset support
2085 	 */
2086 	handle->pre_sob_val = prop->next_sob_val - handle->count;
2087 
2088 	handle->cs_seq = ULLONG_MAX;
2089 
2090 	*signals_count = prop->next_sob_val;
2091 	hdev->asic_funcs->hw_queues_unlock(hdev);
2092 
2093 	*sob_addr = handle->hw_sob->sob_addr;
2094 	*handle_id = hdl_id;
2095 
2096 	dev_dbg(hdev->dev,
2097 		"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2098 			hw_sob->sob_id, handle->hw_sob->sob_addr,
2099 			prop->next_sob_val - 1, q_idx, hdl_id);
2100 	goto out;
2101 
2102 remove_idr:
2103 	spin_lock(&mgr->lock);
2104 	idr_remove(&mgr->handles, hdl_id);
2105 	spin_unlock(&mgr->lock);
2106 
2107 put_ctx:
2108 	hl_ctx_put(handle->ctx);
2109 	kfree(handle);
2110 
2111 out:
2112 	return rc;
2113 }
2114 
2115 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2116 {
2117 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2118 	struct hl_sync_stream_properties *prop;
2119 	struct hl_device *hdev = hpriv->hdev;
2120 	struct hl_encaps_signals_mgr *mgr;
2121 	struct hl_hw_sob *hw_sob;
2122 	u32 q_idx, sob_addr;
2123 	int rc = 0;
2124 
2125 	mgr = &hpriv->ctx->sig_mgr;
2126 
2127 	spin_lock(&mgr->lock);
2128 	encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
2129 	if (encaps_sig_hdl) {
2130 		dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2131 				handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2132 					encaps_sig_hdl->count);
2133 
2134 		hdev->asic_funcs->hw_queues_lock(hdev);
2135 
2136 		q_idx = encaps_sig_hdl->q_idx;
2137 		prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2138 		hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2139 		sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2140 
2141 		/* Check if sob_val got out of sync due to other
2142 		 * signal submission requests which were handled
2143 		 * between the reserve-unreserve calls or SOB switch
2144 		 * upon reaching SOB max value.
2145 		 */
2146 		if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2147 				!= prop->next_sob_val ||
2148 				sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2149 			dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2150 				encaps_sig_hdl->pre_sob_val,
2151 				(prop->next_sob_val - encaps_sig_hdl->count));
2152 
2153 			hdev->asic_funcs->hw_queues_unlock(hdev);
2154 			rc = -EINVAL;
2155 			goto out;
2156 		}
2157 
2158 		/*
2159 		 * Decrement the SOB value by count by user request
2160 		 * to unreserve those signals
2161 		 */
2162 		prop->next_sob_val -= encaps_sig_hdl->count;
2163 
2164 		hdev->asic_funcs->hw_queues_unlock(hdev);
2165 
2166 		hw_sob_put(hw_sob);
2167 
2168 		/* Release the id and free allocated memory of the handle */
2169 		idr_remove(&mgr->handles, handle_id);
2170 		hl_ctx_put(encaps_sig_hdl->ctx);
2171 		kfree(encaps_sig_hdl);
2172 	} else {
2173 		rc = -EINVAL;
2174 		dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2175 	}
2176 out:
2177 	spin_unlock(&mgr->lock);
2178 
2179 	return rc;
2180 }
2181 
2182 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2183 				void __user *chunks, u32 num_chunks,
2184 				u64 *cs_seq, u32 flags, u32 timeout,
2185 				u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2186 {
2187 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2188 	bool handle_found = false, is_wait_cs = false,
2189 			wait_cs_submitted = false,
2190 			cs_encaps_signals = false;
2191 	struct hl_cs_chunk *cs_chunk_array, *chunk;
2192 	bool staged_cs_with_encaps_signals = false;
2193 	struct hw_queue_properties *hw_queue_prop;
2194 	struct hl_device *hdev = hpriv->hdev;
2195 	struct hl_cs_compl *sig_waitcs_cmpl;
2196 	u32 q_idx, collective_engine_id = 0;
2197 	struct hl_cs_counters_atomic *cntr;
2198 	struct hl_fence *sig_fence = NULL;
2199 	struct hl_ctx *ctx = hpriv->ctx;
2200 	enum hl_queue_type q_type;
2201 	struct hl_cs *cs;
2202 	u64 signal_seq;
2203 	int rc;
2204 
2205 	cntr = &hdev->aggregated_cs_counters;
2206 	*cs_seq = ULLONG_MAX;
2207 
2208 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
2209 			ctx);
2210 	if (rc)
2211 		goto out;
2212 
2213 	/* currently it is guaranteed to have only one chunk */
2214 	chunk = &cs_chunk_array[0];
2215 
2216 	if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2217 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2218 		atomic64_inc(&cntr->validation_drop_cnt);
2219 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2220 			chunk->queue_index);
2221 		rc = -EINVAL;
2222 		goto free_cs_chunk_array;
2223 	}
2224 
2225 	q_idx = chunk->queue_index;
2226 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2227 	q_type = hw_queue_prop->type;
2228 
2229 	if (!hw_queue_prop->supports_sync_stream) {
2230 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2231 		atomic64_inc(&cntr->validation_drop_cnt);
2232 		dev_err(hdev->dev,
2233 			"Queue index %d does not support sync stream operations\n",
2234 			q_idx);
2235 		rc = -EINVAL;
2236 		goto free_cs_chunk_array;
2237 	}
2238 
2239 	if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2240 		if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2241 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2242 			atomic64_inc(&cntr->validation_drop_cnt);
2243 			dev_err(hdev->dev,
2244 				"Queue index %d is invalid\n", q_idx);
2245 			rc = -EINVAL;
2246 			goto free_cs_chunk_array;
2247 		}
2248 
2249 		if (!hdev->nic_ports_mask) {
2250 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2251 			atomic64_inc(&cntr->validation_drop_cnt);
2252 			dev_err(hdev->dev,
2253 				"Collective operations not supported when NIC ports are disabled");
2254 			rc = -EINVAL;
2255 			goto free_cs_chunk_array;
2256 		}
2257 
2258 		collective_engine_id = chunk->collective_engine_id;
2259 	}
2260 
2261 	is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2262 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
2263 
2264 	cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2265 
2266 	if (is_wait_cs) {
2267 		rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2268 				ctx, cs_encaps_signals);
2269 		if (rc)
2270 			goto free_cs_chunk_array;
2271 
2272 		if (cs_encaps_signals) {
2273 			/* check if cs sequence has encapsulated
2274 			 * signals handle
2275 			 */
2276 			struct idr *idp;
2277 			u32 id;
2278 
2279 			spin_lock(&ctx->sig_mgr.lock);
2280 			idp = &ctx->sig_mgr.handles;
2281 			idr_for_each_entry(idp, encaps_sig_hdl, id) {
2282 				if (encaps_sig_hdl->cs_seq == signal_seq) {
2283 					/* get refcount to protect removing this handle from idr,
2284 					 * needed when multiple wait cs are used with offset
2285 					 * to wait on reserved encaps signals.
