xref: /openbmc/linux/block/blk-mq.c (revision 3aa139aa9fdc138a84243dc49dc18d9b40e1c6e4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PM)
298 		rq->rq_flags |= RQF_PM;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    e->type->ops.limit_depth &&
370 		    !(data->flags & BLK_MQ_REQ_RESERVED))
371 			e->type->ops.limit_depth(data->cmd_flags, data);
372 	}
373 
374 retry:
375 	data->ctx = blk_mq_get_ctx(q);
376 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377 	if (!e)
378 		blk_mq_tag_busy(data->hctx);
379 
380 	/*
381 	 * Waiting allocations only fail because of an inactive hctx.  In that
382 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 	 * should have migrated us to an online CPU by now.
384 	 */
385 	tag = blk_mq_get_tag(data);
386 	if (tag == BLK_MQ_NO_TAG) {
387 		if (data->flags & BLK_MQ_REQ_NOWAIT)
388 			return NULL;
389 
390 		/*
391 		 * Give up the CPU and sleep for a random short time to ensure
392 		 * that thread using a realtime scheduling class are migrated
393 		 * off the CPU, and thus off the hctx that is going away.
394 		 */
395 		msleep(3);
396 		goto retry;
397 	}
398 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400 
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 		blk_mq_req_flags_t flags)
403 {
404 	struct blk_mq_alloc_data data = {
405 		.q		= q,
406 		.flags		= flags,
407 		.cmd_flags	= op,
408 	};
409 	struct request *rq;
410 	int ret;
411 
412 	ret = blk_queue_enter(q, flags);
413 	if (ret)
414 		return ERR_PTR(ret);
415 
416 	rq = __blk_mq_alloc_request(&data);
417 	if (!rq)
418 		goto out_queue_exit;
419 	rq->__data_len = 0;
420 	rq->__sector = (sector_t) -1;
421 	rq->bio = rq->biotail = NULL;
422 	return rq;
423 out_queue_exit:
424 	blk_queue_exit(q);
425 	return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428 
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432 	struct blk_mq_alloc_data data = {
433 		.q		= q,
434 		.flags		= flags,
435 		.cmd_flags	= op,
436 	};
437 	u64 alloc_time_ns = 0;
438 	unsigned int cpu;
439 	unsigned int tag;
440 	int ret;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	ret = -EXDEV;
467 	data.hctx = q->queue_hw_ctx[hctx_idx];
468 	if (!blk_mq_hw_queue_mapped(data.hctx))
469 		goto out_queue_exit;
470 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471 	data.ctx = __blk_mq_get_ctx(q, cpu);
472 
473 	if (!q->elevator)
474 		blk_mq_tag_busy(data.hctx);
475 
476 	ret = -EWOULDBLOCK;
477 	tag = blk_mq_get_tag(&data);
478 	if (tag == BLK_MQ_NO_TAG)
479 		goto out_queue_exit;
480 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481 
482 out_queue_exit:
483 	blk_queue_exit(q);
484 	return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487 
488 static void __blk_mq_free_request(struct request *rq)
489 {
490 	struct request_queue *q = rq->q;
491 	struct blk_mq_ctx *ctx = rq->mq_ctx;
492 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 	const int sched_tag = rq->internal_tag;
494 
495 	blk_crypto_free_request(rq);
496 	blk_pm_mark_last_busy(rq);
497 	rq->mq_hctx = NULL;
498 	if (rq->tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500 	if (sched_tag != BLK_MQ_NO_TAG)
501 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502 	blk_mq_sched_restart(hctx);
503 	blk_queue_exit(q);
504 }
505 
506 void blk_mq_free_request(struct request *rq)
507 {
508 	struct request_queue *q = rq->q;
509 	struct elevator_queue *e = q->elevator;
510 	struct blk_mq_ctx *ctx = rq->mq_ctx;
511 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512 
513 	if (rq->rq_flags & RQF_ELVPRIV) {
514 		if (e && e->type->ops.finish_request)
515 			e->type->ops.finish_request(rq);
516 		if (rq->elv.icq) {
517 			put_io_context(rq->elv.icq->ioc);
518 			rq->elv.icq = NULL;
519 		}
520 	}
521 
522 	ctx->rq_completed[rq_is_sync(rq)]++;
523 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
524 		__blk_mq_dec_active_requests(hctx);
525 
526 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527 		laptop_io_completion(q->backing_dev_info);
528 
529 	rq_qos_done(q, rq);
530 
531 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532 	if (refcount_dec_and_test(&rq->ref))
533 		__blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536 
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539 	u64 now = 0;
540 
541 	if (blk_mq_need_time_stamp(rq))
542 		now = ktime_get_ns();
543 
544 	if (rq->rq_flags & RQF_STATS) {
545 		blk_mq_poll_stats_start(rq->q);
546 		blk_stat_add(rq, now);
547 	}
548 
