1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #include <linux/blk-mq.h> 27 #include "blk.h" 28 #include "blk-mq.h" 29 #include "blk-mq-tag.h" 30 31 static DEFINE_MUTEX(all_q_mutex); 32 static LIST_HEAD(all_q_list); 33 34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 35 36 /* 37 * Check if any of the ctx's have pending work in this hardware queue 38 */ 39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 40 { 41 unsigned int i; 42 43 for (i = 0; i < hctx->ctx_map.map_size; i++) 44 if (hctx->ctx_map.map[i].word) 45 return true; 46 47 return false; 48 } 49 50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 51 struct blk_mq_ctx *ctx) 52 { 53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 54 } 55 56 #define CTX_TO_BIT(hctx, ctx) \ 57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 58 59 /* 60 * Mark this ctx as having pending work in this hardware queue 61 */ 62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 63 struct blk_mq_ctx *ctx) 64 { 65 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 66 67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 69 } 70 71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 72 struct blk_mq_ctx *ctx) 73 { 74 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 75 76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 77 } 78 79 static int blk_mq_queue_enter(struct request_queue *q) 80 { 81 while (true) { 82 int ret; 83 84 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 85 return 0; 86 87 ret = wait_event_interruptible(q->mq_freeze_wq, 88 !q->mq_freeze_depth || blk_queue_dying(q)); 89 if (blk_queue_dying(q)) 90 return -ENODEV; 91 if (ret) 92 return ret; 93 } 94 } 95 96 static void blk_mq_queue_exit(struct request_queue *q) 97 { 98 percpu_ref_put(&q->mq_usage_counter); 99 } 100 101 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 102 { 103 struct request_queue *q = 104 container_of(ref, struct request_queue, mq_usage_counter); 105 106 wake_up_all(&q->mq_freeze_wq); 107 } 108 109 /* 110 * Guarantee no request is in use, so we can change any data structure of 111 * the queue afterward. 112 */ 113 void blk_mq_freeze_queue(struct request_queue *q) 114 { 115 bool freeze; 116 117 spin_lock_irq(q->queue_lock); 118 freeze = !q->mq_freeze_depth++; 119 spin_unlock_irq(q->queue_lock); 120 121 if (freeze) { 122 percpu_ref_kill(&q->mq_usage_counter); 123 blk_mq_run_queues(q, false); 124 } 125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 126 } 127 128 static void blk_mq_unfreeze_queue(struct request_queue *q) 129 { 130 bool wake; 131 132 spin_lock_irq(q->queue_lock); 133 wake = !--q->mq_freeze_depth; 134 WARN_ON_ONCE(q->mq_freeze_depth < 0); 135 spin_unlock_irq(q->queue_lock); 136 if (wake) { 137 percpu_ref_reinit(&q->mq_usage_counter); 138 wake_up_all(&q->mq_freeze_wq); 139 } 140 } 141 142 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 143 { 144 return blk_mq_has_free_tags(hctx->tags); 145 } 146 EXPORT_SYMBOL(blk_mq_can_queue); 147 148 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 149 struct request *rq, unsigned int rw_flags) 150 { 151 if (blk_queue_io_stat(q)) 152 rw_flags |= REQ_IO_STAT; 153 154 INIT_LIST_HEAD(&rq->queuelist); 155 /* csd/requeue_work/fifo_time is initialized before use */ 156 rq->q = q; 157 rq->mq_ctx = ctx; 158 rq->cmd_flags |= rw_flags; 159 /* do not touch atomic flags, it needs atomic ops against the timer */ 160 rq->cpu = -1; 161 INIT_HLIST_NODE(&rq->hash); 162 RB_CLEAR_NODE(&rq->rb_node); 163 rq->rq_disk = NULL; 164 rq->part = NULL; 165 rq->start_time = jiffies; 166 #ifdef CONFIG_BLK_CGROUP 167 rq->rl = NULL; 168 set_start_time_ns(rq); 169 rq->io_start_time_ns = 0; 170 #endif 171 rq->nr_phys_segments = 0; 172 #if defined(CONFIG_BLK_DEV_INTEGRITY) 173 rq->nr_integrity_segments = 0; 174 #endif 175 rq->special = NULL; 176 /* tag was already set */ 177 rq->errors = 0; 178 179 rq->cmd = rq->__cmd; 180 181 rq->extra_len = 0; 182 rq->sense_len = 0; 183 rq->resid_len = 0; 184 rq->sense = NULL; 185 186 INIT_LIST_HEAD(&rq->timeout_list); 187 rq->timeout = 0; 188 189 rq->end_io = NULL; 190 rq->end_io_data = NULL; 191 rq->next_rq = NULL; 192 193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 194 } 195 196 static struct request * 197 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 198 { 199 struct request *rq; 200 unsigned int tag; 201 202 tag = blk_mq_get_tag(data); 203 if (tag != BLK_MQ_TAG_FAIL) { 204 rq = data->hctx->tags->rqs[tag]; 205 206 rq->cmd_flags = 0; 207 if (blk_mq_tag_busy(data->hctx)) { 208 rq->cmd_flags = REQ_MQ_INFLIGHT; 209 atomic_inc(&data->hctx->nr_active); 210 } 211 212 rq->tag = tag; 213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 214 return rq; 215 } 216 217 return NULL; 218 } 219 220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 221 bool reserved) 222 { 223 struct blk_mq_ctx *ctx; 224 struct blk_mq_hw_ctx *hctx; 225 struct request *rq; 226 struct blk_mq_alloc_data alloc_data; 227 228 if (blk_mq_queue_enter(q)) 229 return NULL; 230 231 ctx = blk_mq_get_ctx(q); 232 hctx = q->mq_ops->map_queue(q, ctx->cpu); 233 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 234 reserved, ctx, hctx); 235 236 rq = __blk_mq_alloc_request(&alloc_data, rw); 237 if (!rq && (gfp & __GFP_WAIT)) { 238 __blk_mq_run_hw_queue(hctx); 239 blk_mq_put_ctx(ctx); 240 241 ctx = blk_mq_get_ctx(q); 242 hctx = q->mq_ops->map_queue(q, ctx->cpu); 243 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 244 hctx); 245 rq = __blk_mq_alloc_request(&alloc_data, rw); 246 ctx = alloc_data.ctx; 247 } 248 blk_mq_put_ctx(ctx); 249 return rq; 250 } 251 EXPORT_SYMBOL(blk_mq_alloc_request); 252 253 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 254 struct blk_mq_ctx *ctx, struct request *rq) 255 { 256 const int tag = rq->tag; 257 struct request_queue *q = rq->q; 258 259 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 260 atomic_dec(&hctx->nr_active); 261 262 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 263 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 264 blk_mq_queue_exit(q); 265 } 266 267 void blk_mq_free_request(struct request *rq) 268 { 269 struct blk_mq_ctx *ctx = rq->mq_ctx; 270 struct blk_mq_hw_ctx *hctx; 271 struct request_queue *q = rq->q; 272 273 ctx->rq_completed[rq_is_sync(rq)]++; 274 275 hctx = q->mq_ops->map_queue(q, ctx->cpu); 276 __blk_mq_free_request(hctx, ctx, rq); 277 } 278 279 /* 280 * Clone all relevant state from a request that has been put on hold in 281 * the flush state machine into the preallocated flush request that hangs 282 * off the request queue. 