xref: /openbmc/linux/crypto/cipher.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Cryptographic API.
3  *
4  * Cipher operations.
5  *
6  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14 #include <linux/compiler.h>
15 #include <linux/kernel.h>
16 #include <linux/crypto.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <asm/scatterlist.h>
22 #include "internal.h"
23 #include "scatterwalk.h"
24 
25 typedef void (cryptfn_t)(void *, u8 *, const u8 *);
26 typedef void (procfn_t)(struct crypto_tfm *, u8 *,
27                         u8*, cryptfn_t, void *);
28 
29 static inline void xor_64(u8 *a, const u8 *b)
30 {
31 	((u32 *)a)[0] ^= ((u32 *)b)[0];
32 	((u32 *)a)[1] ^= ((u32 *)b)[1];
33 }
34 
35 static inline void xor_128(u8 *a, const u8 *b)
36 {
37 	((u32 *)a)[0] ^= ((u32 *)b)[0];
38 	((u32 *)a)[1] ^= ((u32 *)b)[1];
39 	((u32 *)a)[2] ^= ((u32 *)b)[2];
40 	((u32 *)a)[3] ^= ((u32 *)b)[3];
41 }
42 
43 static inline void *prepare_src(struct scatter_walk *walk, int bsize,
44 				void *tmp, int in_place)
45 {
46 	void *src = walk->data;
47 	int n = bsize;
48 
49 	if (unlikely(scatterwalk_across_pages(walk, bsize))) {
50 		src = tmp;
51 		n = scatterwalk_copychunks(src, walk, bsize, 0);
52 	}
53 	scatterwalk_advance(walk, n);
54 	return src;
55 }
56 
57 static inline void *prepare_dst(struct scatter_walk *walk, int bsize,
58 				void *tmp, int in_place)
59 {
60 	void *dst = walk->data;
61 
62 	if (unlikely(scatterwalk_across_pages(walk, bsize)) || in_place)
63 		dst = tmp;
64 	return dst;
65 }
66 
67 static inline void complete_src(struct scatter_walk *walk, int bsize,
68 				void *src, int in_place)
69 {
70 }
71 
72 static inline void complete_dst(struct scatter_walk *walk, int bsize,
73 				void *dst, int in_place)
74 {
75 	int n = bsize;
76 
77 	if (unlikely(scatterwalk_across_pages(walk, bsize)))
78 		n = scatterwalk_copychunks(dst, walk, bsize, 1);
79 	else if (in_place)
80 		memcpy(walk->data, dst, bsize);
81 	scatterwalk_advance(walk, n);
82 }
83 
84 /*
85  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
86  * multiple page boundaries by using temporary blocks.  In user context,
87  * the kernel is given a chance to schedule us once per block.
88  */
89 static int crypt(struct crypto_tfm *tfm,
90 		 struct scatterlist *dst,
91 		 struct scatterlist *src,
92                  unsigned int nbytes, cryptfn_t crfn,
93                  procfn_t prfn, void *info)
94 {
95 	struct scatter_walk walk_in, walk_out;
96 	const unsigned int bsize = crypto_tfm_alg_blocksize(tfm);
97 	u8 tmp_src[bsize];
98 	u8 tmp_dst[bsize];
99 
100 	if (!nbytes)
101 		return 0;
102 
103 	if (nbytes % bsize) {
104 		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
105 		return -EINVAL;
106 	}
107 
108 	scatterwalk_start(&walk_in, src);
109 	scatterwalk_start(&walk_out, dst);
110 
111 	for(;;) {
112 		u8 *src_p, *dst_p;
113 		int in_place;
114 
115 		scatterwalk_map(&walk_in, 0);
116 		scatterwalk_map(&walk_out, 1);
117 
118 		in_place = scatterwalk_samebuf(&walk_in, &walk_out);
119 
120 		do {
121 			src_p = prepare_src(&walk_in, bsize, tmp_src,
122 					    in_place);
123 			dst_p = prepare_dst(&walk_out, bsize, tmp_dst,
124 					    in_place);
125 
126 			prfn(tfm, dst_p, src_p, crfn, info);