549 	blk_mq_sched_completed_request(rq, now);
550 
551 	blk_account_io_done(rq, now);
552 
553 	if (rq->end_io) {
554 		rq_qos_done(rq->q, rq);
555 		rq->end_io(rq, error);
556 	} else {
557 		blk_mq_free_request(rq);
558 	}
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561 
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 		BUG();
566 	__blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569 
570 static void blk_complete_reqs(struct llist_head *list)
571 {
572 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
573 	struct request *rq, *next;
574 
575 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
576 		rq->q->mq_ops->complete(rq);
577 }
578 
579 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
580 {
581 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
582 }
583 
584 static int blk_softirq_cpu_dead(unsigned int cpu)
585 {
586 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
587 	return 0;
588 }
589 
590 static void __blk_mq_complete_request_remote(void *data)
591 {
592 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
593 }
594 
595 static inline bool blk_mq_complete_need_ipi(struct request *rq)
596 {
597 	int cpu = raw_smp_processor_id();
598 
599 	if (!IS_ENABLED(CONFIG_SMP) ||
600 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
601 		return false;
602 	/*
603 	 * With force threaded interrupts enabled, raising softirq from an SMP
604 	 * function call will always result in waking the ksoftirqd thread.
605 	 * This is probably worse than completing the request on a different
606 	 * cache domain.
607 	 */
608 	if (force_irqthreads)
609 		return false;
610 
611 	/* same CPU or cache domain?  Complete locally */
612 	if (cpu == rq->mq_ctx->cpu ||
613 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
614 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
615 		return false;
616 
617 	/* don't try to IPI to an offline CPU */
618 	return cpu_online(rq->mq_ctx->cpu);
619 }
620 
621 static void blk_mq_complete_send_ipi(struct request *rq)
622 {
623 	struct llist_head *list;
624 	unsigned int cpu;
625 
626 	cpu = rq->mq_ctx->cpu;
627 	list = &per_cpu(blk_cpu_done, cpu);
628 	if (llist_add(&rq->ipi_list, list)) {
629 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
630 		smp_call_function_single_async(cpu, &rq->csd);
631 	}
632 }
633 
634 static void blk_mq_raise_softirq(struct request *rq)
635 {
636 	struct llist_head *list;
637 
638 	preempt_disable();
639 	list = this_cpu_ptr(&blk_cpu_done);
640 	if (llist_add(&rq->ipi_list, list))
641 		raise_softirq(BLOCK_SOFTIRQ);
642 	preempt_enable();
643 }
644 
645 bool blk_mq_complete_request_remote(struct request *rq)
646 {
647 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
648 
649 	/*
650 	 * For a polled request, always complete locallly, it's pointless
651 	 * to redirect the completion.
652 	 */
653 	if (rq->cmd_flags & REQ_HIPRI)
654 		return false;
655 
656 	if (blk_mq_complete_need_ipi(rq)) {
657 		blk_mq_complete_send_ipi(rq);
658 		return true;
659 	}
660 
661 	if (rq->q->nr_hw_queues == 1) {
662 		blk_mq_raise_softirq(rq);
663 		return true;
664 	}
665 	return false;
666 }
667 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
668 
669 /**
670  * blk_mq_complete_request - end I/O on a request
671  * @rq:		the request being processed
672  *
673  * Description:
674  *	Complete a request by scheduling the ->complete_rq operation.
675  **/
676 void blk_mq_complete_request(struct request *rq)
677 {
678 	if (!blk_mq_complete_request_remote(rq))
679 		rq->q->mq_ops->complete(rq);
680 }
681 EXPORT_SYMBOL(blk_mq_complete_request);
682 
683 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
684 	__releases(hctx->srcu)
685 {
686 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
687 		rcu_read_unlock();
688 	else
689 		srcu_read_unlock(hctx->srcu, srcu_idx);
690 }
691 
692 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
693 	__acquires(hctx->srcu)
694 {
695 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
696 		/* shut up gcc false positive */
697 		*srcu_idx = 0;
698 		rcu_read_lock();
699 	} else
700 		*srcu_idx = srcu_read_lock(hctx->srcu);
701 }
702 
703 /**
704  * blk_mq_start_request - Start processing a request
705  * @rq: Pointer to request to be started
706  *
707  * Function used by device drivers to notify the block layer that a request
708  * is going to be processed now, so blk layer can do proper initializations
709  * such as starting the timeout timer.
