xref: /openbmc/linux/crypto/cryptd.c (revision cd900f0cacd7601dabdd028e8cbdbf2a7041cee2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Software async crypto daemon.
4  *
5  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * Added AEAD support to cryptd.
8  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9  *             Adrian Hoban <adrian.hoban@intel.com>
10  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
11  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
12  *    Copyright (c) 2010, Intel Corporation.
13  */
14 
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33 
34 static struct workqueue_struct *cryptd_wq;
35 
36 struct cryptd_cpu_queue {
37 	struct crypto_queue queue;
38 	struct work_struct work;
39 };
40 
41 struct cryptd_queue {
42 	struct cryptd_cpu_queue __percpu *cpu_queue;
43 };
44 
45 struct cryptd_instance_ctx {
46 	struct crypto_spawn spawn;
47 	struct cryptd_queue *queue;
48 };
49 
50 struct skcipherd_instance_ctx {
51 	struct crypto_skcipher_spawn spawn;
52 	struct cryptd_queue *queue;
53 };
54 
55 struct hashd_instance_ctx {
56 	struct crypto_shash_spawn spawn;
57 	struct cryptd_queue *queue;
58 };
59 
60 struct aead_instance_ctx {
61 	struct crypto_aead_spawn aead_spawn;
62 	struct cryptd_queue *queue;
63 };
64 
65 struct cryptd_skcipher_ctx {
66 	refcount_t refcnt;
67 	struct crypto_sync_skcipher *child;
68 };
69 
70 struct cryptd_skcipher_request_ctx {
71 	crypto_completion_t complete;
72 };
73 
74 struct cryptd_hash_ctx {
75 	refcount_t refcnt;
76 	struct crypto_shash *child;
77 };
78 
79 struct cryptd_hash_request_ctx {
80 	crypto_completion_t complete;
81 	struct shash_desc desc;
82 };
83 
84 struct cryptd_aead_ctx {
85 	refcount_t refcnt;
86 	struct crypto_aead *child;
87 };
88 
89 struct cryptd_aead_request_ctx {
90 	crypto_completion_t complete;
91 };
92 
93 static void cryptd_queue_worker(struct work_struct *work);
94 
95 static int cryptd_init_queue(struct cryptd_queue *queue,
96 			     unsigned int max_cpu_qlen)
97 {
98 	int cpu;
99 	struct cryptd_cpu_queue *cpu_queue;
100 
101 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
102 	if (!queue->cpu_queue)
103 		return -ENOMEM;
104 	for_each_possible_cpu(cpu) {
105 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
106 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
107 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
108 	}
109 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
110 	return 0;
111 }
112 
113 static void cryptd_fini_queue(struct cryptd_queue *queue)
114 {
115 	int cpu;
116 	struct cryptd_cpu_queue *cpu_queue;
117 
118 	for_each_possible_cpu(cpu) {
119 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
120 		BUG_ON(cpu_queue->queue.qlen);
121 	}
122 	free_percpu(queue->cpu_queue);
123 }
124 
125 static int cryptd_enqueue_request(struct cryptd_queue *queue,
126 				  struct crypto_async_request *request)
127 {
128 	int cpu, err;
129 	struct cryptd_cpu_queue *cpu_queue;
130 	refcount_t *refcnt;
131 
132 	cpu = get_cpu();
133 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
134 	err = crypto_enqueue_request(&cpu_queue->queue, request);
135 
136 	refcnt = crypto_tfm_ctx(request->tfm);
137 
138 	if (err == -ENOSPC)
139 		goto out_put_cpu;
140 
141 	queue_work_on(cpu, cryptd_wq, &cpu_queue->work);
142 
143 	if (!refcount_read(refcnt))
144 		goto out_put_cpu;
145 
146 	refcount_inc(refcnt);
147 
148 out_put_cpu:
149 	put_cpu();
150 
151 	return err;
152 }
153 
154 /* Called in workqueue context, do one real cryption work (via
155  * req->complete) and reschedule itself if there are more work to
156  * do. */
157 static void cryptd_queue_worker(struct work_struct *work)
158 {
159 	struct cryptd_cpu_queue *cpu_queue;
160 	struct crypto_async_request *req, *backlog;
161 
162 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
163 	/*
164 	 * Only handle one request at a time to avoid hogging crypto workqueue.