283 * 284 * For a driver the flush request should be invisible, that's why we are 285 * impersonating the original request here. 286 */ 287 void blk_mq_clone_flush_request(struct request *flush_rq, 288 struct request *orig_rq) 289 { 290 struct blk_mq_hw_ctx *hctx = 291 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu); 292 293 flush_rq->mq_ctx = orig_rq->mq_ctx; 294 flush_rq->tag = orig_rq->tag; 295 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq), 296 hctx->cmd_size); 297 } 298 299 inline void __blk_mq_end_io(struct request *rq, int error) 300 { 301 blk_account_io_done(rq); 302 303 if (rq->end_io) { 304 rq->end_io(rq, error); 305 } else { 306 if (unlikely(blk_bidi_rq(rq))) 307 blk_mq_free_request(rq->next_rq); 308 blk_mq_free_request(rq); 309 } 310 } 311 EXPORT_SYMBOL(__blk_mq_end_io); 312 313 void blk_mq_end_io(struct request *rq, int error) 314 { 315 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 316 BUG(); 317 __blk_mq_end_io(rq, error); 318 } 319 EXPORT_SYMBOL(blk_mq_end_io); 320 321 static void __blk_mq_complete_request_remote(void *data) 322 { 323 struct request *rq = data; 324 325 rq->q->softirq_done_fn(rq); 326 } 327 328 static void blk_mq_ipi_complete_request(struct request *rq) 329 { 330 struct blk_mq_ctx *ctx = rq->mq_ctx; 331 bool shared = false; 332 int cpu; 333 334 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 335 rq->q->softirq_done_fn(rq); 336 return; 337 } 338 339 cpu = get_cpu(); 340 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 341 shared = cpus_share_cache(cpu, ctx->cpu); 342 343 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 344 rq->csd.func = __blk_mq_complete_request_remote; 345 rq->csd.info = rq; 346 rq->csd.flags = 0; 347 smp_call_function_single_async(ctx->cpu, &rq->csd); 348 } else { 349 rq->q->softirq_done_fn(rq); 350 } 351 put_cpu(); 352 } 353 354 void __blk_mq_complete_request(struct request *rq) 355 { 356 struct request_queue *q = rq->q; 357 358 if (!q->softirq_done_fn) 359 blk_mq_end_io(rq, rq->errors); 360 else 361 blk_mq_ipi_complete_request(rq); 362 } 363 364 /** 365 * blk_mq_complete_request - end I/O on a request 366 * @rq: the request being processed 367 * 368 * Description: 369 * Ends all I/O on a request. It does not handle partial completions. 370 * The actual completion happens out-of-order, through a IPI handler. 371 **/ 372 void blk_mq_complete_request(struct request *rq) 373 { 374 struct request_queue *q = rq->q; 375 376 if (unlikely(blk_should_fake_timeout(q))) 377 return; 378 if (!blk_mark_rq_complete(rq)) 379 __blk_mq_complete_request(rq); 380 } 381 EXPORT_SYMBOL(blk_mq_complete_request); 382 383 static void blk_mq_start_request(struct request *rq, bool last) 384 { 385 struct request_queue *q = rq->q; 386 387 trace_block_rq_issue(q, rq); 388 389 rq->resid_len = blk_rq_bytes(rq); 390 if (unlikely(blk_bidi_rq(rq))) 391 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 392 393 blk_add_timer(rq); 394 395 /* 396 * Mark us as started and clear complete. Complete might have been 397 * set if requeue raced with timeout, which then marked it as 398 * complete. So be sure to clear complete again when we start 399 * the request, otherwise we'll ignore the completion event. 400 */ 401 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 402 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 403 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 404 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 405 406 if (q->dma_drain_size && blk_rq_bytes(rq)) { 407 /* 408 * Make sure space for the drain appears. We know we can do 409 * this because max_hw_segments has been adjusted to be one 410 * fewer than the device can handle. 411 */ 412 rq->nr_phys_segments++; 413 } 414 415 /* 416 * Flag the last request in the series so that drivers know when IO 417 * should be kicked off, if they don't do it on a per-request basis. 418 * 419 * Note: the flag isn't the only condition drivers should do kick off. 420 * If drive is busy, the last request might not have the bit set. 421 */ 422 if (last) 423 rq->cmd_flags |= REQ_END; 424 } 425 426 static void __blk_mq_requeue_request(struct request *rq) 427 { 428 struct request_queue *q = rq->q; 429 430 trace_block_rq_requeue(q, rq); 431 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 432 433 rq->cmd_flags &= ~REQ_END; 434 435 if (q->dma_drain_size && blk_rq_bytes(rq)) 436 rq->nr_phys_segments--; 437 } 438 439 void blk_mq_requeue_request(struct request *rq) 440 { 441 __blk_mq_requeue_request(rq); 442 blk_clear_rq_complete(rq); 443 444 BUG_ON(blk_queued_rq(rq)); 445 blk_mq_add_to_requeue_list(rq, true); 446 } 447 EXPORT_SYMBOL(blk_mq_requeue_request); 448 449 static void blk_mq_requeue_work(struct work_struct *work) 450 { 451 struct request_queue *q = 452 container_of(work, struct request_queue, requeue_work); 453 LIST_HEAD(rq_list); 454 struct request *rq, *next; 455 unsigned long flags; 456 457 spin_lock_irqsave(&q->requeue_lock, flags); 458 list_splice_init(&q->requeue_list, &rq_list); 459 spin_unlock_irqrestore(&q->requeue_lock, flags); 460 461 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 462 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 463 continue; 464 465 rq->cmd_flags &= ~REQ_SOFTBARRIER; 466 list_del_init(&rq->queuelist); 467 blk_mq_insert_request(rq, true, false, false); 468 } 469 470 while (!list_empty(&rq_list)) { 471 rq = list_entry(rq_list.next, struct request, queuelist); 472 list_del_init(&rq->queuelist); 473 blk_mq_insert_request(rq, false, false, false); 474 } 475 476 blk_mq_run_queues(q, false); 477 } 478 479 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 480 { 481 struct request_queue *q = rq->q; 482 unsigned long flags; 483 484 /* 485 * We abuse this flag that is otherwise used by the I/O scheduler to 486 * request head insertation from the workqueue. 487 */ 488 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 489 490 spin_lock_irqsave(&q->requeue_lock, flags); 491 if (at_head) { 492 rq->cmd_flags |= REQ_SOFTBARRIER; 493 list_add(&rq->queuelist, &q->requeue_list); 494 } else { 495 list_add_tail(&rq->queuelist, &q->requeue_list); 496 } 497 spin_unlock_irqrestore(&q->requeue_lock, flags); 498 } 499 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 500 501 void blk_mq_kick_requeue_list(struct request_queue *q) 502 { 503 kblockd_schedule_work(&q->requeue_work); 504 } 505 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 506 507 static inline bool is_flush_request(struct request *rq, unsigned int tag) 508 { 509 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 510 rq->q->flush_rq->tag == tag); 511 } 512 513 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 514 { 515 struct request *rq = tags->rqs[tag]; 516 517 if (!is_flush_request(rq, tag)) 518 return rq; 519 520 return rq->q->flush_rq; 521 } 522 EXPORT_SYMBOL(blk_mq_tag_to_rq); 523 524 struct blk_mq_timeout_data { 525 struct blk_mq_hw_ctx *hctx; 526 unsigned long *next; 527 unsigned int *next_set; 528 }; 529 530 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags) 531 { 532 struct blk_mq_timeout_data *data = __data; 533 struct blk_mq_hw_ctx *hctx = data->hctx; 534 unsigned int tag; 535 536 /* It may not be in flight yet (this is where 537 * the REQ_ATOMIC_STARTED flag comes in). The requests are 538 * statically allocated, so we know it's always safe to access the 539 * memory associated with a bit offset into ->rqs[]. 