2286 					 * Since kref_put of this handle is executed outside the
2287 					 * current lock, it is possible that the handle refcount
2288 					 * is 0 but it yet to be removed from the list. In this
2289 					 * case need to consider the handle as not valid.
2290 					 */
2291 					if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
2292 						handle_found = true;
2293 					break;
2294 				}
2295 			}
2296 			spin_unlock(&ctx->sig_mgr.lock);
2297 
2298 			if (!handle_found) {
2299 				/* treat as signal CS already finished */
2300 				dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2301 						signal_seq);
2302 				rc = 0;
2303 				goto free_cs_chunk_array;
2304 			}
2305 
2306 			/* validate also the signal offset value */
2307 			if (chunk->encaps_signal_offset >
2308 					encaps_sig_hdl->count) {
2309 				dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2310 						chunk->encaps_signal_offset,
2311 						encaps_sig_hdl->count);
2312 				rc = -EINVAL;
2313 				goto free_cs_chunk_array;
2314 			}
2315 		}
2316 
2317 		sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2318 		if (IS_ERR(sig_fence)) {
2319 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2320 			atomic64_inc(&cntr->validation_drop_cnt);
2321 			dev_err(hdev->dev,
2322 				"Failed to get signal CS with seq 0x%llx\n",
2323 				signal_seq);
2324 			rc = PTR_ERR(sig_fence);
2325 			goto free_cs_chunk_array;
2326 		}
2327 
2328 		if (!sig_fence) {
2329 			/* signal CS already finished */
2330 			rc = 0;
2331 			goto free_cs_chunk_array;
2332 		}
2333 
2334 		sig_waitcs_cmpl =
2335 			container_of(sig_fence, struct hl_cs_compl, base_fence);
2336 
2337 		staged_cs_with_encaps_signals = !!
2338 				(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2339 				(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2340 
2341 		if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2342 				!staged_cs_with_encaps_signals) {
2343 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2344 			atomic64_inc(&cntr->validation_drop_cnt);
2345 			dev_err(hdev->dev,
2346 				"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2347 				signal_seq);
2348 			hl_fence_put(sig_fence);
2349 			rc = -EINVAL;
2350 			goto free_cs_chunk_array;
2351 		}
2352 
2353 		if (completion_done(&sig_fence->completion)) {
2354 			/* signal CS already finished */
2355 			hl_fence_put(sig_fence);
2356 			rc = 0;
2357 			goto free_cs_chunk_array;
2358 		}
2359 	}
2360 
2361 	rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2362 	if (rc) {
2363 		if (is_wait_cs)
2364 			hl_fence_put(sig_fence);
2365 
2366 		goto free_cs_chunk_array;
2367 	}
2368 
2369 	/*
2370 	 * Save the signal CS fence for later initialization right before
2371 	 * hanging the wait CS on the queue.
2372 	 * for encaps signals case, we save the cs sequence and handle pointer
2373 	 * for later initialization.
2374 	 */
2375 	if (is_wait_cs) {
2376 		cs->signal_fence = sig_fence;
2377 		/* store the handle pointer, so we don't have to
2378 		 * look for it again, later on the flow
2379 		 * when we need to set SOB info in hw_queue.
2380 		 */
2381 		if (cs->encaps_signals)
2382 			cs->encaps_sig_hdl = encaps_sig_hdl;
2383 	}
2384 
2385 	hl_debugfs_add_cs(cs);
2386 
2387 	*cs_seq = cs->sequence;
2388 
2389 	if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2390 		rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2391 				q_idx, chunk->encaps_signal_offset);
2392 	else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2393 		rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2394 				cs, q_idx, collective_engine_id,
2395 				chunk->encaps_signal_offset);
2396 	else {
2397 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2398 		atomic64_inc(&cntr->validation_drop_cnt);
2399 		rc = -EINVAL;
2400 	}
2401 
2402 	if (rc)
2403 		goto free_cs_object;
2404 
2405 	if (q_type == QUEUE_TYPE_HW)
2406 		INIT_WORK(&cs->finish_work, cs_completion);
2407 
2408 	rc = hl_hw_queue_schedule_cs(cs);
2409 	if (rc) {
2410 		/* In case wait cs failed here, it means the signal cs
2411 		 * already completed. we want to free all it's related objects
2412 		 * but we don't want to fail the ioctl.
2413 		 */
2414 		if (is_wait_cs)
2415 			rc = 0;
2416 		else if (rc != -EAGAIN)
2417 			dev_err(hdev->dev,
2418 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
2419 				ctx->asid, cs->sequence, rc);
2420 		goto free_cs_object;
2421 	}
2422 
2423 	*signal_sob_addr_offset = cs->sob_addr_offset;
2424 	*signal_initial_sob_count = cs->initial_sob_count;
2425 
2426 	rc = HL_CS_STATUS_SUCCESS;
2427 	if (is_wait_cs)
2428 		wait_cs_submitted = true;
2429 	goto put_cs;
2430 
2431 free_cs_object:
2432 	cs_rollback(hdev, cs);
2433 	*cs_seq = ULLONG_MAX;
2434 	/* The path below is both for good and erroneous exits */
2435 put_cs:
2436 	/* We finished with the CS in this function, so put the ref */
2437 	cs_put(cs);
2438 free_cs_chunk_array:
2439 	if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
2440 		kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
2441 	kfree(cs_chunk_array);
2442 out:
2443 	return rc;
2444 }
2445 
2446 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2447 						u32 num_engine_cores, u32 core_command)
2448 {
2449 	struct hl_device *hdev = hpriv->hdev;
2450 	void __user *engine_cores_arr;
2451 	u32 *cores;
2452 	int rc;
2453 
2454 	if (!hdev->asic_prop.supports_engine_modes)
2455 		return -EPERM;
2456 
2457 	if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2458 		dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2459 		return -EINVAL;
2460 	}
2461 
2462 	if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2463 		dev_err(hdev->dev, "Engine core command is invalid\n");
2464 		return -EINVAL;
2465 	}
2466 
2467 	engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2468 	cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
2469 	if (!cores)
2470 		return -ENOMEM;
2471 
2472 	if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
2473 		dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2474 		kfree(cores);
2475 		return -EFAULT;
2476 	}
2477 
2478 	rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2479 	kfree(cores);
2480 
2481 	return rc;
2482 }
2483 
2484 static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr,
2485 						u32 num_engines, enum hl_engine_command command)
2486 {
2487 	struct hl_device *hdev = hpriv->hdev;
2488 	u32 *engines, max_num_of_engines;
2489 	void __user *engines_arr;
2490 	int rc;
2491 
2492 	if (!hdev->asic_prop.supports_engine_modes)
2493 		return -EPERM;
2494 
2495 	if (command >= HL_ENGINE_COMMAND_MAX) {
