1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Instantiate a public key crypto key from an X.509 Certificate 3 * 4 * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #define pr_fmt(fmt) "ASYM: "fmt 9 #include <linux/module.h> 10 #include <linux/kernel.h> 11 #include <linux/err.h> 12 #include <crypto/public_key.h> 13 #include "asymmetric_keys.h" 14 15 static bool use_builtin_keys; 16 static struct asymmetric_key_id *ca_keyid; 17 18 #ifndef MODULE 19 static struct { 20 struct asymmetric_key_id id; 21 unsigned char data[10]; 22 } cakey; 23 24 static int __init ca_keys_setup(char *str) 25 { 26 if (!str) /* default system keyring */ 27 return 1; 28 29 if (strncmp(str, "id:", 3) == 0) { 30 struct asymmetric_key_id *p = &cakey.id; 31 size_t hexlen = (strlen(str) - 3) / 2; 32 int ret; 33 34 if (hexlen == 0 || hexlen > sizeof(cakey.data)) { 35 pr_err("Missing or invalid ca_keys id\n"); 36 return 1; 37 } 38 39 ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen); 40 if (ret < 0) 41 pr_err("Unparsable ca_keys id hex string\n"); 42 else 43 ca_keyid = p; /* owner key 'id:xxxxxx' */ 44 } else if (strcmp(str, "builtin") == 0) { 45 use_builtin_keys = true; 46 } 47 48 return 1; 49 } 50 __setup("ca_keys=", ca_keys_setup); 51 #endif 52 53 /** 54 * restrict_link_by_signature - Restrict additions to a ring of public keys 55 * @dest_keyring: Keyring being linked to. 56 * @type: The type of key being added. 57 * @payload: The payload of the new key. 58 * @trust_keyring: A ring of keys that can be used to vouch for the new cert. 59 * 60 * Check the new certificate against the ones in the trust keyring. If one of 61 * those is the signing key and validates the new certificate, then mark the 62 * new certificate as being trusted. 63 * 64 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a 65 * matching parent certificate in the trusted list, -EKEYREJECTED if the 66 * signature check fails or the key is blacklisted, -ENOPKG if the signature 67 * uses unsupported crypto, or some other error if there is a matching 68 * certificate but the signature check cannot be performed. 69 */ 70 int restrict_link_by_signature(struct key *dest_keyring, 71 const struct key_type *type, 72 const union key_payload *payload, 73 struct key *trust_keyring) 74 { 75 const struct public_key_signature *sig; 76 struct key *key; 77 int ret; 78 79 pr_devel("==>%s()\n", __func__); 80 81 if (!trust_keyring) 82 return -ENOKEY; 83 84 if (type != &key_type_asymmetric) 85 return -EOPNOTSUPP; 86 87 sig = payload->data[asym_auth]; 88 if (!sig) 89 return -ENOPKG; 90 if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2]) 91 return -ENOKEY; 92 93 if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid)) 94 return -EPERM; 95 96 /* See if we have a key that signed this one. */ 97 key = find_asymmetric_key(trust_keyring, 98 sig->auth_ids[0], sig->auth_ids[1], 99 sig->auth_ids[2], false); 100 if (IS_ERR(key)) 101 return -ENOKEY; 102 103 if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags)) 104 ret = -ENOKEY; 105 else 106 ret = verify_signature(key, sig); 107 key_put(key); 108 return ret; 109 } 110 111 /** 112 * restrict_link_by_ca - Restrict additions to a ring of CA keys 113 * @dest_keyring: Keyring being linked to. 114 * @type: The type of key being added. 115 * @payload: The payload of the new key. 116 * @trust_keyring: Unused. 117 * 118 * Check if the new certificate is a CA. If it is a CA, then mark the new 119 * certificate as being ok to link. 120 * 121 * Returns 0 if the new certificate was accepted, -ENOKEY if the 122 * certificate is not a CA. -ENOPKG if the signature uses unsupported 123 * crypto, or some other error if there is a matching certificate but 124 * the signature check cannot be performed. 125 */ 126 int restrict_link_by_ca(struct key *dest_keyring, 127 const struct key_type *type, 128 const union key_payload *payload, 129 struct key *trust_keyring) 130 { 131 const struct public_key *pkey; 132 133 if (type != &key_type_asymmetric) 134 return -EOPNOTSUPP; 135 136 pkey = payload->data[asym_crypto]; 137 if (!pkey) 138 return -ENOPKG; 139 if (!test_bit(KEY_EFLAG_CA, &pkey->key_eflags)) 140 return -ENOKEY; 141 if (!test_bit(KEY_EFLAG_KEYCERTSIGN, &pkey->key_eflags)) 142 return -ENOKEY; 143 if (test_bit(KEY_EFLAG_DIGITALSIG, &pkey->key_eflags)) 144 return -ENOKEY; 145 146 return 0; 147 } 148 149 static bool match_either_id(const struct asymmetric_key_id **pair, 150 const struct asymmetric_key_id *single) 151 { 152 return (asymmetric_key_id_same(pair[0], single) || 153 asymmetric_key_id_same(pair[1], single)); 154 } 155 156 static int key_or_keyring_common(struct key *dest_keyring, 157 const struct key_type *type, 158 const union key_payload *payload, 159 struct key *trusted, bool check_dest) 160 { 161 const struct public_key_signature *sig; 162 struct key *key = NULL; 163 int ret; 164 165 pr_devel("==>%s()\n", __func__); 166 167 if (!dest_keyring) 168 return -ENOKEY; 169 else if (dest_keyring->type != &key_type_keyring) 170 