540 */ 541 tag = 0; 542 do { 543 struct request *rq; 544 545 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag); 546 if (tag >= hctx->tags->nr_tags) 547 break; 548 549 rq = blk_mq_tag_to_rq(hctx->tags, tag++); 550 if (rq->q != hctx->queue) 551 continue; 552 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 553 continue; 554 555 blk_rq_check_expired(rq, data->next, data->next_set); 556 } while (1); 557 } 558 559 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx, 560 unsigned long *next, 561 unsigned int *next_set) 562 { 563 struct blk_mq_timeout_data data = { 564 .hctx = hctx, 565 .next = next, 566 .next_set = next_set, 567 }; 568 569 /* 570 * Ask the tagging code to iterate busy requests, so we can 571 * check them for timeout. 572 */ 573 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); 574 } 575 576 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq) 577 { 578 struct request_queue *q = rq->q; 579 580 /* 581 * We know that complete is set at this point. If STARTED isn't set 582 * anymore, then the request isn't active and the "timeout" should 583 * just be ignored. This can happen due to the bitflag ordering. 584 * Timeout first checks if STARTED is set, and if it is, assumes 585 * the request is active. But if we race with completion, then 586 * we both flags will get cleared. So check here again, and ignore 587 * a timeout event with a request that isn't active. 588 */ 589 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 590 return BLK_EH_NOT_HANDLED; 591 592 if (!q->mq_ops->timeout) 593 return BLK_EH_RESET_TIMER; 594 595 return q->mq_ops->timeout(rq); 596 } 597 598 static void blk_mq_rq_timer(unsigned long data) 599 { 600 struct request_queue *q = (struct request_queue *) data; 601 struct blk_mq_hw_ctx *hctx; 602 unsigned long next = 0; 603 int i, next_set = 0; 604 605 queue_for_each_hw_ctx(q, hctx, i) { 606 /* 607 * If not software queues are currently mapped to this 608 * hardware queue, there's nothing to check 609 */ 610 if (!hctx->nr_ctx || !hctx->tags) 611 continue; 612 613 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); 614 } 615 616 if (next_set) { 617 next = blk_rq_timeout(round_jiffies_up(next)); 618 mod_timer(&q->timeout, next); 619 } else { 620 queue_for_each_hw_ctx(q, hctx, i) 621 blk_mq_tag_idle(hctx); 622 } 623 } 624 625 /* 626 * Reverse check our software queue for entries that we could potentially 627 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 628 * too much time checking for merges. 629 */ 630 static bool blk_mq_attempt_merge(struct request_queue *q, 631 struct blk_mq_ctx *ctx, struct bio *bio) 632 { 633 struct request *rq; 634 int checked = 8; 635 636 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 637 int el_ret; 638 639 if (!checked--) 640 break; 641 642 if (!blk_rq_merge_ok(rq, bio)) 643 continue; 644 645 el_ret = blk_try_merge(rq, bio); 646 if (el_ret == ELEVATOR_BACK_MERGE) { 647 if (bio_attempt_back_merge(q, rq, bio)) { 648 ctx->rq_merged++; 649 return true; 650 } 651 break; 652 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 653 if (bio_attempt_front_merge(q, rq, bio)) { 654 ctx->rq_merged++; 655 return true; 656 } 657 break; 658 } 659 } 660 661 return false; 662 } 663 664 /* 665 * Process software queues that have been marked busy, splicing them 666 * to the for-dispatch 667 */ 668 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 669 { 670 struct blk_mq_ctx *ctx; 671 int i; 672 673 for (i = 0; i < hctx->ctx_map.map_size; i++) { 674 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 675 unsigned int off, bit; 676 677 if (!bm->word) 678 continue; 679 680 bit = 0; 681 off = i * hctx->ctx_map.bits_per_word; 682 do { 683 bit = find_next_bit(&bm->word, bm->depth, bit); 684 if (bit >= bm->depth) 685 break; 686 687 ctx = hctx->ctxs[bit + off]; 688 clear_bit(bit, &bm->word); 689 spin_lock(&ctx->lock); 690 list_splice_tail_init(&ctx->rq_list, list); 691 spin_unlock(&ctx->lock); 692 693 bit++; 694 } while (1); 695 } 696 } 697 698 /* 699 * Run this hardware queue, pulling any software queues mapped to it in. 700 * Note that this function currently has various problems around ordering 701 * of IO. In particular, we'd like FIFO behaviour on handling existing 702 * items on the hctx->dispatch list. Ignore that for now. 703 */ 704 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 705 { 706 struct request_queue *q = hctx->queue; 707 struct request *rq; 708 LIST_HEAD(rq_list); 709 int queued; 710 711 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 712 713 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 714 return; 715 716 hctx->run++; 717 718 /* 719 * Touch any software queue that has pending entries. 720 */ 721 flush_busy_ctxs(hctx, &rq_list); 722 723 /* 724 * If we have previous entries on our dispatch list, grab them 725 * and stuff them at the front for more fair dispatch. 726 */ 727 if (!list_empty_careful(&hctx->dispatch)) { 728 spin_lock(&hctx->lock); 729 if (!list_empty(&hctx->dispatch)) 730 list_splice_init(&hctx->dispatch, &rq_list); 731 spin_unlock(&hctx->lock); 732 } 733 734 /* 735 * Now process all the entries, sending them to the driver. 736 */ 737 queued = 0; 738 while (!list_empty(&rq_list)) { 739 int ret; 740 741 rq = list_first_entry(&rq_list, struct request, queuelist); 742 list_del_init(&rq->queuelist); 743 744 blk_mq_start_request(rq, list_empty(&rq_list)); 745 746 ret = q->mq_ops->queue_rq(hctx, rq); 747 switch (ret) { 748 case BLK_MQ_RQ_QUEUE_OK: 749 queued++; 750 continue; 751 case BLK_MQ_RQ_QUEUE_BUSY: 752 list_add(&rq->queuelist, &rq_list); 753 __blk_mq_requeue_request(rq); 754 break; 755 default: 756 pr_err("blk-mq: bad return on queue: %d\n", ret); 757 case BLK_MQ_RQ_QUEUE_ERROR: 758 rq->errors = -EIO; 759 blk_mq_end_io(rq, rq->errors); 760 break; 761 } 762 763 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 764 break; 765 } 766 767 if (!queued) 768 hctx->dispatched[0]++; 769 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 770 hctx->dispatched[ilog2(queued) + 1]++; 771 772 /* 773 * Any items that need requeuing? Stuff them into hctx->dispatch, 774 * that is where we will continue on next queue run. 775 */ 776 if (!list_empty(&rq_list)) { 777 spin_lock(&hctx->lock); 778 list_splice(&rq_list, &hctx->dispatch); 779 spin_unlock(&hctx->lock); 780 } 781 } 782 783 /* 784 * It'd be great if the workqueue API had a way to pass 785 * in a mask and had some smarts for more clever placement. 