xref: /openbmc/linux/crypto/async_tx/async_tx.c (revision 3e370b29d35fb01bfb92c2814d6f79bf6a2cb970)
1 /*
2  * core routines for the asynchronous memory transfer/transform api
3  *
4  * Copyright © 2006, Intel Corporation.
5  *
6  *	Dan Williams <dan.j.williams@intel.com>
7  *
8  *	with architecture considerations by:
9  *	Neil Brown <neilb@suse.de>
10  *	Jeff Garzik <jeff@garzik.org>
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  *
21  * You should have received a copy of the GNU General Public License along with
22  * this program; if not, write to the Free Software Foundation, Inc.,
23  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24  *
25  */
26 #include <linux/rculist.h>
27 #include <linux/kernel.h>
28 #include <linux/async_tx.h>
29 
30 #ifdef CONFIG_DMA_ENGINE
31 static enum dma_state_client
32 dma_channel_add_remove(struct dma_client *client,
33 	struct dma_chan *chan, enum dma_state state);
34 
35 static struct dma_client async_tx_dma = {
36 	.event_callback = dma_channel_add_remove,
37 	/* .cap_mask == 0 defaults to all channels */
38 };
39 
40 /**
41  * dma_cap_mask_all - enable iteration over all operation types
42  */
43 static dma_cap_mask_t dma_cap_mask_all;
44 
45 /**
46  * chan_ref_percpu - tracks channel allocations per core/opertion
47  */
48 struct chan_ref_percpu {
49 	struct dma_chan_ref *ref;
50 };
51 
52 static int channel_table_initialized;
53 static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END];
54 
55 /**
56  * async_tx_lock - protect modification of async_tx_master_list and serialize
57  *	rebalance operations
58  */
59 static spinlock_t async_tx_lock;
60 
61 static LIST_HEAD(async_tx_master_list);
62 
63 /* async_tx_issue_pending_all - start all transactions on all channels */
64 void async_tx_issue_pending_all(void)
65 {
66 	struct dma_chan_ref *ref;
67 
68 	rcu_read_lock();
69 	list_for_each_entry_rcu(ref, &async_tx_master_list, node)
70 		ref->chan->device->device_issue_pending(ref->chan);
71 	rcu_read_unlock();
72 }
73 EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);
74 
75 /* dma_wait_for_async_tx - spin wait for a transcation to complete
76  * @tx: transaction to wait on
77  */
78 enum dma_status
79 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
80 {
81 	enum dma_status status;
82 	struct dma_async_tx_descriptor *iter;
83 	struct dma_async_tx_descriptor *parent;
84 
85 	if (!tx)
86 		return DMA_SUCCESS;
87 
88 	/* poll through the dependency chain, return when tx is complete */
89 	do {
90 		iter = tx;
91 
92 		/* find the root of the unsubmitted dependency chain */
93 		do {
94 			parent = iter->parent;
95 			if (!parent)
96 				break;
97 			else
98 				iter = parent;
99 		} while (parent);
100 
101 		/* there is a small window for ->parent == NULL and
102 		 * ->cookie == -EBUSY
103 		 */
104 		while (iter->cookie == -EBUSY)
105 			cpu_relax();
106 
107 		status = dma_sync_wait(iter->chan, iter->cookie);
108 	} while (status == DMA_IN_PROGRESS || (iter != tx));
109 
110 	return status;
111 }
112 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
113 
114 /* async_tx_run_dependencies - helper routine for dma drivers to process
115  *	(start) dependent operations on their target channel
116  * @tx: transaction with dependencies
117  */
118 void
119 async_tx_run_dependencies(struct dma_async_tx_descriptor *tx)
120 {
121 	struct dma_async_tx_descriptor *next = tx->next;
122 	struct dma_chan *chan;
123 
124 	if (!next)
125 		return;
126 
127 	tx->next = NULL;
128 	chan = next->chan;
129 
130 	/* keep submitting up until a channel switch is detected
131 	 * in that case we will be called again as a result of
132 	 * processing the interrupt from async_tx_channel_switch
133 	 */
134 	while (next && next->chan == chan) {
135 		struct dma_async_tx_descriptor *_next;
136 
137 		spin_lock_bh(&next->lock);
138 		next->parent = NULL;
