xref: /openbmc/linux/crypto/aegis128-neon-inner.c (revision f74f1ec22dc232be0296739148d126e9158eadf9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #ifdef CONFIG_ARM64
7 #include <asm/neon-intrinsics.h>
8 
9 #define AES_ROUND	"aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b"
10 #else
11 #include <arm_neon.h>
12 
13 #define AES_ROUND	"aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0"
14 #endif
15 
16 #define AEGIS_BLOCK_SIZE	16
17 
18 #include <stddef.h>
19 
20 extern int aegis128_have_aes_insn;
21 
22 void *memcpy(void *dest, const void *src, size_t n);
23 
24 struct aegis128_state {
25 	uint8x16_t v[5];
26 };
27 
28 extern const uint8_t crypto_aes_sbox[];
29 
30 static struct aegis128_state aegis128_load_state_neon(const void *state)
31 {
32 	return (struct aegis128_state){ {
33 		vld1q_u8(state),
34 		vld1q_u8(state + 16),
35 		vld1q_u8(state + 32),
36 		vld1q_u8(state + 48),
37 		vld1q_u8(state + 64)
38 	} };
39 }
40 
41 static void aegis128_save_state_neon(struct aegis128_state st, void *state)
42 {
43 	vst1q_u8(state, st.v[0]);
44 	vst1q_u8(state + 16, st.v[1]);
45 	vst1q_u8(state + 32, st.v[2]);
46 	vst1q_u8(state + 48, st.v[3]);
47 	vst1q_u8(state + 64, st.v[4]);
48 }
49 
50 static inline __attribute__((always_inline))
51 uint8x16_t aegis_aes_round(uint8x16_t w)
52 {
53 	uint8x16_t z = {};
54 
55 #ifdef CONFIG_ARM64
56 	if (!__builtin_expect(aegis128_have_aes_insn, 1)) {
57 		static const uint8_t shift_rows[] = {
58 			0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
59 			0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
60 		};
61 		static const uint8_t ror32by8[] = {
62 			0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
63 			0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
64 		};
65 		uint8x16_t v;
66 
67 		// shift rows
68 		w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
69 
70 		// sub bytes
71 #ifndef CONFIG_CC_IS_GCC
72 		v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
73 		v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
74 		v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
75 		v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
76 #else
77 		asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w));
78 		w -= 0x40;
79 		asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w));
80 		w -= 0x40;
81 		asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w));
82 		w -= 0x40;
83 		asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w));
84 #endif
85 
86 		// mix columns
87 		w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b);
88 		w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v);
89 		w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
90 
91 		return w;
92 	}
93 #endif
94 
95 	/*
96 	 * We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics
97 	 * to force the compiler to issue the aese/aesmc instructions in pairs.
98 	 * This is much faster on many cores, where the instruction pair can
99 	 * execute in a single cycle.
