xref: /openbmc/linux/block/genhd.c (revision 7ca4282ade77de53b6e9ffa2695566e5d35dab1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  gendisk handling
4  */
5 
6 #include <linux/module.h>
7 #include <linux/ctype.h>
8 #include <linux/fs.h>
9 #include <linux/genhd.h>
10 #include <linux/kdev_t.h>
11 #include <linux/kernel.h>
12 #include <linux/blkdev.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/kmod.h>
20 #include <linux/kobj_map.h>
21 #include <linux/mutex.h>
22 #include <linux/idr.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/badblocks.h>
26 
27 #include "blk.h"
28 
29 static DEFINE_MUTEX(block_class_lock);
30 static struct kobject *block_depr;
31 
32 /* for extended dynamic devt allocation, currently only one major is used */
33 #define NR_EXT_DEVT		(1 << MINORBITS)
34 
35 /* For extended devt allocation.  ext_devt_lock prevents look up
36  * results from going away underneath its user.
37  */
38 static DEFINE_SPINLOCK(ext_devt_lock);
39 static DEFINE_IDR(ext_devt_idr);
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
48 /*
49  * Set disk capacity and notify if the size is not currently
50  * zero and will not be set to zero
51  */
52 bool set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size,
53 					bool update_bdev)
54 {
55 	sector_t capacity = get_capacity(disk);
56 
57 	set_capacity(disk, size);
58 	if (update_bdev)
59 		revalidate_disk_size(disk, true);
60 
61 	if (capacity != size && capacity != 0 && size != 0) {
62 		char *envp[] = { "RESIZE=1", NULL };
63 
64 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
65 		return true;
66 	}
67 
68 	return false;
69 }
70 
71 EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify);
72 
73 /*
74  * Format the device name of the indicated disk into the supplied buffer and
75  * return a pointer to that same buffer for convenience.
76  */
77 char *disk_name(struct gendisk *hd, int partno, char *buf)
78 {
79 	if (!partno)
80 		snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
81 	else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
82 		snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
83 	else
84 		snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
85 
86 	return buf;
87 }
88 
89 const char *bdevname(struct block_device *bdev, char *buf)
90 {
91 	return disk_name(bdev->bd_disk, bdev->bd_partno, buf);
92 }
93 EXPORT_SYMBOL(bdevname);
94 
95 static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
96 {
97 	int cpu;
98 
99 	memset(stat, 0, sizeof(struct disk_stats));
100 	for_each_possible_cpu(cpu) {
101 		struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu);
102 		int group;
103 
104 		for (group = 0; group < NR_STAT_GROUPS; group++) {
105 			stat->nsecs[group] += ptr->nsecs[group];
106 			stat->sectors[group] += ptr->sectors[group];
107 			stat->ios[group] += ptr->ios[group];
108 			stat->merges[group] += ptr->merges[group];
109 		}
110 
111 		stat->io_ticks += ptr->io_ticks;
112 	}
113 }
114 
115 static unsigned int part_in_flight(struct hd_struct *part)
116 {
117 	unsigned int inflight = 0;
118 	int cpu;
119 
120 	for_each_possible_cpu(cpu) {
121 		inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
122 			    part_stat_local_read_cpu(part, in_flight[1], cpu);
123 	}
124 	if ((int)inflight < 0)
125 		inflight = 0;
126 
127 	return inflight;
128 }
129 
130 static void part_in_flight_rw(struct hd_struct *part, unsigned int inflight[2])
131 {
132 	int cpu;
133 
134 	inflight[0] = 0;
135 	inflight[1] = 0;
136 	for_each_possible_cpu(cpu) {
137 		inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
138 		inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
139 	}
140 	if ((int)inflight[0] < 0)
141 		inflight[0] = 0;
142 	if ((int)inflight[1] < 0)
143 		inflight[1] = 0;
144 }
145 
146 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
147 {
148 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
149 
150 	if (unlikely(partno < 0 || partno >= ptbl->len))
151 		return NULL;
152 	return rcu_dereference(ptbl->part[partno]);
153 }
154 
155 /**
156  * disk_get_part - get partition
157  * @disk: disk to look partition from
158  * @partno: partition number
159  *
160  * Look for partition @partno from @disk.  If found, increment
161  * reference count and return it.
162  *
163  * CONTEXT:
164  * Don't care.
165  *
166  * RETURNS:
167  * Pointer to the found partition on success, NULL if not found.
168  */
169 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
170 {
171 	struct hd_struct *part;
172 
173 	rcu_read_lock();
174 	part = __disk_get_part(disk, partno);
175 	if (part)
176 		get_device(part_to_dev(part));
177 	rcu_read_unlock();
178 
179 	return part;
180 }
181 
182 /**
183  * disk_part_iter_init - initialize partition iterator
184  * @piter: iterator to initialize
185  * @disk: disk to iterate over
186  * @flags: DISK_PITER_* flags
187  *
188  * Initialize @piter so that it iterates over partitions of @disk.
189  *
190  * CONTEXT:
191  * Don't care.
192  */
193 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
194 			  unsigned int flags)
195 {
196 	struct disk_part_tbl *ptbl;
197 
198 	rcu_read_lock();
199 	ptbl = rcu_dereference(disk->part_tbl);
200 
201 	piter->disk = disk;
202 	piter->part = NULL;
203 
204 	if (flags & DISK_PITER_REVERSE)
205 		piter->idx = ptbl->len - 1;
206 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
207 		piter->idx = 0;
208 	else
209 		piter->idx = 1;
210 
211 	piter->flags = flags;
212 
213 	rcu_read_unlock();
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_init);
216 
217 /**
218  * disk_part_iter_next - proceed iterator to the next partition and return it
219  * @piter: iterator of interest
220  *
221  * Proceed @piter to the next partition and return it.
222  *
223  * CONTEXT:
224  * Don't care.
225  */
226 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
227 {
228 	struct disk_part_tbl *ptbl;
229 	int inc, end;
230 
231 	/* put the last partition */
232 	disk_put_part(piter->part);
233 	piter->part = NULL;
234 
235 	/* get part_tbl */
236 	rcu_read_lock();
237 	ptbl = rcu_dereference(piter->disk->part_tbl);
238 
239 	/* determine iteration parameters */
240 	if (piter->flags & DISK_PITER_REVERSE) {
241 		inc = -1;
242 		if (piter->flags & (DISK_PITER_INCL_PART0 |
243 				    DISK_PITER_INCL_EMPTY_PART0))
244 			end = -1;
245 		else
246 			end = 0;
247 	} else {
248 		inc = 1;
249 		end = ptbl->len;
250 	}
251 
252 	/* iterate to the next partition */
253 	for (; piter->idx != end; piter->idx += inc) {
254 		struct hd_struct *part;
255 
256 		part = rcu_dereference(ptbl->part[piter->idx]);
257 		if (!part)
258 			continue;
259 		if (!part_nr_sects_read(part) &&
260 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
261 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
262 		      piter->idx == 0))
263 			continue;
264 
265 		get_device(part_to_dev(part));
266 		piter->part = part;
267 		piter->idx += inc;
268 		break;
269 	}
270 
271 	rcu_read_unlock();
272 
273 	return piter->part;
274 }
275 EXPORT_SYMBOL_GPL(disk_part_iter_next);
276 
277 /**
278  * disk_part_iter_exit - finish up partition iteration
279  * @piter: iter of interest
280  *
281  * Called when iteration is over.  Cleans up @piter.
282  *
283  * CONTEXT:
284  * Don't care.
285  */
286 void disk_part_iter_exit(struct disk_part_iter *piter)
287 {
288 	disk_put_part(piter->part);
289 	piter->part = NULL;
290 }
291 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
292 
293 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
294 {
295 	return part->start_sect <= sector &&
296 		sector < part->start_sect + part_nr_sects_read(part);
297 }
298 
299 /**
300  * disk_map_sector_rcu - map sector to partition
301  * @disk: gendisk of interest
302  * @sector: sector to map
303  *
304  * Find out which partition @sector maps to on @disk.  This is
305  * primarily used for stats accounting.
306  *
307  * CONTEXT:
308  * RCU read locked.  The returned partition pointer is always valid
309  * because its refcount is grabbed except for part0, which lifetime
310  * is same with the disk.
311  *
312  * RETURNS:
313  * Found partition on success, part0 is returned if no partition matches
314  * or the matched partition is being deleted.
315  */
316 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
317 {
318 	struct disk_part_tbl *ptbl;
319 	struct hd_struct *part;
320 	int i;
321 
322 	rcu_read_lock();
323 	ptbl = rcu_dereference(disk->part_tbl);
324 
325 	part = rcu_dereference(ptbl->last_lookup);
326 	if (part && sector_in_part(part, sector) && hd_struct_try_get(part))
327 		goto out_unlock;
328 
329 	for (i = 1; i < ptbl->len; i++) {
330 		part = rcu_dereference(ptbl->part[i]);
331 
332 		if (part && sector_in_part(part, sector)) {
333 			/*
334 			 * only live partition can be cached for lookup,
335 			 * so use-after-free on cached & deleting partition
336 			 * can be avoided
337 			 */
338 			if (!hd_struct_try_get(part))
339 				break;
340 			rcu_assign_pointer(ptbl->last_lookup, part);
341 			goto out_unlock;
342 		}
343 	}
344 
345 	part = &disk->part0;
346 out_unlock:
347 	rcu_read_unlock();
348 	return part;
349 }
350 
351 /**
352  * disk_has_partitions
353  * @disk: gendisk of interest
354  *
355  * Walk through the partition table and check if valid partition exists.