139 		_next = next->next;
140 		next->next = NULL;
141 		spin_unlock_bh(&next->lock);
142 
143 		next->tx_submit(next);
144 		next = _next;
145 	}
146 
147 	chan->device->device_issue_pending(chan);
148 }
149 EXPORT_SYMBOL_GPL(async_tx_run_dependencies);
150 
151 static void
152 free_dma_chan_ref(struct rcu_head *rcu)
153 {
154 	struct dma_chan_ref *ref;
155 	ref = container_of(rcu, struct dma_chan_ref, rcu);
156 	kfree(ref);
157 }
158 
159 static void
160 init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
161 {
162 	INIT_LIST_HEAD(&ref->node);
163 	INIT_RCU_HEAD(&ref->rcu);
164 	ref->chan = chan;
165 	atomic_set(&ref->count, 0);
166 }
167 
168 /**
169  * get_chan_ref_by_cap - returns the nth channel of the given capability
170  * 	defaults to returning the channel with the desired capability and the
171  * 	lowest reference count if the index can not be satisfied
172  * @cap: capability to match
173  * @index: nth channel desired, passing -1 has the effect of forcing the
174  *  default return value
175  */
176 static struct dma_chan_ref *
177 get_chan_ref_by_cap(enum dma_transaction_type cap, int index)
178 {
179 	struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref;
180 
181 	rcu_read_lock();
182 	list_for_each_entry_rcu(ref, &async_tx_master_list, node)
183 		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
184 			if (!min_ref)
185 				min_ref = ref;
186 			else if (atomic_read(&ref->count) <
187 				atomic_read(&min_ref->count))
188 				min_ref = ref;
189 
190 			if (index-- == 0) {
191 				ret_ref = ref;
192 				break;
193 			}
194 		}
195 	rcu_read_unlock();
196 
197 	if (!ret_ref)
198 		ret_ref = min_ref;
199 
200 	if (ret_ref)
201 		atomic_inc(&ret_ref->count);
202 
203 	return ret_ref;
204 }
205 
206 /**
207  * async_tx_rebalance - redistribute the available channels, optimize
208  * for cpu isolation in the SMP case, and opertaion isolation in the
209  * uniprocessor case
210  */
211 static void async_tx_rebalance(void)
212 {
213 	int cpu, cap, cpu_idx = 0;
214 	unsigned long flags;
215 
216 	if (!channel_table_initialized)
217 		return;
218 
219 	spin_lock_irqsave(&async_tx_lock, flags);
220 
221 	/* undo the last distribution */
222 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
223 		for_each_possible_cpu(cpu) {
224 			struct dma_chan_ref *ref =
225 				per_cpu_ptr(channel_table[cap], cpu)->ref;
226 			if (ref) {
227 				atomic_set(&ref->count, 0);
228 				per_cpu_ptr(channel_table[cap], cpu)->ref =
229 									NULL;
230 			}
231 		}
232 
233 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
234 		for_each_online_cpu(cpu) {
235 			struct dma_chan_ref *new;
236 			if (NR_CPUS > 1)
237 				new = get_chan_ref_by_cap(cap, cpu_idx++);
238 			else
239 				new = get_chan_ref_by_cap(cap, -1);
240 
241 			per_cpu_ptr(channel_table[cap], cpu)->ref = new;
242 		}
243 
244 	spin_unlock_irqrestore(&async_tx_lock, flags);
245 }
246 
247 static enum dma_state_client
248 dma_channel_add_remove(struct dma_client *client,
249 	struct dma_chan *chan, enum dma_state state)
250 {
251 	unsigned long found, flags;
252 	struct dma_chan_ref *master_ref, *ref;
253 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
254 
255 	switch (state) {
256 	case DMA_RESOURCE_AVAILABLE:
257 		found = 0;
258 		rcu_read_lock();
259 		list_for_each_entry_rcu(ref, &async_tx_master_list, node)
260 			if (ref->chan == chan) {
261 				found = 1;
262 				break;
263 			}
264 		rcu_read_unlock();
265 
266 		pr_debug("async_tx: dma resource available [%s]\n",
267 			found ? "old" : "new");
268 
269 		if (!found)
270 			ack = DMA_ACK;
271 		else
272 			break;
273 
274 		/* add the channel to the generic management list */
275 		master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
276 		if (master_ref) {
277 			/* keep a reference until async_tx is unloaded */
278 			dma_chan_get(chan);