710  */
711 void blk_mq_start_request(struct request *rq)
712 {
713 	struct request_queue *q = rq->q;
714 
715 	trace_block_rq_issue(rq);
716 
717 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
718 		rq->io_start_time_ns = ktime_get_ns();
719 		rq->stats_sectors = blk_rq_sectors(rq);
720 		rq->rq_flags |= RQF_STATS;
721 		rq_qos_issue(q, rq);
722 	}
723 
724 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
725 
726 	blk_add_timer(rq);
727 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
728 
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
731 		q->integrity.profile->prepare_fn(rq);
732 #endif
733 }
734 EXPORT_SYMBOL(blk_mq_start_request);
735 
736 static void __blk_mq_requeue_request(struct request *rq)
737 {
738 	struct request_queue *q = rq->q;
739 
740 	blk_mq_put_driver_tag(rq);
741 
742 	trace_block_rq_requeue(rq);
743 	rq_qos_requeue(q, rq);
744 
745 	if (blk_mq_request_started(rq)) {
746 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
747 		rq->rq_flags &= ~RQF_TIMED_OUT;
748 	}
749 }
750 
751 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
752 {
753 	__blk_mq_requeue_request(rq);
754 
755 	/* this request will be re-inserted to io scheduler queue */
756 	blk_mq_sched_requeue_request(rq);
757 
758 	BUG_ON(!list_empty(&rq->queuelist));
759 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
760 }
761 EXPORT_SYMBOL(blk_mq_requeue_request);
762 
763 static void blk_mq_requeue_work(struct work_struct *work)
764 {
765 	struct request_queue *q =
766 		container_of(work, struct request_queue, requeue_work.work);
767 	LIST_HEAD(rq_list);
768 	struct request *rq, *next;
769 
770 	spin_lock_irq(&q->requeue_lock);
771 	list_splice_init(&q->requeue_list, &rq_list);
772 	spin_unlock_irq(&q->requeue_lock);
773 
774 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
775 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
776 			continue;
777 
778 		rq->rq_flags &= ~RQF_SOFTBARRIER;
779 		list_del_init(&rq->queuelist);
780 		/*
781 		 * If RQF_DONTPREP, rq has contained some driver specific
782 		 * data, so insert it to hctx dispatch list to avoid any
783 		 * merge.
784 		 */
785 		if (rq->rq_flags & RQF_DONTPREP)
786 			blk_mq_request_bypass_insert(rq, false, false);
787 		else
788 			blk_mq_sched_insert_request(rq, true, false, false);
789 	}
790 
791 	while (!list_empty(&rq_list)) {
792 		rq = list_entry(rq_list.next, struct request, queuelist);
793 		list_del_init(&rq->queuelist);
794 		blk_mq_sched_insert_request(rq, false, false, false);
795 	}
796 
797 	blk_mq_run_hw_queues(q, false);
798 }
799 
800 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
801 				bool kick_requeue_list)
802 {
803 	struct request_queue *q = rq->q;
804 	unsigned long flags;
805 
806 	/*
807 	 * We abuse this flag that is otherwise used by the I/O scheduler to
808 	 * request head insertion from the workqueue.
809 	 */
810 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
811 
812 	spin_lock_irqsave(&q->requeue_lock, flags);
813 	if (at_head) {
814 		rq->rq_flags |= RQF_SOFTBARRIER;
815 		list_add(&rq->queuelist, &q->requeue_list);
816 	} else {
817 		list_add_tail(&rq->queuelist, &q->requeue_list);
818 	}
819 	spin_unlock_irqrestore(&q->requeue_lock, flags);
820 
821 	if (kick_requeue_list)
822 		blk_mq_kick_requeue_list(q);
823 }
824 
825 void blk_mq_kick_requeue_list(struct request_queue *q)
826 {
827 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
828 }
829 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
830 
831 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
832 				    unsigned long msecs)
833 {
834 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
835 				    msecs_to_jiffies(msecs));
836 }
837 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
838 
839 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
840 {
841 	if (tag < tags->nr_tags) {
842 		prefetch(tags->rqs[tag]);
843 		return tags->rqs[tag];
844 	}
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(blk_mq_tag_to_rq);
849 
850 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
851 			       void *priv, bool reserved)
852 {
853 	/*
854 	 * If we find a request that isn't idle and the queue matches,
855 	 * we know the queue is busy. Return false to stop the iteration.