786 * For now we just round-robin here, switching for every 787 * BLK_MQ_CPU_WORK_BATCH queued items. 788 */ 789 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 790 { 791 int cpu = hctx->next_cpu; 792 793 if (--hctx->next_cpu_batch <= 0) { 794 int next_cpu; 795 796 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 797 if (next_cpu >= nr_cpu_ids) 798 next_cpu = cpumask_first(hctx->cpumask); 799 800 hctx->next_cpu = next_cpu; 801 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 802 } 803 804 return cpu; 805 } 806 807 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 808 { 809 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 810 return; 811 812 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) 813 __blk_mq_run_hw_queue(hctx); 814 else if (hctx->queue->nr_hw_queues == 1) 815 kblockd_schedule_delayed_work(&hctx->run_work, 0); 816 else { 817 unsigned int cpu; 818 819 cpu = blk_mq_hctx_next_cpu(hctx); 820 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); 821 } 822 } 823 824 void blk_mq_run_queues(struct request_queue *q, bool async) 825 { 826 struct blk_mq_hw_ctx *hctx; 827 int i; 828 829 queue_for_each_hw_ctx(q, hctx, i) { 830 if ((!blk_mq_hctx_has_pending(hctx) && 831 list_empty_careful(&hctx->dispatch)) || 832 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 833 continue; 834 835 preempt_disable(); 836 blk_mq_run_hw_queue(hctx, async); 837 preempt_enable(); 838 } 839 } 840 EXPORT_SYMBOL(blk_mq_run_queues); 841 842 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 843 { 844 cancel_delayed_work(&hctx->run_work); 845 cancel_delayed_work(&hctx->delay_work); 846 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 847 } 848 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 849 850 void blk_mq_stop_hw_queues(struct request_queue *q) 851 { 852 struct blk_mq_hw_ctx *hctx; 853 int i; 854 855 queue_for_each_hw_ctx(q, hctx, i) 856 blk_mq_stop_hw_queue(hctx); 857 } 858 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 859 860 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 861 { 862 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 863 864 preempt_disable(); 865 blk_mq_run_hw_queue(hctx, false); 866 preempt_enable(); 867 } 868 EXPORT_SYMBOL(blk_mq_start_hw_queue); 869 870 void blk_mq_start_hw_queues(struct request_queue *q) 871 { 872 struct blk_mq_hw_ctx *hctx; 873 int i; 874 875 queue_for_each_hw_ctx(q, hctx, i) 876 blk_mq_start_hw_queue(hctx); 877 } 878 EXPORT_SYMBOL(blk_mq_start_hw_queues); 879 880 881 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 882 { 883 struct blk_mq_hw_ctx *hctx; 884 int i; 885 886 queue_for_each_hw_ctx(q, hctx, i) { 887 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 888 continue; 889 890 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 891 preempt_disable(); 892 blk_mq_run_hw_queue(hctx, async); 893 preempt_enable(); 894 } 895 } 896 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 897 898 static void blk_mq_run_work_fn(struct work_struct *work) 899 { 900 struct blk_mq_hw_ctx *hctx; 901 902 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 903 904 __blk_mq_run_hw_queue(hctx); 905 } 906 907 static void blk_mq_delay_work_fn(struct work_struct *work) 908 { 909 struct blk_mq_hw_ctx *hctx; 910 911 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 912 913 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 914 __blk_mq_run_hw_queue(hctx); 915 } 916 917 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 918 { 919 unsigned long tmo = msecs_to_jiffies(msecs); 920 921 if (hctx->queue->nr_hw_queues == 1) 922 kblockd_schedule_delayed_work(&hctx->delay_work, tmo); 923 else { 924 unsigned int cpu; 925 926 cpu = blk_mq_hctx_next_cpu(hctx); 927 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); 928 } 929 } 930 EXPORT_SYMBOL(blk_mq_delay_queue); 931 932 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 933 struct request *rq, bool at_head) 934 { 935 struct blk_mq_ctx *ctx = rq->mq_ctx; 936 937 trace_block_rq_insert(hctx->queue, rq); 938 939 if (at_head) 940 list_add(&rq->queuelist, &ctx->rq_list); 941 else 942 list_add_tail(&rq->queuelist, &ctx->rq_list); 943 944 blk_mq_hctx_mark_pending(hctx, ctx); 945 } 946 947 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 948 bool async) 949 { 950 struct request_queue *q = rq->q; 951 struct blk_mq_hw_ctx *hctx; 952 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 953 954 current_ctx = blk_mq_get_ctx(q); 955 if (!cpu_online(ctx->cpu)) 956 rq->mq_ctx = ctx = current_ctx; 957 958 hctx = q->mq_ops->map_queue(q, ctx->cpu); 959 960 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) && 961 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) { 962 blk_insert_flush(rq); 963 } else { 964 spin_lock(&ctx->lock); 965 __blk_mq_insert_request(hctx, rq, at_head); 966 spin_unlock(&ctx->lock); 967 } 968 969 if (run_queue) 970 blk_mq_run_hw_queue(hctx, async); 971 972 blk_mq_put_ctx(current_ctx); 973 } 974 975 static void blk_mq_insert_requests(struct request_queue *q, 976 struct blk_mq_ctx *ctx, 977 struct list_head *list, 978 int depth, 979 bool from_schedule) 980 981 { 982 struct blk_mq_hw_ctx *hctx; 983 struct blk_mq_ctx *current_ctx; 984 985 trace_block_unplug(q, depth, !from_schedule); 986 987 current_ctx = blk_mq_get_ctx(q); 988 989 if (!cpu_online(ctx->cpu)) 990 ctx = current_ctx; 991 hctx = q->mq_ops->map_queue(q, ctx->cpu); 992 993 /* 994 * preemption doesn't flush plug list, so it's possible ctx->cpu is 995 * offline now 996 */ 997 spin_lock(&ctx->lock); 998 while (!list_empty(list)) { 999 struct request *rq; 1000 1001 rq = list_first_entry(list, struct request, queuelist); 1002 list_del_init(&rq->queuelist); 1003 rq->mq_ctx = ctx; 1004 __blk_mq_insert_request(hctx, rq, false); 1005 } 1006 spin_unlock(&ctx->lock); 1007 1008 blk_mq_run_hw_queue(hctx, from_schedule); 1009 blk_mq_put_ctx(current_ctx); 1010 } 1011 1012 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1013 { 1014 struct request *rqa = container_of(a, struct request, queuelist); 1015 struct request *rqb = container_of(b, struct request, queuelist); 1016 1017 return !(rqa->mq_ctx < rqb->mq_ctx || 1018 (rqa->mq_ctx == rqb->mq_ctx && 1019 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1020 } 1021 1022 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1023 { 1024 struct blk_mq_ctx *this_ctx; 1025 struct request_queue *this_q; 1026 struct request *rq; 1027 LIST_HEAD(list); 1028 LIST_HEAD(ctx_list); 1029 unsigned int depth; 1030 1031 list_splice_init(&plug->mq_list, &list); 1032 1033 list_sort(NULL, &list, plug_ctx_cmp); 1034 1035 this_q = NULL; 1036 this_ctx = NULL; 1037 depth = 0; 1038 1039 while (!list_empty(&list)) { 1040 rq = list_entry_rq(list.next); 1041 list_del_init(&rq->queuelist); 1042 BUG_ON(!rq->q); 1043 if (rq->mq_ctx != this_ctx) { 1044 if (this_ctx) { 1045 blk_mq_insert_requests(this_q, this_ctx, 1046 &ctx_list, depth, 1047 from_schedule); 1048 } 1049 1050 this_ctx = rq->mq_ctx; 1051 this_q = rq->q; 1052 depth = 0; 1053 } 1054 1055 depth++; 1056 list_add_tail(&rq->queuelist, &ctx_list); 1057 } 1058 1059 /* 1060 * If 'this_ctx' is set, we know we have entries to complete 1061 * on 'ctx_list'. Do those. 