127 
128 			complete_src(&walk_in, bsize, src_p, in_place);
129 			complete_dst(&walk_out, bsize, dst_p, in_place);
130 
131 			nbytes -= bsize;
132 		} while (nbytes &&
133 			 !scatterwalk_across_pages(&walk_in, bsize) &&
134 			 !scatterwalk_across_pages(&walk_out, bsize));
135 
136 		scatterwalk_done(&walk_in, 0, nbytes);
137 		scatterwalk_done(&walk_out, 1, nbytes);
138 
139 		if (!nbytes)
140 			return 0;
141 
142 		crypto_yield(tfm);
143 	}
144 }
145 
146 static void cbc_process_encrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src,
147 				cryptfn_t fn, void *info)
148 {
149 	u8 *iv = info;
150 
151 	tfm->crt_u.cipher.cit_xor_block(iv, src);
152 	fn(crypto_tfm_ctx(tfm), dst, iv);
153 	memcpy(iv, dst, crypto_tfm_alg_blocksize(tfm));
154 }
155 
156 static void cbc_process_decrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src,
157 				cryptfn_t fn, void *info)
158 {
159 	u8 *iv = info;
160 
161 	fn(crypto_tfm_ctx(tfm), dst, src);
162 	tfm->crt_u.cipher.cit_xor_block(dst, iv);
163 	memcpy(iv, src, crypto_tfm_alg_blocksize(tfm));
164 }
165 
166 static void ecb_process(struct crypto_tfm *tfm, u8 *dst, u8 *src,
167 			cryptfn_t fn, void *info)
168 {
169 	fn(crypto_tfm_ctx(tfm), dst, src);
170 }
171 
172 static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
173 {
174 	struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher;
175 
176 	if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) {
177 		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
178 		return -EINVAL;
179 	} else
180 		return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen,
181 		                       &tfm->crt_flags);
182 }
183 
184 static int ecb_encrypt(struct crypto_tfm *tfm,
185 		       struct scatterlist *dst,
186                        struct scatterlist *src, unsigned int nbytes)
187 {
188 	return crypt(tfm, dst, src, nbytes,
189 	             tfm->__crt_alg->cra_cipher.cia_encrypt,
190 	             ecb_process, NULL);
191 }
192 
193 static int ecb_decrypt(struct crypto_tfm *tfm,
194                        struct scatterlist *dst,
195                        struct scatterlist *src,
196 		       unsigned int nbytes)
197 {
198 	return crypt(tfm, dst, src, nbytes,
199 	             tfm->__crt_alg->cra_cipher.cia_decrypt,
200 	             ecb_process, NULL);
201 }
202 
203 static int cbc_encrypt(struct crypto_tfm *tfm,
204                        struct scatterlist *dst,
205                        struct scatterlist *src,
206 		       unsigned int nbytes)
207 {
208 	return crypt(tfm, dst, src, nbytes,
209 	             tfm->__crt_alg->cra_cipher.cia_encrypt,
210 	             cbc_process_encrypt, tfm->crt_cipher.cit_iv);
211 }
212 
213 static int cbc_encrypt_iv(struct crypto_tfm *tfm,
214                           struct scatterlist *dst,
215                           struct scatterlist *src,
216                           unsigned int nbytes, u8 *iv)
217 {
218 	return crypt(tfm, dst, src, nbytes,
219 	             tfm->__crt_alg->cra_cipher.cia_encrypt,
220 	             cbc_process_encrypt, iv);
221 }
222 
223 static int cbc_decrypt(struct crypto_tfm *tfm,
224                        struct scatterlist *dst,
225                        struct scatterlist *src,