356  *
357  * CONTEXT:
358  * Don't care.
359  *
360  * RETURNS:
361  * True if the gendisk has at least one valid non-zero size partition.
362  * Otherwise false.
363  */
364 bool disk_has_partitions(struct gendisk *disk)
365 {
366 	struct disk_part_tbl *ptbl;
367 	int i;
368 	bool ret = false;
369 
370 	rcu_read_lock();
371 	ptbl = rcu_dereference(disk->part_tbl);
372 
373 	/* Iterate partitions skipping the whole device at index 0 */
374 	for (i = 1; i < ptbl->len; i++) {
375 		if (rcu_dereference(ptbl->part[i])) {
376 			ret = true;
377 			break;
378 		}
379 	}
380 
381 	rcu_read_unlock();
382 
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(disk_has_partitions);
386 
387 /*
388  * Can be deleted altogether. Later.
389  *
390  */
391 #define BLKDEV_MAJOR_HASH_SIZE 255
392 static struct blk_major_name {
393 	struct blk_major_name *next;
394 	int major;
395 	char name[16];
396 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
397 
398 /* index in the above - for now: assume no multimajor ranges */
399 static inline int major_to_index(unsigned major)
400 {
401 	return major % BLKDEV_MAJOR_HASH_SIZE;
402 }
403 
404 #ifdef CONFIG_PROC_FS
405 void blkdev_show(struct seq_file *seqf, off_t offset)
406 {
407 	struct blk_major_name *dp;
408 
409 	mutex_lock(&block_class_lock);
410 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
411 		if (dp->major == offset)
412 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
413 	mutex_unlock(&block_class_lock);
414 }
415 #endif /* CONFIG_PROC_FS */
416 
417 /**
418  * register_blkdev - register a new block device
419  *
420  * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
421  *         @major = 0, try to allocate any unused major number.
422  * @name: the name of the new block device as a zero terminated string
423  *
424  * The @name must be unique within the system.
425  *
426  * The return value depends on the @major input parameter:
427  *
428  *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
429  *    then the function returns zero on success, or a negative error code
430  *  - if any unused major number was requested with @major = 0 parameter
431  *    then the return value is the allocated major number in range
432  *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
433  *
434  * See Documentation/admin-guide/devices.txt for the list of allocated
435  * major numbers.
436  */
437 int register_blkdev(unsigned int major, const char *name)
438 {
439 	struct blk_major_name **n, *p;
440 	int index, ret = 0;
441 
442 	mutex_lock(&block_class_lock);
443 
444 	/* temporary */
445 	if (major == 0) {
446 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
447 			if (major_names[index] == NULL)
448 				break;
449 		}
450 
451 		if (index == 0) {
452 			printk("%s: failed to get major for %s\n",
453 			       __func__, name);
454 			ret = -EBUSY;
455 			goto out;
456 		}
457 		major = index;
458 		ret = major;
459 	}
460 
461 	if (major >= BLKDEV_MAJOR_MAX) {
462 		pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
463 		       __func__, major, BLKDEV_MAJOR_MAX-1, name);
464 
465 		ret = -EINVAL;
466 		goto out;
467 	}
468 
469 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
470 	if (p == NULL) {
471 		ret = -ENOMEM;
472 		goto out;
473 	}
474 
475 	p->major = major;
476 	strlcpy(p->name, name, sizeof(p->name));
477 	p->next = NULL;
478 	index = major_to_index(major);
479 
480 	for (n = &major_names[index]; *n; n = &(*n)->next) {
481 		if ((*n)->major == major)
482 			break;
483 	}
484 	if (!*n)
485 		*n = p;
486 	else
487 		ret = -EBUSY;
488 
489 	if (ret < 0) {
490 		printk("register_blkdev: cannot get major %u for %s\n",
491 		       major, name);
492 		kfree(p);
493 	}
494 out:
495 	mutex_unlock(&block_class_lock);
496 	return ret;
497 }
498 
499 EXPORT_SYMBOL(register_blkdev);
500 
501 void unregister_blkdev(unsigned int major, const char *name)
502 {
503 	struct blk_major_name **n;
504 	struct blk_major_name *p = NULL;
505 	int index = major_to_index(major);
506 
507 	mutex_lock(&block_class_lock);
508 	for (n = &major_names[index]; *n; n = &(*n)->next)
509 		if ((*n)->major == major)
510 			break;
511 	if (!*n || strcmp((*n)->name, name)) {
512 		WARN_ON(1);
513 	} else {
514 		p = *n;
515 		*n = p->next;
516 	}
517 	mutex_unlock(&block_class_lock);
518 	kfree(p);
519 }
520 
521 EXPORT_SYMBOL(unregister_blkdev);
522 
523 static struct kobj_map *bdev_map;
524 
525 /**
526  * blk_mangle_minor - scatter minor numbers apart
527  * @minor: minor number to mangle
528  *
529  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
530  * is enabled.  Mangling twice gives the original value.
531  *
532  * RETURNS:
533  * Mangled value.
534  *
535  * CONTEXT:
536  * Don't care.
537  */
538 static int blk_mangle_minor(int minor)
539 {
540 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
541 	int i;
542 
543 	for (i = 0; i < MINORBITS / 2; i++) {
544 		int low = minor & (1 << i);
545 		int high = minor & (1 << (MINORBITS - 1 - i));
546 		int distance = MINORBITS - 1 - 2 * i;
547 
548 		minor ^= low | high;	/* clear both bits */
549 		low <<= distance;	/* swap the positions */
550 		high >>= distance;
551 		minor |= low | high;	/* and set */
552 	}
553 #endif
554 	return minor;
555 }
556 
557 /**
558  * blk_alloc_devt - allocate a dev_t for a partition
559  * @part: partition to allocate dev_t for
560  * @devt: out parameter for resulting dev_t
561  *
562  * Allocate a dev_t for block device.
563  *
564  * RETURNS:
565  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
566  * failure.
567  *
568  * CONTEXT:
569  * Might sleep.
570  */
571 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
572 {
573 	struct gendisk *disk = part_to_disk(part);
574 	int idx;
575 
576 	/* in consecutive minor range? */
577 	if (part->partno < disk->minors) {
578 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
579 		return 0;
580 	}
581 
582 	/* allocate ext devt */
583 	idr_preload(GFP_KERNEL);
584 
585 	spin_lock_bh(&ext_devt_lock);
586 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
587 	spin_unlock_bh(&ext_devt_lock);
588 
589 	idr_preload_end();
590 	if (idx < 0)
591 		return idx == -ENOSPC ? -EBUSY : idx;
592 
593 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
594 	return 0;
595 }
596 
597 /**
598  * blk_free_devt - free a dev_t
599  * @devt: dev_t to free
600  *
601  * Free @devt which was allocated using blk_alloc_devt().
602  *
603  * CONTEXT:
604  * Might sleep.
605  */
606 void blk_free_devt(dev_t devt)
607 {
608 	if (devt == MKDEV(0, 0))
609 		return;
610 
611 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
612 		spin_lock_bh(&ext_devt_lock);
613 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
614 		spin_unlock_bh(&ext_devt_lock);
615 	}
616 }
617 
618 /*
619  * We invalidate devt by assigning NULL pointer for devt in idr.
620  */
621 void blk_invalidate_devt(dev_t devt)
622 {
623 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
624 		spin_lock_bh(&ext_devt_lock);
625 		idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
626 		spin_unlock_bh(&ext_devt_lock);
627 	}
628 }
629 
630 static char *bdevt_str(dev_t devt, char *buf)
631 {
632 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
633 		char tbuf[BDEVT_SIZE];
634 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
635 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
636 	} else
637 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
638 
639 	return buf;
640 }
641 
642 /*
643  * Register device numbers dev..(dev+range-1)
644  * range must be nonzero
645  * The hash chain is sorted on range, so that subranges can override.