1062 */ 1063 if (this_ctx) { 1064 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1065 from_schedule); 1066 } 1067 } 1068 1069 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1070 { 1071 init_request_from_bio(rq, bio); 1072 1073 if (blk_do_io_stat(rq)) 1074 blk_account_io_start(rq, 1); 1075 } 1076 1077 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1078 { 1079 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1080 !blk_queue_nomerges(hctx->queue); 1081 } 1082 1083 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1084 struct blk_mq_ctx *ctx, 1085 struct request *rq, struct bio *bio) 1086 { 1087 if (!hctx_allow_merges(hctx)) { 1088 blk_mq_bio_to_request(rq, bio); 1089 spin_lock(&ctx->lock); 1090 insert_rq: 1091 __blk_mq_insert_request(hctx, rq, false); 1092 spin_unlock(&ctx->lock); 1093 return false; 1094 } else { 1095 struct request_queue *q = hctx->queue; 1096 1097 spin_lock(&ctx->lock); 1098 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1099 blk_mq_bio_to_request(rq, bio); 1100 goto insert_rq; 1101 } 1102 1103 spin_unlock(&ctx->lock); 1104 __blk_mq_free_request(hctx, ctx, rq); 1105 return true; 1106 } 1107 } 1108 1109 struct blk_map_ctx { 1110 struct blk_mq_hw_ctx *hctx; 1111 struct blk_mq_ctx *ctx; 1112 }; 1113 1114 static struct request *blk_mq_map_request(struct request_queue *q, 1115 struct bio *bio, 1116 struct blk_map_ctx *data) 1117 { 1118 struct blk_mq_hw_ctx *hctx; 1119 struct blk_mq_ctx *ctx; 1120 struct request *rq; 1121 int rw = bio_data_dir(bio); 1122 struct blk_mq_alloc_data alloc_data; 1123 1124 if (unlikely(blk_mq_queue_enter(q))) { 1125 bio_endio(bio, -EIO); 1126 return NULL; 1127 } 1128 1129 ctx = blk_mq_get_ctx(q); 1130 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1131 1132 if (rw_is_sync(bio->bi_rw)) 1133 rw |= REQ_SYNC; 1134 1135 trace_block_getrq(q, bio, rw); 1136 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1137 hctx); 1138 rq = __blk_mq_alloc_request(&alloc_data, rw); 1139 if (unlikely(!rq)) { 1140 __blk_mq_run_hw_queue(hctx); 1141 blk_mq_put_ctx(ctx); 1142 trace_block_sleeprq(q, bio, rw); 1143 1144 ctx = blk_mq_get_ctx(q); 1145 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1146 blk_mq_set_alloc_data(&alloc_data, q, 1147 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1148 rq = __blk_mq_alloc_request(&alloc_data, rw); 1149 ctx = alloc_data.ctx; 1150 hctx = alloc_data.hctx; 1151 } 1152 1153 hctx->queued++; 1154 data->hctx = hctx; 1155 data->ctx = ctx; 1156 return rq; 1157 } 1158 1159 /* 1160 * Multiple hardware queue variant. This will not use per-process plugs, 1161 * but will attempt to bypass the hctx queueing if we can go straight to 1162 * hardware for SYNC IO. 1163 */ 1164 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1165 { 1166 const int is_sync = rw_is_sync(bio->bi_rw); 1167 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1168 struct blk_map_ctx data; 1169 struct request *rq; 1170 1171 blk_queue_bounce(q, &bio); 1172 1173 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1174 bio_endio(bio, -EIO); 1175 return; 1176 } 1177 1178 rq = blk_mq_map_request(q, bio, &data); 1179 if (unlikely(!rq)) 1180 return; 1181 1182 if (unlikely(is_flush_fua)) { 1183 blk_mq_bio_to_request(rq, bio); 1184 blk_insert_flush(rq); 1185 goto run_queue; 1186 } 1187 1188 if (is_sync) { 1189 int ret; 1190 1191 blk_mq_bio_to_request(rq, bio); 1192 blk_mq_start_request(rq, true); 1193 1194 /* 1195 * For OK queue, we are done. For error, kill it. Any other 1196 * error (busy), just add it to our list as we previously 1197 * would have done 1198 */ 1199 ret = q->mq_ops->queue_rq(data.hctx, rq); 1200 if (ret == BLK_MQ_RQ_QUEUE_OK) 1201 goto done; 1202 else { 1203 __blk_mq_requeue_request(rq); 1204 1205 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1206 rq->errors = -EIO; 1207 blk_mq_end_io(rq, rq->errors); 1208 goto done; 1209 } 1210 } 1211 } 1212 1213 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1214 /* 1215 * For a SYNC request, send it to the hardware immediately. For 1216 * an ASYNC request, just ensure that we run it later on. The 1217 * latter allows for merging opportunities and more efficient 1218 * dispatching. 1219 */ 1220 run_queue: 1221 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1222 } 1223 done: 1224 blk_mq_put_ctx(data.ctx); 1225 } 1226 1227 /* 1228 * Single hardware queue variant. This will attempt to use any per-process 1229 * plug for merging and IO deferral. 1230 */ 1231 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1232 { 1233 const int is_sync = rw_is_sync(bio->bi_rw); 1234 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1235 unsigned int use_plug, request_count = 0; 1236 struct blk_map_ctx data; 1237 struct request *rq; 1238 1239 /* 1240 * If we have multiple hardware queues, just go directly to 1241 * one of those for sync IO. 1242 */ 1243 use_plug = !is_flush_fua && !is_sync; 1244 1245 blk_queue_bounce(q, &bio); 1246 1247 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1248 bio_endio(bio, -EIO); 1249 return; 1250 } 1251 1252 if (use_plug && !blk_queue_nomerges(q) && 1253 blk_attempt_plug_merge(q, bio, &request_count)) 1254 return; 1255 1256 rq = blk_mq_map_request(q, bio, &data); 1257 if (unlikely(!rq)) 1258 return; 1259 1260 if (unlikely(is_flush_fua)) { 1261 blk_mq_bio_to_request(rq, bio); 1262 blk_insert_flush(rq); 1263 goto run_queue; 1264 } 1265 1266 /* 1267 * A task plug currently exists. Since this is completely lockless, 1268 * utilize that to temporarily store requests until the task is 1269 * either done or scheduled away. 1270 */ 1271 if (use_plug) { 1272 struct blk_plug *plug = current->plug; 1273 1274 if (plug) { 1275 blk_mq_bio_to_request(rq, bio); 1276 if (list_empty(&plug->mq_list)) 1277 trace_block_plug(q); 1278 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1279 blk_flush_plug_list(plug, false); 1280 trace_block_plug(q); 1281 } 1282 list_add_tail(&rq->queuelist, &plug->mq_list); 1283 blk_mq_put_ctx(data.ctx); 1284 return; 1285 } 1286 } 1287 1288 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1289 /* 1290 * For a SYNC request, send it to the hardware immediately. For 1291 * an ASYNC request, just ensure that we run it later on. The 1292 * latter allows for merging opportunities and more efficient 1293 * dispatching. 