856 	 */
857 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
858 		bool *busy = priv;
859 
860 		*busy = true;
861 		return false;
862 	}
863 
864 	return true;
865 }
866 
867 bool blk_mq_queue_inflight(struct request_queue *q)
868 {
869 	bool busy = false;
870 
871 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
872 	return busy;
873 }
874 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
875 
876 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
877 {
878 	req->rq_flags |= RQF_TIMED_OUT;
879 	if (req->q->mq_ops->timeout) {
880 		enum blk_eh_timer_return ret;
881 
882 		ret = req->q->mq_ops->timeout(req, reserved);
883 		if (ret == BLK_EH_DONE)
884 			return;
885 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
886 	}
887 
888 	blk_add_timer(req);
889 }
890 
891 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
892 {
893 	unsigned long deadline;
894 
895 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
896 		return false;
897 	if (rq->rq_flags & RQF_TIMED_OUT)
898 		return false;
899 
900 	deadline = READ_ONCE(rq->deadline);
901 	if (time_after_eq(jiffies, deadline))
902 		return true;
903 
904 	if (*next == 0)
905 		*next = deadline;
906 	else if (time_after(*next, deadline))
907 		*next = deadline;
908 	return false;
909 }
910 
911 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
912 		struct request *rq, void *priv, bool reserved)
913 {
914 	unsigned long *next = priv;
915 
916 	/*
917 	 * Just do a quick check if it is expired before locking the request in
918 	 * so we're not unnecessarilly synchronizing across CPUs.
919 	 */
920 	if (!blk_mq_req_expired(rq, next))
921 		return true;
922 
923 	/*
924 	 * We have reason to believe the request may be expired. Take a
925 	 * reference on the request to lock this request lifetime into its
926 	 * currently allocated context to prevent it from being reallocated in
927 	 * the event the completion by-passes this timeout handler.
928 	 *
929 	 * If the reference was already released, then the driver beat the
930 	 * timeout handler to posting a natural completion.
931 	 */
932 	if (!refcount_inc_not_zero(&rq->ref))
933 		return true;
934 
935 	/*
936 	 * The request is now locked and cannot be reallocated underneath the
937 	 * timeout handler's processing. Re-verify this exact request is truly
938 	 * expired; if it is not expired, then the request was completed and
939 	 * reallocated as a new request.
940 	 */
941 	if (blk_mq_req_expired(rq, next))
942 		blk_mq_rq_timed_out(rq, reserved);
943 
944 	if (is_flush_rq(rq, hctx))
945 		rq->end_io(rq, 0);
946 	else if (refcount_dec_and_test(&rq->ref))
947 		__blk_mq_free_request(rq);
948 
949 	return true;
950 }
951 
952 static void blk_mq_timeout_work(struct work_struct *work)
953 {
954 	struct request_queue *q =
955 		container_of(work, struct request_queue, timeout_work);
956 	unsigned long next = 0;
957 	struct blk_mq_hw_ctx *hctx;
958 	int i;
959 
960 	/* A deadlock might occur if a request is stuck requiring a
961 	 * timeout at the same time a queue freeze is waiting
962 	 * completion, since the timeout code would not be able to
963 	 * acquire the queue reference here.
964 	 *
965 	 * That's why we don't use blk_queue_enter here; instead, we use
966 	 * percpu_ref_tryget directly, because we need to be able to
967 	 * obtain a reference even in the short window between the queue
968 	 * starting to freeze, by dropping the first reference in
969 	 * blk_freeze_queue_start, and the moment the last request is
970 	 * consumed, marked by the instant q_usage_counter reaches
971 	 * zero.
972 	 */
973 	if (!percpu_ref_tryget(&q->q_usage_counter))
974 		return;
975 
976 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
977 
978 	if (next != 0) {
979 		mod_timer(&q->timeout, next);
980 	} else {
981 		/*
982 		 * Request timeouts are handled as a forward rolling timer. If
983 		 * we end up here it means that no requests are pending and
984 		 * also that no request has been pending for a while. Mark
985 		 * each hctx as idle.
