xref: /openbmc/linux/crypto/async_tx/async_tx.c (revision 057316cc6a5b521b332a1d7ccc871cd60c904c74)
1 /*
2  * core routines for the asynchronous memory transfer/transform api
3  *
4  * Copyright © 2006, Intel Corporation.
5  *
6  *	Dan Williams <dan.j.williams@intel.com>
7  *
8  *	with architecture considerations by:
9  *	Neil Brown <neilb@suse.de>
10  *	Jeff Garzik <jeff@garzik.org>
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  *
21  * You should have received a copy of the GNU General Public License along with
22  * this program; if not, write to the Free Software Foundation, Inc.,
23  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24  *
25  */
26 #include <linux/rculist.h>
27 #include <linux/kernel.h>
28 #include <linux/async_tx.h>
29 
30 #ifdef CONFIG_DMA_ENGINE
31 static enum dma_state_client
32 dma_channel_add_remove(struct dma_client *client,
33 	struct dma_chan *chan, enum dma_state state);
34 
35 static struct dma_client async_tx_dma = {
36 	.event_callback = dma_channel_add_remove,
37 	/* .cap_mask == 0 defaults to all channels */
38 };
39 
40 /**
41  * dma_cap_mask_all - enable iteration over all operation types
42  */
43 static dma_cap_mask_t dma_cap_mask_all;
44 
45 /**
46  * chan_ref_percpu - tracks channel allocations per core/opertion
47  */
48 struct chan_ref_percpu {
49 	struct dma_chan_ref *ref;
50 };
51 
52 static int channel_table_initialized;
53 static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END];
54 
55 /**
56  * async_tx_lock - protect modification of async_tx_master_list and serialize
57  *	rebalance operations
58  */
59 static spinlock_t async_tx_lock;
60 
61 static LIST_HEAD(async_tx_master_list);
62 
63 /* async_tx_issue_pending_all - start all transactions on all channels */
64 void async_tx_issue_pending_all(void)
65 {
66 	struct dma_chan_ref *ref;
67 
68 	rcu_read_lock();
69 	list_for_each_entry_rcu(ref, &async_tx_master_list, node)
70 		ref->chan->device->device_issue_pending(ref->chan);
71 	rcu_read_unlock();
72 }
73 EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);
74 
75 /* dma_wait_for_async_tx - spin wait for a transcation to complete
76  * @tx: transaction to wait on
77  */
78 enum dma_status
79 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
80 {
81 	enum dma_status status;
82 	struct dma_async_tx_descriptor *iter;
83 	struct dma_async_tx_descriptor *parent;
84 
85 	if (!tx)
86 		return DMA_SUCCESS;
87 
88 	/* poll through the dependency chain, return when tx is complete */
89 	do {
90 		iter = tx;
91 
92 		/* find the root of the unsubmitted dependency chain */
93 		do {
94 			parent = iter->parent;
95 			if (!parent)
96 				break;
97 			else
98 				iter = parent;
99 		} while (parent);
100 
101 		/* there is a small window for ->parent == NULL and
102 		 * ->cookie == -EBUSY
103 		 */
104 		while (iter->cookie == -EBUSY)
105 			cpu_relax();
106 
107 		status = dma_sync_wait(iter->chan, iter->cookie);
108 	} while (status == DMA_IN_PROGRESS || (iter != tx));
109 
110 	return status;
111 }
112 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
113 
114 /* async_tx_run_dependencies - helper routine for dma drivers to process
115  *	(start) dependent operations on their target channel
116  * @tx: transaction with dependencies
117  */
118 void async_tx_run_dependencies(struct dma_async_tx_descriptor *tx)
119 {
120 	struct dma_async_tx_descriptor *dep = tx->next;
121 	struct dma_async_tx_descriptor *dep_next;
122 	struct dma_chan *chan;
123 
124 	if (!dep)
125 		return;
126 
127 	chan = dep->chan;
128 
129 	/* keep submitting up until a channel switch is detected
130 	 * in that case we will be called again as a result of
131 	 * processing the interrupt from async_tx_channel_switch
132 	 */
133 	for (; dep; dep = dep_next) {
134 		spin_lock_bh(&dep->lock);
135 		dep->parent = NULL;
136 		dep_next = dep->next;
137 		if (dep_next && dep_next->chan == chan)
