xref: /openbmc/linux/crypto/jitterentropy.c (revision 7d9326f10cdd9028b4460ccc4006d4d138996b6d)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 3.4.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 typedef unsigned char		u8;
61 #define NULL    ((void *) 0)
62 
63 /* The entropy pool */
64 struct rand_data {
65 	/* SHA3-256 is used as conditioner */
66 #define DATA_SIZE_BITS 256
67 	/* all data values that are vital to maintain the security
68 	 * of the RNG are marked as SENSITIVE. A user must not
69 	 * access that information while the RNG executes its loops to
70 	 * calculate the next random value. */
71 	void *hash_state;		/* SENSITIVE hash state entropy pool */
72 	__u64 prev_time;		/* SENSITIVE Previous time stamp */
73 	__u64 last_delta;		/* SENSITIVE stuck test */
74 	__s64 last_delta2;		/* SENSITIVE stuck test */
75 	unsigned int osr;		/* Oversample rate */
76 #define JENT_MEMORY_BLOCKS 64
77 #define JENT_MEMORY_BLOCKSIZE 32
78 #define JENT_MEMORY_ACCESSLOOPS 128
79 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
80 	unsigned char *mem;	/* Memory access location with size of
81 				 * memblocks * memblocksize */
82 	unsigned int memlocation; /* Pointer to byte in *mem */
83 	unsigned int memblocks;	/* Number of memory blocks in *mem */
84 	unsigned int memblocksize; /* Size of one memory block in bytes */
85 	unsigned int memaccessloops; /* Number of memory accesses per random
86 				      * bit generation */
87 
88 	/* Repetition Count Test */
89 	unsigned int rct_count;			/* Number of stuck values */
90 
91 	/* Intermittent health test failure threshold of 2^-30 */
92 #define JENT_RCT_CUTOFF		30	/* Taken from SP800-90B sec 4.4.1 */
93 #define JENT_APT_CUTOFF		325	/* Taken from SP800-90B sec 4.4.2 */
94 	/* Permanent health test failure threshold of 2^-60 */
95 #define JENT_RCT_CUTOFF_PERMANENT	60
96 #define JENT_APT_CUTOFF_PERMANENT	355
97 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
98 	/* LSB of time stamp to process */
99 #define JENT_APT_LSB		16
100 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
101 	unsigned int apt_observations;	/* Number of collected observations */
102 	unsigned int apt_count;		/* APT counter */
103 	unsigned int apt_base;		/* APT base reference */
104 	unsigned int apt_base_set:1;	/* APT base reference set? */
105 };
106 
107 /* Flags that can be used to initialize the RNG */
108 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
109 					   * entropy, saves MEMORY_SIZE RAM for
110 					   * entropy collector */
111 
112 /* -- error codes for init function -- */
113 #define JENT_ENOTIME		1 /* Timer service not available */
114 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
115 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
116 #define JENT_EVARVAR		5 /* Timer does not produce variations of
117 				   * variations (2nd derivation of time is
118 				   * zero). */
119 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
120 #define JENT_EHEALTH		9 /* Health test failed during initialization */
121 
122 /*
123  * The output n bits can receive more than n bits of min entropy, of course,
124  * but the fixed output of the conditioning function can only asymptotically
125  * approach the output size bits of min entropy, not attain that bound. Random
126  * maps will tend to have output collisions, which reduces the creditable
127  * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
128  *
129  * The value "64" is justified in Appendix A.4 of the current 90C draft,
130  * and aligns with NIST's in "epsilon" definition in this document, which is
131  * that a string can be considered "full entropy" if you can bound the min
132  * entropy in each bit of output to at least 1-epsilon, where epsilon is
133  * required to be <= 2^(-32).
134  */
135 #define JENT_ENTROPY_SAFETY_FACTOR	64
136 
137 #include <linux/fips.h>
138 #include "jitterentropy.h"
139 
140 /***************************************************************************
141  * Adaptive Proportion Test
142  *
143  * This test complies with SP800-90B section 4.4.2.