2496 		dev_err(hdev->dev, "Engine command is invalid\n");
2497 		return -EINVAL;
2498 	}
2499 
2500 	max_num_of_engines = hdev->asic_prop.max_num_of_engines;
2501 	if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT)
2502 		max_num_of_engines = hdev->asic_prop.num_engine_cores;
2503 
2504 	if (!num_engines || num_engines > max_num_of_engines) {
2505 		dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines);
2506 		return -EINVAL;
2507 	}
2508 
2509 	engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr;
2510 	engines = kmalloc_array(num_engines, sizeof(u32), GFP_KERNEL);
2511 	if (!engines)
2512 		return -ENOMEM;
2513 
2514 	if (copy_from_user(engines, engines_arr, num_engines * sizeof(u32))) {
2515 		dev_err(hdev->dev, "Failed to copy engine-ids array from user\n");
2516 		kfree(engines);
2517 		return -EFAULT;
2518 	}
2519 
2520 	rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command);
2521 	kfree(engines);
2522 
2523 	return rc;
2524 }
2525 
2526 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
2527 {
2528 	struct hl_device *hdev = hpriv->hdev;
2529 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2530 
2531 	if (!prop->hbw_flush_reg) {
2532 		dev_dbg(hdev->dev, "HBW flush is not supported\n");
2533 		return -EOPNOTSUPP;
2534 	}
2535 
2536 	RREG32(prop->hbw_flush_reg);
2537 
2538 	return 0;
2539 }
2540 
2541 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
2542 {
2543 	union hl_cs_args *args = data;
2544 	enum hl_cs_type cs_type = 0;
2545 	u64 cs_seq = ULONG_MAX;
2546 	void __user *chunks;
2547 	u32 num_chunks, flags, timeout,
2548 		signals_count = 0, sob_addr = 0, handle_id = 0;
2549 	u16 sob_initial_count = 0;
2550 	int rc;
2551 
2552 	rc = hl_cs_sanity_checks(hpriv, args);
2553 	if (rc)
2554 		goto out;
2555 
2556 	rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2557 	if (rc)
2558 		goto out;
2559 
2560 	cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2561 					~HL_CS_FLAGS_FORCE_RESTORE);
2562 	chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2563 	num_chunks = args->in.num_chunks_execute;
2564 	flags = args->in.cs_flags;
2565 
2566 	/* In case this is a staged CS, user should supply the CS sequence */
2567 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2568 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2569 		cs_seq = args->in.seq;
2570 
2571 	timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2572 			? msecs_to_jiffies(args->in.timeout * 1000)
2573 			: hpriv->hdev->timeout_jiffies;
2574 
2575 	switch (cs_type) {
2576 	case CS_TYPE_SIGNAL:
2577 	case CS_TYPE_WAIT:
2578 	case CS_TYPE_COLLECTIVE_WAIT:
2579 		rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2580 					&cs_seq, args->in.cs_flags, timeout,
2581 					&sob_addr, &sob_initial_count);
2582 		break;
2583 	case CS_RESERVE_SIGNALS:
2584 		rc = cs_ioctl_reserve_signals(hpriv,
2585 					args->in.encaps_signals_q_idx,
2586 					args->in.encaps_signals_count,
2587 					&handle_id, &sob_addr, &signals_count);
2588 		break;
2589 	case CS_UNRESERVE_SIGNALS:
2590 		rc = cs_ioctl_unreserve_signals(hpriv,
2591 					args->in.encaps_sig_handle_id);
2592 		break;
2593 	case CS_TYPE_ENGINE_CORE:
2594 		rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
2595 				args->in.num_engine_cores, args->in.core_command);
2596 		break;
2597 	case CS_TYPE_ENGINES:
2598 		rc = cs_ioctl_engines(hpriv, args->in.engines,
2599 				args->in.num_engines, args->in.engine_command);
2600 		break;
2601 	case CS_TYPE_FLUSH_PCI_HBW_WRITES:
2602 		rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
2603 		break;
2604 	default:
2605 		rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2606 						args->in.cs_flags,
2607 						args->in.encaps_sig_handle_id,
2608 						timeout, &sob_initial_count);
2609 		break;
2610 	}
2611 out:
2612 	if (rc != -EAGAIN) {
2613 		memset(args, 0, sizeof(*args));
2614 
2615 		switch (cs_type) {
2616 		case CS_RESERVE_SIGNALS:
2617 			args->out.handle_id = handle_id;
2618 			args->out.sob_base_addr_offset = sob_addr;
2619 			args->out.count = signals_count;
2620 			break;
2621 		case CS_TYPE_SIGNAL:
2622 			args->out.sob_base_addr_offset = sob_addr;
2623 			args->out.sob_count_before_submission = sob_initial_count;
2624 			args->out.seq = cs_seq;
2625 			break;
2626 		case CS_TYPE_DEFAULT:
2627 			args->out.sob_count_before_submission = sob_initial_count;
2628 			args->out.seq = cs_seq;
2629 			break;
2630 		default:
2631 			args->out.seq = cs_seq;
2632 			break;
2633 		}
2634 
2635 		args->out.status = rc;
2636 	}
2637 
2638 	return rc;
2639 }
2640 
2641 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2642 				enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2643 {
2644 	struct hl_device *hdev = ctx->hdev;
2645 	ktime_t timestamp_kt;
2646 	long completion_rc;
2647 	int rc = 0, error;
2648 
2649 	if (IS_ERR(fence)) {
2650 		rc = PTR_ERR(fence);
2651 		if (rc == -EINVAL)
2652 			dev_notice_ratelimited(hdev->dev,
2653 				"Can't wait on CS %llu because current CS is at seq %llu\n",
2654 				seq, ctx->cs_sequence);
2655 		return rc;
2656 	}
2657 
2658 	if (!fence) {
2659 		if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
2660 			dev_dbg(hdev->dev,
2661 				"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2662 				seq, ctx->cs_sequence);
2663 			*status = CS_WAIT_STATUS_GONE;
2664 			return 0;
2665 		}
2666 
2667 		completion_rc = 1;
2668 		goto report_results;
2669 	}
2670 
2671 	if (!timeout_us) {
2672 		completion_rc = completion_done(&fence->completion);
2673 	} else {
2674 		unsigned long timeout;
2675 
2676 		timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2677 				timeout_us : usecs_to_jiffies(timeout_us);
2678 		completion_rc =
2679 			wait_for_completion_interruptible_timeout(
2680 				&fence->completion, timeout);
2681 	}
2682 
2683 	error = fence->error;
2684 	timestamp_kt = fence->timestamp;
2685 
2686 report_results:
2687 	if (completion_rc > 0) {
2688 		*status = CS_WAIT_STATUS_COMPLETED;
2689 		if (timestamp)
2690 			*timestamp = ktime_to_ns(timestamp_kt);
2691 	} else {
2692 		*status = CS_WAIT_STATUS_BUSY;
2693 	}
2694 
2695 	if (completion_rc == -ERESTARTSYS)
2696 		rc = completion_rc;
2697 	else if (error == -ETIMEDOUT || error == -EIO)
2698 		rc = error;
2699 
2700 	return rc;
2701 }
2702 
2703 /*
2704  * hl_cs_poll_fences - iterate CS fences to check for CS completion
2705  *
2706  * @mcs_data: multi-CS internal data
2707  * @mcs_compl: multi-CS completion structure
2708  *
2709  * @return 0 on success, otherwise non 0 error code
2710  *
2711  * The function iterates on all CS sequence in the list and set bit in
2712  * completion_bitmap for each completed CS.