226 		       unsigned int nbytes)
227 {
228 	return crypt(tfm, dst, src, nbytes,
229 	             tfm->__crt_alg->cra_cipher.cia_decrypt,
230 	             cbc_process_decrypt, tfm->crt_cipher.cit_iv);
231 }
232 
233 static int cbc_decrypt_iv(struct crypto_tfm *tfm,
234                           struct scatterlist *dst,
235                           struct scatterlist *src,
236                           unsigned int nbytes, u8 *iv)
237 {
238 	return crypt(tfm, dst, src, nbytes,
239 	             tfm->__crt_alg->cra_cipher.cia_decrypt,
240 	             cbc_process_decrypt, iv);
241 }
242 
243 static int nocrypt(struct crypto_tfm *tfm,
244                    struct scatterlist *dst,
245                    struct scatterlist *src,
246 		   unsigned int nbytes)
247 {
248 	return -ENOSYS;
249 }
250 
251 static int nocrypt_iv(struct crypto_tfm *tfm,
252                       struct scatterlist *dst,
253                       struct scatterlist *src,
254                       unsigned int nbytes, u8 *iv)
255 {
256 	return -ENOSYS;
257 }
258 
259 int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags)
260 {
261 	u32 mode = flags & CRYPTO_TFM_MODE_MASK;
262 
263 	tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB;
264 	if (flags & CRYPTO_TFM_REQ_WEAK_KEY)
265 		tfm->crt_flags = CRYPTO_TFM_REQ_WEAK_KEY;
266 
267 	return 0;
268 }
269 
270 int crypto_init_cipher_ops(struct crypto_tfm *tfm)
271 {
272 	int ret = 0;
273 	struct cipher_tfm *ops = &tfm->crt_cipher;
274 
275 	ops->cit_setkey = setkey;
276 
277 	switch (tfm->crt_cipher.cit_mode) {
278 	case CRYPTO_TFM_MODE_ECB:
279 		ops->cit_encrypt = ecb_encrypt;
280 		ops->cit_decrypt = ecb_decrypt;
281 		break;
282 
283 	case CRYPTO_TFM_MODE_CBC:
284 		ops->cit_encrypt = cbc_encrypt;
285 		ops->cit_decrypt = cbc_decrypt;
286 		ops->cit_encrypt_iv = cbc_encrypt_iv;
287 		ops->cit_decrypt_iv = cbc_decrypt_iv;
288 		break;
289 
290 	case CRYPTO_TFM_MODE_CFB:
291 		ops->cit_encrypt = nocrypt;
292 		ops->cit_decrypt = nocrypt;
293 		ops->cit_encrypt_iv = nocrypt_iv;
294 		ops->cit_decrypt_iv = nocrypt_iv;
295 		break;
296 
297 	case CRYPTO_TFM_MODE_CTR:
298 		ops->cit_encrypt = nocrypt;
299 		ops->cit_decrypt = nocrypt;
300 		ops->cit_encrypt_iv = nocrypt_iv;
301 		ops->cit_decrypt_iv = nocrypt_iv;
302 		break;
303 
304 	default:
305 		BUG();
306 	}
307 
308 	if (ops->cit_mode == CRYPTO_TFM_MODE_CBC) {
309 
310 	    	switch (crypto_tfm_alg_blocksize(tfm)) {
311 	    	case 8:
312 	    		ops->cit_xor_block = xor_64;
313 	    		break;
314 
315 	    	case 16:
316 	    		ops->cit_xor_block = xor_128;
317 	    		break;
318 
319 	    	default:
320 	    		printk(KERN_WARNING "%s: block size %u not supported\n",
321 	    		       crypto_tfm_alg_name(tfm),
322 	    		       crypto_tfm_alg_blocksize(tfm));
323 	    		ret = -EINVAL;
324 	    		goto out;
325 	    	}
326 
327 		ops->cit_ivsize = crypto_tfm_alg_blocksize(tfm);
328 	    	ops->cit_iv = kmalloc(ops->cit_ivsize, GFP_KERNEL);
329 		if (ops->cit_iv == NULL)
330 			ret = -ENOMEM;
331 	}
332 
333 out:
334 	return ret;
335 }
336 
337 void crypto_exit_cipher_ops(struct crypto_tfm *tfm)
338 {
339 	if (tfm->crt_cipher.cit_iv)
340 		kfree(tfm->crt_cipher.cit_iv);
341 }
342