100 	 */
101 	asm(AES_ROUND : "+w"(w) : "w"(z));
102 	return w;
103 }
104 
105 static inline __attribute__((always_inline))
106 struct aegis128_state aegis128_update_neon(struct aegis128_state st,
107 					   uint8x16_t m)
108 {
109 	m       ^= aegis_aes_round(st.v[4]);
110 	st.v[4] ^= aegis_aes_round(st.v[3]);
111 	st.v[3] ^= aegis_aes_round(st.v[2]);
112 	st.v[2] ^= aegis_aes_round(st.v[1]);
113 	st.v[1] ^= aegis_aes_round(st.v[0]);
114 	st.v[0] ^= m;
115 
116 	return st;
117 }
118 
119 static inline __attribute__((always_inline))
120 void preload_sbox(void)
121 {
122 	if (!IS_ENABLED(CONFIG_ARM64) ||
123 	    !IS_ENABLED(CONFIG_CC_IS_GCC) ||
124 	    __builtin_expect(aegis128_have_aes_insn, 1))
125 		return;
126 
127 	asm("ld1	{v16.16b-v19.16b}, [%0], #64	\n\t"
128 	    "ld1	{v20.16b-v23.16b}, [%0], #64	\n\t"
129 	    "ld1	{v24.16b-v27.16b}, [%0], #64	\n\t"
130 	    "ld1	{v28.16b-v31.16b}, [%0]		\n\t"
131 	    :: "r"(crypto_aes_sbox));
132 }
133 
134 void crypto_aegis128_init_neon(void *state, const void *key, const void *iv)
135 {
136 	static const uint8_t const0[] = {
137 		0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d,
138 		0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62,
139 	};
140 	static const uint8_t const1[] = {
141 		0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1,
142 		0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd,
143 	};
144 	uint8x16_t k = vld1q_u8(key);
145 	uint8x16_t kiv = k ^ vld1q_u8(iv);
146 	struct aegis128_state st = {{
147 		kiv,
148 		vld1q_u8(const1),
149 		vld1q_u8(const0),
150 		k ^ vld1q_u8(const0),
151 		k ^ vld1q_u8(const1),
152 	}};
153 	int i;
154 
155 	preload_sbox();
156 
157 	for (i = 0; i < 5; i++) {
158 		st = aegis128_update_neon(st, k);
159 		st = aegis128_update_neon(st, kiv);
160 	}
161 	aegis128_save_state_neon(st, state);
162 }
163 
164 void crypto_aegis128_update_neon(void *state, const void *msg)
165 {
166 	struct aegis128_state st = aegis128_load_state_neon(state);
167 
168 	preload_sbox();
169 
170 	st = aegis128_update_neon(st, vld1q_u8(msg));
171 
172 	aegis128_save_state_neon(st, state);
173 }
174 
175 #ifdef CONFIG_ARM
176 /*
177  * AArch32 does not provide these intrinsics natively because it does not
178  * implement the underlying instructions. AArch32 only provides 64-bit
179  * wide vtbl.8/vtbx.8 instruction, so use those instead.
180  */
181 static uint8x16_t vqtbl1q_u8(uint8x16_t a, uint8x16_t b)
182 {
183 	union {
184 		uint8x16_t	val;
185 		uint8x8x2_t	pair;
186 	} __a = { a };
187 
188 	return vcombine_u8(vtbl2_u8(__a.pair, vget_low_u8(b)),
189 			   vtbl2_u8(__a.pair, vget_high_u8(b)));
190 }
191 
192 static uint8x16_t vqtbx1q_u8(uint8x16_t v, uint8x16_t a, uint8x16_t b)
193 {
194 	union {
195 		uint8x16_t	val;
196 		uint8x8x2_t	pair;
197 	} __a = { a };
198 
199 	return vcombine_u8(vtbx2_u8(vget_low_u8(v), __a.pair, vget_low_u8(b)),
200 			   vtbx2_u8(vget_high_u8(v), __a.pair, vget_high_u8(b)));
201 }
202 
203 static int8_t vminvq_s8(int8x16_t v)
204 {
205 	int8x8_t s = vpmin_s8(vget_low_s8(v), vget_high_s8(v));
206 
207 	s = vpmin_s8(s, s);
208 	s = vpmin_s8(s, s);
209 	s = vpmin_s8(s, s);
210 
211 	return vget_lane_s8(s, 0);
212 }
213 #endif
214 
215 static const uint8_t permute[] __aligned(64) = {
216 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
217 	 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
218 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
219 };
220 