1294 */ 1295 run_queue: 1296 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1297 } 1298 1299 blk_mq_put_ctx(data.ctx); 1300 } 1301 1302 /* 1303 * Default mapping to a software queue, since we use one per CPU. 1304 */ 1305 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1306 { 1307 return q->queue_hw_ctx[q->mq_map[cpu]]; 1308 } 1309 EXPORT_SYMBOL(blk_mq_map_queue); 1310 1311 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1312 struct blk_mq_tags *tags, unsigned int hctx_idx) 1313 { 1314 struct page *page; 1315 1316 if (tags->rqs && set->ops->exit_request) { 1317 int i; 1318 1319 for (i = 0; i < tags->nr_tags; i++) { 1320 if (!tags->rqs[i]) 1321 continue; 1322 set->ops->exit_request(set->driver_data, tags->rqs[i], 1323 hctx_idx, i); 1324 tags->rqs[i] = NULL; 1325 } 1326 } 1327 1328 while (!list_empty(&tags->page_list)) { 1329 page = list_first_entry(&tags->page_list, struct page, lru); 1330 list_del_init(&page->lru); 1331 __free_pages(page, page->private); 1332 } 1333 1334 kfree(tags->rqs); 1335 1336 blk_mq_free_tags(tags); 1337 } 1338 1339 static size_t order_to_size(unsigned int order) 1340 { 1341 return (size_t)PAGE_SIZE << order; 1342 } 1343 1344 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1345 unsigned int hctx_idx) 1346 { 1347 struct blk_mq_tags *tags; 1348 unsigned int i, j, entries_per_page, max_order = 4; 1349 size_t rq_size, left; 1350 1351 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1352 set->numa_node); 1353 if (!tags) 1354 return NULL; 1355 1356 INIT_LIST_HEAD(&tags->page_list); 1357 1358 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1359 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1360 set->numa_node); 1361 if (!tags->rqs) { 1362 blk_mq_free_tags(tags); 1363 return NULL; 1364 } 1365 1366 /* 1367 * rq_size is the size of the request plus driver payload, rounded 1368 * to the cacheline size 1369 */ 1370 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1371 cache_line_size()); 1372 left = rq_size * set->queue_depth; 1373 1374 for (i = 0; i < set->queue_depth; ) { 1375 int this_order = max_order; 1376 struct page *page; 1377 int to_do; 1378 void *p; 1379 1380 while (left < order_to_size(this_order - 1) && this_order) 1381 this_order--; 1382 1383 do { 1384 page = alloc_pages_node(set->numa_node, 1385 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1386 this_order); 1387 if (page) 1388 break; 1389 if (!this_order--) 1390 break; 1391 if (order_to_size(this_order) < rq_size) 1392 break; 1393 } while (1); 1394 1395 if (!page) 1396 goto fail; 1397 1398 page->private = this_order; 1399 list_add_tail(&page->lru, &tags->page_list); 1400 1401 p = page_address(page); 1402 entries_per_page = order_to_size(this_order) / rq_size; 1403 to_do = min(entries_per_page, set->queue_depth - i); 1404 left -= to_do * rq_size; 1405 for (j = 0; j < to_do; j++) { 1406 tags->rqs[i] = p; 1407 if (set->ops->init_request) { 1408 if (set->ops->init_request(set->driver_data, 1409 tags->rqs[i], hctx_idx, i, 1410 set->numa_node)) { 1411 tags->rqs[i] = NULL; 1412 goto fail; 1413 } 1414 } 1415 1416 p += rq_size; 1417 i++; 1418 } 1419 } 1420 1421 return tags; 1422 1423 fail: 1424 blk_mq_free_rq_map(set, tags, hctx_idx); 1425 return NULL; 1426 } 1427 1428 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1429 { 1430 kfree(bitmap->map); 1431 } 1432 1433 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1434 { 1435 unsigned int bpw = 8, total, num_maps, i; 1436 1437 bitmap->bits_per_word = bpw; 1438 1439 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1440 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1441 GFP_KERNEL, node); 1442 if (!bitmap->map) 1443 return -ENOMEM; 1444 1445 bitmap->map_size = num_maps; 1446 1447 total = nr_cpu_ids; 1448 for (i = 0; i < num_maps; i++) { 1449 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1450 total -= bitmap->map[i].depth; 1451 } 1452 1453 return 0; 1454 } 1455 1456 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1457 { 1458 struct request_queue *q = hctx->queue; 1459 struct blk_mq_ctx *ctx; 1460 LIST_HEAD(tmp); 1461 1462 /* 1463 * Move ctx entries to new CPU, if this one is going away. 1464 */ 1465 ctx = __blk_mq_get_ctx(q, cpu); 1466 1467 spin_lock(&ctx->lock); 1468 if (!list_empty(&ctx->rq_list)) { 1469 list_splice_init(&ctx->rq_list, &tmp); 1470 blk_mq_hctx_clear_pending(hctx, ctx); 1471 } 1472 spin_unlock(&ctx->lock); 1473 1474 if (list_empty(&tmp)) 1475 return NOTIFY_OK; 1476 1477 ctx = blk_mq_get_ctx(q); 1478 spin_lock(&ctx->lock); 1479 1480 while (!list_empty(&tmp)) { 1481 struct request *rq; 1482 1483 rq = list_first_entry(&tmp, struct request, queuelist); 1484 rq->mq_ctx = ctx; 1485 list_move_tail(&rq->queuelist, &ctx->rq_list); 1486 } 1487 1488 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1489 blk_mq_hctx_mark_pending(hctx, ctx); 1490 1491 spin_unlock(&ctx->lock); 1492 1493 blk_mq_run_hw_queue(hctx, true); 1494 blk_mq_put_ctx(ctx); 1495 return NOTIFY_OK; 1496 } 1497 1498 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1499 { 1500 struct request_queue *q = hctx->queue; 1501 struct blk_mq_tag_set *set = q->tag_set; 1502 1503 if (set->tags[hctx->queue_num]) 1504 return NOTIFY_OK; 1505 1506 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1507 if (!set->tags[hctx->queue_num]) 1508 return NOTIFY_STOP; 1509 1510 hctx->tags = set->tags[hctx->queue_num]; 1511 return NOTIFY_OK; 1512 } 1513 1514 static int blk_mq_hctx_notify(void *data, unsigned long action, 1515 unsigned int cpu) 1516 { 1517 struct blk_mq_hw_ctx *hctx = data; 1518 1519 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1520 return blk_mq_hctx_cpu_offline(hctx, cpu); 1521 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1522 return blk_mq_hctx_cpu_online(hctx, cpu); 1523 1524 return NOTIFY_OK; 1525 } 1526 1527 static void blk_mq_exit_hw_queues(struct request_queue *q, 1528 struct blk_mq_tag_set *set, int nr_queue) 1529 { 1530 struct blk_mq_hw_ctx *hctx; 1531 unsigned int i; 1532 1533 queue_for_each_hw_ctx(q, hctx, i) { 1534 if (i == nr_queue) 1535 break; 1536 1537 blk_mq_tag_idle(hctx); 1538 1539 if (set->ops->exit_hctx) 1540 set->ops->exit_hctx(hctx, i); 1541 1542 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1543 kfree(hctx->ctxs); 1544 blk_mq_free_bitmap(&hctx->ctx_map); 1545 } 1546 1547 } 1548 1549 static void blk_mq_free_hw_queues(struct request_queue *q, 1550 struct blk_mq_tag_set *set) 1551 { 1552 struct blk_mq_hw_ctx *hctx; 1553 unsigned int i; 1554 1555 queue_for_each_hw_ctx(q, hctx, i) { 1556 free_cpumask_var(hctx->cpumask); 1557 kfree(hctx); 1558 } 1559 } 1560 1561 static int blk_mq_init_hw_queues(struct request_queue *q, 1562 struct blk_mq_tag_set *set) 1563 { 1564 