646  */
647 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
648 			 struct kobject *(*probe)(dev_t, int *, void *),
649 			 int (*lock)(dev_t, void *), void *data)
650 {
651 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
652 }
653 
654 EXPORT_SYMBOL(blk_register_region);
655 
656 void blk_unregister_region(dev_t devt, unsigned long range)
657 {
658 	kobj_unmap(bdev_map, devt, range);
659 }
660 
661 EXPORT_SYMBOL(blk_unregister_region);
662 
663 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
664 {
665 	struct gendisk *p = data;
666 
667 	return &disk_to_dev(p)->kobj;
668 }
669 
670 static int exact_lock(dev_t devt, void *data)
671 {
672 	struct gendisk *p = data;
673 
674 	if (!get_disk_and_module(p))
675 		return -1;
676 	return 0;
677 }
678 
679 static void disk_scan_partitions(struct gendisk *disk)
680 {
681 	struct block_device *bdev;
682 
683 	if (!get_capacity(disk) || !disk_part_scan_enabled(disk))
684 		return;
685 
686 	set_bit(GD_NEED_PART_SCAN, &disk->state);
687 	bdev = blkdev_get_by_dev(disk_devt(disk), FMODE_READ, NULL);
688 	if (!IS_ERR(bdev))
689 		blkdev_put(bdev, FMODE_READ);
690 }
691 
692 static void register_disk(struct device *parent, struct gendisk *disk,
693 			  const struct attribute_group **groups)
694 {
695 	struct device *ddev = disk_to_dev(disk);
696 	struct disk_part_iter piter;
697 	struct hd_struct *part;
698 	int err;
699 
700 	ddev->parent = parent;
701 
702 	dev_set_name(ddev, "%s", disk->disk_name);
703 
704 	/* delay uevents, until we scanned partition table */
705 	dev_set_uevent_suppress(ddev, 1);
706 
707 	if (groups) {
708 		WARN_ON(ddev->groups);
709 		ddev->groups = groups;
710 	}
711 	if (device_add(ddev))
712 		return;
713 	if (!sysfs_deprecated) {
714 		err = sysfs_create_link(block_depr, &ddev->kobj,
715 					kobject_name(&ddev->kobj));
716 		if (err) {
717 			device_del(ddev);
718 			return;
719 		}
720 	}
721 
722 	/*
723 	 * avoid probable deadlock caused by allocating memory with
724 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
725 	 * devices
726 	 */
727 	pm_runtime_set_memalloc_noio(ddev, true);
728 
729 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
730 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
731 
732 	if (disk->flags & GENHD_FL_HIDDEN) {
733 		dev_set_uevent_suppress(ddev, 0);
734 		return;
735 	}
736 
737 	disk_scan_partitions(disk);
738 
739 	/* announce disk after possible partitions are created */
740 	dev_set_uevent_suppress(ddev, 0);
741 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
742 
743 	/* announce possible partitions */
744 	disk_part_iter_init(&piter, disk, 0);
745 	while ((part = disk_part_iter_next(&piter)))
746 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
747 	disk_part_iter_exit(&piter);
748 
749 	if (disk->queue->backing_dev_info->dev) {
750 		err = sysfs_create_link(&ddev->kobj,
751 			  &disk->queue->backing_dev_info->dev->kobj,
752 			  "bdi");
753 		WARN_ON(err);
754 	}
755 }
756 
757 /**
758  * __device_add_disk - add disk information to kernel list
759  * @parent: parent device for the disk
760  * @disk: per-device partitioning information
761  * @groups: Additional per-device sysfs groups
762  * @register_queue: register the queue if set to true
763  *
764  * This function registers the partitioning information in @disk
765  * with the kernel.
766  *
767  * FIXME: error handling
768  */
769 static void __device_add_disk(struct device *parent, struct gendisk *disk,
770 			      const struct attribute_group **groups,
771 			      bool register_queue)
772 {
773 	dev_t devt;
774 	int retval;
775 
776 	/*
777 	 * The disk queue should now be all set with enough information about
778 	 * the device for the elevator code to pick an adequate default
779 	 * elevator if one is needed, that is, for devices requesting queue
780 	 * registration.
781 	 */
782 	if (register_queue)
783 		elevator_init_mq(disk->queue);
784 
785 	/* minors == 0 indicates to use ext devt from part0 and should
786 	 * be accompanied with EXT_DEVT flag.  Make sure all
787 	 * parameters make sense.
788 	 */
789 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
790 	WARN_ON(!disk->minors &&
791 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
792 
793 	disk->flags |= GENHD_FL_UP;
794 
795 	retval = blk_alloc_devt(&disk->part0, &devt);
796 	if (retval) {
797 		WARN_ON(1);
798 		return;
799 	}
800 	disk->major = MAJOR(devt);
801 	disk->first_minor = MINOR(devt);
802 
803 	disk_alloc_events(disk);
804 
805 	if (disk->flags & GENHD_FL_HIDDEN) {
806 		/*
807 		 * Don't let hidden disks show up in /proc/partitions,
808 		 * and don't bother scanning for partitions either.
809 		 */
810 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
811 		disk->flags |= GENHD_FL_NO_PART_SCAN;
812 	} else {
813 		struct backing_dev_info *bdi = disk->queue->backing_dev_info;
814 		struct device *dev = disk_to_dev(disk);
815 		int ret;
816 
817 		/* Register BDI before referencing it from bdev */
818 		dev->devt = devt;
819 		ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt));
820 		WARN_ON(ret);
821 		bdi_set_owner(bdi, dev);
822 		blk_register_region(disk_devt(disk), disk->minors, NULL,
823 				    exact_match, exact_lock, disk);
824 	}
825 	register_disk(parent, disk, groups);
826 	if (register_queue)
827 		blk_register_queue(disk);
828 
829 	/*
830 	 * Take an extra ref on queue which will be put on disk_release()
831 	 * so that it sticks around as long as @disk is there.
832 	 */
833 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
834 
835 	disk_add_events(disk);
836 	blk_integrity_add(disk);
837 }
838 
839 void device_add_disk(struct device *parent, struct gendisk *disk,
840 		     const struct attribute_group **groups)
841 
842 {
843 	__device_add_disk(parent, disk, groups, true);
844 }
845 EXPORT_SYMBOL(device_add_disk);
846 
847 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
848 {
849 	__device_add_disk(parent, disk, NULL, false);
850 }
851 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
852 
853 static void invalidate_partition(struct gendisk *disk, int partno)
854 {
855 	struct block_device *bdev;
856 
857 	bdev = bdget_disk(disk, partno);
858 	if (!bdev)
859 		return;
860 
861 	fsync_bdev(bdev);
862 	__invalidate_device(bdev, true);
863 
864 	/*
865 	 * Unhash the bdev inode for this device so that it gets evicted as soon
866 	 * as last inode reference is dropped.
867 	 */
868 	remove_inode_hash(bdev->bd_inode);
869 	bdput(bdev);
870 }
871 
872 /**
873  * del_gendisk - remove the gendisk
874  * @disk: the struct gendisk to remove
875  *
876  * Removes the gendisk and all its associated resources. This deletes the
877  * partitions associated with the gendisk, and unregisters the associated
878  * request_queue.
879  *
880  * This is the counter to the respective __device_add_disk() call.
881  *
882  * The final removal of the struct gendisk happens when its refcount reaches 0
883  * with put_disk(), which should be called after del_gendisk(), if
884  * __device_add_disk() was used.
885  *
886  * Drivers exist which depend on the release of the gendisk to be synchronous,
887  * it should not be deferred.
888  *
889  * Context: can sleep
890  */
891 void del_gendisk(struct gendisk *disk)
892 {
893 	struct disk_part_iter piter;
894 	struct hd_struct *part;
895 
896 	might_sleep();
897 
898 	blk_integrity_del(disk);
899 	disk_del_events(disk);
900 
901 	/*
902 	 * Block lookups of the disk until all bdevs are unhashed and the
903 	 * disk is marked as dead (GENHD_FL_UP cleared).
904 	 */
905 	down_write(&disk->lookup_sem);
906 	/* invalidate stuff */
907 	disk_part_iter_init(&piter, disk,
908 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
909 	while ((part = disk_part_iter_next(&piter))) {
910 		invalidate_partition(disk, part->partno);
911 		delete_partition(part);
912 	}
913 	disk_part_iter_exit(&piter);
914 
915 	invalidate_partition(disk, 0);
916 	set_capacity(disk, 0);
917 	disk->flags &= ~GENHD_FL_UP;
918 	up_write(&disk->lookup_sem);
919 
920 	if (!(disk->flags & GENHD_FL_HIDDEN))
921 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
922 	if (disk->queue) {
923 		/*
924 		 * Unregister bdi before releasing device numbers (as they can
925 		 * get reused and we'd get clashes in sysfs).
926 		 */
927 		if (!(disk->flags & GENHD_FL_HIDDEN))
928 			bdi_unregister(disk->queue->backing_dev_info);
929 		blk_unregister_queue(disk);
930 	} else {
931 		WARN_ON(1);
932 	}
933 
934 	if (!(disk->flags & GENHD_FL_HIDDEN))
935 		blk_unregister_region(disk_devt(disk), disk->minors);
936 	/*
937 	 * Remove gendisk pointer from idr so that it cannot be looked up
938 	 * while RCU period before freeing gendisk is running to prevent
939 	 * use-after-free issues. Note that the device number stays
940 	 * "in-use" until we really free the gendisk.
941 	 */
942 	blk_invalidate_devt(disk_devt(disk));
943 
944 	kobject_put(disk->part0.holder_dir);
945 	kobject_put(disk->slave_dir);
946 
947 	part_stat_set_all(&disk->part0, 0);
948 	disk->part0.stamp = 0;
949 	if (!sysfs_deprecated)
950 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
951 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
952 	device_del(disk_to_dev(disk));
953 }
954 EXPORT_SYMBOL(del_gendisk);
955 
956 /* sysfs access to bad-blocks list. */
957 static ssize_t disk_badblocks_show(struct device *dev,
958 					struct device_attribute *attr,
959 					char *page)
960 {
961 	struct gendisk *disk = dev_to_disk(dev);
962 
963 	if (!disk->bb)
964 		return sprintf(page, "\n");
965 
966 	return badblocks_show(disk->bb, page, 0);
967 }
968 
969 static ssize_t disk_badblocks_store(struct device *dev,
970 					struct device_attribute *attr,
971 					const char *page, size_t len)
972 {
973 	struct gendisk *disk = dev_to_disk(dev);
974 
975 	if (!disk->bb)
976 		return -ENXIO;
977 
978 	return badblocks_store(disk->bb, page, len, 0);
979 }
980 
981 /**
982  * get_gendisk - get partitioning information for a given device
983  * @devt: device to get partitioning information for
984  * @partno: returned partition index
985  *
986  * This function gets the structure containing partitioning
987  * information for the given device @devt.