986 		 */
987 		queue_for_each_hw_ctx(q, hctx, i) {
988 			/* the hctx may be unmapped, so check it here */
989 			if (blk_mq_hw_queue_mapped(hctx))
990 				blk_mq_tag_idle(hctx);
991 		}
992 	}
993 	blk_queue_exit(q);
994 }
995 
996 struct flush_busy_ctx_data {
997 	struct blk_mq_hw_ctx *hctx;
998 	struct list_head *list;
999 };
1000 
1001 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1002 {
1003 	struct flush_busy_ctx_data *flush_data = data;
1004 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1005 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1006 	enum hctx_type type = hctx->type;
1007 
1008 	spin_lock(&ctx->lock);
1009 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1010 	sbitmap_clear_bit(sb, bitnr);
1011 	spin_unlock(&ctx->lock);
1012 	return true;
1013 }
1014 
1015 /*
1016  * Process software queues that have been marked busy, splicing them
1017  * to the for-dispatch
1018  */
1019 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1020 {
1021 	struct flush_busy_ctx_data data = {
1022 		.hctx = hctx,
1023 		.list = list,
1024 	};
1025 
1026 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1027 }
1028 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1029 
1030 struct dispatch_rq_data {
1031 	struct blk_mq_hw_ctx *hctx;
1032 	struct request *rq;
1033 };
1034 
1035 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1036 		void *data)
1037 {
1038 	struct dispatch_rq_data *dispatch_data = data;
1039 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1040 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1041 	enum hctx_type type = hctx->type;
1042 
1043 	spin_lock(&ctx->lock);
1044 	if (!list_empty(&ctx->rq_lists[type])) {
1045 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1046 		list_del_init(&dispatch_data->rq->queuelist);
1047 		if (list_empty(&ctx->rq_lists[type]))
1048 			sbitmap_clear_bit(sb, bitnr);
1049 	}
1050 	spin_unlock(&ctx->lock);
1051 
1052 	return !dispatch_data->rq;
1053 }
1054 
1055 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1056 					struct blk_mq_ctx *start)
1057 {
1058 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1059 	struct dispatch_rq_data data = {
1060 		.hctx = hctx,
1061 		.rq   = NULL,
1062 	};
1063 
1064 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1065 			       dispatch_rq_from_ctx, &data);
1066 
1067 	return data.rq;
1068 }
1069 
1070 static inline unsigned int queued_to_index(unsigned int queued)
1071 {
1072 	if (!queued)
1073 		return 0;
1074 
1075 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1076 }
1077 
1078 static bool __blk_mq_get_driver_tag(struct request *rq)
1079 {
1080 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1081 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1082 	int tag;
1083 
1084 	blk_mq_tag_busy(rq->mq_hctx);
1085 
1086 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1087 		bt = rq->mq_hctx->tags->breserved_tags;
1088 		tag_offset = 0;
1089 	} else {
1090 		if (!hctx_may_queue(rq->mq_hctx, bt))
1091 			return false;
1092 	}
1093 
1094 	tag = __sbitmap_queue_get(bt);
1095 	if (tag == BLK_MQ_NO_TAG)
1096 		return false;
1097 
1098 	rq->tag = tag + tag_offset;
1099 	return true;
1100 }
1101 
1102 static bool blk_mq_get_driver_tag(struct request *rq)
1103 {
1104 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1105 
1106 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1107 		return false;
1108 
1109 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1110 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1111 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1112 		__blk_mq_inc_active_requests(hctx);
1113 	}
1114 	hctx->tags->rqs[rq->tag] = rq;
1115 	return true;
1116 }
1117 
1118 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1119 				int flags, void *key)
1120 {
1121 	struct blk_mq_hw_ctx *hctx;
1122 
1123 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1124 
1125 	spin_lock(&hctx->dispatch_wait_lock);
1126 	if (!list_empty(&wait->entry)) {
1127 		struct sbitmap_queue *sbq;
1128 
1129 		list_del_init(&wait->entry);
1130 		sbq = hctx->tags->bitmap_tags;
1131 		atomic_dec(&sbq->ws_active);
1132 	}
1133 	spin_unlock(&hctx->dispatch_wait_lock);
1134 
1135 	blk_mq_run_hw_queue(hctx, true);
1136 	return 1;
1137 }
1138 
1139 /*
1140  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1141  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1142  * restart. For both cases, take care to check the condition again after
1143  * marking us as waiting.