138 			dep->next = NULL; /* ->next will be submitted */
139 		else
140 			dep_next = NULL; /* submit current dep and terminate */
141 		spin_unlock_bh(&dep->lock);
142 
143 		dep->tx_submit(dep);
144 	}
145 
146 	chan->device->device_issue_pending(chan);
147 }
148 EXPORT_SYMBOL_GPL(async_tx_run_dependencies);
149 
150 static void
151 free_dma_chan_ref(struct rcu_head *rcu)
152 {
153 	struct dma_chan_ref *ref;
154 	ref = container_of(rcu, struct dma_chan_ref, rcu);
155 	kfree(ref);
156 }
157 
158 static void
159 init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
160 {
161 	INIT_LIST_HEAD(&ref->node);
162 	INIT_RCU_HEAD(&ref->rcu);
163 	ref->chan = chan;
164 	atomic_set(&ref->count, 0);
165 }
166 
167 /**
168  * get_chan_ref_by_cap - returns the nth channel of the given capability
169  * 	defaults to returning the channel with the desired capability and the
170  * 	lowest reference count if the index can not be satisfied
171  * @cap: capability to match
172  * @index: nth channel desired, passing -1 has the effect of forcing the
173  *  default return value
174  */
175 static struct dma_chan_ref *
176 get_chan_ref_by_cap(enum dma_transaction_type cap, int index)
177 {
178 	struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref;
179 
180 	rcu_read_lock();
181 	list_for_each_entry_rcu(ref, &async_tx_master_list, node)
182 		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
183 			if (!min_ref)
184 				min_ref = ref;
185 			else if (atomic_read(&ref->count) <
186 				atomic_read(&min_ref->count))
187 				min_ref = ref;
188 
189 			if (index-- == 0) {
190 				ret_ref = ref;
191 				break;
192 			}
193 		}
194 	rcu_read_unlock();
195 
196 	if (!ret_ref)
197 		ret_ref = min_ref;
198 
199 	if (ret_ref)
200 		atomic_inc(&ret_ref->count);
201 
202 	return ret_ref;
203 }
204 
205 /**
206  * async_tx_rebalance - redistribute the available channels, optimize
207  * for cpu isolation in the SMP case, and opertaion isolation in the
208  * uniprocessor case
209  */
210 static void async_tx_rebalance(void)
211 {
212 	int cpu, cap, cpu_idx = 0;
213 	unsigned long flags;
214 
215 	if (!channel_table_initialized)
216 		return;
217 
218 	spin_lock_irqsave(&async_tx_lock, flags);
219 
220 	/* undo the last distribution */
221 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
222 		for_each_possible_cpu(cpu) {
223 			struct dma_chan_ref *ref =
224 				per_cpu_ptr(channel_table[cap], cpu)->ref;
225 			if (ref) {
226 				atomic_set(&ref->count, 0);
227 				per_cpu_ptr(channel_table[cap], cpu)->ref =
228 									NULL;
229 			}
230 		}
231 
232 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
233 		for_each_online_cpu(cpu) {
234 			struct dma_chan_ref *new;
235 			if (NR_CPUS > 1)
236 				new = get_chan_ref_by_cap(cap, cpu_idx++);
237 			else
238 				new = get_chan_ref_by_cap(cap, -1);
239 
240 			per_cpu_ptr(channel_table[cap], cpu)->ref = new;
241 		}
242 
243 	spin_unlock_irqrestore(&async_tx_lock, flags);
244 }
245 
246 static enum dma_state_client
247 dma_channel_add_remove(struct dma_client *client,
248 	struct dma_chan *chan, enum dma_state state)
249 {
250 	unsigned long found, flags;
251 	struct dma_chan_ref *master_ref, *ref;
252 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
253 
254 	switch (state) {
255 	case DMA_RESOURCE_AVAILABLE:
256 		found = 0;
257 		rcu_read_lock();
258 		list_for_each_entry_rcu(ref, &async_tx_master_list, node)
259 			if (ref->chan == chan) {
260 				found = 1;
261 				break;
262 			}
263 		rcu_read_unlock();
264 
265 		pr_debug("async_tx: dma resource available [%s]\n",
266 			found ? "old" : "new");
267 
268 		if (!found)
269 			ack = DMA_ACK;
270 		else
271 			break;
272 
273 		/* add the channel to the generic management list */
274 		master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
275 		if (master_ref) {
276 			/* keep a reference until async_tx is unloaded */