165 	 * preempt_disable/enable is used to prevent being preempted by
166 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
167 	 * cryptd_enqueue_request() being accessed from software interrupts.
168 	 */
169 	local_bh_disable();
170 	preempt_disable();
171 	backlog = crypto_get_backlog(&cpu_queue->queue);
172 	req = crypto_dequeue_request(&cpu_queue->queue);
173 	preempt_enable();
174 	local_bh_enable();
175 
176 	if (!req)
177 		return;
178 
179 	if (backlog)
180 		backlog->complete(backlog, -EINPROGRESS);
181 	req->complete(req, 0);
182 
183 	if (cpu_queue->queue.qlen)
184 		queue_work(cryptd_wq, &cpu_queue->work);
185 }
186 
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 	return ictx->queue;
192 }
193 
194 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
195 					 u32 *mask)
196 {
197 	struct crypto_attr_type *algt;
198 
199 	algt = crypto_get_attr_type(tb);
200 	if (IS_ERR(algt))
201 		return;
202 
203 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
204 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
205 }
206 
207 static int cryptd_init_instance(struct crypto_instance *inst,
208 				struct crypto_alg *alg)
209 {
210 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
211 		     "cryptd(%s)",
212 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
213 		return -ENAMETOOLONG;
214 
215 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
216 
217 	inst->alg.cra_priority = alg->cra_priority + 50;
218 	inst->alg.cra_blocksize = alg->cra_blocksize;
219 	inst->alg.cra_alignmask = alg->cra_alignmask;
220 
221 	return 0;
222 }
223 
224 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
225 				   unsigned int tail)
226 {
227 	char *p;
228 	struct crypto_instance *inst;
229 	int err;
230 
231 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
232 	if (!p)
233 		return ERR_PTR(-ENOMEM);
234 
235 	inst = (void *)(p + head);
236 
237 	err = cryptd_init_instance(inst, alg);
238 	if (err)
239 		goto out_free_inst;
240 
241 out:
242 	return p;
243 
244 out_free_inst:
245 	kfree(p);
246 	p = ERR_PTR(err);
247 	goto out;
248 }
249 
250 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
251 				  const u8 *key, unsigned int keylen)
252 {
253 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
254 	struct crypto_sync_skcipher *child = ctx->child;
255 
256 	crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
257 	crypto_sync_skcipher_set_flags(child,
258 				       crypto_skcipher_get_flags(parent) &
259 					 CRYPTO_TFM_REQ_MASK);
260 	return crypto_sync_skcipher_setkey(child, key, keylen);
261 }
262 
263 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
264 {
265 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
266 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
267 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
268 	int refcnt = refcount_read(&ctx->refcnt);
269 
270 	local_bh_disable();
271 	rctx->complete(&req->base, err);
272 	local_bh_enable();
273 
274 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
275 		crypto_free_skcipher(tfm);
276 }
277 
278 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
279 				    int err)
280 {
281 	struct skcipher_request *req = skcipher_request_cast(base);
282 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
283 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
284 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
285 	struct crypto_sync_skcipher *child = ctx->child;
286 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
287 
288 	if (unlikely(err == -EINPROGRESS))
289 		goto out;
290 
291 	skcipher_request_set_sync_tfm(subreq, child);
292 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
293 				      NULL, NULL);
294 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
295 				   req->iv);
296 
297 	err = crypto_skcipher_encrypt(subreq);
298 	skcipher_request_zero(subreq);
299 
300 	req->base.complete = rctx->complete;
301 
302 out:
303 	cryptd_skcipher_complete(req, err);
304 }
305 
306 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
307 				    int err)
308 {
309 	struct skcipher_request *req = skcipher_request_cast(base);
310 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
311 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
312 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
313 	struct crypto_sync_skcipher *child = ctx->child;
314 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
315 
316 	if (unlikely(err == -EINPROGRESS))
317 		goto out;
318 
319 	skcipher_request_set_sync_tfm(subreq, child);
320 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
321 				      NULL, NULL);
322 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
323 				   req->iv);
324 
325 	err = crypto_skcipher_decrypt(subreq);
326 	skcipher_request_zero(subreq);
327 
328 	req->base.complete = rctx->complete;