988  *
989  * Context: can sleep
990  */
991 struct gendisk *get_gendisk(dev_t devt, int *partno)
992 {
993 	struct gendisk *disk = NULL;
994 
995 	might_sleep();
996 
997 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
998 		struct kobject *kobj;
999 
1000 		kobj = kobj_lookup(bdev_map, devt, partno);
1001 		if (kobj)
1002 			disk = dev_to_disk(kobj_to_dev(kobj));
1003 	} else {
1004 		struct hd_struct *part;
1005 
1006 		spin_lock_bh(&ext_devt_lock);
1007 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
1008 		if (part && get_disk_and_module(part_to_disk(part))) {
1009 			*partno = part->partno;
1010 			disk = part_to_disk(part);
1011 		}
1012 		spin_unlock_bh(&ext_devt_lock);
1013 	}
1014 
1015 	if (!disk)
1016 		return NULL;
1017 
1018 	/*
1019 	 * Synchronize with del_gendisk() to not return disk that is being
1020 	 * destroyed.
1021 	 */
1022 	down_read(&disk->lookup_sem);
1023 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
1024 		     !(disk->flags & GENHD_FL_UP))) {
1025 		up_read(&disk->lookup_sem);
1026 		put_disk_and_module(disk);
1027 		disk = NULL;
1028 	} else {
1029 		up_read(&disk->lookup_sem);
1030 	}
1031 	return disk;
1032 }
1033 
1034 /**
1035  * bdget_disk - do bdget() by gendisk and partition number
1036  * @disk: gendisk of interest
1037  * @partno: partition number
1038  *
1039  * Find partition @partno from @disk, do bdget() on it.
1040  *
1041  * CONTEXT:
1042  * Don't care.
1043  *
1044  * RETURNS:
1045  * Resulting block_device on success, NULL on failure.
1046  */
1047 struct block_device *bdget_disk(struct gendisk *disk, int partno)
1048 {
1049 	struct hd_struct *part;
1050 	struct block_device *bdev = NULL;
1051 
1052 	part = disk_get_part(disk, partno);
1053 	if (part)
1054 		bdev = bdget_part(part);
1055 	disk_put_part(part);
1056 
1057 	return bdev;
1058 }
1059 EXPORT_SYMBOL(bdget_disk);
1060 
1061 /*
1062  * print a full list of all partitions - intended for places where the root
1063  * filesystem can't be mounted and thus to give the victim some idea of what
1064  * went wrong
1065  */
1066 void __init printk_all_partitions(void)
1067 {
1068 	struct class_dev_iter iter;
1069 	struct device *dev;
1070 
1071 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1072 	while ((dev = class_dev_iter_next(&iter))) {
1073 		struct gendisk *disk = dev_to_disk(dev);
1074 		struct disk_part_iter piter;
1075 		struct hd_struct *part;
1076 		char name_buf[BDEVNAME_SIZE];
1077 		char devt_buf[BDEVT_SIZE];
1078 
1079 		/*
1080 		 * Don't show empty devices or things that have been
1081 		 * suppressed
1082 		 */
1083 		if (get_capacity(disk) == 0 ||
1084 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
1085 			continue;
1086 
1087 		/*
1088 		 * Note, unlike /proc/partitions, I am showing the
1089 		 * numbers in hex - the same format as the root=
1090 		 * option takes.
1091 		 */
1092 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
1093 		while ((part = disk_part_iter_next(&piter))) {
1094 			bool is_part0 = part == &disk->part0;
1095 
1096 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
1097 			       bdevt_str(part_devt(part), devt_buf),
1098 			       (unsigned long long)part_nr_sects_read(part) >> 1
1099 			       , disk_name(disk, part->partno, name_buf),
1100 			       part->info ? part->info->uuid : "");
1101 			if (is_part0) {
1102 				if (dev->parent && dev->parent->driver)
1103 					printk(" driver: %s\n",
1104 					      dev->parent->driver->name);
1105 				else
1106 					printk(" (driver?)\n");
1107 			} else
1108 				printk("\n");
1109 		}
1110 		disk_part_iter_exit(&piter);
1111 	}
1112 	class_dev_iter_exit(&iter);
1113 }
1114 
1115 #ifdef CONFIG_PROC_FS
1116 /* iterator */
1117 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
1118 {
1119 	loff_t skip = *pos;
1120 	struct class_dev_iter *iter;
1121 	struct device *dev;
1122 
1123 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1124 	if (!iter)
1125 		return ERR_PTR(-ENOMEM);
1126 
1127 	seqf->private = iter;
1128 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1129 	do {
1130 		dev = class_dev_iter_next(iter);
1131 		if (!dev)
1132 			return NULL;
1133 	} while (skip--);
1134 
1135 	return dev_to_disk(dev);
1136 }
1137 
1138 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1139 {
1140 	struct device *dev;
1141 
1142 	(*pos)++;
1143 	dev = class_dev_iter_next(seqf->private);
1144 	if (dev)
1145 		return dev_to_disk(dev);
1146 
1147 	return NULL;
1148 }
1149 
1150 static void disk_seqf_stop(struct seq_file *seqf, void *v)
1151 {
1152 	struct class_dev_iter *iter = seqf->private;
1153 
1154 	/* stop is called even after start failed :-( */
1155 	if (iter) {
1156 		class_dev_iter_exit(iter);
1157 		kfree(iter);
1158 		seqf->private = NULL;
1159 	}
1160 }
1161 
1162 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1163 {
1164 	void *p;
1165 
1166 	p = disk_seqf_start(seqf, pos);
1167 	if (!IS_ERR_OR_NULL(p) && !*pos)
1168 		seq_puts(seqf, "major minor  #blocks  name\n\n");
1169 	return p;
1170 }
1171 
1172 static int show_partition(struct seq_file *seqf, void *v)
1173 {
1174 	struct gendisk *sgp = v;
1175 	struct disk_part_iter piter;
1176 	struct hd_struct *part;
1177 	char buf[BDEVNAME_SIZE];
1178 
1179 	/* Don't show non-partitionable removeable devices or empty devices */
1180 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1181 				   (sgp->flags & GENHD_FL_REMOVABLE)))
1182 		return 0;
1183 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1184 		return 0;
1185 
1186 	/* show the full disk and all non-0 size partitions of it */
1187 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1188 	while ((part = disk_part_iter_next(&piter)))
1189 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1190 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1191 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1192 			   disk_name(sgp, part->partno, buf));
1193 	disk_part_iter_exit(&piter);
1194 
1195 	return 0;
1196 }
1197 
1198 static const struct seq_operations partitions_op = {
1199 	.start	= show_partition_start,
1200 	.next	= disk_seqf_next,
1201 	.stop	= disk_seqf_stop,
1202 	.show	= show_partition
1203 };
1204 #endif
1205 
1206 
1207 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1208 {
1209 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1210 		/* Make old-style 2.4 aliases work */
1211 		request_module("block-major-%d", MAJOR(devt));
1212 	return NULL;
1213 }
1214 
1215 static int __init genhd_device_init(void)
1216 {
1217 	int error;
1218 
1219 	block_class.dev_kobj = sysfs_dev_block_kobj;
1220 	error = class_register(&block_class);
1221 	if (unlikely(error))
1222 		return error;
1223 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1224 	blk_dev_init();
1225 
1226 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1227 
1228 	/* create top-level block dir */
1229 	if (!sysfs_deprecated)
1230 		block_depr = kobject_create_and_add("block", NULL);
1231 	return 0;
1232 }
1233 
1234 subsys_initcall(genhd_device_init);
1235 
1236 static ssize_t disk_range_show(struct device *dev,
1237 			       struct device_attribute *attr, char *buf)
1238 {
1239 	struct gendisk *disk = dev_to_disk(dev);
1240 
1241 	return sprintf(buf, "%d\n", disk->minors);
1242 }
1243 
1244 static ssize_t disk_ext_range_show(struct device *dev,
1245 				   struct device_attribute *attr, char *buf)
1246 {
1247 	struct gendisk *disk = dev_to_disk(dev);
1248 
1249 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1250 }
1251 
1252 static ssize_t disk_removable_show(struct device *dev,
1253 				   struct device_attribute *attr, char *buf)
1254 {
1255 	struct gendisk *disk = dev_to_disk(dev);
1256 
1257 	return sprintf(buf, "%d\n",
1258 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1259 }
1260 
1261 static ssize_t disk_hidden_show(struct device *dev,
1262 				   struct device_attribute *attr, char *buf)
1263 {
1264 	struct gendisk *disk = dev_to_disk(dev);
1265 
1266 	return sprintf(buf, "%d\n",
1267 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1268 }
1269 
1270 static ssize_t disk_ro_show(struct device *dev,
1271 				   struct device_attribute *attr, char *buf)
1272 {
1273 	struct gendisk *disk = dev_to_disk(dev);
1274 
1275 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1276 }
1277 
1278 ssize_t part_size_show(struct device *dev,
1279 		       struct device_attribute *attr, char *buf)