144  ***************************************************************************/
145 
146 /*
147  * Reset the APT counter
148  *
149  * @ec [in] Reference to entropy collector
150  */
151 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
152 {
153 	/* Reset APT counter */
154 	ec->apt_count = 0;
155 	ec->apt_base = delta_masked;
156 	ec->apt_observations = 0;
157 }
158 
159 /*
160  * Insert a new entropy event into APT
161  *
162  * @ec [in] Reference to entropy collector
163  * @delta_masked [in] Masked time delta to process
164  */
165 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
166 {
167 	/* Initialize the base reference */
168 	if (!ec->apt_base_set) {
169 		ec->apt_base = delta_masked;
170 		ec->apt_base_set = 1;
171 		return;
172 	}
173 
174 	if (delta_masked == ec->apt_base)
175 		ec->apt_count++;
176 
177 	ec->apt_observations++;
178 
179 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
180 		jent_apt_reset(ec, delta_masked);
181 }
182 
183 /* APT health test failure detection */
184 static int jent_apt_permanent_failure(struct rand_data *ec)
185 {
186 	return (ec->apt_count >= JENT_APT_CUTOFF_PERMANENT) ? 1 : 0;
187 }
188 
189 static int jent_apt_failure(struct rand_data *ec)
190 {
191 	return (ec->apt_count >= JENT_APT_CUTOFF) ? 1 : 0;
192 }
193 
194 /***************************************************************************
195  * Stuck Test and its use as Repetition Count Test
196  *
197  * The Jitter RNG uses an enhanced version of the Repetition Count Test
198  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
199  * back-to-back values, the input to the RCT is the counting of the stuck
200  * values during the generation of one Jitter RNG output block.
201  *
202  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
203  *
204  * During the counting operation, the Jitter RNG always calculates the RCT
205  * cut-off value of C. If that value exceeds the allowed cut-off value,
206  * the Jitter RNG output block will be calculated completely but discarded at
207  * the end. The caller of the Jitter RNG is informed with an error code.
208  ***************************************************************************/
209 
210 /*
211  * Repetition Count Test as defined in SP800-90B section 4.4.1
212  *
213  * @ec [in] Reference to entropy collector
214  * @stuck [in] Indicator whether the value is stuck
215  */
216 static void jent_rct_insert(struct rand_data *ec, int stuck)
217 {
218 	if (stuck) {
219 		ec->rct_count++;
220 	} else {
221 		/* Reset RCT */
222 		ec->rct_count = 0;
223 	}
224 }
225 
226 static inline __u64 jent_delta(__u64 prev, __u64 next)
227 {
228 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
229 	return (prev < next) ? (next - prev) :
230 			       (JENT_UINT64_MAX - prev + 1 + next);
231 }
232 
233 /*
234  * Stuck test by checking the:
235  * 	1st derivative of the jitter measurement (time delta)
236  * 	2nd derivative of the jitter measurement (delta of time deltas)
237  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
238  *
239  * All values must always be non-zero.
240  *
241  * @ec [in] Reference to entropy collector
242  * @current_delta [in] Jitter time delta
243  *
244  * @return
245  * 	0 jitter measurement not stuck (good bit)
246  * 	1 jitter measurement stuck (reject bit)
247  */
248 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
249 {
250 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
251 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
252 
253 	ec->last_delta = current_delta;
254 	ec->last_delta2 = delta2;
255 
256 	/*
257 	 * Insert the result of the comparison of two back-to-back time
258 	 * deltas.