2713  * While iterating, the function sets the stream map of each fence in the fence
2714  * array in the completion QID stream map to be used by CSs to perform
2715  * completion to the multi-CS context.
2716  * This function shall be called after taking context ref
2717  */
2718 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2719 {
2720 	struct hl_fence **fence_ptr = mcs_data->fence_arr;
2721 	struct hl_device *hdev = mcs_data->ctx->hdev;
2722 	int i, rc, arr_len = mcs_data->arr_len;
2723 	u64 *seq_arr = mcs_data->seq_arr;
2724 	ktime_t max_ktime, first_cs_time;
2725 	enum hl_cs_wait_status status;
2726 
2727 	memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2728 
2729 	/* get all fences under the same lock */
2730 	rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2731 	if (rc)
2732 		return rc;
2733 
2734 	/*
2735 	 * re-initialize the completion here to handle 2 possible cases:
2736 	 * 1. CS will complete the multi-CS prior clearing the completion. in which
2737 	 *    case the fence iteration is guaranteed to catch the CS completion.
2738 	 * 2. the completion will occur after re-init of the completion.
2739 	 *    in which case we will wake up immediately in wait_for_completion.
2740 	 */
2741 	reinit_completion(&mcs_compl->completion);
2742 
2743 	/*
2744 	 * set to maximum time to verify timestamp is valid: if at the end
2745 	 * this value is maintained- no timestamp was updated
2746 	 */
2747 	max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2748 	first_cs_time = max_ktime;
2749 
2750 	for (i = 0; i < arr_len; i++, fence_ptr++) {
2751 		struct hl_fence *fence = *fence_ptr;
2752 
2753 		/*
2754 		 * In order to prevent case where we wait until timeout even though a CS associated
2755 		 * with the multi-CS actually completed we do things in the below order:
2756 		 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2757 		 *    any CS can, potentially, complete the multi CS for the specific QID (note
2758 		 *    that once completion is initialized, calling complete* and then wait on the
2759 		 *    completion will cause it to return at once)
2760 		 * 2. only after allowing multi-CS completion for the specific QID we check whether
2761 		 *    the specific CS already completed (and thus the wait for completion part will
2762 		 *    be skipped). if the CS not completed it is guaranteed that completing CS will
2763 		 *    wake up the completion.
2764 		 */
2765 		if (fence)
2766 			mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2767 
2768 		/*
2769 		 * function won't sleep as it is called with timeout 0 (i.e.
2770 		 * poll the fence)
2771 		 */
2772 		rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
2773 		if (rc) {
2774 			dev_err(hdev->dev,
2775 				"wait_for_fence error :%d for CS seq %llu\n",
2776 								rc, seq_arr[i]);
2777 			break;
2778 		}
2779 
2780 		switch (status) {
2781 		case CS_WAIT_STATUS_BUSY:
2782 			/* CS did not finished, QID to wait on already stored */
2783 			break;
2784 		case CS_WAIT_STATUS_COMPLETED:
2785 			/*
2786 			 * Using mcs_handling_done to avoid possibility of mcs_data
2787 			 * returns to user indicating CS completed before it finished
2788 			 * all of its mcs handling, to avoid race the next time the
2789 			 * user waits for mcs.
2790 			 * note: when reaching this case fence is definitely not NULL
2791 			 *       but NULL check was added to overcome static analysis
2792 			 */
2793 			if (fence && !fence->mcs_handling_done) {
2794 				/*
2795 				 * in case multi CS is completed but MCS handling not done
2796 				 * we "complete" the multi CS to prevent it from waiting
2797 				 * until time-out and the "multi-CS handling done" will have
2798 				 * another chance at the next iteration
2799 				 */
2800 				complete_all(&mcs_compl->completion);
2801 				break;
2802 			}
2803 
2804 			mcs_data->completion_bitmap |= BIT(i);
2805 			/*
2806 			 * For all completed CSs we take the earliest timestamp.
2807 			 * For this we have to validate that the timestamp is
2808 			 * earliest of all timestamps so far.
2809 			 */
2810 			if (fence && mcs_data->update_ts &&
2811 					(ktime_compare(fence->timestamp, first_cs_time) < 0))
2812 				first_cs_time = fence->timestamp;
2813 			break;
2814 		case CS_WAIT_STATUS_GONE:
2815 			mcs_data->update_ts = false;
2816 			mcs_data->gone_cs = true;
2817 			/*
2818 			 * It is possible to get an old sequence numbers from user
2819 			 * which related to already completed CSs and their fences
2820 			 * already gone. In this case, CS set as completed but
2821 			 * no need to consider its QID for mcs completion.
2822 			 */
2823 			mcs_data->completion_bitmap |= BIT(i);
2824 			break;
2825 		default:
2826 			dev_err(hdev->dev, "Invalid fence status\n");
2827 			rc = -EINVAL;
2828 			break;
2829 		}
2830 
2831 	}
2832 
2833 	hl_fences_put(mcs_data->fence_arr, arr_len);
2834 
2835 	if (mcs_data->update_ts &&
2836 			(ktime_compare(first_cs_time, max_ktime) != 0))
2837 		mcs_data->timestamp = ktime_to_ns(first_cs_time);
2838 
2839 	return rc;
2840 }
2841 
2842 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2843 				enum hl_cs_wait_status *status, s64 *timestamp)
2844 {
2845 	struct hl_fence *fence;
2846 	int rc = 0;
2847 
2848 	if (timestamp)
2849 		*timestamp = 0;
2850 
2851 	hl_ctx_get(ctx);
2852 
2853 	fence = hl_ctx_get_fence(ctx, seq);
2854 
2855 	rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2856 	hl_fence_put(fence);
2857 	hl_ctx_put(ctx);
2858 
2859 	return rc;
2860 }
2861 
2862 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2863 {
2864 	if (usecs <= U32_MAX)
2865 		return usecs_to_jiffies(usecs);
2866 
2867 	/*
2868 	 * If the value in nanoseconds is larger than 64 bit, use the largest
2869 	 * 64 bit value.