1280 {
1281 	struct hd_struct *p = dev_to_part(dev);
1282 
1283 	return sprintf(buf, "%llu\n",
1284 		(unsigned long long)part_nr_sects_read(p));
1285 }
1286 
1287 ssize_t part_stat_show(struct device *dev,
1288 		       struct device_attribute *attr, char *buf)
1289 {
1290 	struct hd_struct *p = dev_to_part(dev);
1291 	struct request_queue *q = part_to_disk(p)->queue;
1292 	struct disk_stats stat;
1293 	unsigned int inflight;
1294 
1295 	part_stat_read_all(p, &stat);
1296 	if (queue_is_mq(q))
1297 		inflight = blk_mq_in_flight(q, p);
1298 	else
1299 		inflight = part_in_flight(p);
1300 
1301 	return sprintf(buf,
1302 		"%8lu %8lu %8llu %8u "
1303 		"%8lu %8lu %8llu %8u "
1304 		"%8u %8u %8u "
1305 		"%8lu %8lu %8llu %8u "
1306 		"%8lu %8u"
1307 		"\n",
1308 		stat.ios[STAT_READ],
1309 		stat.merges[STAT_READ],
1310 		(unsigned long long)stat.sectors[STAT_READ],
1311 		(unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
1312 		stat.ios[STAT_WRITE],
1313 		stat.merges[STAT_WRITE],
1314 		(unsigned long long)stat.sectors[STAT_WRITE],
1315 		(unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
1316 		inflight,
1317 		jiffies_to_msecs(stat.io_ticks),
1318 		(unsigned int)div_u64(stat.nsecs[STAT_READ] +
1319 				      stat.nsecs[STAT_WRITE] +
1320 				      stat.nsecs[STAT_DISCARD] +
1321 				      stat.nsecs[STAT_FLUSH],
1322 						NSEC_PER_MSEC),
1323 		stat.ios[STAT_DISCARD],
1324 		stat.merges[STAT_DISCARD],
1325 		(unsigned long long)stat.sectors[STAT_DISCARD],
1326 		(unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
1327 		stat.ios[STAT_FLUSH],
1328 		(unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
1329 }
1330 
1331 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
1332 			   char *buf)
1333 {
1334 	struct hd_struct *p = dev_to_part(dev);
1335 	struct request_queue *q = part_to_disk(p)->queue;
1336 	unsigned int inflight[2];
1337 
1338 	if (queue_is_mq(q))
1339 		blk_mq_in_flight_rw(q, p, inflight);
1340 	else
1341 		part_in_flight_rw(p, inflight);
1342 
1343 	return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
1344 }
1345 
1346 static ssize_t disk_capability_show(struct device *dev,
1347 				    struct device_attribute *attr, char *buf)
1348 {
1349 	struct gendisk *disk = dev_to_disk(dev);
1350 
1351 	return sprintf(buf, "%x\n", disk->flags);
1352 }
1353 
1354 static ssize_t disk_alignment_offset_show(struct device *dev,
1355 					  struct device_attribute *attr,
1356 					  char *buf)
1357 {
1358 	struct gendisk *disk = dev_to_disk(dev);
1359 
1360 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1361 }
1362 
1363 static ssize_t disk_discard_alignment_show(struct device *dev,
1364 					   struct device_attribute *attr,
1365 					   char *buf)
1366 {
1367 	struct gendisk *disk = dev_to_disk(dev);
1368 
1369 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1370 }
1371 
1372 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1373 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1374 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1375 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1376 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1377 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1378 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1379 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1380 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1381 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1382 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1383 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1384 
1385 #ifdef CONFIG_FAIL_MAKE_REQUEST
1386 ssize_t part_fail_show(struct device *dev,
1387 		       struct device_attribute *attr, char *buf)
1388 {
1389 	struct hd_struct *p = dev_to_part(dev);
1390 
1391 	return sprintf(buf, "%d\n", p->make_it_fail);
1392 }
1393 
1394 ssize_t part_fail_store(struct device *dev,
1395 			struct device_attribute *attr,
1396 			const char *buf, size_t count)
1397 {
1398 	struct hd_struct *p = dev_to_part(dev);
1399 	int i;
1400 
1401 	if (count > 0 && sscanf(buf, "%d", &i) > 0)
1402 		p->make_it_fail = (i == 0) ? 0 : 1;
1403 
1404 	return count;
1405 }
1406 
1407 static struct device_attribute dev_attr_fail =
1408 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1409 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1410 
1411 #ifdef CONFIG_FAIL_IO_TIMEOUT
1412 static struct device_attribute dev_attr_fail_timeout =
1413 	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1414 #endif
1415 
1416 static struct attribute *disk_attrs[] = {
1417 	&dev_attr_range.attr,
1418 	&dev_attr_ext_range.attr,
1419 	&dev_attr_removable.attr,
1420 	&dev_attr_hidden.attr,
1421 	&dev_attr_ro.attr,
1422 	&dev_attr_size.attr,
1423 	&dev_attr_alignment_offset.attr,
1424 	&dev_attr_discard_alignment.attr,
1425 	&dev_attr_capability.attr,
1426 	&dev_attr_stat.attr,
1427 	&dev_attr_inflight.attr,
1428 	&dev_attr_badblocks.attr,
1429 #ifdef CONFIG_FAIL_MAKE_REQUEST
1430 	&dev_attr_fail.attr,
1431 #endif
1432 #ifdef CONFIG_FAIL_IO_TIMEOUT
1433 	&dev_attr_fail_timeout.attr,
1434 #endif
1435 	NULL
1436 };
1437 
1438 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1439 {
1440 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1441 	struct gendisk *disk = dev_to_disk(dev);
1442 
1443 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1444 		return 0;
1445 	return a->mode;
1446 }
1447 
1448 static struct attribute_group disk_attr_group = {
1449 	.attrs = disk_attrs,
1450 	.is_visible = disk_visible,
1451 };
1452 
1453 static const struct attribute_group *disk_attr_groups[] = {
1454 	&disk_attr_group,
1455 	NULL
1456 };
1457 
1458 /**
1459  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1460  * @disk: disk to replace part_tbl for
1461  * @new_ptbl: new part_tbl to install
1462  *
1463  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1464  * original ptbl is freed using RCU callback.
1465  *
1466  * LOCKING:
1467  * Matching bd_mutex locked or the caller is the only user of @disk.
1468  */
1469 static void disk_replace_part_tbl(struct gendisk *disk,
1470 				  struct disk_part_tbl *new_ptbl)
1471 {
1472 	struct disk_part_tbl *old_ptbl =
1473 		rcu_dereference_protected(disk->part_tbl, 1);
1474 
1475 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1476 
1477 	if (old_ptbl) {
1478 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1479 		kfree_rcu(old_ptbl, rcu_head);
1480 	}
1481 }
1482 
1483 /**
1484  * disk_expand_part_tbl - expand disk->part_tbl
1485  * @disk: disk to expand part_tbl for
1486  * @partno: expand such that this partno can fit in
1487  *
1488  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1489  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1490  *
1491  * LOCKING:
1492  * Matching bd_mutex locked or the caller is the only user of @disk.
1493  * Might sleep.
1494  *
1495  * RETURNS:
1496  * 0 on success, -errno on failure.
1497  */
1498 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1499 {
1500 	struct disk_part_tbl *old_ptbl =
1501 		rcu_dereference_protected(disk->part_tbl, 1);
1502 	struct disk_part_tbl *new_ptbl;
1503 	int len = old_ptbl ? old_ptbl->len : 0;
1504 	int i, target;
1505 
1506 	/*
1507 	 * check for int overflow, since we can get here from blkpg_ioctl()
1508 	 * with a user passed 'partno'.
1509 	 */
1510 	target = partno + 1;
1511 	if (target < 0)
1512 		return -EINVAL;
1513 
1514 	/* disk_max_parts() is zero during initialization, ignore if so */
1515 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1516 		return -EINVAL;
1517 
1518 	if (target <= len)
1519 		return 0;
1520 
1521 	new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1522 				disk->node_id);
1523 	if (!new_ptbl)
1524 		return -ENOMEM;
1525 
1526 	new_ptbl->len = target;
1527 
1528 	for (i = 0; i < len; i++)
1529 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1530 
1531 	disk_replace_part_tbl(disk, new_ptbl);
1532 	return 0;
1533 }
1534 
1535 /**
1536  * disk_release - releases all allocated resources of the gendisk
1537  * @dev: the device representing this disk
1538  *
1539  * This function releases all allocated resources of the gendisk.
1540  *
1541  * The struct gendisk refcount is incremented with get_gendisk() or
1542  * get_disk_and_module(), and its refcount is decremented with
1543  * put_disk_and_module() or put_disk(). Once the refcount reaches 0 this
1544  * function is called.