277 			dma_chan_get(chan);
278 			init_dma_chan_ref(master_ref, chan);
279 			spin_lock_irqsave(&async_tx_lock, flags);
280 			list_add_tail_rcu(&master_ref->node,
281 				&async_tx_master_list);
282 			spin_unlock_irqrestore(&async_tx_lock,
283 				flags);
284 		} else {
285 			printk(KERN_WARNING "async_tx: unable to create"
286 				" new master entry in response to"
287 				" a DMA_RESOURCE_ADDED event"
288 				" (-ENOMEM)\n");
289 			return 0;
290 		}
291 
292 		async_tx_rebalance();
293 		break;
294 	case DMA_RESOURCE_REMOVED:
295 		found = 0;
296 		spin_lock_irqsave(&async_tx_lock, flags);
297 		list_for_each_entry(ref, &async_tx_master_list, node)
298 			if (ref->chan == chan) {
299 				/* permit backing devices to go away */
300 				dma_chan_put(ref->chan);
301 				list_del_rcu(&ref->node);
302 				call_rcu(&ref->rcu, free_dma_chan_ref);
303 				found = 1;
304 				break;
305 			}
306 		spin_unlock_irqrestore(&async_tx_lock, flags);
307 
308 		pr_debug("async_tx: dma resource removed [%s]\n",
309 			found ? "ours" : "not ours");
310 
311 		if (found)
312 			ack = DMA_ACK;
313 		else
314 			break;
315 
316 		async_tx_rebalance();
317 		break;
318 	case DMA_RESOURCE_SUSPEND:
319 	case DMA_RESOURCE_RESUME:
320 		printk(KERN_WARNING "async_tx: does not support dma channel"
321 			" suspend/resume\n");
322 		break;
323 	default:
324 		BUG();
325 	}
326 
327 	return ack;
328 }
329 
330 static int __init
331 async_tx_init(void)
332 {
333 	enum dma_transaction_type cap;
334 
335 	spin_lock_init(&async_tx_lock);
336 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
337 
338 	/* an interrupt will never be an explicit operation type.
339 	 * clearing this bit prevents allocation to a slot in 'channel_table'
340 	 */
341 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
342 
343 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
344 		channel_table[cap] = alloc_percpu(struct chan_ref_percpu);
345 		if (!channel_table[cap])
346 			goto err;
347 	}
348 
349 	channel_table_initialized = 1;
350 	dma_async_client_register(&async_tx_dma);
351 	dma_async_client_chan_request(&async_tx_dma);
352 
353 	printk(KERN_INFO "async_tx: api initialized (async)\n");
354 
355 	return 0;
356 err:
357 	printk(KERN_ERR "async_tx: initialization failure\n");
358 
359 	while (--cap >= 0)
360 		free_percpu(channel_table[cap]);
361 
362 	return 1;
363 }
364 
365 static void __exit async_tx_exit(void)
366 {
367 	enum dma_transaction_type cap;
368 
369 	channel_table_initialized = 0;
370 
371 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
372 		if (channel_table[cap])
373 			free_percpu(channel_table[cap]);
374 
375 	dma_async_client_unregister(&async_tx_dma);
376 }
377 
378 /**
379  * __async_tx_find_channel - find a channel to carry out the operation or let
380  *	the transaction execute synchronously
381  * @depend_tx: transaction dependency
382  * @tx_type: transaction type
383  */
384 struct dma_chan *
385 __async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
386 	enum dma_transaction_type tx_type)
387 {
388 	/* see if we can keep the chain on one channel */
389 	if (depend_tx &&
390 		dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
391 		return depend_tx->chan;
392 	else if (likely(channel_table_initialized)) {
393 		struct dma_chan_ref *ref;
394 		int cpu = get_cpu();
395 		ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref;
396 		put_cpu();
397 		return ref ? ref->chan : NULL;
398 	} else
399 		return NULL;
400 }
401 EXPORT_SYMBOL_GPL(__async_tx_find_channel);
402 #else
403 static int __init async_tx_init(void)
404 {
405 	printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
406 	return 0;
407 }
408 
409 static void __exit async_tx_exit(void)
410 {
411 	do { } while (0);
412 }
413 #endif
414 
415 
416 /**
417  * async_tx_channel_switch - queue an interrupt descriptor with a dependency
418  * 	pre-attached.