279 			init_dma_chan_ref(master_ref, chan);
280 			spin_lock_irqsave(&async_tx_lock, flags);
281 			list_add_tail_rcu(&master_ref->node,
282 				&async_tx_master_list);
283 			spin_unlock_irqrestore(&async_tx_lock,
284 				flags);
285 		} else {
286 			printk(KERN_WARNING "async_tx: unable to create"
287 				" new master entry in response to"
288 				" a DMA_RESOURCE_ADDED event"
289 				" (-ENOMEM)\n");
290 			return 0;
291 		}
292 
293 		async_tx_rebalance();
294 		break;
295 	case DMA_RESOURCE_REMOVED:
296 		found = 0;
297 		spin_lock_irqsave(&async_tx_lock, flags);
298 		list_for_each_entry_rcu(ref, &async_tx_master_list, node)
299 			if (ref->chan == chan) {
300 				/* permit backing devices to go away */
301 				dma_chan_put(ref->chan);
302 				list_del_rcu(&ref->node);
303 				call_rcu(&ref->rcu, free_dma_chan_ref);
304 				found = 1;
305 				break;
306 			}
307 		spin_unlock_irqrestore(&async_tx_lock, flags);
308 
309 		pr_debug("async_tx: dma resource removed [%s]\n",
310 			found ? "ours" : "not ours");
311 
312 		if (found)
313 			ack = DMA_ACK;
314 		else
315 			break;
316 
317 		async_tx_rebalance();
318 		break;
319 	case DMA_RESOURCE_SUSPEND:
320 	case DMA_RESOURCE_RESUME:
321 		printk(KERN_WARNING "async_tx: does not support dma channel"
322 			" suspend/resume\n");
323 		break;
324 	default:
325 		BUG();
326 	}
327 
328 	return ack;
329 }
330 
331 static int __init
332 async_tx_init(void)
333 {
334 	enum dma_transaction_type cap;
335 
336 	spin_lock_init(&async_tx_lock);
337 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
338 
339 	/* an interrupt will never be an explicit operation type.
340 	 * clearing this bit prevents allocation to a slot in 'channel_table'
341 	 */
342 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
343 
344 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
345 		channel_table[cap] = alloc_percpu(struct chan_ref_percpu);
346 		if (!channel_table[cap])
347 			goto err;
348 	}
349 
350 	channel_table_initialized = 1;
351 	dma_async_client_register(&async_tx_dma);
352 	dma_async_client_chan_request(&async_tx_dma);
353 
354 	printk(KERN_INFO "async_tx: api initialized (async)\n");
355 
356 	return 0;
357 err:
358 	printk(KERN_ERR "async_tx: initialization failure\n");
359 
360 	while (--cap >= 0)
361 		free_percpu(channel_table[cap]);
362 
363 	return 1;
364 }
365 
366 static void __exit async_tx_exit(void)
367 {
368 	enum dma_transaction_type cap;
369 
370 	channel_table_initialized = 0;
371 
372 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
373 		if (channel_table[cap])
374 			free_percpu(channel_table[cap]);
375 
376 	dma_async_client_unregister(&async_tx_dma);
377 }
378 
379 /**
380  * __async_tx_find_channel - find a channel to carry out the operation or let
381  *	the transaction execute synchronously
382  * @depend_tx: transaction dependency
383  * @tx_type: transaction type
384  */
385 struct dma_chan *
386 __async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
387 	enum dma_transaction_type tx_type)
388 {
389 	/* see if we can keep the chain on one channel */
390 	if (depend_tx &&
391 		dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
392 		return depend_tx->chan;
393 	else if (likely(channel_table_initialized)) {
394 		struct dma_chan_ref *ref;
395 		int cpu = get_cpu();
396 		ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref;
397 		put_cpu();
398 		return ref ? ref->chan : NULL;
399 	} else
400 		return NULL;
401 }
402 EXPORT_SYMBOL_GPL(__async_tx_find_channel);
403 #else
404 static int __init async_tx_init(void)
405 {
406 	printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
407 	return 0;
408 }
409 
410 static void __exit async_tx_exit(void)
411 {
412 	do { } while (0);
413 }
414 #endif
415 
416 
417 /**
418  * async_tx_channel_switch - queue an interrupt descriptor with a dependency
419  * 	pre-attached.