struct blk_mq_hw_ctx *hctx; 1565 unsigned int i; 1566 1567 /* 1568 * Initialize hardware queues 1569 */ 1570 queue_for_each_hw_ctx(q, hctx, i) { 1571 int node; 1572 1573 node = hctx->numa_node; 1574 if (node == NUMA_NO_NODE) 1575 node = hctx->numa_node = set->numa_node; 1576 1577 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1578 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1579 spin_lock_init(&hctx->lock); 1580 INIT_LIST_HEAD(&hctx->dispatch); 1581 hctx->queue = q; 1582 hctx->queue_num = i; 1583 hctx->flags = set->flags; 1584 hctx->cmd_size = set->cmd_size; 1585 1586 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1587 blk_mq_hctx_notify, hctx); 1588 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1589 1590 hctx->tags = set->tags[i]; 1591 1592 /* 1593 * Allocate space for all possible cpus to avoid allocation at 1594 * runtime 1595 */ 1596 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1597 GFP_KERNEL, node); 1598 if (!hctx->ctxs) 1599 break; 1600 1601 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1602 break; 1603 1604 hctx->nr_ctx = 0; 1605 1606 if (set->ops->init_hctx && 1607 set->ops->init_hctx(hctx, set->driver_data, i)) 1608 break; 1609 } 1610 1611 if (i == q->nr_hw_queues) 1612 return 0; 1613 1614 /* 1615 * Init failed 1616 */ 1617 blk_mq_exit_hw_queues(q, set, i); 1618 1619 return 1; 1620 } 1621 1622 static void blk_mq_init_cpu_queues(struct request_queue *q, 1623 unsigned int nr_hw_queues) 1624 { 1625 unsigned int i; 1626 1627 for_each_possible_cpu(i) { 1628 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1629 struct blk_mq_hw_ctx *hctx; 1630 1631 memset(__ctx, 0, sizeof(*__ctx)); 1632 __ctx->cpu = i; 1633 spin_lock_init(&__ctx->lock); 1634 INIT_LIST_HEAD(&__ctx->rq_list); 1635 __ctx->queue = q; 1636 1637 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1638 if (!cpu_online(i)) 1639 continue; 1640 1641 hctx = q->mq_ops->map_queue(q, i); 1642 cpumask_set_cpu(i, hctx->cpumask); 1643 hctx->nr_ctx++; 1644 1645 /* 1646 * Set local node, IFF we have more than one hw queue. If 1647 * not, we remain on the home node of the device 1648 */ 1649 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1650 hctx->numa_node = cpu_to_node(i); 1651 } 1652 } 1653 1654 static void blk_mq_map_swqueue(struct request_queue *q) 1655 { 1656 unsigned int i; 1657 struct blk_mq_hw_ctx *hctx; 1658 struct blk_mq_ctx *ctx; 1659 1660 queue_for_each_hw_ctx(q, hctx, i) { 1661 cpumask_clear(hctx->cpumask); 1662 hctx->nr_ctx = 0; 1663 } 1664 1665 /* 1666 * Map software to hardware queues 1667 */ 1668 queue_for_each_ctx(q, ctx, i) { 1669 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1670 if (!cpu_online(i)) 1671 continue; 1672 1673 hctx = q->mq_ops->map_queue(q, i); 1674 cpumask_set_cpu(i, hctx->cpumask); 1675 ctx->index_hw = hctx->nr_ctx; 1676 hctx->ctxs[hctx->nr_ctx++] = ctx; 1677 } 1678 1679 queue_for_each_hw_ctx(q, hctx, i) { 1680 /* 1681 * If no software queues are mapped to this hardware queue, 1682 * disable it and free the request entries. 1683 */ 1684 if (!hctx->nr_ctx) { 1685 struct blk_mq_tag_set *set = q->tag_set; 1686 1687 if (set->tags[i]) { 1688 blk_mq_free_rq_map(set, set->tags[i], i); 1689 set->tags[i] = NULL; 1690 hctx->tags = NULL; 1691 } 1692 continue; 1693 } 1694 1695 /* 1696 * Initialize batch roundrobin counts 1697 */ 1698 hctx->next_cpu = cpumask_first(hctx->cpumask); 1699 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1700 } 1701 } 1702 1703 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1704 { 1705 struct blk_mq_hw_ctx *hctx; 1706 struct request_queue *q; 1707 bool shared; 1708 int i; 1709 1710 if (set->tag_list.next == set->tag_list.prev) 1711 shared = false; 1712 else 1713 shared = true; 1714 1715 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1716 blk_mq_freeze_queue(q); 1717 1718 queue_for_each_hw_ctx(q, hctx, i) { 1719 if (shared) 1720 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1721 else 1722 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1723 } 1724 blk_mq_unfreeze_queue(q); 1725 } 1726 } 1727 1728 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1729 { 1730 struct blk_mq_tag_set *set = q->tag_set; 1731 1732 mutex_lock(&set->tag_list_lock); 1733 list_del_init(&q->tag_set_list); 1734 blk_mq_update_tag_set_depth(set); 1735 mutex_unlock(&set->tag_list_lock); 1736 } 1737 1738 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1739 struct request_queue *q) 1740 { 1741 q->tag_set = set; 1742 1743 mutex_lock(&set->tag_list_lock); 1744 list_add_tail(&q->tag_set_list, &set->tag_list); 1745 blk_mq_update_tag_set_depth(set); 1746 mutex_unlock(&set->tag_list_lock); 1747 } 1748 1749 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1750 { 1751 struct blk_mq_hw_ctx **hctxs; 1752 struct blk_mq_ctx __percpu *ctx; 1753 struct request_queue *q; 1754 unsigned int *map; 1755 int i; 1756 1757 ctx = alloc_percpu(struct blk_mq_ctx); 1758 if (!ctx) 1759 return ERR_PTR(-ENOMEM); 1760 1761 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1762 set->numa_node); 1763 1764 if (!hctxs) 1765 goto err_percpu; 1766 1767 map = blk_mq_make_queue_map(set); 1768 if (!map) 1769 goto err_map; 1770 1771 for (i = 0; i < set->nr_hw_queues; i++) { 1772 int node = blk_mq_hw_queue_to_node(map, i); 1773 1774 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1775 GFP_KERNEL, node); 1776 if (!hctxs[i]) 1777 goto err_hctxs; 1778 1779 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) 1780 goto err_hctxs; 1781 1782 atomic_set(&hctxs[i]->nr_active, 0); 1783 hctxs[i]->numa_node = node; 1784 hctxs[i]->queue_num = i; 1785 } 1786 1787 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1788 if (!q) 1789 goto err_hctxs; 1790 1791 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release)) 1792 goto err_map; 1793 1794 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1795 blk_queue_rq_timeout(q, 30000); 1796 1797 q->nr_queues = nr_cpu_ids; 1798 q->nr_hw_queues = set->nr_hw_queues; 1799 q->mq_map = map; 1800 1801 q->queue_ctx = ctx; 1802 q->queue_hw_ctx = hctxs; 1803 1804 q->mq_ops = set->ops; 1805 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1806 1807 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1808 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1809 1810 q->sg_reserved_size = INT_MAX; 1811 1812 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1813 INIT_LIST_HEAD(&q->requeue_list); 1814 spin_lock_init(&q->requeue_lock); 1815 1816 if (q->nr_hw_queues > 1) 1817 blk_queue_make_request(q, blk_mq_make_request); 1818 else 1819 blk_queue_make_request(q, blk_sq_make_request); 1820 1821 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out); 1822 if (set->timeout) 1823 blk_queue_rq_timeout(q, set->timeout); 1824 1825 /* 1826 * Do this after