419  * @depend_tx: the operation that must finish before the new operation runs
420  * @tx: the new operation
421  */
422 static void
423 async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
424 			struct dma_async_tx_descriptor *tx)
425 {
426 	struct dma_chan *chan;
427 	struct dma_device *device;
428 	struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
429 
430 	/* first check to see if we can still append to depend_tx */
431 	spin_lock_bh(&depend_tx->lock);
432 	if (depend_tx->parent && depend_tx->chan == tx->chan) {
433 		tx->parent = depend_tx;
434 		depend_tx->next = tx;
435 		intr_tx = NULL;
436 	}
437 	spin_unlock_bh(&depend_tx->lock);
438 
439 	if (!intr_tx)
440 		return;
441 
442 	chan = depend_tx->chan;
443 	device = chan->device;
444 
445 	/* see if we can schedule an interrupt
446 	 * otherwise poll for completion
447 	 */
448 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
449 		intr_tx = device->device_prep_dma_interrupt(chan, 0);
450 	else
451 		intr_tx = NULL;
452 
453 	if (intr_tx) {
454 		intr_tx->callback = NULL;
455 		intr_tx->callback_param = NULL;
456 		tx->parent = intr_tx;
457 		/* safe to set ->next outside the lock since we know we are
458 		 * not submitted yet
459 		 */
460 		intr_tx->next = tx;
461 
462 		/* check if we need to append */
463 		spin_lock_bh(&depend_tx->lock);
464 		if (depend_tx->parent) {
465 			intr_tx->parent = depend_tx;
466 			depend_tx->next = intr_tx;
467 			async_tx_ack(intr_tx);
468 			intr_tx = NULL;
469 		}
470 		spin_unlock_bh(&depend_tx->lock);
471 
472 		if (intr_tx) {
473 			intr_tx->parent = NULL;
474 			intr_tx->tx_submit(intr_tx);
475 			async_tx_ack(intr_tx);
476 		}
477 	} else {
478 		if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
479 			panic("%s: DMA_ERROR waiting for depend_tx\n",
480 			      __func__);
481 		tx->tx_submit(tx);
482 	}
483 }
484 
485 
486 /**
487  * submit_disposition - while holding depend_tx->lock we must avoid submitting
488  * 	new operations to prevent a circular locking dependency with
489  * 	drivers that already hold a channel lock when calling
490  * 	async_tx_run_dependencies.