1545  *
1546  * Drivers which used __device_add_disk() have a gendisk with a request_queue
1547  * assigned. Since the request_queue sits on top of the gendisk for these
1548  * drivers we also call blk_put_queue() for them, and we expect the
1549  * request_queue refcount to reach 0 at this point, and so the request_queue
1550  * will also be freed prior to the disk.
1551  *
1552  * Context: can sleep
1553  */
1554 static void disk_release(struct device *dev)
1555 {
1556 	struct gendisk *disk = dev_to_disk(dev);
1557 
1558 	might_sleep();
1559 
1560 	blk_free_devt(dev->devt);
1561 	disk_release_events(disk);
1562 	kfree(disk->random);
1563 	disk_replace_part_tbl(disk, NULL);
1564 	hd_free_part(&disk->part0);
1565 	if (disk->queue)
1566 		blk_put_queue(disk->queue);
1567 	kfree(disk);
1568 }
1569 struct class block_class = {
1570 	.name		= "block",
1571 };
1572 
1573 static char *block_devnode(struct device *dev, umode_t *mode,
1574 			   kuid_t *uid, kgid_t *gid)
1575 {
1576 	struct gendisk *disk = dev_to_disk(dev);
1577 
1578 	if (disk->fops->devnode)
1579 		return disk->fops->devnode(disk, mode);
1580 	return NULL;
1581 }
1582 
1583 const struct device_type disk_type = {
1584 	.name		= "disk",
1585 	.groups		= disk_attr_groups,
1586 	.release	= disk_release,
1587 	.devnode	= block_devnode,
1588 };
1589 
1590 #ifdef CONFIG_PROC_FS
1591 /*
1592  * aggregate disk stat collector.  Uses the same stats that the sysfs
1593  * entries do, above, but makes them available through one seq_file.
1594  *
1595  * The output looks suspiciously like /proc/partitions with a bunch of
1596  * extra fields.
1597  */
1598 static int diskstats_show(struct seq_file *seqf, void *v)
1599 {
1600 	struct gendisk *gp = v;
1601 	struct disk_part_iter piter;
1602 	struct hd_struct *hd;
1603 	char buf[BDEVNAME_SIZE];
1604 	unsigned int inflight;
1605 	struct disk_stats stat;
1606 
1607 	/*
1608 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1609 		seq_puts(seqf,	"major minor name"
1610 				"     rio rmerge rsect ruse wio wmerge "
1611 				"wsect wuse running use aveq"
1612 				"\n\n");
1613 	*/
1614 
1615 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1616 	while ((hd = disk_part_iter_next(&piter))) {
1617 		part_stat_read_all(hd, &stat);
1618 		if (queue_is_mq(gp->queue))
1619 			inflight = blk_mq_in_flight(gp->queue, hd);
1620 		else
1621 			inflight = part_in_flight(hd);
1622 
1623 		seq_printf(seqf, "%4d %7d %s "
1624 			   "%lu %lu %lu %u "
1625 			   "%lu %lu %lu %u "
1626 			   "%u %u %u "
1627 			   "%lu %lu %lu %u "
1628 			   "%lu %u"
1629 			   "\n",
1630 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1631 			   disk_name(gp, hd->partno, buf),
1632 			   stat.ios[STAT_READ],
1633 			   stat.merges[STAT_READ],
1634 			   stat.sectors[STAT_READ],
1635 			   (unsigned int)div_u64(stat.nsecs[STAT_READ],
1636 							NSEC_PER_MSEC),
1637 			   stat.ios[STAT_WRITE],
1638 			   stat.merges[STAT_WRITE],
1639 			   stat.sectors[STAT_WRITE],
1640 			   (unsigned int)div_u64(stat.nsecs[STAT_WRITE],
1641 							NSEC_PER_MSEC),
1642 			   inflight,
1643 			   jiffies_to_msecs(stat.io_ticks),
1644 			   (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1645 						 stat.nsecs[STAT_WRITE] +
1646 						 stat.nsecs[STAT_DISCARD] +
1647 						 stat.nsecs[STAT_FLUSH],
1648 							NSEC_PER_MSEC),
1649 			   stat.ios[STAT_DISCARD],
1650 			   stat.merges[STAT_DISCARD],
1651 			   stat.sectors[STAT_DISCARD],
1652 			   (unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
1653 						 NSEC_PER_MSEC),
1654 			   stat.ios[STAT_FLUSH],
1655 			   (unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
1656 						 NSEC_PER_MSEC)
1657 			);
1658 	}
1659 	disk_part_iter_exit(&piter);
1660 
1661 	return 0;
1662 }
1663 
1664 static const struct seq_operations diskstats_op = {
1665 	.start	= disk_seqf_start,
1666 	.next	= disk_seqf_next,
1667 	.stop	= disk_seqf_stop,
1668 	.show	= diskstats_show
1669 };
1670 
1671 static int __init proc_genhd_init(void)
1672 {
1673 	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1674 	proc_create_seq("partitions", 0, NULL, &partitions_op);
1675 	return 0;
1676 }
1677 module_init(proc_genhd_init);
1678 #endif /* CONFIG_PROC_FS */
1679 
1680 dev_t blk_lookup_devt(const char *name, int partno)
1681 {
1682 	dev_t devt = MKDEV(0, 0);
1683 	struct class_dev_iter iter;
1684 	struct device *dev;
1685 
1686 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1687 	while ((dev = class_dev_iter_next(&iter))) {
1688 		struct gendisk *disk = dev_to_disk(dev);
1689 		struct hd_struct *part;
1690 
1691 		if (strcmp(dev_name(dev), name))
1692 			continue;
1693 
1694 		if (partno < disk->minors) {
1695 			/* We need to return the right devno, even
1696 			 * if the partition doesn't exist yet.
1697 			 */
1698 			devt = MKDEV(MAJOR(dev->devt),
1699 				     MINOR(dev->devt) + partno);
1700 			break;
1701 		}
1702 		part = disk_get_part(disk, partno);
1703 		if (part) {
1704 			devt = part_devt(part);
1705 			disk_put_part(part);
1706 			break;
1707 		}
1708 		disk_put_part(part);
1709 	}
1710 	class_dev_iter_exit(&iter);
1711 	return devt;
1712 }
1713 
1714 struct gendisk *__alloc_disk_node(int minors, int node_id)
1715 {
1716 	struct gendisk *disk;
1717 	struct disk_part_tbl *ptbl;
1718 
1719 	if (minors > DISK_MAX_PARTS) {
1720 		printk(KERN_ERR
1721 			"block: can't allocate more than %d partitions\n",
1722 			DISK_MAX_PARTS);
1723 		minors = DISK_MAX_PARTS;
1724 	}
1725 
1726 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1727 	if (!disk)
1728 		return NULL;
1729 
1730 	disk->part0.dkstats = alloc_percpu(struct disk_stats);
1731 	if (!disk->part0.dkstats)
1732 		goto out_free_disk;
1733 
1734 	init_rwsem(&disk->lookup_sem);
1735 	disk->node_id = node_id;
1736 	if (disk_expand_part_tbl(disk, 0)) {
1737 		free_percpu(disk->part0.dkstats);
1738 		goto out_free_disk;
1739 	}
1740 
1741 	ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1742 	rcu_assign_pointer(ptbl->part[0], &disk->part0);
1743 
1744 	/*
1745 	 * set_capacity() and get_capacity() currently don't use
1746 	 * seqcounter to read/update the part0->nr_sects. Still init
1747 	 * the counter as we can read the sectors in IO submission
1748 	 * patch using seqence counters.
1749 	 *
1750 	 * TODO: Ideally set_capacity() and get_capacity() should be
1751 	 * converted to make use of bd_mutex and sequence counters.
1752 	 */
1753 	hd_sects_seq_init(&disk->part0);
1754 	if (hd_ref_init(&disk->part0))
1755 		goto out_free_part0;
1756 
1757 	disk->minors = minors;
1758 	rand_initialize_disk(disk);
1759 	disk_to_dev(disk)->class = &block_class;
1760 	disk_to_dev(disk)->type = &disk_type;
1761 	device_initialize(disk_to_dev(disk));
1762 	return disk;
1763 
1764 out_free_part0:
1765 	hd_free_part(&disk->part0);
1766 out_free_disk:
1767 	kfree(disk);
1768 	return NULL;
1769 }
1770 EXPORT_SYMBOL(__alloc_disk_node);
1771 
1772 /**
1773  * get_disk_and_module - increments the gendisk and gendisk fops module refcount
1774  * @disk: the struct gendisk to increment the refcount for
1775  *
1776  * This increments the refcount for the struct gendisk, and the gendisk's
1777  * fops module owner.
1778  *
1779  * Context: Any context.
1780  */
1781 struct kobject *get_disk_and_module(struct gendisk *disk)
1782 {
1783 	struct module *owner;
1784 	struct kobject *kobj;
1785 
1786 	if (!disk->fops)
1787 		return NULL;
1788 	owner = disk->fops->owner;
1789 	if (owner && !try_module_get(owner))
1790 		return NULL;
1791 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1792 	if (kobj == NULL) {
1793 		module_put(owner);
1794 		return NULL;
1795 	}
1796 	return kobj;
1797 
1798 }
1799 EXPORT_SYMBOL(get_disk_and_module);
1800 
1801 /**
1802  * put_disk - decrements the gendisk refcount
1803  * @disk: the struct gendisk to decrement the refcount for
1804  *
1805  * This decrements the refcount for the struct gendisk. When this reaches 0
1806  * we'll have disk_release() called.