2870 	 */
2871 	if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2872 		return nsecs_to_jiffies(U64_MAX);
2873 
2874 	return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
2875 }
2876 
2877 /*
2878  * hl_wait_multi_cs_completion_init - init completion structure
2879  *
2880  * @hdev: pointer to habanalabs device structure
2881  * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2882  *                        master QID to wait on
2883  *
2884  * @return valid completion struct pointer on success, otherwise error pointer
2885  *
2886  * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2887  * the function gets the first available completion (by marking it "used")
2888  * and initialize its values.
2889  */
2890 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2891 {
2892 	struct multi_cs_completion *mcs_compl;
2893 	int i;
2894 
2895 	/* find free multi_cs completion structure */
2896 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2897 		mcs_compl = &hdev->multi_cs_completion[i];
2898 		spin_lock(&mcs_compl->lock);
2899 		if (!mcs_compl->used) {
2900 			mcs_compl->used = 1;
2901 			mcs_compl->timestamp = 0;
2902 			/*
2903 			 * init QID map to 0 to avoid completion by CSs. the actual QID map
2904 			 * to multi-CS CSs will be set incrementally at a later stage
2905 			 */
2906 			mcs_compl->stream_master_qid_map = 0;
2907 			spin_unlock(&mcs_compl->lock);
2908 			break;
2909 		}
2910 		spin_unlock(&mcs_compl->lock);
2911 	}
2912 
2913 	if (i == MULTI_CS_MAX_USER_CTX) {
2914 		dev_err(hdev->dev, "no available multi-CS completion structure\n");
2915 		return ERR_PTR(-ENOMEM);
2916 	}
2917 	return mcs_compl;
2918 }
2919 
2920 /*
2921  * hl_wait_multi_cs_completion_fini - return completion structure and set as
2922  *                                    unused
2923  *
2924  * @mcs_compl: pointer to the completion structure
2925  */
2926 static void hl_wait_multi_cs_completion_fini(
2927 					struct multi_cs_completion *mcs_compl)
2928 {
2929 	/*
2930 	 * free completion structure, do it under lock to be in-sync with the
2931 	 * thread that signals completion
2932 	 */
2933 	spin_lock(&mcs_compl->lock);
2934 	mcs_compl->used = 0;
2935 	spin_unlock(&mcs_compl->lock);
2936 }
2937 
2938 /*
2939  * hl_wait_multi_cs_completion - wait for first CS to complete
2940  *
2941  * @mcs_data: multi-CS internal data
2942  *
2943  * @return 0 on success, otherwise non 0 error code
2944  */
2945 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2946 						struct multi_cs_completion *mcs_compl)
2947 {
2948 	long completion_rc;
2949 
2950 	completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
2951 									mcs_data->timeout_jiffies);
2952 
2953 	/* update timestamp */
2954 	if (completion_rc > 0)
2955 		mcs_data->timestamp = mcs_compl->timestamp;
2956 
2957 	if (completion_rc == -ERESTARTSYS)
2958 		return completion_rc;
2959 
2960 	mcs_data->wait_status = completion_rc;
2961 
2962 	return 0;
2963 }
2964 
2965 /*
2966  * hl_multi_cs_completion_init - init array of multi-CS completion structures
2967  *
2968  * @hdev: pointer to habanalabs device structure
2969  */
2970 void hl_multi_cs_completion_init(struct hl_device *hdev)
2971 {
2972 	struct multi_cs_completion *mcs_cmpl;
2973 	int i;
2974 
2975 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2976 		mcs_cmpl = &hdev->multi_cs_completion[i];
2977 		mcs_cmpl->used = 0;
2978 		spin_lock_init(&mcs_cmpl->lock);
2979 		init_completion(&mcs_cmpl->completion);
2980 	}
2981 }
2982 
2983 /*
2984  * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
2985  *
2986  * @hpriv: pointer to the private data of the fd
2987  * @data: pointer to multi-CS wait ioctl in/out args
2988  *
2989  */
2990 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2991 {
2992 	struct multi_cs_completion *mcs_compl;
2993 	struct hl_device *hdev = hpriv->hdev;
2994 	struct multi_cs_data mcs_data = {};
2995 	union hl_wait_cs_args *args = data;
2996 	struct hl_ctx *ctx = hpriv->ctx;
2997 	struct hl_fence **fence_arr;
2998 	void __user *seq_arr;
2999 	u32 size_to_copy;
3000 	u64 *cs_seq_arr;
3001 	u8 seq_arr_len;
3002 	int rc, i;
3003 
3004 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
3005 		if (args->in.pad[i]) {
3006 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
3007 			return -EINVAL;
3008 		}
3009 
3010 	if (!hdev->supports_wait_for_multi_cs) {
3011 		dev_err(hdev->dev, "Wait for multi CS is not supported\n");
3012 		return -EPERM;
3013 	}
3014 
3015 	seq_arr_len = args->in.seq_arr_len;
3016 
3017 	if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
3018 		dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
3019 				HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
3020 		return -EINVAL;
3021 	}
3022 
3023 	/* allocate memory for sequence array */
3024 	cs_seq_arr =
3025 		kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
3026 	if (!cs_seq_arr)
3027 		return -ENOMEM;
3028 
3029 	/* copy CS sequence array from user */
3030 	seq_arr = (void __user *) (uintptr_t) args->in.seq;
3031 	size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
3032 	if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
3033 		dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
3034 		rc = -EFAULT;
3035 		goto free_seq_arr;
3036 	}
3037 
3038 	/* allocate array for the fences */
3039 	fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
3040 	if (!fence_arr) {
3041 		rc = -ENOMEM;
3042 		goto free_seq_arr;
3043 	}
3044 
3045 	/* initialize the multi-CS internal data */
3046 	mcs_data.ctx = ctx;
3047 	mcs_data.seq_arr = cs_seq_arr;
3048 	mcs_data.fence_arr = fence_arr;
3049 	mcs_data.arr_len = seq_arr_len;
3050 
3051 	hl_ctx_get(ctx);
3052 
3053 	/* wait (with timeout) for the first CS to be completed */
3054 	mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
3055 	mcs_compl = hl_wait_multi_cs_completion_init(hdev);
3056 	if (IS_ERR(mcs_compl)) {
3057 		rc = PTR_ERR(mcs_compl);
3058 		goto put_ctx;
3059 	}
3060 
3061 	/* poll all CS fences, extract timestamp */
3062 	mcs_data.update_ts = true;
3063 	rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3064 	/*
3065 	 * skip wait for CS completion when one of the below is true:
3066 	 * - an error on the poll function
3067 	 * - one or more CS in the list completed
3068 	 * - the user called ioctl with timeout 0
3069 	 */
3070 	if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
3071 		goto completion_fini;
3072 
3073 	while (true) {
3074 		rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
3075 		if (rc || (mcs_data.wait_status == 0))
3076 			break;
3077 
3078 		/*
3079 		 * poll fences once again to update the CS map.