329 
330 out:
331 	cryptd_skcipher_complete(req, err);
332 }
333 
334 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
335 				   crypto_completion_t compl)
336 {
337 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
338 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
339 	struct cryptd_queue *queue;
340 
341 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
342 	rctx->complete = req->base.complete;
343 	req->base.complete = compl;
344 
345 	return cryptd_enqueue_request(queue, &req->base);
346 }
347 
348 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
349 {
350 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
351 }
352 
353 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
354 {
355 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
356 }
357 
358 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
359 {
360 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
361 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
362 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
363 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
364 	struct crypto_skcipher *cipher;
365 
366 	cipher = crypto_spawn_skcipher(spawn);
367 	if (IS_ERR(cipher))
368 		return PTR_ERR(cipher);
369 
370 	ctx->child = (struct crypto_sync_skcipher *)cipher;
371 	crypto_skcipher_set_reqsize(
372 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
373 	return 0;
374 }
375 
376 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
377 {
378 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
379 
380 	crypto_free_sync_skcipher(ctx->child);
381 }
382 
383 static void cryptd_skcipher_free(struct skcipher_instance *inst)
384 {
385 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
386 
387 	crypto_drop_skcipher(&ctx->spawn);
388 	kfree(inst);
389 }
390 
391 static int cryptd_create_skcipher(struct crypto_template *tmpl,
392 				  struct rtattr **tb,
393 				  struct cryptd_queue *queue)
394 {
395 	struct skcipherd_instance_ctx *ctx;
396 	struct skcipher_instance *inst;
397 	struct skcipher_alg *alg;
398 	const char *name;
399 	u32 type;
400 	u32 mask;
401 	int err;
402 
403 	type = 0;
404 	mask = CRYPTO_ALG_ASYNC;
405 
406 	cryptd_check_internal(tb, &type, &mask);
407 
408 	name = crypto_attr_alg_name(tb[1]);
409 	if (IS_ERR(name))
410 		return PTR_ERR(name);
411 
412 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
413 	if (!inst)
414 		return -ENOMEM;
415 
416 	ctx = skcipher_instance_ctx(inst);
417 	ctx->queue = queue;
418 
419 	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
420 				   name, type, mask);
421 	if (err)
422 		goto out_free_inst;
423 
424 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
425 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
426 	if (err)
427 		goto out_drop_skcipher;
428 
429 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
430 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
431 
432 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
433 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
434 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
435 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
436 
437 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
438 
439 	inst->alg.init = cryptd_skcipher_init_tfm;
440 	inst->alg.exit = cryptd_skcipher_exit_tfm;
441 
442 	inst->alg.setkey = cryptd_skcipher_setkey;
443 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
444 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
445 
446 	inst->free = cryptd_skcipher_free;
447 
448 	err = skcipher_register_instance(tmpl, inst);
449 	if (err) {
450 out_drop_skcipher:
451 		crypto_drop_skcipher(&ctx->spawn);
452 out_free_inst:
453 		kfree(inst);
454 	}
455 	return err;
456 }
457 
458 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
459 {
460 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
461 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
462 	struct crypto_shash_spawn *spawn = &ictx->spawn;
463 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
464 	struct crypto_shash *hash;
465 
466 	hash = crypto_spawn_shash(spawn);
467 	if (IS_ERR(hash))
468 		return PTR_ERR(hash);
469 
470 	ctx->child = hash;
471 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
472 				 sizeof(struct cryptd_hash_request_ctx) +
473 				 crypto_shash_descsize(hash));
474 	return 0;
475 }
476 
477 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
478 {
479 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
480 
481 	crypto_free_shash(ctx->child);
482 }
483 
484 static int cryptd_hash_setkey(struct crypto_ahash *parent,
485 				   const u8 *key, unsigned int keylen)
486 {
487 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
488 	struct crypto_shash *child = ctx->child;
489 
490 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