259 	 */
260 	jent_apt_insert(ec, current_delta);
261 
262 	if (!current_delta || !delta2 || !delta3) {
263 		/* RCT with a stuck bit */
264 		jent_rct_insert(ec, 1);
265 		return 1;
266 	}
267 
268 	/* RCT with a non-stuck bit */
269 	jent_rct_insert(ec, 0);
270 
271 	return 0;
272 }
273 
274 /* RCT health test failure detection */
275 static int jent_rct_permanent_failure(struct rand_data *ec)
276 {
277 	return (ec->rct_count >= JENT_RCT_CUTOFF_PERMANENT) ? 1 : 0;
278 }
279 
280 static int jent_rct_failure(struct rand_data *ec)
281 {
282 	return (ec->rct_count >= JENT_RCT_CUTOFF) ? 1 : 0;
283 }
284 
285 /* Report of health test failures */
286 static int jent_health_failure(struct rand_data *ec)
287 {
288 	return jent_rct_failure(ec) | jent_apt_failure(ec);
289 }
290 
291 static int jent_permanent_health_failure(struct rand_data *ec)
292 {
293 	return jent_rct_permanent_failure(ec) | jent_apt_permanent_failure(ec);
294 }
295 
296 /***************************************************************************
297  * Noise sources
298  ***************************************************************************/
299 
300 /*
301  * Update of the loop count used for the next round of
302  * an entropy collection.
303  *
304  * Input:
305  * @bits is the number of low bits of the timer to consider
306  * @min is the number of bits we shift the timer value to the right at
307  *	the end to make sure we have a guaranteed minimum value
308  *
309  * @return Newly calculated loop counter
310  */
311 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
312 {
313 	__u64 time = 0;
314 	__u64 shuffle = 0;
315 	unsigned int i = 0;
316 	unsigned int mask = (1<<bits) - 1;
317 
318 	jent_get_nstime(&time);
319 
320 	/*
321 	 * We fold the time value as much as possible to ensure that as many
322 	 * bits of the time stamp are included as possible.
323 	 */
324 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
325 		shuffle ^= time & mask;
326 		time = time >> bits;
327 	}
328 
329 	/*
330 	 * We add a lower boundary value to ensure we have a minimum
331 	 * RNG loop count.
332 	 */
333 	return (shuffle + (1<<min));
334 }
335 
336 /*
337  * CPU Jitter noise source -- this is the noise source based on the CPU
338  *			      execution time jitter
339  *
340  * This function injects the individual bits of the time value into the
341  * entropy pool using a hash.
342  *
343  * ec [in] entropy collector
344  * time [in] time stamp to be injected
345  * stuck [in] Is the time stamp identified as stuck?
346  *
347  * Output:
348  * updated hash context in the entropy collector or error code
349  */
350 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
351 {
352 #define SHA3_HASH_LOOP (1<<3)
353 	struct {
354 		int rct_count;
355 		unsigned int apt_observations;
356 		unsigned int apt_count;
357 		unsigned int apt_base;
358 	} addtl = {
359 		ec->rct_count,
360 		ec->apt_observations,
361 		ec->apt_count,
362 		ec->apt_base
363 	};
364 
365 	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
366 			      SHA3_HASH_LOOP, stuck);
367 }
368 
369 /*
370  * Memory Access noise source -- this is a noise source based on variations in
371  *				 memory access times
372  *
373  * This function performs memory accesses which will add to the timing
374  * variations due to an unknown amount of CPU wait states that need to be
375  * added when accessing memory. The memory size should be larger than the L1
376  * caches as outlined in the documentation and the associated testing.
377  *
378  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
379  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
380  * variations as the CPU has hardly to wait. Starting with L2, significant
381  * variations are added because L2 typically does not belong to the CPU any more
382  * and therefore a wider range of CPU wait states is necessary for accesses.
383  * L3 and real memory accesses have even a wider range of wait states. However,
384  * to reliably access either L3 or memory, the ec->mem memory must be quite
385  * large which is usually not desirable.
