xref: /openbmc/linux/crypto/async_tx/async_tx.c (revision f648972e017659c741bdd3be6b4aeb2d73672031)
1 /*
2  * core routines for the asynchronous memory transfer/transform api
3  *
4  * Copyright © 2006, Intel Corporation.
5  *
6  *	Dan Williams <dan.j.williams@intel.com>
7  *
8  *	with architecture considerations by:
9  *	Neil Brown <neilb@suse.de>
10  *	Jeff Garzik <jeff@garzik.org>
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  *
21  * You should have received a copy of the GNU General Public License along with
22  * this program; if not, write to the Free Software Foundation, Inc.,
23  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24  *
25  */
26 #include <linux/rculist.h>
27 #include <linux/kernel.h>
28 #include <linux/async_tx.h>
29 
30 #ifdef CONFIG_DMA_ENGINE
31 static enum dma_state_client
32 dma_channel_add_remove(struct dma_client *client,
33 	struct dma_chan *chan, enum dma_state state);
34 
35 static struct dma_client async_tx_dma = {
36 	.event_callback = dma_channel_add_remove,
37 	/* .cap_mask == 0 defaults to all channels */
38 };
39 
40 /**
41  * dma_cap_mask_all - enable iteration over all operation types
42  */
43 static dma_cap_mask_t dma_cap_mask_all;
44 
45 /**
46  * chan_ref_percpu - tracks channel allocations per core/opertion
47  */
48 struct chan_ref_percpu {
49 	struct dma_chan_ref *ref;
50 };
51 
52 static int channel_table_initialized;
53 static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END];
54 
55 /**
56  * async_tx_lock - protect modification of async_tx_master_list and serialize
57  *	rebalance operations
58  */
59 static spinlock_t async_tx_lock;
60 
61 static LIST_HEAD(async_tx_master_list);
62 
63 /* async_tx_issue_pending_all - start all transactions on all channels */
64 void async_tx_issue_pending_all(void)
65 {
66 	struct dma_chan_ref *ref;
67 
68 	rcu_read_lock();
69 	list_for_each_entry_rcu(ref, &async_tx_master_list, node)
70 		ref->chan->device->device_issue_pending(ref->chan);
71 	rcu_read_unlock();
72 }
73 EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);
74 
75 /* dma_wait_for_async_tx - spin wait for a transcation to complete
76  * @tx: transaction to wait on
77  */
78 enum dma_status
79 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
80 {
81 	enum dma_status status;
82 	struct dma_async_tx_descriptor *iter;
83 	struct dma_async_tx_descriptor *parent;
84 
85 	if (!tx)
86 		return DMA_SUCCESS;
87 
88 	/* poll through the dependency chain, return when tx is complete */
89 	do {
90 		iter = tx;
91 
92 		/* find the root of the unsubmitted dependency chain */
93 		do {
94 			parent = iter->parent;
95 			if (!parent)
96 				break;
97 			else
98 				iter = parent;
99 		} while (parent);
100 
101 		/* there is a small window for ->parent == NULL and
102 		 * ->cookie == -EBUSY
103 		 */
104 		while (iter->cookie == -EBUSY)
105 			cpu_relax();
106 
107 		status = dma_sync_wait(iter->chan, iter->cookie);
108 	} while (status == DMA_IN_PROGRESS || (iter != tx));
109 
110 	return status;
111 }
112 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
113 
114 /* async_tx_run_dependencies - helper routine for dma drivers to process
115  *	(start) dependent operations on their target channel
116  * @tx: transaction with dependencies
117  */
118 void
119 async_tx_run_dependencies(struct dma_async_tx_descriptor *tx)
120 {
121 	struct dma_async_tx_descriptor *next = tx->next;
122 	struct dma_chan *chan;
123 
124 	if (!next)
125 		return;
126 
127 	tx->next = NULL;
128 	chan = next->chan;
129 
130 	/* keep submitting up until a channel switch is detected
131 	 * in that case we will be called again as a result of
132 	 * processing the interrupt from async_tx_channel_switch
133 	 */
134 	while (next && next->chan == chan) {
135 		struct dma_async_tx_descriptor *_next;
136 
137 		spin_lock_bh(&next->lock);
138 		next->parent = NULL;