3080 		 * no timestamp should be updated this time.
3081 		 */
3082 		mcs_data.update_ts = false;
3083 		rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3084 
3085 		if (rc || mcs_data.completion_bitmap)
3086 			break;
3087 
3088 		/*
3089 		 * if hl_wait_multi_cs_completion returned before timeout (i.e.
3090 		 * it got a completion) it either got completed by CS in the multi CS list
3091 		 * (in which case the indication will be non empty completion_bitmap) or it
3092 		 * got completed by CS submitted to one of the shared stream master but
3093 		 * not in the multi CS list (in which case we should wait again but modify
3094 		 * the timeout and set timestamp as zero to let a CS related to the current
3095 		 * multi-CS set a new, relevant, timestamp)
3096 		 */
3097 		mcs_data.timeout_jiffies = mcs_data.wait_status;
3098 		mcs_compl->timestamp = 0;
3099 	}
3100 
3101 completion_fini:
3102 	hl_wait_multi_cs_completion_fini(mcs_compl);
3103 
3104 put_ctx:
3105 	hl_ctx_put(ctx);
3106 	kfree(fence_arr);
3107 
3108 free_seq_arr:
3109 	kfree(cs_seq_arr);
3110 
3111 	if (rc == -ERESTARTSYS) {
3112 		dev_err_ratelimited(hdev->dev,
3113 				"user process got signal while waiting for Multi-CS\n");
3114 		rc = -EINTR;
3115 	}
3116 
3117 	if (rc)
3118 		return rc;
3119 
3120 	/* update output args */
3121 	memset(args, 0, sizeof(*args));
3122 
3123 	if (mcs_data.completion_bitmap) {
3124 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3125 		args->out.cs_completion_map = mcs_data.completion_bitmap;
3126 
3127 		/* if timestamp not 0- it's valid */
3128 		if (mcs_data.timestamp) {
3129 			args->out.timestamp_nsec = mcs_data.timestamp;
3130 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3131 		}
3132 
3133 		/* update if some CS was gone */
3134 		if (!mcs_data.timestamp)
3135 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3136 	} else {
3137 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3138 	}
3139 
3140 	return 0;
3141 }
3142 
3143 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3144 {
3145 	struct hl_device *hdev = hpriv->hdev;
3146 	union hl_wait_cs_args *args = data;
3147 	enum hl_cs_wait_status status;
3148 	u64 seq = args->in.seq;
3149 	s64 timestamp;
3150 	int rc;
3151 
3152 	rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
3153 
3154 	if (rc == -ERESTARTSYS) {
3155 		dev_err_ratelimited(hdev->dev,
3156 			"user process got signal while waiting for CS handle %llu\n",
3157 			seq);
3158 		return -EINTR;
3159 	}
3160 
3161 	memset(args, 0, sizeof(*args));
3162 
3163 	if (rc) {
3164 		if (rc == -ETIMEDOUT) {
3165 			dev_err_ratelimited(hdev->dev,
3166 				"CS %llu has timed-out while user process is waiting for it\n",
3167 				seq);
3168 			args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3169 		} else if (rc == -EIO) {
3170 			dev_err_ratelimited(hdev->dev,
3171 				"CS %llu has been aborted while user process is waiting for it\n",
3172 				seq);
3173 			args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3174 		}
3175 		return rc;
3176 	}
3177 
3178 	if (timestamp) {
3179 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3180 		args->out.timestamp_nsec = timestamp;
3181 	}
3182 
3183 	switch (status) {
3184 	case CS_WAIT_STATUS_GONE:
3185 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3186 		fallthrough;
3187 	case CS_WAIT_STATUS_COMPLETED:
3188 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3189 		break;
3190 	case CS_WAIT_STATUS_BUSY:
3191 	default:
3192 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3193 		break;
3194 	}
3195 
3196 	return 0;
3197 }
3198 
3199 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf,
3200 					struct hl_cb *cq_cb,
3201 					u64 ts_offset, u64 cq_offset, u64 target_value,
3202 					spinlock_t *wait_list_lock,
3203 					struct hl_user_pending_interrupt **pend)
3204 {
3205 	struct hl_ts_buff *ts_buff = buf->private;
3206 	struct hl_user_pending_interrupt *requested_offset_record =
3207 				(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3208 				ts_offset;
3209 	struct hl_user_pending_interrupt *cb_last =
3210 			(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3211 			(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3212 	unsigned long iter_counter = 0;
3213 	u64 current_cq_counter;
3214 	ktime_t timestamp;
3215 
3216 	/* Validate ts_offset not exceeding last max */
3217 	if (requested_offset_record >= cb_last) {
3218 		dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
3219 								(u64)(uintptr_t)cb_last);
3220 		return -EINVAL;
3221 	}
3222 
3223 	timestamp = ktime_get();
3224 
3225 start_over:
3226 	spin_lock(wait_list_lock);
3227 
3228 	/* Unregister only if we didn't reach the target value
3229 	 * since in this case there will be no handling in irq context
3230 	 * and then it's safe to delete the node out of the interrupt list
3231 	 * then re-use it on other interrupt
3232 	 */
3233 	if (requested_offset_record->ts_reg_info.in_use) {
3234 		current_cq_counter = *requested_offset_record->cq_kernel_addr;
3235 		if (current_cq_counter < requested_offset_record->cq_target_value) {
3236 			list_del(&requested_offset_record->wait_list_node);
3237 			spin_unlock(wait_list_lock);
3238 
3239 			hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf);
3240 			hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
3241 
3242 			dev_dbg(buf->mmg->dev,
3243 				"ts node removed from interrupt list now can re-use\n");
3244 		} else {
3245 			dev_dbg(buf->mmg->dev,
3246 				"ts node in middle of irq handling\n");
3247 
3248 			/* irq thread handling in the middle give it time to finish */
3249 			spin_unlock(wait_list_lock);
3250 			usleep_range(100, 1000);
3251 			if (++iter_counter == MAX_TS_ITER_NUM) {
3252 				dev_err(buf->mmg->dev,
3253 					"Timestamp offset processing reached timeout of %lld ms\n",
3254 					ktime_ms_delta(ktime_get(), timestamp));
3255 				return -EAGAIN;
3256 			}
3257 
3258 			goto start_over;
3259 		}