386  *
387  * @ec [in] Reference to the entropy collector with the memory access data -- if
388  *	    the reference to the memory block to be accessed is NULL, this noise
389  *	    source is disabled
390  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
391  *		  number of loops to perform the LFSR
392  */
393 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
394 {
395 	unsigned int wrap = 0;
396 	__u64 i = 0;
397 #define MAX_ACC_LOOP_BIT 7
398 #define MIN_ACC_LOOP_BIT 0
399 	__u64 acc_loop_cnt =
400 		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
401 
402 	if (NULL == ec || NULL == ec->mem)
403 		return;
404 	wrap = ec->memblocksize * ec->memblocks;
405 
406 	/*
407 	 * testing purposes -- allow test app to set the counter, not
408 	 * needed during runtime
409 	 */
410 	if (loop_cnt)
411 		acc_loop_cnt = loop_cnt;
412 
413 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
414 		unsigned char *tmpval = ec->mem + ec->memlocation;
415 		/*
416 		 * memory access: just add 1 to one byte,
417 		 * wrap at 255 -- memory access implies read
418 		 * from and write to memory location
419 		 */
420 		*tmpval = (*tmpval + 1) & 0xff;
421 		/*
422 		 * Addition of memblocksize - 1 to pointer
423 		 * with wrap around logic to ensure that every
424 		 * memory location is hit evenly
425 		 */
426 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
427 		ec->memlocation = ec->memlocation % wrap;
428 	}
429 }
430 
431 /***************************************************************************
432  * Start of entropy processing logic
433  ***************************************************************************/
434 /*
435  * This is the heart of the entropy generation: calculate time deltas and
436  * use the CPU jitter in the time deltas. The jitter is injected into the
437  * entropy pool.
438  *
439  * WARNING: ensure that ->prev_time is primed before using the output
440  *	    of this function! This can be done by calling this function
441  *	    and not using its result.
442  *
443  * @ec [in] Reference to entropy collector
444  *
445  * @return result of stuck test
446  */
447 static int jent_measure_jitter(struct rand_data *ec)
448 {
449 	__u64 time = 0;
450 	__u64 current_delta = 0;
451 	int stuck;
452 
453 	/* Invoke one noise source before time measurement to add variations */
454 	jent_memaccess(ec, 0);
455 
456 	/*
457 	 * Get time stamp and calculate time delta to previous
458 	 * invocation to measure the timing variations
459 	 */
460 	jent_get_nstime(&time);
461 	current_delta = jent_delta(ec->prev_time, time);
462 	ec->prev_time = time;
463 
464 	/* Check whether we have a stuck measurement. */
465 	stuck = jent_stuck(ec, current_delta);
466 
467 	/* Now call the next noise sources which also injects the data */
468 	if (jent_condition_data(ec, current_delta, stuck))
469 		stuck = 1;
470 
471 	return stuck;
472 }
473 
474 /*
475  * Generator of one 64 bit random number
476  * Function fills rand_data->hash_state
477  *
478  * @ec [in] Reference to entropy collector
479  */
480 static void jent_gen_entropy(struct rand_data *ec)
481 {
482 	unsigned int k = 0, safety_factor = 0;
483 
484 	if (fips_enabled)
485 		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
486 
487 	/* priming of the ->prev_time value */
488 	jent_measure_jitter(ec);
489 
490 	while (!jent_health_failure(ec)) {
491 		/* If a stuck measurement is received, repeat measurement */
492 		if (jent_measure_jitter(ec))
493 			continue;
494 
495 		/*
496 		 * We multiply the loop value with ->osr to obtain the
497 		 * oversampling rate requested by the caller
498 		 */
499 		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
500 			break;
501 	}
502 }
503 
504 /*
505  * Entry function: Obtain entropy for the caller.
506  *
507  * This function invokes the entropy gathering logic as often to generate
508  * as many bytes as requested by the caller. The entropy gathering logic
509  * creates 64 bit per invocation.
510  *
511  * This function truncates the last 64 bit entropy value output to the exact
512  * size specified by the caller.