491  * @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
492  * @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
493  * @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
494  */
495 enum submit_disposition {
496 	ASYNC_TX_SUBMITTED,
497 	ASYNC_TX_CHANNEL_SWITCH,
498 	ASYNC_TX_DIRECT_SUBMIT,
499 };
500 
501 void
502 async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
503 	enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
504 	dma_async_tx_callback cb_fn, void *cb_param)
505 {
506 	tx->callback = cb_fn;
507 	tx->callback_param = cb_param;
508 
509 	if (depend_tx) {
510 		enum submit_disposition s;
511 
512 		/* sanity check the dependency chain:
513 		 * 1/ if ack is already set then we cannot be sure
514 		 * we are referring to the correct operation
515 		 * 2/ dependencies are 1:1 i.e. two transactions can
516 		 * not depend on the same parent
517 		 */
518 		BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next ||
519 		       tx->parent);
520 
521 		/* the lock prevents async_tx_run_dependencies from missing
522 		 * the setting of ->next when ->parent != NULL
523 		 */
524 		spin_lock_bh(&depend_tx->lock);
525 		if (depend_tx->parent) {
526 			/* we have a parent so we can not submit directly
527 			 * if we are staying on the same channel: append
528 			 * else: channel switch
529 			 */
530 			if (depend_tx->chan == chan) {
531 				tx->parent = depend_tx;
532 				depend_tx->next = tx;
533 				s = ASYNC_TX_SUBMITTED;
534 			} else
535 				s = ASYNC_TX_CHANNEL_SWITCH;
536 		} else {
537 			/* we do not have a parent so we may be able to submit
538 			 * directly if we are staying on the same channel
539 			 */
540 			if (depend_tx->chan == chan)
541 				s = ASYNC_TX_DIRECT_SUBMIT;
542 			else
543 				s = ASYNC_TX_CHANNEL_SWITCH;
544 		}
545 		spin_unlock_bh(&depend_tx->lock);
546 
547 		switch (s) {
548 		case ASYNC_TX_SUBMITTED:
549 			break;
550 		case ASYNC_TX_CHANNEL_SWITCH:
551 			async_tx_channel_switch(depend_tx, tx);
552 			break;
553 		case ASYNC_TX_DIRECT_SUBMIT:
554 			tx->parent = NULL;
555 			tx->tx_submit(tx);
556 			break;
557 		}
558 	} else {
559 		tx->parent = NULL;
560 		tx->tx_submit(tx);
561 	}
562 
563 	if (flags & ASYNC_TX_ACK)
564 		async_tx_ack(tx);
565 
566 	if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
567 		async_tx_ack(depend_tx);
568 }
569 EXPORT_SYMBOL_GPL(async_tx_submit);
570 
571 /**
572  * async_trigger_callback - schedules the callback function to be run after
573  * any dependent operations have been completed.
574  * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
575  * @depend_tx: 'callback' requires the completion of this transaction
576  * @cb_fn: function to call after depend_tx completes
577  * @cb_param: parameter to pass to the callback routine
578  */
579 struct dma_async_tx_descriptor *
580 async_trigger_callback(enum async_tx_flags flags,
581 	struct dma_async_tx_descriptor *depend_tx,
582 	dma_async_tx_callback cb_fn, void *cb_param)
583 {
584 	struct dma_chan *chan;
585 	struct dma_device *device;
586 	struct dma_async_tx_descriptor *tx;
587 
588 	if (depend_tx) {
589 		chan = depend_tx->chan;
590 		device = chan->device;
591 
592 		/* see if we can schedule an interrupt
593 		 * otherwise poll for completion
594 		 */
595 		if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
596 			device = NULL;
597 
598 		tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
599 	} else
600 		tx = NULL;
601 
602 	if (tx) {
603 		pr_debug("%s: (async)\n", __func__);
604 
605 		async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
606 	} else {
607 		pr_debug("%s: (sync)\n", __func__);
608 
609 		/* wait for any prerequisite operations */
610 		async_tx_quiesce(&depend_tx);
611 
612 		async_tx_sync_epilog(cb_fn, cb_param);
613 	}
614 
615 	return tx;
616 }
617 EXPORT_SYMBOL_GPL(async_trigger_callback);
618 
619 /**
620  * async_tx_quiesce - ensure tx is complete and freeable upon return
621  * @tx - transaction to quiesce
622  */
623 void async_tx_quiesce(struct dma_async_tx_descriptor **tx)
624 {
625 	if (*tx) {
626 		/* if ack is already set then we cannot be sure
627 		 * we are referring to the correct operation
628 		 */
629 		BUG_ON(async_tx_test_ack(*tx));
630 		if (dma_wait_for_async_tx(*tx) == DMA_ERROR)
631 			panic("DMA_ERROR waiting for transaction\n");
632 		async_tx_ack(*tx);
633 		*tx = NULL;
634 	}
635 }
636 EXPORT_SYMBOL_GPL(async_tx_quiesce);
637 
638 module_init(async_tx_init);
639 module_exit(async_tx_exit);
640 
641 MODULE_AUTHOR("Intel Corporation");
642 MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
643 MODULE_LICENSE("GPL");
644