221 void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src,
222 					unsigned int size)
223 {
224 	struct aegis128_state st = aegis128_load_state_neon(state);
225 	const int short_input = size < AEGIS_BLOCK_SIZE;
226 	uint8x16_t msg;
227 
228 	preload_sbox();
229 
230 	while (size >= AEGIS_BLOCK_SIZE) {
231 		uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
232 
233 		msg = vld1q_u8(src);
234 		st = aegis128_update_neon(st, msg);
235 		msg ^= s;
236 		vst1q_u8(dst, msg);
237 
238 		size -= AEGIS_BLOCK_SIZE;
239 		src += AEGIS_BLOCK_SIZE;
240 		dst += AEGIS_BLOCK_SIZE;
241 	}
242 
243 	if (size > 0) {
244 		uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
245 		uint8_t buf[AEGIS_BLOCK_SIZE];
246 		const void *in = src;
247 		void *out = dst;
248 		uint8x16_t m;
249 
250 		if (__builtin_expect(short_input, 0))
251 			in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size);
252 
253 		m = vqtbl1q_u8(vld1q_u8(in + size - AEGIS_BLOCK_SIZE),
254 			       vld1q_u8(permute + 32 - size));
255 
256 		st = aegis128_update_neon(st, m);
257 
258 		vst1q_u8(out + size - AEGIS_BLOCK_SIZE,
259 			 vqtbl1q_u8(m ^ s, vld1q_u8(permute + size)));
260 
261 		if (__builtin_expect(short_input, 0))
262 			memcpy(dst, out, size);
263 		else
264 			vst1q_u8(out - AEGIS_BLOCK_SIZE, msg);
265 	}
266 
267 	aegis128_save_state_neon(st, state);
268 }
269 
270 void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src,
271 					unsigned int size)
272 {
273 	struct aegis128_state st = aegis128_load_state_neon(state);
274 	const int short_input = size < AEGIS_BLOCK_SIZE;
275 	uint8x16_t msg;
276 
277 	preload_sbox();
278 
279 	while (size >= AEGIS_BLOCK_SIZE) {
280 		msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
281 		st = aegis128_update_neon(st, msg);
282 		vst1q_u8(dst, msg);
283 
284 		size -= AEGIS_BLOCK_SIZE;
285 		src += AEGIS_BLOCK_SIZE;
286 		dst += AEGIS_BLOCK_SIZE;
287 	}
288 
289 	if (size > 0) {
290 		uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
291 		uint8_t buf[AEGIS_BLOCK_SIZE];
292 		const void *in = src;
293 		void *out = dst;
294 		uint8x16_t m;
295 
296 		if (__builtin_expect(short_input, 0))
297 			in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size);
298 
299 		m = s ^ vqtbx1q_u8(s, vld1q_u8(in + size - AEGIS_BLOCK_SIZE),
300 				   vld1q_u8(permute + 32 - size));
301 
302 		st = aegis128_update_neon(st, m);
303 
304 		vst1q_u8(out + size - AEGIS_BLOCK_SIZE,
305 			 vqtbl1q_u8(m, vld1q_u8(permute + size)));
306 
307 		if (__builtin_expect(short_input, 0))
308 			memcpy(dst, out, size);
309 		else
310 			vst1q_u8(out - AEGIS_BLOCK_SIZE, msg);
311 	}
312 
313 	aegis128_save_state_neon(st, state);
314 }
315 
316 int crypto_aegis128_final_neon(void *state, void *tag_xor,
317 			       unsigned int assoclen,
318 			       unsigned int cryptlen,
319 			       unsigned int authsize)
320 {
321 	struct aegis128_state st = aegis128_load_state_neon(state);
322 	uint8x16_t v;
323 	int i;
324 
325 	preload_sbox();
326 
327 	v = st.v[3] ^ (uint8x16_t)vcombine_u64(vmov_n_u64(8ULL * assoclen),
328 					       vmov_n_u64(8ULL * cryptlen));
329 
330 	for (i = 0; i < 7; i++)
331 		st = aegis128_update_neon(st, v);
332 
333 	v = st.v[0] ^ st.v[1] ^ st.v[2] ^ st.v[3] ^ st.v[4];
334 
335 	if (authsize > 0) {
336 		v = vqtbl1q_u8(~vceqq_u8(v, vld1q_u8(tag_xor)),
337 			       vld1q_u8(permute + authsize));
338 
339 		return vminvq_s8((int8x16_t)v);
340 	}
341 
342 	vst1q_u8(tag_xor, v);
343 	return 0;
344 }
345