420  * @depend_tx: the operation that must finish before the new operation runs
421  * @tx: the new operation
422  */
423 static void
424 async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
425 			struct dma_async_tx_descriptor *tx)
426 {
427 	struct dma_chan *chan;
428 	struct dma_device *device;
429 	struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
430 
431 	/* first check to see if we can still append to depend_tx */
432 	spin_lock_bh(&depend_tx->lock);
433 	if (depend_tx->parent && depend_tx->chan == tx->chan) {
434 		tx->parent = depend_tx;
435 		depend_tx->next = tx;
436 		intr_tx = NULL;
437 	}
438 	spin_unlock_bh(&depend_tx->lock);
439 
440 	if (!intr_tx)
441 		return;
442 
443 	chan = depend_tx->chan;
444 	device = chan->device;
445 
446 	/* see if we can schedule an interrupt
447 	 * otherwise poll for completion
448 	 */
449 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
450 		intr_tx = device->device_prep_dma_interrupt(chan, 0);
451 	else
452 		intr_tx = NULL;
453 
454 	if (intr_tx) {
455 		intr_tx->callback = NULL;
456 		intr_tx->callback_param = NULL;
457 		tx->parent = intr_tx;
458 		/* safe to set ->next outside the lock since we know we are
459 		 * not submitted yet
460 		 */
461 		intr_tx->next = tx;
462 
463 		/* check if we need to append */
464 		spin_lock_bh(&depend_tx->lock);
465 		if (depend_tx->parent) {
466 			intr_tx->parent = depend_tx;
467 			depend_tx->next = intr_tx;
468 			async_tx_ack(intr_tx);
469 			intr_tx = NULL;
470 		}
471 		spin_unlock_bh(&depend_tx->lock);
472 
473 		if (intr_tx) {
474 			intr_tx->parent = NULL;
475 			intr_tx->tx_submit(intr_tx);
476 			async_tx_ack(intr_tx);
477 		}
478 	} else {
479 		if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
480 			panic("%s: DMA_ERROR waiting for depend_tx\n",
481 			      __func__);
482 		tx->tx_submit(tx);
483 	}
484 }
485 
486 
487 /**
488  * submit_disposition - while holding depend_tx->lock we must avoid submitting
489  * 	new operations to prevent a circular locking dependency with
490  * 	drivers that already hold a channel lock when calling
491  * 	async_tx_run_dependencies.