blk_queue_make_request() overrides it... 1827 */ 1828 q->nr_requests = set->queue_depth; 1829 1830 if (set->ops->complete) 1831 blk_queue_softirq_done(q, set->ops->complete); 1832 1833 blk_mq_init_flush(q); 1834 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1835 1836 q->flush_rq = kzalloc(round_up(sizeof(struct request) + 1837 set->cmd_size, cache_line_size()), 1838 GFP_KERNEL); 1839 if (!q->flush_rq) 1840 goto err_hw; 1841 1842 if (blk_mq_init_hw_queues(q, set)) 1843 goto err_flush_rq; 1844 1845 mutex_lock(&all_q_mutex); 1846 list_add_tail(&q->all_q_node, &all_q_list); 1847 mutex_unlock(&all_q_mutex); 1848 1849 blk_mq_add_queue_tag_set(set, q); 1850 1851 blk_mq_map_swqueue(q); 1852 1853 return q; 1854 1855 err_flush_rq: 1856 kfree(q->flush_rq); 1857 err_hw: 1858 blk_cleanup_queue(q); 1859 err_hctxs: 1860 kfree(map); 1861 for (i = 0; i < set->nr_hw_queues; i++) { 1862 if (!hctxs[i]) 1863 break; 1864 free_cpumask_var(hctxs[i]->cpumask); 1865 kfree(hctxs[i]); 1866 } 1867 err_map: 1868 kfree(hctxs); 1869 err_percpu: 1870 free_percpu(ctx); 1871 return ERR_PTR(-ENOMEM); 1872 } 1873 EXPORT_SYMBOL(blk_mq_init_queue); 1874 1875 void blk_mq_free_queue(struct request_queue *q) 1876 { 1877 struct blk_mq_tag_set *set = q->tag_set; 1878 1879 blk_mq_del_queue_tag_set(q); 1880 1881 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 1882 blk_mq_free_hw_queues(q, set); 1883 1884 percpu_ref_exit(&q->mq_usage_counter); 1885 1886 free_percpu(q->queue_ctx); 1887 kfree(q->queue_hw_ctx); 1888 kfree(q->mq_map); 1889 1890 q->queue_ctx = NULL; 1891 q->queue_hw_ctx = NULL; 1892 q->mq_map = NULL; 1893 1894 mutex_lock(&all_q_mutex); 1895 list_del_init(&q->all_q_node); 1896 mutex_unlock(&all_q_mutex); 1897 } 1898 1899 /* Basically redo blk_mq_init_queue with queue frozen */ 1900 static void blk_mq_queue_reinit(struct request_queue *q) 1901 { 1902 blk_mq_freeze_queue(q); 1903 1904 blk_mq_sysfs_unregister(q); 1905 1906 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 1907 1908 /* 1909 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 1910 * we should change hctx numa_node according to new topology (this 1911 * involves free and re-allocate memory, worthy doing?) 1912 */ 1913 1914 blk_mq_map_swqueue(q); 1915 1916 blk_mq_sysfs_register(q); 1917 1918 blk_mq_unfreeze_queue(q); 1919 } 1920 1921 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 1922 unsigned long action, void *hcpu) 1923 { 1924 struct request_queue *q; 1925 1926 /* 1927 * Before new mappings are established, hotadded cpu might already 1928 * start handling requests. This doesn't break anything as we map 1929 * offline CPUs to first hardware queue. We will re-init the queue 1930 * below to get optimal settings. 1931 */ 1932 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 1933 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 1934 return NOTIFY_OK; 1935 1936 mutex_lock(&all_q_mutex); 1937 list_for_each_entry(q, &all_q_list, all_q_node) 1938 blk_mq_queue_reinit(q); 1939 mutex_unlock(&all_q_mutex); 1940 return NOTIFY_OK; 1941 } 1942 1943 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 1944 { 1945 int i; 1946 1947 for (i = 0; i < set->nr_hw_queues; i++) { 1948 set->tags[i] = blk_mq_init_rq_map(set, i); 1949 if (!set->tags[i]) 1950 goto out_unwind; 1951 } 1952 1953 return 0; 1954 1955 out_unwind: 1956 while (--i >= 0) 1957 blk_mq_free_rq_map(set, set->tags[i], i); 1958 1959 set->tags = NULL; 1960 return -ENOMEM; 1961 } 1962 1963 /* 1964 * Allocate the request maps associated with this tag_set. Note that this 1965 * may reduce the depth asked for, if memory is tight. set->queue_depth 1966 * will be updated to reflect the allocated depth. 1967 */ 1968 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 1969 { 1970 unsigned int depth; 1971 int err; 1972 1973 depth = set->queue_depth; 1974 do { 1975 err = __blk_mq_alloc_rq_maps(set); 1976 if (!err) 1977 break; 1978 1979 set->queue_depth >>= 1; 1980 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 1981 err = -ENOMEM; 1982 break; 1983 } 1984 } while (set->queue_depth); 1985 1986 if (!set->queue_depth || err) { 1987 pr_err("blk-mq: failed to allocate request map\n"); 1988 return -ENOMEM; 1989 } 1990 1991 if (depth != set->queue_depth) 1992 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 1993 depth, set->queue_depth); 1994 1995 return 0; 1996 } 1997 1998 /* 1999 * Alloc a tag set to be associated with one or more request queues. 2000 * May fail with EINVAL for various error conditions. May adjust the 2001 * requested depth down, if if it too large. In that case, the set 2002 * value will be stored in set->queue_depth. 2003 */ 2004 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2005 { 2006 if (!set->nr_hw_queues) 2007 return -EINVAL; 2008 if (!set->queue_depth) 2009 return -EINVAL; 2010 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2011 return -EINVAL; 2012 2013 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 2014 return -EINVAL; 2015 2016 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2017 pr_info("blk-mq: reduced tag depth to %u\n", 2018 BLK_MQ_MAX_DEPTH); 2019 set->queue_depth = BLK_MQ_MAX_DEPTH; 2020 } 2021 2022 set->tags = kmalloc_node(set->nr_hw_queues * 2023 sizeof(struct blk_mq_tags *), 2024 GFP_KERNEL, set->numa_node); 2025 if (!set->tags) 2026 return -ENOMEM; 2027 2028 if (blk_mq_alloc_rq_maps(set)) 2029 goto enomem; 2030 2031 mutex_init(&set->tag_list_lock); 2032 INIT_LIST_HEAD(&set->tag_list); 2033 2034 return 0; 2035 enomem: 2036 kfree(set->tags); 2037 set->tags = NULL; 2038 return -ENOMEM; 2039 } 2040 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2041 2042 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2043 { 2044 int i; 2045 2046 for (i = 0; i < set->nr_hw_queues; i++) { 2047 if (set->tags[i]) 2048 blk_mq_free_rq_map(set, set->tags[i], i); 2049 } 2050 2051 kfree(set->tags); 2052 set->tags = NULL; 2053 } 2054 EXPORT_SYMBOL(blk_mq_free_tag_set); 2055 2056 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2057 { 2058 struct blk_mq_tag_set *set = q->tag_set; 2059 struct blk_mq_hw_ctx *hctx; 2060 int i, ret; 2061 2062 if (!set || nr > set->queue_depth) 2063 return -EINVAL; 2064 2065 ret = 0; 2066 queue_for_each_hw_ctx(q, hctx, i) { 2067 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2068 if (ret) 2069 break; 2070 } 2071 2072 if (!ret) 2073 q->nr_requests = nr; 2074 2075 return ret; 2076 } 2077 2078 void blk_mq_disable_hotplug(void) 2079 { 2080 mutex_lock(&all_q_mutex); 2081 } 2082 2083 void blk_mq_enable_hotplug(void) 2084 { 2085 mutex_unlock(&all_q_mutex); 2086 } 2087 2088 static int __init blk_mq_init(void) 2089 { 2090 blk_mq_cpu_init(); 2091 2092 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2093 2094 return 0; 2095 } 2096 subsys_initcall(blk_mq_init); 2097