139 		_next = next->next;
140 		if (_next && _next->chan == chan)
141 			next->next = NULL;
142 		spin_unlock_bh(&next->lock);
143 
144 		next->tx_submit(next);
145 		next = _next;
146 	}
147 
148 	chan->device->device_issue_pending(chan);
149 }
150 EXPORT_SYMBOL_GPL(async_tx_run_dependencies);
151 
152 static void
153 free_dma_chan_ref(struct rcu_head *rcu)
154 {
155 	struct dma_chan_ref *ref;
156 	ref = container_of(rcu, struct dma_chan_ref, rcu);
157 	kfree(ref);
158 }
159 
160 static void
161 init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
162 {
163 	INIT_LIST_HEAD(&ref->node);
164 	INIT_RCU_HEAD(&ref->rcu);
165 	ref->chan = chan;
166 	atomic_set(&ref->count, 0);
167 }
168 
169 /**
170  * get_chan_ref_by_cap - returns the nth channel of the given capability
171  * 	defaults to returning the channel with the desired capability and the
172  * 	lowest reference count if the index can not be satisfied
173  * @cap: capability to match
174  * @index: nth channel desired, passing -1 has the effect of forcing the
175  *  default return value
176  */
177 static struct dma_chan_ref *
178 get_chan_ref_by_cap(enum dma_transaction_type cap, int index)
179 {
180 	struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref;
181 
182 	rcu_read_lock();
183 	list_for_each_entry_rcu(ref, &async_tx_master_list, node)
184 		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
185 			if (!min_ref)
186 				min_ref = ref;
187 			else if (atomic_read(&ref->count) <
188 				atomic_read(&min_ref->count))
189 				min_ref = ref;
190 
191 			if (index-- == 0) {
192 				ret_ref = ref;
193 				break;
194 			}
195 		}
196 	rcu_read_unlock();
197 
198 	if (!ret_ref)
199 		ret_ref = min_ref;
200 
201 	if (ret_ref)
202 		atomic_inc(&ret_ref->count);
203 
204 	return ret_ref;
205 }
206 
207 /**
208  * async_tx_rebalance - redistribute the available channels, optimize
209  * for cpu isolation in the SMP case, and opertaion isolation in the
210  * uniprocessor case
211  */
212 static void async_tx_rebalance(void)
213 {
214 	int cpu, cap, cpu_idx = 0;
215 	unsigned long flags;
216 
217 	if (!channel_table_initialized)
218 		return;
219 
220 	spin_lock_irqsave(&async_tx_lock, flags);
221 
222 	/* undo the last distribution */
223 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
224 		for_each_possible_cpu(cpu) {
225 			struct dma_chan_ref *ref =
226 				per_cpu_ptr(channel_table[cap], cpu)->ref;
227 			if (ref) {
228 				atomic_set(&ref->count, 0);
229 				per_cpu_ptr(channel_table[cap], cpu)->ref =
230 									NULL;
231 			}
232 		}
233 
234 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
235 		for_each_online_cpu(cpu) {
236 			struct dma_chan_ref *new;
237 			if (NR_CPUS > 1)
238 				new = get_chan_ref_by_cap(cap, cpu_idx++);
239 			else
240 				new = get_chan_ref_by_cap(cap, -1);
241 
242 			per_cpu_ptr(channel_table[cap], cpu)->ref = new;
243 		}
244 
245 	spin_unlock_irqrestore(&async_tx_lock, flags);
246 }
247 
248 static enum dma_state_client
249 dma_channel_add_remove(struct dma_client *client,
250 	struct dma_chan *chan, enum dma_state state)
251 {
252 	unsigned long found, flags;
253 	struct dma_chan_ref *master_ref, *ref;
254 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
255 
256 	switch (state) {
257 	case DMA_RESOURCE_AVAILABLE:
258 		found = 0;
259 		rcu_read_lock();
260 		list_for_each_entry_rcu(ref, &async_tx_master_list, node)
261 			if (ref->chan == chan) {
262 				found = 1;
263 				break;
264 			}
265 		rcu_read_unlock();
266 
267 		pr_debug("async_tx: dma resource available [%s]\n",
268 			found ? "old" : "new");
269 
270 		if (!found)
271 			ack = DMA_ACK;
272 		else
273 			break;
274 
275 		/* add the channel to the generic management list */
276 		master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
277 		if (master_ref) {
278 			/* keep a reference until async_tx is unloaded */
279 			dma_chan_get(chan);