1807  *
1808  * Context: Any context, but the last reference must not be dropped from
1809  *          atomic context.
1810  */
1811 void put_disk(struct gendisk *disk)
1812 {
1813 	if (disk)
1814 		kobject_put(&disk_to_dev(disk)->kobj);
1815 }
1816 EXPORT_SYMBOL(put_disk);
1817 
1818 /**
1819  * put_disk_and_module - decrements the module and gendisk refcount
1820  * @disk: the struct gendisk to decrement the refcount for
1821  *
1822  * This is a counterpart of get_disk_and_module() and thus also of
1823  * get_gendisk().
1824  *
1825  * Context: Any context, but the last reference must not be dropped from
1826  *          atomic context.
1827  */
1828 void put_disk_and_module(struct gendisk *disk)
1829 {
1830 	if (disk) {
1831 		struct module *owner = disk->fops->owner;
1832 
1833 		put_disk(disk);
1834 		module_put(owner);
1835 	}
1836 }
1837 EXPORT_SYMBOL(put_disk_and_module);
1838 
1839 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1840 {
1841 	char event[] = "DISK_RO=1";
1842 	char *envp[] = { event, NULL };
1843 
1844 	if (!ro)
1845 		event[8] = '0';
1846 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1847 }
1848 
1849 void set_device_ro(struct block_device *bdev, int flag)
1850 {
1851 	bdev->bd_part->policy = flag;
1852 }
1853 
1854 EXPORT_SYMBOL(set_device_ro);
1855 
1856 void set_disk_ro(struct gendisk *disk, int flag)
1857 {
1858 	struct disk_part_iter piter;
1859 	struct hd_struct *part;
1860 
1861 	if (disk->part0.policy != flag) {
1862 		set_disk_ro_uevent(disk, flag);
1863 		disk->part0.policy = flag;
1864 	}
1865 
1866 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1867 	while ((part = disk_part_iter_next(&piter)))
1868 		part->policy = flag;
1869 	disk_part_iter_exit(&piter);
1870 }
1871 
1872 EXPORT_SYMBOL(set_disk_ro);
1873 
1874 int bdev_read_only(struct block_device *bdev)
1875 {
1876 	if (!bdev)
1877 		return 0;
1878 	return bdev->bd_part->policy;
1879 }
1880 
1881 EXPORT_SYMBOL(bdev_read_only);
1882 
1883 /*
1884  * Disk events - monitor disk events like media change and eject request.
1885  */
1886 struct disk_events {
1887 	struct list_head	node;		/* all disk_event's */
1888 	struct gendisk		*disk;		/* the associated disk */
1889 	spinlock_t		lock;
1890 
1891 	struct mutex		block_mutex;	/* protects blocking */
1892 	int			block;		/* event blocking depth */
1893 	unsigned int		pending;	/* events already sent out */
1894 	unsigned int		clearing;	/* events being cleared */
1895 
1896 	long			poll_msecs;	/* interval, -1 for default */
1897 	struct delayed_work	dwork;
1898 };
1899 
1900 static const char *disk_events_strs[] = {
1901 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1902 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1903 };
1904 
1905 static char *disk_uevents[] = {
1906 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1907 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1908 };
1909 
1910 /* list of all disk_events */
1911 static DEFINE_MUTEX(disk_events_mutex);
1912 static LIST_HEAD(disk_events);
1913 
1914 /* disable in-kernel polling by default */
1915 static unsigned long disk_events_dfl_poll_msecs;
1916 
1917 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1918 {
1919 	struct disk_events *ev = disk->ev;
1920 	long intv_msecs = 0;
1921 
1922 	/*
1923 	 * If device-specific poll interval is set, always use it.  If
1924 	 * the default is being used, poll if the POLL flag is set.
1925 	 */
1926 	if (ev->poll_msecs >= 0)
1927 		intv_msecs = ev->poll_msecs;
1928 	else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1929 		intv_msecs = disk_events_dfl_poll_msecs;
1930 
1931 	return msecs_to_jiffies(intv_msecs);
1932 }
1933 
1934 /**
1935  * disk_block_events - block and flush disk event checking
1936  * @disk: disk to block events for
1937  *
1938  * On return from this function, it is guaranteed that event checking
1939  * isn't in progress and won't happen until unblocked by
1940  * disk_unblock_events().  Events blocking is counted and the actual
1941  * unblocking happens after the matching number of unblocks are done.
1942  *
1943  * Note that this intentionally does not block event checking from
1944  * disk_clear_events().
1945  *
1946  * CONTEXT:
1947  * Might sleep.
1948  */
1949 void disk_block_events(struct gendisk *disk)
1950 {
1951 	struct disk_events *ev = disk->ev;
1952 	unsigned long flags;
1953 	bool cancel;
1954 
1955 	if (!ev)
1956 		return;
1957 
1958 	/*
1959 	 * Outer mutex ensures that the first blocker completes canceling
1960 	 * the event work before further blockers are allowed to finish.
1961 	 */
1962 	mutex_lock(&ev->block_mutex);
1963 
1964 	spin_lock_irqsave(&ev->lock, flags);
1965 	cancel = !ev->block++;
1966 	spin_unlock_irqrestore(&ev->lock, flags);
1967 
1968 	if (cancel)
1969 		cancel_delayed_work_sync(&disk->ev->dwork);
1970 
1971 	mutex_unlock(&ev->block_mutex);
1972 }
1973 
1974 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1975 {
1976 	struct disk_events *ev = disk->ev;
1977 	unsigned long intv;
1978 	unsigned long flags;
1979 
1980 	spin_lock_irqsave(&ev->lock, flags);
1981 
1982 	if (WARN_ON_ONCE(ev->block <= 0))
1983 		goto out_unlock;
1984 
1985 	if (--ev->block)
1986 		goto out_unlock;
1987 
1988 	intv = disk_events_poll_jiffies(disk);
1989 	if (check_now)
1990 		queue_delayed_work(system_freezable_power_efficient_wq,
1991 				&ev->dwork, 0);
1992 	else if (intv)
1993 		queue_delayed_work(system_freezable_power_efficient_wq,
1994 				&ev->dwork, intv);
1995 out_unlock:
1996 	spin_unlock_irqrestore(&ev->lock, flags);
1997 }
1998 
1999 /**
2000  * disk_unblock_events - unblock disk event checking
2001  * @disk: disk to unblock events for
2002  *
2003  * Undo disk_block_events().  When the block count reaches zero, it
2004  * starts events polling if configured.
2005  *
2006  * CONTEXT:
2007  * Don't care.  Safe to call from irq context.
2008  */
2009 void disk_unblock_events(struct gendisk *disk)
2010 {
2011 	if (disk->ev)
2012 		__disk_unblock_events(disk, false);
2013 }
2014 
2015 /**
2016  * disk_flush_events - schedule immediate event checking and flushing
2017  * @disk: disk to check and flush events for
2018  * @mask: events to flush
2019  *
2020  * Schedule immediate event checking on @disk if not blocked.  Events in
2021  * @mask are scheduled to be cleared from the driver.  Note that this
2022  * doesn't clear the events from @disk->ev.
2023  *
2024  * CONTEXT:
2025  * If @mask is non-zero must be called with bdev->bd_mutex held.
2026  */
2027 void disk_flush_events(struct gendisk *disk, unsigned int mask)
2028 {
2029 	struct disk_events *ev = disk->ev;
2030 
2031 	if (!ev)
2032 		return;
2033 
2034 	spin_lock_irq(&ev->lock);
2035 	ev->clearing |= mask;
2036 	if (!ev->block)
2037 		mod_delayed_work(system_freezable_power_efficient_wq,
2038 				&ev->dwork, 0);
2039 	spin_unlock_irq(&ev->lock);
2040 }
2041 
2042 /**
2043  * disk_clear_events - synchronously check, clear and return pending events
2044  * @disk: disk to fetch and clear events from
2045  * @mask: mask of events to be fetched and cleared
2046  *
2047  * Disk events are synchronously checked and pending events in @mask
2048  * are cleared and returned.  This ignores the block count.
2049  *
2050  * CONTEXT:
2051  * Might sleep.
2052  */
2053 static unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
2054 {
2055 	struct disk_events *ev = disk->ev;
2056 	unsigned int pending;
2057 	unsigned int clearing = mask;
2058 
2059 	if (!ev)
2060 		return 0;
2061 
2062 	disk_block_events(disk);
2063 
2064 	/*
2065 	 * store the union of mask and ev->clearing on the stack so that the
2066 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
2067 	 * can still be modified even if events are blocked).
2068 	 */
2069 	spin_lock_irq(&ev->lock);
2070 	clearing |= ev->clearing;
2071 	ev->clearing = 0;
2072 	spin_unlock_irq(&ev->lock);
2073 
2074 	disk_check_events(ev, &clearing);
2075 	/*
2076 	 * if ev->clearing is not 0, the disk_flush_events got called in the
2077 	 * middle of this function, so we want to run the workfn without delay.