3260 	} else {
3261 		/* Fill up the new registration node info */
3262 		requested_offset_record->ts_reg_info.buf = buf;
3263 		requested_offset_record->ts_reg_info.cq_cb = cq_cb;
3264 		requested_offset_record->ts_reg_info.timestamp_kernel_addr =
3265 				(u64 *) ts_buff->user_buff_address + ts_offset;
3266 		requested_offset_record->cq_kernel_addr =
3267 				(u64 *) cq_cb->kernel_address + cq_offset;
3268 		requested_offset_record->cq_target_value = target_value;
3269 
3270 		spin_unlock(wait_list_lock);
3271 	}
3272 
3273 	*pend = requested_offset_record;
3274 
3275 	dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n",
3276 		requested_offset_record);
3277 	return 0;
3278 }
3279 
3280 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3281 				struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg,
3282 				u64 timeout_us, u64 cq_counters_handle,	u64 cq_counters_offset,
3283 				u64 target_value, struct hl_user_interrupt *interrupt,
3284 				bool register_ts_record, u64 ts_handle, u64 ts_offset,
3285 				u32 *status, u64 *timestamp)
3286 {
3287 	struct hl_user_pending_interrupt *pend;
3288 	struct hl_mmap_mem_buf *buf;
3289 	struct hl_cb *cq_cb;
3290 	unsigned long timeout;
3291 	long completion_rc;
3292 	int rc = 0;
3293 
3294 	timeout = hl_usecs64_to_jiffies(timeout_us);
3295 
3296 	hl_ctx_get(ctx);
3297 
3298 	cq_cb = hl_cb_get(cb_mmg, cq_counters_handle);
3299 	if (!cq_cb) {
3300 		rc = -EINVAL;
3301 		goto put_ctx;
3302 	}
3303 
3304 	/* Validate the cq offset */
3305 	if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >=
3306 			((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) {
3307 		rc = -EINVAL;
3308 		goto put_cq_cb;
3309 	}
3310 
3311 	if (register_ts_record) {
3312 		dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
3313 					interrupt->interrupt_id, ts_offset, cq_counters_offset);
3314 		buf = hl_mmap_mem_buf_get(mmg, ts_handle);
3315 		if (!buf) {
3316 			rc = -EINVAL;
3317 			goto put_cq_cb;
3318 		}
3319 
3320 		/* get ts buffer record */
3321 		rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset,
3322 						cq_counters_offset, target_value,
3323 						&interrupt->wait_list_lock, &pend);
3324 		if (rc)
3325 			goto put_ts_buff;
3326 	} else {
3327 		pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3328 		if (!pend) {
3329 			rc = -ENOMEM;
3330 			goto put_cq_cb;
3331 		}
3332 		hl_fence_init(&pend->fence, ULONG_MAX);
3333 		pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
3334 		pend->cq_target_value = target_value;
3335 	}
3336 
3337 	spin_lock(&interrupt->wait_list_lock);
3338 
3339 	/* We check for completion value as interrupt could have been received
3340 	 * before we added the node to the wait list
3341 	 */
3342 	if (*pend->cq_kernel_addr >= target_value) {
3343 		if (register_ts_record)
3344 			pend->ts_reg_info.in_use = 0;
3345 		spin_unlock(&interrupt->wait_list_lock);
3346 
3347 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3348 
3349 		if (register_ts_record) {
3350 			*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3351 			goto put_ts_buff;
3352 		} else {
3353 			pend->fence.timestamp = ktime_get();
3354 			goto set_timestamp;
3355 		}
3356 	} else if (!timeout_us) {
3357 		spin_unlock(&interrupt->wait_list_lock);
3358 		*status = HL_WAIT_CS_STATUS_BUSY;
3359 		pend->fence.timestamp = ktime_get();
3360 		goto set_timestamp;
3361 	}
3362 
3363 	/* Add pending user interrupt to relevant list for the interrupt
3364 	 * handler to monitor.
3365 	 * Note that we cannot have sorted list by target value,
3366 	 * in order to shorten the list pass loop, since
3367 	 * same list could have nodes for different cq counter handle.
3368 	 * Note:
3369 	 * Mark ts buff offset as in use here in the spinlock protection area
3370 	 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record
3371 	 * before adding the node to the list. this scenario might happen when
3372 	 * multiple threads are racing on same offset and one thread could
3373 	 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread
3374 	 * takes over and get to ts_buff_get_kernel_ts_record and then we will try
3375 	 * to re-use the same ts buff offset, and will try to delete a non existing
3376 	 * node from the list.
3377 	 */
3378 	if (register_ts_record)
3379 		pend->ts_reg_info.in_use = 1;
3380 
3381 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3382 	spin_unlock(&interrupt->wait_list_lock);
3383 
3384 	if (register_ts_record) {
3385 		rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3386 		goto ts_registration_exit;
3387 	}
3388 
3389 	/* Wait for interrupt handler to signal completion */
3390 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3391 								timeout);
3392 	if (completion_rc > 0) {
3393 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3394 	} else {
3395 		if (completion_rc == -ERESTARTSYS) {
3396 			dev_err_ratelimited(hdev->dev,
3397 					"user process got signal while waiting for interrupt ID %d\n",
3398 					interrupt->interrupt_id);
3399 			rc = -EINTR;
3400 			*status = HL_WAIT_CS_STATUS_ABORTED;
3401 		} else {
3402 			if (pend->fence.error == -EIO) {
3403 				dev_err_ratelimited(hdev->dev,
3404 						"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3405 						pend->fence.error);
3406 				rc = -EIO;
3407 				*status = HL_WAIT_CS_STATUS_ABORTED;
3408 			} else {
3409 				/* The wait has timed-out. We don't know anything beyond that
3410 				 * because the workload wasn't submitted through the driver.
3411 				 * Therefore, from driver's perspective, the workload is still
3412 				 * executing.
3413 				 */
3414 				rc = 0;
3415 				*status = HL_WAIT_CS_STATUS_BUSY;
3416 			}
3417 		}
3418 	}
3419 
3420 	/*
3421 	 * We keep removing the node from list here, and not at the irq handler
3422 	 * for completion timeout case. and if it's a registration
3423 	 * for ts record, the node will be deleted in the irq handler after
3424 	 * we reach the target value.