280 			init_dma_chan_ref(master_ref, chan);
281 			spin_lock_irqsave(&async_tx_lock, flags);
282 			list_add_tail_rcu(&master_ref->node,
283 				&async_tx_master_list);
284 			spin_unlock_irqrestore(&async_tx_lock,
285 				flags);
286 		} else {
287 			printk(KERN_WARNING "async_tx: unable to create"
288 				" new master entry in response to"
289 				" a DMA_RESOURCE_ADDED event"
290 				" (-ENOMEM)\n");
291 			return 0;
292 		}
293 
294 		async_tx_rebalance();
295 		break;
296 	case DMA_RESOURCE_REMOVED:
297 		found = 0;
298 		spin_lock_irqsave(&async_tx_lock, flags);
299 		list_for_each_entry(ref, &async_tx_master_list, node)
300 			if (ref->chan == chan) {
301 				/* permit backing devices to go away */
302 				dma_chan_put(ref->chan);
303 				list_del_rcu(&ref->node);
304 				call_rcu(&ref->rcu, free_dma_chan_ref);
305 				found = 1;
306 				break;
307 			}
308 		spin_unlock_irqrestore(&async_tx_lock, flags);
309 
310 		pr_debug("async_tx: dma resource removed [%s]\n",
311 			found ? "ours" : "not ours");
312 
313 		if (found)
314 			ack = DMA_ACK;
315 		else
316 			break;
317 
318 		async_tx_rebalance();
319 		break;
320 	case DMA_RESOURCE_SUSPEND:
321 	case DMA_RESOURCE_RESUME:
322 		printk(KERN_WARNING "async_tx: does not support dma channel"
323 			" suspend/resume\n");
324 		break;
325 	default:
326 		BUG();
327 	}
328 
329 	return ack;
330 }
331 
332 static int __init
333 async_tx_init(void)
334 {
335 	enum dma_transaction_type cap;
336 
337 	spin_lock_init(&async_tx_lock);
338 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
339 
340 	/* an interrupt will never be an explicit operation type.
341 	 * clearing this bit prevents allocation to a slot in 'channel_table'
342 	 */
343 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
344 
345 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
346 		channel_table[cap] = alloc_percpu(struct chan_ref_percpu);
347 		if (!channel_table[cap])
348 			goto err;
349 	}
350 
351 	channel_table_initialized = 1;
352 	dma_async_client_register(&async_tx_dma);
353 	dma_async_client_chan_request(&async_tx_dma);
354 
355 	printk(KERN_INFO "async_tx: api initialized (async)\n");
356 
357 	return 0;
358 err:
359 	printk(KERN_ERR "async_tx: initialization failure\n");
360 
361 	while (--cap >= 0)
362 		free_percpu(channel_table[cap]);
363 
364 	return 1;
365 }
366 
367 static void __exit async_tx_exit(void)
368 {
369 	enum dma_transaction_type cap;
370 
371 	channel_table_initialized = 0;
372 
373 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
374 		if (channel_table[cap])
375 			free_percpu(channel_table[cap]);
376 
377 	dma_async_client_unregister(&async_tx_dma);
378 }
379 
380 /**
381  * __async_tx_find_channel - find a channel to carry out the operation or let
382  *	the transaction execute synchronously
383  * @depend_tx: transaction dependency
384  * @tx_type: transaction type
385  */
386 struct dma_chan *
387 __async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
388 	enum dma_transaction_type tx_type)
389 {
390 	/* see if we can keep the chain on one channel */
391 	if (depend_tx &&
392 		dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
393 		return depend_tx->chan;
394 	else if (likely(channel_table_initialized)) {
395 		struct dma_chan_ref *ref;
396 		int cpu = get_cpu();
397 		ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref;
398 		put_cpu();
399 		return ref ? ref->chan : NULL;
400 	} else
401 		return NULL;
402 }
403 EXPORT_SYMBOL_GPL(__async_tx_find_channel);
404 #else
405 static int __init async_tx_init(void)
406 {
407 	printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
408 	return 0;
409 }
410 
411 static void __exit async_tx_exit(void)
412 {
413 	do { } while (0);
414 }
415 #endif
416 
417 
418 /**
419  * async_tx_channel_switch - queue an interrupt descriptor with a dependency
420  * 	pre-attached.