513  *
514  * @ec [in] Reference to entropy collector
515  * @data [in] pointer to buffer for storing random data -- buffer must already
516  *	      exist
517  * @len [in] size of the buffer, specifying also the requested number of random
518  *	     in bytes
519  *
520  * @return 0 when request is fulfilled or an error
521  *
522  * The following error codes can occur:
523  *	-1	entropy_collector is NULL or the generation failed
524  *	-2	Intermittent health failure
525  *	-3	Permanent health failure
526  */
527 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
528 		      unsigned int len)
529 {
530 	unsigned char *p = data;
531 
532 	if (!ec)
533 		return -1;
534 
535 	while (len > 0) {
536 		unsigned int tocopy;
537 
538 		jent_gen_entropy(ec);
539 
540 		if (jent_permanent_health_failure(ec)) {
541 			/*
542 			 * At this point, the Jitter RNG instance is considered
543 			 * as a failed instance. There is no rerun of the
544 			 * startup test any more, because the caller
545 			 * is assumed to not further use this instance.
546 			 */
547 			return -3;
548 		} else if (jent_health_failure(ec)) {
549 			/*
550 			 * Perform startup health tests and return permanent
551 			 * error if it fails.
552 			 */
553 			if (jent_entropy_init(ec->hash_state))
554 				return -3;
555 
556 			return -2;
557 		}
558 
559 		if ((DATA_SIZE_BITS / 8) < len)
560 			tocopy = (DATA_SIZE_BITS / 8);
561 		else
562 			tocopy = len;
563 		if (jent_read_random_block(ec->hash_state, p, tocopy))
564 			return -1;
565 
566 		len -= tocopy;
567 		p += tocopy;
568 	}
569 
570 	return 0;
571 }
572 
573 /***************************************************************************
574  * Initialization logic
575  ***************************************************************************/
576 
577 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
578 					       unsigned int flags,
579 					       void *hash_state)
580 {
581 	struct rand_data *entropy_collector;
582 
583 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
584 	if (!entropy_collector)
585 		return NULL;
586 
587 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
588 		/* Allocate memory for adding variations based on memory
589 		 * access
590 		 */
591 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
592 		if (!entropy_collector->mem) {
593 			jent_zfree(entropy_collector);
594 			return NULL;
595 		}
596 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
597 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
598 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
599 	}
600 
601 	/* verify and set the oversampling rate */
602 	if (osr == 0)
603 		osr = 1; /* minimum sampling rate is 1 */
604 	entropy_collector->osr = osr;
605 
606 	entropy_collector->hash_state = hash_state;
607 
608 	/* fill the data pad with non-zero values */
609 	jent_gen_entropy(entropy_collector);
610 
611 	return entropy_collector;
612 }
613 
614 void jent_entropy_collector_free(struct rand_data *entropy_collector)
615 {
616 	jent_zfree(entropy_collector->mem);
617 	entropy_collector->mem = NULL;
618 	jent_zfree(entropy_collector);
619 }
620 
621 int jent_entropy_init(void *hash_state)
622 {
623 	int i;
624 	__u64 delta_sum = 0;
625 	__u64 old_delta = 0;
626 	unsigned int nonstuck = 0;
627 	int time_backwards = 0;
628 	int count_mod = 0;
629 	int count_stuck = 0;
630 	struct rand_data ec = { 0 };
631 
632 	/* Required for RCT */
633 	ec.osr = 1;
634 	ec.hash_state = hash_state;
635 
636 	/* We could perform statistical tests here, but the problem is
637 	 * that we only have a few loop counts to do testing. These
638 	 * loop counts may show some slight skew and we produce
639 	 * false positives.
640 	 *
641 	 * Moreover, only old systems show potentially problematic
642 	 * jitter entropy that could potentially be caught here. But
643 	 * the RNG is intended for hardware that is available or widely
644 	 * used, but not old systems that are long out of favor. Thus,
645 	 * no statistical tests.
646 	 */
647 
648 	/*
649 	 * We could add a check for system capabilities such as clock_getres or
650 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
651 	 * following sanity checks verify that we have a high-resolution
652 	 * timer.
653 	 */
654 	/*
655 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
656 	 * definitely too little.