491 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
492 				      CRYPTO_TFM_REQ_MASK);
493 	return crypto_shash_setkey(child, key, keylen);
494 }
495 
496 static int cryptd_hash_enqueue(struct ahash_request *req,
497 				crypto_completion_t compl)
498 {
499 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
500 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
501 	struct cryptd_queue *queue =
502 		cryptd_get_queue(crypto_ahash_tfm(tfm));
503 
504 	rctx->complete = req->base.complete;
505 	req->base.complete = compl;
506 
507 	return cryptd_enqueue_request(queue, &req->base);
508 }
509 
510 static void cryptd_hash_complete(struct ahash_request *req, int err)
511 {
512 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
513 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
514 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
515 	int refcnt = refcount_read(&ctx->refcnt);
516 
517 	local_bh_disable();
518 	rctx->complete(&req->base, err);
519 	local_bh_enable();
520 
521 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
522 		crypto_free_ahash(tfm);
523 }
524 
525 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
526 {
527 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
528 	struct crypto_shash *child = ctx->child;
529 	struct ahash_request *req = ahash_request_cast(req_async);
530 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
531 	struct shash_desc *desc = &rctx->desc;
532 
533 	if (unlikely(err == -EINPROGRESS))
534 		goto out;
535 
536 	desc->tfm = child;
537 
538 	err = crypto_shash_init(desc);
539 
540 	req->base.complete = rctx->complete;
541 
542 out:
543 	cryptd_hash_complete(req, err);
544 }
545 
546 static int cryptd_hash_init_enqueue(struct ahash_request *req)
547 {
548 	return cryptd_hash_enqueue(req, cryptd_hash_init);
549 }
550 
551 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
552 {
553 	struct ahash_request *req = ahash_request_cast(req_async);
554 	struct cryptd_hash_request_ctx *rctx;
555 
556 	rctx = ahash_request_ctx(req);
557 
558 	if (unlikely(err == -EINPROGRESS))
559 		goto out;
560 
561 	err = shash_ahash_update(req, &rctx->desc);
562 
563 	req->base.complete = rctx->complete;
564 
565 out:
566 	cryptd_hash_complete(req, err);
567 }
568 
569 static int cryptd_hash_update_enqueue(struct ahash_request *req)
570 {
571 	return cryptd_hash_enqueue(req, cryptd_hash_update);
572 }
573 
574 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
575 {
576 	struct ahash_request *req = ahash_request_cast(req_async);
577 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
578 
579 	if (unlikely(err == -EINPROGRESS))
580 		goto out;
581 
582 	err = crypto_shash_final(&rctx->desc, req->result);
583 
584 	req->base.complete = rctx->complete;
585 
586 out:
587 	cryptd_hash_complete(req, err);
588 }
589 
590 static int cryptd_hash_final_enqueue(struct ahash_request *req)
591 {
592 	return cryptd_hash_enqueue(req, cryptd_hash_final);
593 }
594 
595 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
596 {
597 	struct ahash_request *req = ahash_request_cast(req_async);
598 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
599 
600 	if (unlikely(err == -EINPROGRESS))
601 		goto out;
602 
603 	err = shash_ahash_finup(req, &rctx->desc);
604 
605 	req->base.complete = rctx->complete;
606 
607 out:
608 	cryptd_hash_complete(req, err);
609 }
610 
611 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
612 {
613 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
614 }
615 
616 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
617 {
618 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
619 	struct crypto_shash *child = ctx->child;
620 	struct ahash_request *req = ahash_request_cast(req_async);
621 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
622 	struct shash_desc *desc = &rctx->desc;
623 
624 	if (unlikely(err == -EINPROGRESS))
625 		goto out;
626 
627 	desc->tfm = child;
628 
629 	err = shash_ahash_digest(req, desc);
630 
631 	req->base.complete = rctx->complete;
632 
633 out:
634 	cryptd_hash_complete(req, err);
635 }
636 
637 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
638 {
639 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
640 }
641 
642 static int cryptd_hash_export(struct ahash_request *req, void *out)
643 {
644 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
645 
646 	return crypto_shash_export(&rctx->desc, out);
647 }
648 
649 static int cryptd_hash_import(struct ahash_request *req, const void *in)
650 {
651 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
652 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
653 	struct shash_desc *desc = cryptd_shash_desc(req);
654 
655 	desc->tfm = ctx->child;
656 
657 	return crypto_shash_import(desc, in);
658 }
659 
660 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