421  * @depend_tx: the operation that must finish before the new operation runs
422  * @tx: the new operation
423  */
424 static void
425 async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
426 			struct dma_async_tx_descriptor *tx)
427 {
428 	struct dma_chan *chan;
429 	struct dma_device *device;
430 	struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
431 
432 	/* first check to see if we can still append to depend_tx */
433 	spin_lock_bh(&depend_tx->lock);
434 	if (depend_tx->parent && depend_tx->chan == tx->chan) {
435 		tx->parent = depend_tx;
436 		depend_tx->next = tx;
437 		intr_tx = NULL;
438 	}
439 	spin_unlock_bh(&depend_tx->lock);
440 
441 	if (!intr_tx)
442 		return;
443 
444 	chan = depend_tx->chan;
445 	device = chan->device;
446 
447 	/* see if we can schedule an interrupt
448 	 * otherwise poll for completion
449 	 */
450 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
451 		intr_tx = device->device_prep_dma_interrupt(chan, 0);
452 	else
453 		intr_tx = NULL;
454 
455 	if (intr_tx) {
456 		intr_tx->callback = NULL;
457 		intr_tx->callback_param = NULL;
458 		tx->parent = intr_tx;
459 		/* safe to set ->next outside the lock since we know we are
460 		 * not submitted yet
461 		 */
462 		intr_tx->next = tx;
463 
464 		/* check if we need to append */
465 		spin_lock_bh(&depend_tx->lock);
466 		if (depend_tx->parent) {
467 			intr_tx->parent = depend_tx;
468 			depend_tx->next = intr_tx;
469 			async_tx_ack(intr_tx);
470 			intr_tx = NULL;
471 		}
472 		spin_unlock_bh(&depend_tx->lock);
473 
474 		if (intr_tx) {
475 			intr_tx->parent = NULL;
476 			intr_tx->tx_submit(intr_tx);
477 			async_tx_ack(intr_tx);
478 		}
479 	} else {
480 		if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
481 			panic("%s: DMA_ERROR waiting for depend_tx\n",
482 			      __func__);
483 		tx->tx_submit(tx);
484 	}
485 }
486 
487 
488 /**
489  * submit_disposition - while holding depend_tx->lock we must avoid submitting
490  * 	new operations to prevent a circular locking dependency with
491  * 	drivers that already hold a channel lock when calling
492  * 	async_tx_run_dependencies.