3425 	 */
3426 	spin_lock(&interrupt->wait_list_lock);
3427 	list_del(&pend->wait_list_node);
3428 	spin_unlock(&interrupt->wait_list_lock);
3429 
3430 set_timestamp:
3431 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3432 	kfree(pend);
3433 	hl_cb_put(cq_cb);
3434 ts_registration_exit:
3435 	hl_ctx_put(ctx);
3436 
3437 	return rc;
3438 
3439 put_ts_buff:
3440 	hl_mmap_mem_buf_put(buf);
3441 put_cq_cb:
3442 	hl_cb_put(cq_cb);
3443 put_ctx:
3444 	hl_ctx_put(ctx);
3445 
3446 	return rc;
3447 }
3448 
3449 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3450 				u64 timeout_us, u64 user_address,
3451 				u64 target_value, struct hl_user_interrupt *interrupt,
3452 				u32 *status,
3453 				u64 *timestamp)
3454 {
3455 	struct hl_user_pending_interrupt *pend;
3456 	unsigned long timeout;
3457 	u64 completion_value;
3458 	long completion_rc;
3459 	int rc = 0;
3460 
3461 	timeout = hl_usecs64_to_jiffies(timeout_us);
3462 
3463 	hl_ctx_get(ctx);
3464 
3465 	pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3466 	if (!pend) {
3467 		hl_ctx_put(ctx);
3468 		return -ENOMEM;
3469 	}
3470 
3471 	hl_fence_init(&pend->fence, ULONG_MAX);
3472 
3473 	/* Add pending user interrupt to relevant list for the interrupt
3474 	 * handler to monitor
3475 	 */
3476 	spin_lock(&interrupt->wait_list_lock);
3477 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3478 	spin_unlock(&interrupt->wait_list_lock);
3479 
3480 	/* We check for completion value as interrupt could have been received
3481 	 * before we added the node to the wait list
3482 	 */
3483 	if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3484 		dev_err(hdev->dev, "Failed to copy completion value from user\n");
3485 		rc = -EFAULT;
3486 		goto remove_pending_user_interrupt;
3487 	}
3488 
3489 	if (completion_value >= target_value) {
3490 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3491 		/* There was no interrupt, we assume the completion is now. */
3492 		pend->fence.timestamp = ktime_get();
3493 	} else {
3494 		*status = HL_WAIT_CS_STATUS_BUSY;
3495 	}
3496 
3497 	if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3498 		goto remove_pending_user_interrupt;
3499 
3500 wait_again:
3501 	/* Wait for interrupt handler to signal completion */
3502 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3503 										timeout);
3504 
3505 	/* If timeout did not expire we need to perform the comparison.
3506 	 * If comparison fails, keep waiting until timeout expires
3507 	 */
3508 	if (completion_rc > 0) {
3509 		spin_lock(&interrupt->wait_list_lock);
3510 		/* reinit_completion must be called before we check for user
3511 		 * completion value, otherwise, if interrupt is received after
3512 		 * the comparison and before the next wait_for_completion,
3513 		 * we will reach timeout and fail
3514 		 */
3515 		reinit_completion(&pend->fence.completion);
3516 		spin_unlock(&interrupt->wait_list_lock);
3517 
3518 		if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3519 			dev_err(hdev->dev, "Failed to copy completion value from user\n");
3520 			rc = -EFAULT;
3521 
3522 			goto remove_pending_user_interrupt;
3523 		}
3524 
3525 		if (completion_value >= target_value) {
3526 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3527 		} else if (pend->fence.error) {
3528 			dev_err_ratelimited(hdev->dev,
3529 				"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3530 				pend->fence.error);
3531 			/* set the command completion status as ABORTED */
3532 			*status = HL_WAIT_CS_STATUS_ABORTED;
3533 		} else {
3534 			timeout = completion_rc;
3535 			goto wait_again;
3536 		}
3537 	} else if (completion_rc == -ERESTARTSYS) {
3538 		dev_err_ratelimited(hdev->dev,
3539 			"user process got signal while waiting for interrupt ID %d\n",
3540 			interrupt->interrupt_id);
3541 		rc = -EINTR;
3542 	} else {
3543 		/* The wait has timed-out. We don't know anything beyond that
3544 		 * because the workload wasn't submitted through the driver.
3545 		 * Therefore, from driver's perspective, the workload is still
3546 		 * executing.
3547 		 */
3548 		rc = 0;
3549 		*status = HL_WAIT_CS_STATUS_BUSY;
3550 	}
3551 
3552 remove_pending_user_interrupt:
3553 	spin_lock(&interrupt->wait_list_lock);
3554 	list_del(&pend->wait_list_node);
3555 	spin_unlock(&interrupt->wait_list_lock);
3556 
3557 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3558 
3559 	kfree(pend);
3560 	hl_ctx_put(ctx);
3561 
3562 	return rc;
3563 }
3564 
3565 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3566 {
3567 	u16 interrupt_id, first_interrupt, last_interrupt;
3568 	struct hl_device *hdev = hpriv->hdev;
3569 	struct asic_fixed_properties *prop;
3570 	struct hl_user_interrupt *interrupt;
3571 	union hl_wait_cs_args *args = data;
3572 	u32 status = HL_WAIT_CS_STATUS_BUSY;
3573 	u64 timestamp = 0;
3574 	int rc, int_idx;
3575 
3576 	prop = &hdev->asic_prop;
3577 
3578 	if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3579 		dev_err(hdev->dev, "no user interrupts allowed");
3580 		return -EPERM;
3581 	}
3582 
3583 	interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3584 
3585 	first_interrupt = prop->first_available_user_interrupt;
3586 	last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3587 
3588 	if (interrupt_id < prop->user_dec_intr_count) {
3589 
3590 		/* Check if the requested core is enabled */
3591 		if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3592 			dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3593 				interrupt_id);
3594 			return -EINVAL;
3595 		}
3596 
3597 		interrupt = &hdev->user_interrupt[interrupt_id];
3598 
3599 	} else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3600 
3601 		int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3602 		interrupt = &hdev->user_interrupt[int_idx];
3603 
3604 	} else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3605 		interrupt = &hdev->common_user_cq_interrupt;
3606 	} else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3607 		interrupt = &hdev->common_decoder_interrupt;
3608 	} else {
3609 		dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3610 		return -EINVAL;
3611 	}
3612 
3613 	if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
3614 		rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr,
3615 				args->in.interrupt_timeout_us, args->in.cq_counters_handle,
3616 				args->in.cq_counters_offset,
3617 				args->in.target, interrupt,
3618 				!!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
3619 				args->in.timestamp_handle, args->in.timestamp_offset,
3620 				&status, &timestamp);
3621 	else
3622 		rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
3623 				args->in.interrupt_timeout_us, args->in.addr,
3624 				args->in.target, interrupt, &status,
3625 				&timestamp);
3626 	if (rc)
3627 		return rc;
3628 
3629 	memset(args, 0, sizeof(*args));
3630 	args->out.status = status;
3631 
3632 	if (timestamp) {
3633 		args->out.timestamp_nsec = timestamp;
3634 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3635 	}
3636 
3637 	return 0;
3638 }
3639 
3640 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3641 {
3642 	struct hl_device *hdev = hpriv->hdev;
3643 	union hl_wait_cs_args *args = data;
3644 	u32 flags = args->in.flags;
3645 	int rc;
3646 
3647 	/* If the device is not operational, or if an error has happened and user should release the
3648 	 * device, there is no point in waiting for any command submission or user interrupt.
3649 	 */
3650 	if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
3651 		return -EBUSY;
3652 
3653 	if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3654 		rc = hl_interrupt_wait_ioctl(hpriv, data);
3655 	else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3656 		rc = hl_multi_cs_wait_ioctl(hpriv, data);
3657 	else
3658 		rc = hl_cs_wait_ioctl(hpriv, data);
3659 
3660 	return rc;
3661 }
3662