661 			      struct cryptd_queue *queue)
662 {
663 	struct hashd_instance_ctx *ctx;
664 	struct ahash_instance *inst;
665 	struct shash_alg *salg;
666 	struct crypto_alg *alg;
667 	u32 type = 0;
668 	u32 mask = 0;
669 	int err;
670 
671 	cryptd_check_internal(tb, &type, &mask);
672 
673 	salg = shash_attr_alg(tb[1], type, mask);
674 	if (IS_ERR(salg))
675 		return PTR_ERR(salg);
676 
677 	alg = &salg->base;
678 	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
679 				     sizeof(*ctx));
680 	err = PTR_ERR(inst);
681 	if (IS_ERR(inst))
682 		goto out_put_alg;
683 
684 	ctx = ahash_instance_ctx(inst);
685 	ctx->queue = queue;
686 
687 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
688 				      ahash_crypto_instance(inst));
689 	if (err)
690 		goto out_free_inst;
691 
692 	inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
693 		(alg->cra_flags & (CRYPTO_ALG_INTERNAL |
694 				   CRYPTO_ALG_OPTIONAL_KEY));
695 
696 	inst->alg.halg.digestsize = salg->digestsize;
697 	inst->alg.halg.statesize = salg->statesize;
698 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
699 
700 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
701 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
702 
703 	inst->alg.init   = cryptd_hash_init_enqueue;
704 	inst->alg.update = cryptd_hash_update_enqueue;
705 	inst->alg.final  = cryptd_hash_final_enqueue;
706 	inst->alg.finup  = cryptd_hash_finup_enqueue;
707 	inst->alg.export = cryptd_hash_export;
708 	inst->alg.import = cryptd_hash_import;
709 	if (crypto_shash_alg_has_setkey(salg))
710 		inst->alg.setkey = cryptd_hash_setkey;
711 	inst->alg.digest = cryptd_hash_digest_enqueue;
712 
713 	err = ahash_register_instance(tmpl, inst);
714 	if (err) {
715 		crypto_drop_shash(&ctx->spawn);
716 out_free_inst:
717 		kfree(inst);
718 	}
719 
720 out_put_alg:
721 	crypto_mod_put(alg);
722 	return err;
723 }
724 
725 static int cryptd_aead_setkey(struct crypto_aead *parent,
726 			      const u8 *key, unsigned int keylen)
727 {
728 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
729 	struct crypto_aead *child = ctx->child;
730 
731 	return crypto_aead_setkey(child, key, keylen);
732 }
733 
734 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
735 				   unsigned int authsize)
736 {
737 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
738 	struct crypto_aead *child = ctx->child;
739 
740 	return crypto_aead_setauthsize(child, authsize);
741 }
742 
743 static void cryptd_aead_crypt(struct aead_request *req,
744 			struct crypto_aead *child,
745 			int err,
746 			int (*crypt)(struct aead_request *req))
747 {
748 	struct cryptd_aead_request_ctx *rctx;
749 	struct cryptd_aead_ctx *ctx;
750 	crypto_completion_t compl;
751 	struct crypto_aead *tfm;
752 	int refcnt;
753 
754 	rctx = aead_request_ctx(req);
755 	compl = rctx->complete;
756 
757 	tfm = crypto_aead_reqtfm(req);
758 
759 	if (unlikely(err == -EINPROGRESS))
760 		goto out;
761 	aead_request_set_tfm(req, child);
762 	err = crypt( req );
763 
764 out:
765 	ctx = crypto_aead_ctx(tfm);
766 	refcnt = refcount_read(&ctx->refcnt);
767 
768 	local_bh_disable();
769 	compl(&req->base, err);
770 	local_bh_enable();
771 
772 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
773 		crypto_free_aead(tfm);
774 }
775 
776 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
777 {
778 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
779 	struct crypto_aead *child = ctx->child;
780 	struct aead_request *req;
781 
782 	req = container_of(areq, struct aead_request, base);
783 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
784 }
785 
786 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
787 {
788 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
789 	struct crypto_aead *child = ctx->child;
790 	struct aead_request *req;
791 
792 	req = container_of(areq, struct aead_request, base);
793 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
794 }
795 
796 static int cryptd_aead_enqueue(struct aead_request *req,
797 				    crypto_completion_t compl)
798 {
799 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
800 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
801 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
802 
803 	rctx->complete = req->base.complete;
804 	req->base.complete = compl;
805 	return cryptd_enqueue_request(queue, &req->base);
806 }
807 
808 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
809 {
810 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
811 }
812 
813 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
814 {
815 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
816 }
817 
818 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
819 {
820 	struct aead_instance *inst = aead_alg_instance(tfm);
821 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