1144  */
1145 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1146 				 struct request *rq)
1147 {
1148 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1149 	struct wait_queue_head *wq;
1150 	wait_queue_entry_t *wait;
1151 	bool ret;
1152 
1153 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1154 		blk_mq_sched_mark_restart_hctx(hctx);
1155 
1156 		/*
1157 		 * It's possible that a tag was freed in the window between the
1158 		 * allocation failure and adding the hardware queue to the wait
1159 		 * queue.
1160 		 *
1161 		 * Don't clear RESTART here, someone else could have set it.
1162 		 * At most this will cost an extra queue run.
1163 		 */
1164 		return blk_mq_get_driver_tag(rq);
1165 	}
1166 
1167 	wait = &hctx->dispatch_wait;
1168 	if (!list_empty_careful(&wait->entry))
1169 		return false;
1170 
1171 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1172 
1173 	spin_lock_irq(&wq->lock);
1174 	spin_lock(&hctx->dispatch_wait_lock);
1175 	if (!list_empty(&wait->entry)) {
1176 		spin_unlock(&hctx->dispatch_wait_lock);
1177 		spin_unlock_irq(&wq->lock);
1178 		return false;
1179 	}
1180 
1181 	atomic_inc(&sbq->ws_active);
1182 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1183 	__add_wait_queue(wq, wait);
1184 
1185 	/*
1186 	 * It's possible that a tag was freed in the window between the
1187 	 * allocation failure and adding the hardware queue to the wait
1188 	 * queue.
1189 	 */
1190 	ret = blk_mq_get_driver_tag(rq);
1191 	if (!ret) {
1192 		spin_unlock(&hctx->dispatch_wait_lock);
1193 		spin_unlock_irq(&wq->lock);
1194 		return false;
1195 	}
1196 
1197 	/*
1198 	 * We got a tag, remove ourselves from the wait queue to ensure
1199 	 * someone else gets the wakeup.
1200 	 */
1201 	list_del_init(&wait->entry);
1202 	atomic_dec(&sbq->ws_active);
1203 	spin_unlock(&hctx->dispatch_wait_lock);
1204 	spin_unlock_irq(&wq->lock);
1205 
1206 	return true;
1207 }
1208 
1209 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1211 /*
1212  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1213  * - EWMA is one simple way to compute running average value
1214  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1215  * - take 4 as factor for avoiding to get too small(0) result, and this
1216  *   factor doesn't matter because EWMA decreases exponentially
1217  */
1218 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1219 {
1220 	unsigned int ewma;
1221 
1222 	if (hctx->queue->elevator)
1223 		return;
1224 
1225 	ewma = hctx->dispatch_busy;
1226 
1227 	if (!ewma && !busy)
1228 		return;
1229 
1230 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1231 	if (busy)
1232 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1233 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1234 
1235 	hctx->dispatch_busy = ewma;
1236 }
1237 
1238 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1239 
1240 static void blk_mq_handle_dev_resource(struct request *rq,
1241 				       struct list_head *list)
1242 {
1243 	struct request *next =
1244 		list_first_entry_or_null(list, struct request, queuelist);
1245 
1246 	/*
1247 	 * If an I/O scheduler has been configured and we got a driver tag for
1248 	 * the next request already, free it.
1249 	 */
1250 	if (next)
1251 		blk_mq_put_driver_tag(next);
1252 
1253 	list_add(&rq->queuelist, list);
1254 	__blk_mq_requeue_request(rq);
1255 }
1256 
1257 static void blk_mq_handle_zone_resource(struct request *rq,
1258 					struct list_head *zone_list)
1259 {
1260 	/*
1261 	 * If we end up here it is because we cannot dispatch a request to a
1262 	 * specific zone due to LLD level zone-write locking or other zone
1263 	 * related resource not being available. In this case, set the request
1264 	 * aside in zone_list for retrying it later.
1265 	 */
1266 	list_add(&rq->queuelist, zone_list);
1267 	__blk_mq_requeue_request(rq);
1268 }
1269 
1270 enum prep_dispatch {
1271 	PREP_DISPATCH_OK,
1272 	PREP_DISPATCH_NO_TAG,
1273 	PREP_DISPATCH_NO_BUDGET,
1274 };
1275 
1276 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1277 						  bool need_budget)
1278 {
1279 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1280 
1281 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1282 		blk_mq_put_driver_tag(rq);
1283 		return PREP_DISPATCH_NO_BUDGET;
1284 	}
1285 
1286 	if (!blk_mq_get_driver_tag(rq)) {
1287 		/*
1288 		 * The initial allocation attempt failed, so we need to
1289 		 * rerun the hardware queue when a tag is freed. The
1290 		 * waitqueue takes care of that. If the queue is run
1291 		 * before we add this entry back on the dispatch list,
1292 		 * we'll re-run it below.