492  * @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
493  * @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
494  * @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
495  */
496 enum submit_disposition {
497 	ASYNC_TX_SUBMITTED,
498 	ASYNC_TX_CHANNEL_SWITCH,
499 	ASYNC_TX_DIRECT_SUBMIT,
500 };
501 
502 void
503 async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
504 	enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
505 	dma_async_tx_callback cb_fn, void *cb_param)
506 {
507 	tx->callback = cb_fn;
508 	tx->callback_param = cb_param;
509 
510 	if (depend_tx) {
511 		enum submit_disposition s;
512 
513 		/* sanity check the dependency chain:
514 		 * 1/ if ack is already set then we cannot be sure
515 		 * we are referring to the correct operation
516 		 * 2/ dependencies are 1:1 i.e. two transactions can
517 		 * not depend on the same parent
518 		 */
519 		BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next ||
520 		       tx->parent);
521 
522 		/* the lock prevents async_tx_run_dependencies from missing
523 		 * the setting of ->next when ->parent != NULL
524 		 */
525 		spin_lock_bh(&depend_tx->lock);
526 		if (depend_tx->parent) {
527 			/* we have a parent so we can not submit directly
528 			 * if we are staying on the same channel: append
529 			 * else: channel switch
530 			 */
531 			if (depend_tx->chan == chan) {
532 				tx->parent = depend_tx;
533 				depend_tx->next = tx;
534 				s = ASYNC_TX_SUBMITTED;
535 			} else
536 				s = ASYNC_TX_CHANNEL_SWITCH;
537 		} else {
538 			/* we do not have a parent so we may be able to submit
539 			 * directly if we are staying on the same channel
540 			 */
541 			if (depend_tx->chan == chan)
542 				s = ASYNC_TX_DIRECT_SUBMIT;
543 			else
544 				s = ASYNC_TX_CHANNEL_SWITCH;
545 		}
546 		spin_unlock_bh(&depend_tx->lock);
547 
548 		switch (s) {
549 		case ASYNC_TX_SUBMITTED:
550 			break;
551 		case ASYNC_TX_CHANNEL_SWITCH:
552 			async_tx_channel_switch(depend_tx, tx);
553 			break;
554 		case ASYNC_TX_DIRECT_SUBMIT:
555 			tx->parent = NULL;
556 			tx->tx_submit(tx);
557 			break;
558 		}
559 	} else {
560 		tx->parent = NULL;
561 		tx->tx_submit(tx);
562 	}
563 
564 	if (flags & ASYNC_TX_ACK)
565 		async_tx_ack(tx);
566 
567 	if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
568 		async_tx_ack(depend_tx);
569 }
570 EXPORT_SYMBOL_GPL(async_tx_submit);
571 
572 /**
573  * async_trigger_callback - schedules the callback function to be run after
574  * any dependent operations have been completed.
575  * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
576  * @depend_tx: 'callback' requires the completion of this transaction
577  * @cb_fn: function to call after depend_tx completes
578  * @cb_param: parameter to pass to the callback routine
579  */
580 struct dma_async_tx_descriptor *
581 async_trigger_callback(enum async_tx_flags flags,
582 	struct dma_async_tx_descriptor *depend_tx,
583 	dma_async_tx_callback cb_fn, void *cb_param)
584 {
585 	struct dma_chan *chan;
586 	struct dma_device *device;
587 	struct dma_async_tx_descriptor *tx;
588 
589 	if (depend_tx) {
590 		chan = depend_tx->chan;
591 		device = chan->device;
592 
593 		/* see if we can schedule an interrupt
594 		 * otherwise poll for completion
595 		 */
596 		if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
597 			device = NULL;
598 
599 		tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
600 	} else
601 		tx = NULL;
602 
603 	if (tx) {
604 		pr_debug("%s: (async)\n", __func__);
605 
606 		async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
607 	} else {
608 		pr_debug("%s: (sync)\n", __func__);
609 
610 		/* wait for any prerequisite operations */
611 		if (depend_tx) {
612 			/* if ack is already set then we cannot be sure
613 			 * we are referring to the correct operation
614 			 */
615 			BUG_ON(async_tx_test_ack(depend_tx));
616 			if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
617 				panic("%s: DMA_ERROR waiting for depend_tx\n",
618 					__func__);
619 		}
620 
621 		async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param);
622 	}
623 
624 	return tx;
625 }
626 EXPORT_SYMBOL_GPL(async_trigger_callback);
627 
628 module_init(async_tx_init);
629 module_exit(async_tx_exit);
630 
631 MODULE_AUTHOR("Intel Corporation");
632 MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
633 MODULE_LICENSE("GPL");
634