822 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
823 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
824 	struct crypto_aead *cipher;
825 
826 	cipher = crypto_spawn_aead(spawn);
827 	if (IS_ERR(cipher))
828 		return PTR_ERR(cipher);
829 
830 	ctx->child = cipher;
831 	crypto_aead_set_reqsize(
832 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
833 			 crypto_aead_reqsize(cipher)));
834 	return 0;
835 }
836 
837 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
838 {
839 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
840 	crypto_free_aead(ctx->child);
841 }
842 
843 static int cryptd_create_aead(struct crypto_template *tmpl,
844 		              struct rtattr **tb,
845 			      struct cryptd_queue *queue)
846 {
847 	struct aead_instance_ctx *ctx;
848 	struct aead_instance *inst;
849 	struct aead_alg *alg;
850 	const char *name;
851 	u32 type = 0;
852 	u32 mask = CRYPTO_ALG_ASYNC;
853 	int err;
854 
855 	cryptd_check_internal(tb, &type, &mask);
856 
857 	name = crypto_attr_alg_name(tb[1]);
858 	if (IS_ERR(name))
859 		return PTR_ERR(name);
860 
861 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
862 	if (!inst)
863 		return -ENOMEM;
864 
865 	ctx = aead_instance_ctx(inst);
866 	ctx->queue = queue;
867 
868 	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
869 			       name, type, mask);
870 	if (err)
871 		goto out_free_inst;
872 
873 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
874 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
875 	if (err)
876 		goto out_drop_aead;
877 
878 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
879 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
880 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
881 
882 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
883 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
884 
885 	inst->alg.init = cryptd_aead_init_tfm;
886 	inst->alg.exit = cryptd_aead_exit_tfm;
887 	inst->alg.setkey = cryptd_aead_setkey;
888 	inst->alg.setauthsize = cryptd_aead_setauthsize;
889 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
890 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
891 
892 	err = aead_register_instance(tmpl, inst);
893 	if (err) {
894 out_drop_aead:
895 		crypto_drop_aead(&ctx->aead_spawn);
896 out_free_inst:
897 		kfree(inst);
898 	}
899 	return err;
900 }
901 
902 static struct cryptd_queue queue;
903 
904 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
905 {
906 	struct crypto_attr_type *algt;
907 
908 	algt = crypto_get_attr_type(tb);
909 	if (IS_ERR(algt))
910 		return PTR_ERR(algt);
911 
912 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
913 	case CRYPTO_ALG_TYPE_SKCIPHER:
914 		return cryptd_create_skcipher(tmpl, tb, &queue);
915 	case CRYPTO_ALG_TYPE_HASH:
916 		return cryptd_create_hash(tmpl, tb, &queue);
917 	case CRYPTO_ALG_TYPE_AEAD:
918 		return cryptd_create_aead(tmpl, tb, &queue);
919 	}
920 
921 	return -EINVAL;
922 }
923 
924 static void cryptd_free(struct crypto_instance *inst)
925 {
926 	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
927 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
928 	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
929 
930 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
931 	case CRYPTO_ALG_TYPE_AHASH:
932 		crypto_drop_shash(&hctx->spawn);
933 		kfree(ahash_instance(inst));
934 		return;
935 	case CRYPTO_ALG_TYPE_AEAD:
936 		crypto_drop_aead(&aead_ctx->aead_spawn);
937 		kfree(aead_instance(inst));
938 		return;
939 	default:
940 		crypto_drop_spawn(&ctx->spawn);
941 		kfree(inst);
942 	}
943 }
944 
945 static struct crypto_template cryptd_tmpl = {
946 	.name = "cryptd",
947 	.create = cryptd_create,
948 	.free = cryptd_free,
949 	.module = THIS_MODULE,
950 };
951 
952 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
953 					      u32 type, u32 mask)
954 {
955 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
956 	struct cryptd_skcipher_ctx *ctx;
957 	struct crypto_skcipher *tfm;
958 
959 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
960 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
961 		return ERR_PTR(-EINVAL);
962 
963 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
964 	if (IS_ERR(tfm))
965 		return ERR_CAST(tfm);
966 
967 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
968 		crypto_free_skcipher(tfm);
969 		return ERR_PTR(-EINVAL);
970 	}
971 
972 	ctx = crypto_skcipher_ctx(tfm);
973 	refcount_set(&ctx->refcnt, 1);
974 
975 	return container_of(tfm, struct cryptd_skcipher, base);
976 }
977 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
978 
979 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
980 {
981 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
982 
983 	return &ctx->child->base;
984 }
985 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
986 