493  * @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
494  * @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
495  * @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
496  */
497 enum submit_disposition {
498 	ASYNC_TX_SUBMITTED,
499 	ASYNC_TX_CHANNEL_SWITCH,
500 	ASYNC_TX_DIRECT_SUBMIT,
501 };
502 
503 void
504 async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
505 	enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
506 	dma_async_tx_callback cb_fn, void *cb_param)
507 {
508 	tx->callback = cb_fn;
509 	tx->callback_param = cb_param;
510 
511 	if (depend_tx) {
512 		enum submit_disposition s;
513 
514 		/* sanity check the dependency chain:
515 		 * 1/ if ack is already set then we cannot be sure
516 		 * we are referring to the correct operation
517 		 * 2/ dependencies are 1:1 i.e. two transactions can
518 		 * not depend on the same parent
519 		 */
520 		BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next ||
521 		       tx->parent);
522 
523 		/* the lock prevents async_tx_run_dependencies from missing
524 		 * the setting of ->next when ->parent != NULL
525 		 */
526 		spin_lock_bh(&depend_tx->lock);
527 		if (depend_tx->parent) {
528 			/* we have a parent so we can not submit directly
529 			 * if we are staying on the same channel: append
530 			 * else: channel switch
531 			 */
532 			if (depend_tx->chan == chan) {
533 				tx->parent = depend_tx;
534 				depend_tx->next = tx;
535 				s = ASYNC_TX_SUBMITTED;
536 			} else
537 				s = ASYNC_TX_CHANNEL_SWITCH;
538 		} else {
539 			/* we do not have a parent so we may be able to submit
540 			 * directly if we are staying on the same channel
541 			 */
542 			if (depend_tx->chan == chan)
543 				s = ASYNC_TX_DIRECT_SUBMIT;
544 			else
545 				s = ASYNC_TX_CHANNEL_SWITCH;
546 		}
547 		spin_unlock_bh(&depend_tx->lock);
548 
549 		switch (s) {
550 		case ASYNC_TX_SUBMITTED:
551 			break;
552 		case ASYNC_TX_CHANNEL_SWITCH:
553 			async_tx_channel_switch(depend_tx, tx);
554 			break;
555 		case ASYNC_TX_DIRECT_SUBMIT:
556 			tx->parent = NULL;
557 			tx->tx_submit(tx);
558 			break;
559 		}
560 	} else {
561 		tx->parent = NULL;
562 		tx->tx_submit(tx);
563 	}
564 
565 	if (flags & ASYNC_TX_ACK)
566 		async_tx_ack(tx);
567 
568 	if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
569 		async_tx_ack(depend_tx);
570 }
571 EXPORT_SYMBOL_GPL(async_tx_submit);
572 
573 /**
574  * async_trigger_callback - schedules the callback function to be run after
575  * any dependent operations have been completed.
576  * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
577  * @depend_tx: 'callback' requires the completion of this transaction
578  * @cb_fn: function to call after depend_tx completes
579  * @cb_param: parameter to pass to the callback routine
580  */
581 struct dma_async_tx_descriptor *
582 async_trigger_callback(enum async_tx_flags flags,
583 	struct dma_async_tx_descriptor *depend_tx,
584 	dma_async_tx_callback cb_fn, void *cb_param)
585 {
586 	struct dma_chan *chan;
587 	struct dma_device *device;
588 	struct dma_async_tx_descriptor *tx;
589 
590 	if (depend_tx) {
591 		chan = depend_tx->chan;
592 		device = chan->device;
593 
594 		/* see if we can schedule an interrupt
595 		 * otherwise poll for completion
596 		 */
597 		if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
598 			device = NULL;
599 
600 		tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
601 	} else
602 		tx = NULL;
603 
604 	if (tx) {
605 		pr_debug("%s: (async)\n", __func__);
606 
607 		async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
608 	} else {
609 		pr_debug("%s: (sync)\n", __func__);
610 
611 		/* wait for any prerequisite operations */
612 		async_tx_quiesce(&depend_tx);
613 
614 		async_tx_sync_epilog(cb_fn, cb_param);
615 	}
616 
617 	return tx;
618 }
619 EXPORT_SYMBOL_GPL(async_trigger_callback);
620 
621 /**
622  * async_tx_quiesce - ensure tx is complete and freeable upon return
623  * @tx - transaction to quiesce
624  */
625 void async_tx_quiesce(struct dma_async_tx_descriptor **tx)
626 {
627 	if (*tx) {
628 		/* if ack is already set then we cannot be sure
629 		 * we are referring to the correct operation
630 		 */
631 		BUG_ON(async_tx_test_ack(*tx));
632 		if (dma_wait_for_async_tx(*tx) == DMA_ERROR)
633 			panic("DMA_ERROR waiting for transaction\n");
634 		async_tx_ack(*tx);
635 		*tx = NULL;
636 	}
637 }
638 EXPORT_SYMBOL_GPL(async_tx_quiesce);
639 
640 module_init(async_tx_init);
641 module_exit(async_tx_exit);
642 
643 MODULE_AUTHOR("Intel Corporation");
644 MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
645 MODULE_LICENSE("GPL");
646