return -EOPNOTSUPP; 171 172 if (!trusted && !check_dest) 173 return -ENOKEY; 174 175 if (type != &key_type_asymmetric) 176 return -EOPNOTSUPP; 177 178 sig = payload->data[asym_auth]; 179 if (!sig) 180 return -ENOPKG; 181 if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2]) 182 return -ENOKEY; 183 184 if (trusted) { 185 if (trusted->type == &key_type_keyring) { 186 /* See if we have a key that signed this one. */ 187 key = find_asymmetric_key(trusted, sig->auth_ids[0], 188 sig->auth_ids[1], 189 sig->auth_ids[2], false); 190 if (IS_ERR(key)) 191 key = NULL; 192 } else if (trusted->type == &key_type_asymmetric) { 193 const struct asymmetric_key_id **signer_ids; 194 195 signer_ids = (const struct asymmetric_key_id **) 196 asymmetric_key_ids(trusted)->id; 197 198 /* 199 * The auth_ids come from the candidate key (the 200 * one that is being considered for addition to 201 * dest_keyring) and identify the key that was 202 * used to sign. 203 * 204 * The signer_ids are identifiers for the 205 * signing key specified for dest_keyring. 206 * 207 * The first auth_id is the preferred id, 2nd and 208 * 3rd are the fallbacks. If exactly one of 209 * auth_ids[0] and auth_ids[1] is present, it may 210 * match either signer_ids[0] or signed_ids[1]. 211 * If both are present the first one may match 212 * either signed_id but the second one must match 213 * the second signer_id. If neither of them is 214 * available, auth_ids[2] is matched against 215 * signer_ids[2] as a fallback. 216 */ 217 if (!sig->auth_ids[0] && !sig->auth_ids[1]) { 218 if (asymmetric_key_id_same(signer_ids[2], 219 sig->auth_ids[2])) 220 key = __key_get(trusted); 221 222 } else if (!sig->auth_ids[0] || !sig->auth_ids[1]) { 223 const struct asymmetric_key_id *auth_id; 224 225 auth_id = sig->auth_ids[0] ?: sig->auth_ids[1]; 226 if (match_either_id(signer_ids, auth_id)) 227 key = __key_get(trusted); 228 229 } else if (asymmetric_key_id_same(signer_ids[1], 230 sig->auth_ids[1]) && 231 match_either_id(signer_ids, 232 sig->auth_ids[0])) { 233 key = __key_get(trusted); 234 } 235 } else { 236 return -EOPNOTSUPP; 237 } 238 } 239 240 if (check_dest && !key) { 241 /* See if the destination has a key that signed this one. */ 242 key = find_asymmetric_key(dest_keyring, sig->auth_ids[0], 243 sig->auth_ids[1], sig->auth_ids[2], 244 false); 245 if (IS_ERR(key)) 246 key = NULL; 247 } 248 249 if (!key) 250 return -ENOKEY; 251 252 ret = key_validate(key); 253 if (ret == 0) 254 ret = verify_signature(key, sig); 255 256 key_put(key); 257 return ret; 258 } 259 260 /** 261 * restrict_link_by_key_or_keyring - Restrict additions to a ring of public 262 * keys using the restrict_key information stored in the ring. 263 * @dest_keyring: Keyring being linked to. 264 * @type: The type of key being added. 265 * @payload: The payload of the new key. 266 * @trusted: A key or ring of keys that can be used to vouch for the new cert. 267 * 268 * Check the new certificate only against the key or keys passed in the data 269 * parameter. If one of those is the signing key and validates the new 270 * certificate, then mark the new certificate as being ok to link. 271 * 272 * Returns 0 if the new certificate was accepted, -ENOKEY if we 273 * couldn't find a matching parent certificate in the trusted list, 274 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 275 * unsupported crypto, or some other error if there is a matching certificate 276 * but the signature check cannot be performed. 277 */ 278 int restrict_link_by_key_or_keyring(struct key *dest_keyring, 279 const struct key_type *type, 280 const union key_payload *payload, 281 struct key *trusted) 282 { 283 return key_or_keyring_common(dest_keyring, type, payload, trusted, 284 false); 285 } 286 287 /** 288 * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of 289 * public keys using the restrict_key information stored in the ring. 290 * @dest_keyring: Keyring being linked to. 291 * @type: The type of key being added. 292 * @payload: The payload of the new key. 293 * @trusted: A key or ring of keys that can be used to vouch for the new cert. 294 * 295 * Check the new certificate against the key or keys passed in the data 296 * parameter and against the keys already linked to the destination keyring. If 297 * one of those is the signing key and validates the new certificate, then mark 298 * the new certificate as being ok to link. 299 * 300 * Returns 0 if the new certificate was accepted, -ENOKEY if we 301 * couldn't find a matching parent certificate in the trusted list, 302 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 303 * unsupported crypto, or some other error if there is a matching certificate 304 * but the signature check cannot be performed. 305 */ 306 int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring, 307 const struct key_type *type, 308 const union key_payload *payload, 309 struct key *trusted) 310 { 311 return key_or_keyring_common(dest_keyring, type, payload, trusted, 312 true); 313 } 314