2078 	 */
2079 	__disk_unblock_events(disk, ev->clearing ? true : false);
2080 
2081 	/* then, fetch and clear pending events */
2082 	spin_lock_irq(&ev->lock);
2083 	pending = ev->pending & mask;
2084 	ev->pending &= ~mask;
2085 	spin_unlock_irq(&ev->lock);
2086 	WARN_ON_ONCE(clearing & mask);
2087 
2088 	return pending;
2089 }
2090 
2091 /**
2092  * bdev_check_media_change - check if a removable media has been changed
2093  * @bdev: block device to check
2094  *
2095  * Check whether a removable media has been changed, and attempt to free all
2096  * dentries and inodes and invalidates all block device page cache entries in
2097  * that case.
2098  *
2099  * Returns %true if the block device changed, or %false if not.
2100  */
2101 bool bdev_check_media_change(struct block_device *bdev)
2102 {
2103 	unsigned int events;
2104 
2105 	events = disk_clear_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE |
2106 				   DISK_EVENT_EJECT_REQUEST);
2107 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
2108 		return false;
2109 
2110 	if (__invalidate_device(bdev, true))
2111 		pr_warn("VFS: busy inodes on changed media %s\n",
2112 			bdev->bd_disk->disk_name);
2113 	set_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
2114 	return true;
2115 }
2116 EXPORT_SYMBOL(bdev_check_media_change);
2117 
2118 /*
2119  * Separate this part out so that a different pointer for clearing_ptr can be
2120  * passed in for disk_clear_events.
2121  */
2122 static void disk_events_workfn(struct work_struct *work)
2123 {
2124 	struct delayed_work *dwork = to_delayed_work(work);
2125 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
2126 
2127 	disk_check_events(ev, &ev->clearing);
2128 }
2129 
2130 static void disk_check_events(struct disk_events *ev,
2131 			      unsigned int *clearing_ptr)
2132 {
2133 	struct gendisk *disk = ev->disk;
2134 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
2135 	unsigned int clearing = *clearing_ptr;
2136 	unsigned int events;
2137 	unsigned long intv;
2138 	int nr_events = 0, i;
2139 
2140 	/* check events */
2141 	events = disk->fops->check_events(disk, clearing);
2142 
2143 	/* accumulate pending events and schedule next poll if necessary */
2144 	spin_lock_irq(&ev->lock);
2145 
2146 	events &= ~ev->pending;
2147 	ev->pending |= events;
2148 	*clearing_ptr &= ~clearing;
2149 
2150 	intv = disk_events_poll_jiffies(disk);
2151 	if (!ev->block && intv)
2152 		queue_delayed_work(system_freezable_power_efficient_wq,
2153 				&ev->dwork, intv);
2154 
2155 	spin_unlock_irq(&ev->lock);
2156 
2157 	/*
2158 	 * Tell userland about new events.  Only the events listed in
2159 	 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
2160 	 * is set. Otherwise, events are processed internally but never
2161 	 * get reported to userland.
2162 	 */
2163 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
2164 		if ((events & disk->events & (1 << i)) &&
2165 		    (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2166 			envp[nr_events++] = disk_uevents[i];
2167 
2168 	if (nr_events)
2169 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
2170 }
2171 
2172 /*
2173  * A disk events enabled device has the following sysfs nodes under
2174  * its /sys/block/X/ directory.
2175  *
2176  * events		: list of all supported events
2177  * events_async		: list of events which can be detected w/o polling
2178  *			  (always empty, only for backwards compatibility)
2179  * events_poll_msecs	: polling interval, 0: disable, -1: system default
2180  */
2181 static ssize_t __disk_events_show(unsigned int events, char *buf)
2182 {
2183 	const char *delim = "";
2184 	ssize_t pos = 0;
2185 	int i;
2186 
2187 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
2188 		if (events & (1 << i)) {
2189 			pos += sprintf(buf + pos, "%s%s",
2190 				       delim, disk_events_strs[i]);
2191 			delim = " ";
2192 		}
2193 	if (pos)
2194 		pos += sprintf(buf + pos, "\n");
2195 	return pos;
2196 }
2197 
2198 static ssize_t disk_events_show(struct device *dev,
2199 				struct device_attribute *attr, char *buf)
2200 {
2201 	struct gendisk *disk = dev_to_disk(dev);
2202 
2203 	if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2204 		return 0;
2205 
2206 	return __disk_events_show(disk->events, buf);
2207 }
2208 
2209 static ssize_t disk_events_async_show(struct device *dev,
2210 				      struct device_attribute *attr, char *buf)
2211 {
2212 	return 0;
2213 }
2214 
2215 static ssize_t disk_events_poll_msecs_show(struct device *dev,
2216 					   struct device_attribute *attr,
2217 					   char *buf)
2218 {
2219 	struct gendisk *disk = dev_to_disk(dev);
2220 
2221 	if (!disk->ev)
2222 		return sprintf(buf, "-1\n");
2223 
2224 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
2225 }
2226 
2227 static ssize_t disk_events_poll_msecs_store(struct device *dev,
2228 					    struct device_attribute *attr,
2229 					    const char *buf, size_t count)
2230 {
2231 	struct gendisk *disk = dev_to_disk(dev);
2232 	long intv;
2233 
2234 	if (!count || !sscanf(buf, "%ld", &intv))
2235 		return -EINVAL;
2236 
2237 	if (intv < 0 && intv != -1)
2238 		return -EINVAL;
2239 
2240 	if (!disk->ev)
2241 		return -ENODEV;
2242 
2243 	disk_block_events(disk);
2244 	disk->ev->poll_msecs = intv;
2245 	__disk_unblock_events(disk, true);
2246 
2247 	return count;
2248 }
2249 
2250 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
2251 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
2252 static const DEVICE_ATTR(events_poll_msecs, 0644,
2253 			 disk_events_poll_msecs_show,
2254 			 disk_events_poll_msecs_store);
2255 
2256 static const struct attribute *disk_events_attrs[] = {
2257 	&dev_attr_events.attr,
2258 	&dev_attr_events_async.attr,
2259 	&dev_attr_events_poll_msecs.attr,
2260 	NULL,
2261 };
2262 
2263 /*
2264  * The default polling interval can be specified by the kernel
2265  * parameter block.events_dfl_poll_msecs which defaults to 0
2266  * (disable).  This can also be modified runtime by writing to
2267  * /sys/module/block/parameters/events_dfl_poll_msecs.
2268  */
2269 static int disk_events_set_dfl_poll_msecs(const char *val,
2270 					  const struct kernel_param *kp)
2271 {
2272 	struct disk_events *ev;
2273 	int ret;
2274 
2275 	ret = param_set_ulong(val, kp);
2276 	if (ret < 0)
2277 		return ret;
2278 
2279 	mutex_lock(&disk_events_mutex);
2280 
2281 	list_for_each_entry(ev, &disk_events, node)
2282 		disk_flush_events(ev->disk, 0);
2283 
2284 	mutex_unlock(&disk_events_mutex);
2285 
2286 	return 0;
2287 }
2288 
2289 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2290 	.set	= disk_events_set_dfl_poll_msecs,
2291 	.get	= param_get_ulong,
2292 };
2293 
2294 #undef MODULE_PARAM_PREFIX
2295 #define MODULE_PARAM_PREFIX	"block."
2296 
2297 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2298 		&disk_events_dfl_poll_msecs, 0644);
2299 
2300 /*
2301  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2302  */
2303 static void disk_alloc_events(struct gendisk *disk)
2304 {
2305 	struct disk_events *ev;
2306 
2307 	if (!disk->fops->check_events || !disk->events)
2308 		return;
2309 
2310 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2311 	if (!ev) {
2312 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
2313 		return;
2314 	}
2315 
2316 	INIT_LIST_HEAD(&ev->node);
2317 	ev->disk = disk;
2318 	spin_lock_init(&ev->lock);
2319 	mutex_init(&ev->block_mutex);
2320 	ev->block = 1;
2321 	ev->poll_msecs = -1;
2322 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2323 
2324 	disk->ev = ev;
2325 }
2326 
2327 static void disk_add_events(struct gendisk *disk)
2328 {
2329 	/* FIXME: error handling */
2330 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2331 		pr_warn("%s: failed to create sysfs files for events\n",
2332 			disk->disk_name);
2333 
2334 	if (!disk->ev)
2335 		return;
2336 
2337 	mutex_lock(&disk_events_mutex);
2338 	list_add_tail(&disk->ev->node, &disk_events);
2339 	mutex_unlock(&disk_events_mutex);
2340 
2341 	/*
2342 	 * Block count is initialized to 1 and the following initial
2343 	 * unblock kicks it into action.
2344 	 */
2345 	__disk_unblock_events(disk, true);
2346 }
2347 
2348 static void disk_del_events(struct gendisk *disk)
2349 {
2350 	if (disk->ev) {
2351 		disk_block_events(disk);
2352 
2353 		mutex_lock(&disk_events_mutex);
2354 		list_del_init(&disk->ev->node);
2355 		mutex_unlock(&disk_events_mutex);
2356 	}
2357 
2358 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2359 }
2360 
2361 static void disk_release_events(struct gendisk *disk)
2362 {
2363 	/* the block count should be 1 from disk_del_events() */
2364 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2365 	kfree(disk->ev);
2366 }
2367