1293 		 */
1294 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1295 			/*
1296 			 * All budgets not got from this function will be put
1297 			 * together during handling partial dispatch
1298 			 */
1299 			if (need_budget)
1300 				blk_mq_put_dispatch_budget(rq->q);
1301 			return PREP_DISPATCH_NO_TAG;
1302 		}
1303 	}
1304 
1305 	return PREP_DISPATCH_OK;
1306 }
1307 
1308 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1309 static void blk_mq_release_budgets(struct request_queue *q,
1310 		unsigned int nr_budgets)
1311 {
1312 	int i;
1313 
1314 	for (i = 0; i < nr_budgets; i++)
1315 		blk_mq_put_dispatch_budget(q);
1316 }
1317 
1318 /*
1319  * Returns true if we did some work AND can potentially do more.
1320  */
1321 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1322 			     unsigned int nr_budgets)
1323 {
1324 	enum prep_dispatch prep;
1325 	struct request_queue *q = hctx->queue;
1326 	struct request *rq, *nxt;
1327 	int errors, queued;
1328 	blk_status_t ret = BLK_STS_OK;
1329 	LIST_HEAD(zone_list);
1330 
1331 	if (list_empty(list))
1332 		return false;
1333 
1334 	/*
1335 	 * Now process all the entries, sending them to the driver.
1336 	 */
1337 	errors = queued = 0;
1338 	do {
1339 		struct blk_mq_queue_data bd;
1340 
1341 		rq = list_first_entry(list, struct request, queuelist);
1342 
1343 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1344 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345 		if (prep != PREP_DISPATCH_OK)
1346 			break;
1347 
1348 		list_del_init(&rq->queuelist);
1349 
1350 		bd.rq = rq;
1351 
1352 		/*
1353 		 * Flag last if we have no more requests, or if we have more
1354 		 * but can't assign a driver tag to it.
1355 		 */
1356 		if (list_empty(list))
1357 			bd.last = true;
1358 		else {
1359 			nxt = list_first_entry(list, struct request, queuelist);
1360 			bd.last = !blk_mq_get_driver_tag(nxt);
1361 		}
1362 
1363 		/*
1364 		 * once the request is queued to lld, no need to cover the
1365 		 * budget any more
1366 		 */
1367 		if (nr_budgets)
1368 			nr_budgets--;
1369 		ret = q->mq_ops->queue_rq(hctx, &bd);
1370 		switch (ret) {
1371 		case BLK_STS_OK:
1372 			queued++;
1373 			break;
1374 		case BLK_STS_RESOURCE:
1375 		case BLK_STS_DEV_RESOURCE:
1376 			blk_mq_handle_dev_resource(rq, list);
1377 			goto out;
1378 		case BLK_STS_ZONE_RESOURCE:
1379 			/*
1380 			 * Move the request to zone_list and keep going through
1381 			 * the dispatch list to find more requests the drive can
1382 			 * accept.
1383 			 */
1384 			blk_mq_handle_zone_resource(rq, &zone_list);
1385 			break;
1386 		default:
1387 			errors++;
1388 			blk_mq_end_request(rq, ret);
1389 		}
1390 	} while (!list_empty(list));
1391 out:
1392 	if (!list_empty(&zone_list))
1393 		list_splice_tail_init(&zone_list, list);
1394 
1395 	hctx->dispatched[queued_to_index(queued)]++;
1396 
1397 	/* If we didn't flush the entire list, we could have told the driver
1398 	 * there was more coming, but that turned out to be a lie.
1399 	 */
1400 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1401 		q->mq_ops->commit_rqs(hctx);
1402 	/*
1403 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1404 	 * that is where we will continue on next queue run.
1405 	 */
1406 	if (!list_empty(list)) {
1407 		bool needs_restart;
1408 		/* For non-shared tags, the RESTART check will suffice */
1409 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1410 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1411 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1412 
1413 		blk_mq_release_budgets(q, nr_budgets);
1414 
1415 		spin_lock(&hctx->lock);
1416 		list_splice_tail_init(list, &hctx->dispatch);
1417 		spin_unlock(&hctx->lock);
1418 
1419 		/*
1420 		 * Order adding requests to hctx->dispatch and checking
1421 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1422 		 * in blk_mq_sched_restart(). Avoid restart code path to
1423 		 * miss the new added requests to hctx->dispatch, meantime
1424 		 * SCHED_RESTART is observed here.