657 	 *
658 	 * SP800-90B requires at least 1024 initial test cycles.
659 	 */
660 #define TESTLOOPCOUNT 1024
661 #define CLEARCACHE 100
662 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
663 		__u64 time = 0;
664 		__u64 time2 = 0;
665 		__u64 delta = 0;
666 		unsigned int lowdelta = 0;
667 		int stuck;
668 
669 		/* Invoke core entropy collection logic */
670 		jent_get_nstime(&time);
671 		ec.prev_time = time;
672 		jent_condition_data(&ec, time, 0);
673 		jent_get_nstime(&time2);
674 
675 		/* test whether timer works */
676 		if (!time || !time2)
677 			return JENT_ENOTIME;
678 		delta = jent_delta(time, time2);
679 		/*
680 		 * test whether timer is fine grained enough to provide
681 		 * delta even when called shortly after each other -- this
682 		 * implies that we also have a high resolution timer
683 		 */
684 		if (!delta)
685 			return JENT_ECOARSETIME;
686 
687 		stuck = jent_stuck(&ec, delta);
688 
689 		/*
690 		 * up to here we did not modify any variable that will be
691 		 * evaluated later, but we already performed some work. Thus we
692 		 * already have had an impact on the caches, branch prediction,
693 		 * etc. with the goal to clear it to get the worst case
694 		 * measurements.
695 		 */
696 		if (i < CLEARCACHE)
697 			continue;
698 
699 		if (stuck)
700 			count_stuck++;
701 		else {
702 			nonstuck++;
703 
704 			/*
705 			 * Ensure that the APT succeeded.
706 			 *
707 			 * With the check below that count_stuck must be less
708 			 * than 10% of the overall generated raw entropy values
709 			 * it is guaranteed that the APT is invoked at
710 			 * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times.
711 			 */
712 			if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) {
713 				jent_apt_reset(&ec,
714 					       delta & JENT_APT_WORD_MASK);
715 			}
716 		}
717 
718 		/* Validate health test result */
719 		if (jent_health_failure(&ec))
720 			return JENT_EHEALTH;
721 
722 		/* test whether we have an increasing timer */
723 		if (!(time2 > time))
724 			time_backwards++;
725 
726 		/* use 32 bit value to ensure compilation on 32 bit arches */
727 		lowdelta = time2 - time;
728 		if (!(lowdelta % 100))
729 			count_mod++;
730 
731 		/*
732 		 * ensure that we have a varying delta timer which is necessary
733 		 * for the calculation of entropy -- perform this check
734 		 * only after the first loop is executed as we need to prime
735 		 * the old_data value
736 		 */
737 		if (delta > old_delta)
738 			delta_sum += (delta - old_delta);
739 		else
740 			delta_sum += (old_delta - delta);
741 		old_delta = delta;
742 	}
743 
744 	/*
745 	 * we allow up to three times the time running backwards.
746 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
747 	 * if such an operation just happens to interfere with our test, it
748 	 * should not fail. The value of 3 should cover the NTP case being
749 	 * performed during our test run.
750 	 */
751 	if (time_backwards > 3)
752 		return JENT_ENOMONOTONIC;
753 
754 	/*
755 	 * Variations of deltas of time must on average be larger
756 	 * than 1 to ensure the entropy estimation
757 	 * implied with 1 is preserved
758 	 */
759 	if ((delta_sum) <= 1)
760 		return JENT_EVARVAR;
761 
762 	/*
763 	 * Ensure that we have variations in the time stamp below 10 for at
764 	 * least 10% of all checks -- on some platforms, the counter increments
765 	 * in multiples of 100, but not always
766 	 */
767 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
768 		return JENT_ECOARSETIME;
769 
770 	/*
771 	 * If we have more than 90% stuck results, then this Jitter RNG is
772 	 * likely to not work well.
773 	 */
774 	if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
775 		return JENT_ESTUCK;
776 
777 	return 0;
778 }
779