987 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
988 {
989 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
990 
991 	return refcount_read(&ctx->refcnt) - 1;
992 }
993 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
994 
995 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
996 {
997 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
998 
999 	if (refcount_dec_and_test(&ctx->refcnt))
1000 		crypto_free_skcipher(&tfm->base);
1001 }
1002 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1003 
1004 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1005 					u32 type, u32 mask)
1006 {
1007 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1008 	struct cryptd_hash_ctx *ctx;
1009 	struct crypto_ahash *tfm;
1010 
1011 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1012 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1013 		return ERR_PTR(-EINVAL);
1014 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1015 	if (IS_ERR(tfm))
1016 		return ERR_CAST(tfm);
1017 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1018 		crypto_free_ahash(tfm);
1019 		return ERR_PTR(-EINVAL);
1020 	}
1021 
1022 	ctx = crypto_ahash_ctx(tfm);
1023 	refcount_set(&ctx->refcnt, 1);
1024 
1025 	return __cryptd_ahash_cast(tfm);
1026 }
1027 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1028 
1029 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1030 {
1031 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1032 
1033 	return ctx->child;
1034 }
1035 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1036 
1037 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1038 {
1039 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1040 	return &rctx->desc;
1041 }
1042 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1043 
1044 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1045 {
1046 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1047 
1048 	return refcount_read(&ctx->refcnt) - 1;
1049 }
1050 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1051 
1052 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1053 {
1054 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1055 
1056 	if (refcount_dec_and_test(&ctx->refcnt))
1057 		crypto_free_ahash(&tfm->base);
1058 }
1059 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1060 
1061 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1062 						  u32 type, u32 mask)
1063 {
1064 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1065 	struct cryptd_aead_ctx *ctx;
1066 	struct crypto_aead *tfm;
1067 
1068 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1069 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1070 		return ERR_PTR(-EINVAL);
1071 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1072 	if (IS_ERR(tfm))
1073 		return ERR_CAST(tfm);
1074 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1075 		crypto_free_aead(tfm);
1076 		return ERR_PTR(-EINVAL);
1077 	}
1078 
1079 	ctx = crypto_aead_ctx(tfm);
1080 	refcount_set(&ctx->refcnt, 1);
1081 
1082 	return __cryptd_aead_cast(tfm);
1083 }
1084 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1085 
1086 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1087 {
1088 	struct cryptd_aead_ctx *ctx;
1089 	ctx = crypto_aead_ctx(&tfm->base);
1090 	return ctx->child;
1091 }
1092 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1093 
1094 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1095 {
1096 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1097 
1098 	return refcount_read(&ctx->refcnt) - 1;
1099 }
1100 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1101 
1102 void cryptd_free_aead(struct cryptd_aead *tfm)
1103 {
1104 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1105 
1106 	if (refcount_dec_and_test(&ctx->refcnt))
1107 		crypto_free_aead(&tfm->base);
1108 }
1109 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1110 
1111 static int __init cryptd_init(void)
1112 {
1113 	int err;
1114 
1115 	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1116 				    1);
1117 	if (!cryptd_wq)
1118 		return -ENOMEM;
1119 
1120 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1121 	if (err)
1122 		goto err_destroy_wq;
1123 
1124 	err = crypto_register_template(&cryptd_tmpl);
1125 	if (err)
1126 		goto err_fini_queue;
1127 
1128 	return 0;
1129 
1130 err_fini_queue:
1131 	cryptd_fini_queue(&queue);
1132 err_destroy_wq:
1133 	destroy_workqueue(cryptd_wq);
1134 	return err;
1135 }
1136 
1137 static void __exit cryptd_exit(void)
1138 {
1139 	destroy_workqueue(cryptd_wq);
1140 	cryptd_fini_queue(&queue);
1141 	crypto_unregister_template(&cryptd_tmpl);
1142 }
1143 
1144 subsys_initcall(cryptd_init);
1145 module_exit(cryptd_exit);
1146 
1147 MODULE_LICENSE("GPL");
1148 MODULE_DESCRIPTION("Software async crypto daemon");
1149 MODULE_ALIAS_CRYPTO("cryptd");
1150