1425 		 */
1426 		smp_mb();
1427 
1428 		/*
1429 		 * If SCHED_RESTART was set by the caller of this function and
1430 		 * it is no longer set that means that it was cleared by another
1431 		 * thread and hence that a queue rerun is needed.
1432 		 *
1433 		 * If 'no_tag' is set, that means that we failed getting
1434 		 * a driver tag with an I/O scheduler attached. If our dispatch
1435 		 * waitqueue is no longer active, ensure that we run the queue
1436 		 * AFTER adding our entries back to the list.
1437 		 *
1438 		 * If no I/O scheduler has been configured it is possible that
1439 		 * the hardware queue got stopped and restarted before requests
1440 		 * were pushed back onto the dispatch list. Rerun the queue to
1441 		 * avoid starvation. Notes:
1442 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1443 		 *   been stopped before rerunning a queue.
1444 		 * - Some but not all block drivers stop a queue before
1445 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1446 		 *   and dm-rq.
1447 		 *
1448 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1449 		 * bit is set, run queue after a delay to avoid IO stalls
1450 		 * that could otherwise occur if the queue is idle.  We'll do
1451 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1452 		 */
1453 		needs_restart = blk_mq_sched_needs_restart(hctx);
1454 		if (!needs_restart ||
1455 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1456 			blk_mq_run_hw_queue(hctx, true);
1457 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1458 					   no_budget_avail))
1459 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1460 
1461 		blk_mq_update_dispatch_busy(hctx, true);
1462 		return false;
1463 	} else
1464 		blk_mq_update_dispatch_busy(hctx, false);
1465 
1466 	return (queued + errors) != 0;
1467 }
1468 
1469 /**
1470  * __blk_mq_run_hw_queue - Run a hardware queue.
1471  * @hctx: Pointer to the hardware queue to run.
1472  *
1473  * Send pending requests to the hardware.
1474  */
1475 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1476 {
1477 	int srcu_idx;
1478 
1479 	/*
1480 	 * We can't run the queue inline with ints disabled. Ensure that
1481 	 * we catch bad users of this early.
1482 	 */
1483 	WARN_ON_ONCE(in_interrupt());
1484 
1485 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1486 
1487 	hctx_lock(hctx, &srcu_idx);
1488 	blk_mq_sched_dispatch_requests(hctx);
1489 	hctx_unlock(hctx, srcu_idx);
1490 }
1491 
1492 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1493 {
1494 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1495 
1496 	if (cpu >= nr_cpu_ids)
1497 		cpu = cpumask_first(hctx->cpumask);
1498 	return cpu;
1499 }
1500 
1501 /*
1502  * It'd be great if the workqueue API had a way to pass
1503  * in a mask and had some smarts for more clever placement.
1504  * For now we just round-robin here, switching for every
1505  * BLK_MQ_CPU_WORK_BATCH queued items.
1506  */
1507 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1508 {
1509 	bool tried = false;
1510 	int next_cpu = hctx->next_cpu;
1511 
1512 	if (hctx->queue->nr_hw_queues == 1)
1513 		return WORK_CPU_UNBOUND;
1514 
1515 	if (--hctx->next_cpu_batch <= 0) {
1516 select_cpu:
1517 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1518 				cpu_online_mask);
1519 		if (next_cpu >= nr_cpu_ids)
1520 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1521 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1522 	}
1523 
1524 	/*
1525 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1526 	 * and it should only happen in the path of handling CPU DEAD.
1527 	 */
1528 	if (!cpu_online(next_cpu)) {
1529 		if (!tried) {
1530 			tried = true;
1531 			goto select_cpu;
1532 		}
1533 
1534 		/*
1535 		 * Make sure to re-select CPU next time once after CPUs
1536 		 * in hctx->cpumask become online again.
1537 		 */
1538 		hctx->next_cpu = next_cpu;
1539 		hctx->next_cpu_batch = 1;
1540 		return WORK_CPU_UNBOUND;
1541 	}
1542 
1543 	hctx->next_cpu = next_cpu;
1544 	return next_cpu;
1545 }
1546 
1547 /**
1548  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1549  * @hctx: Pointer to the hardware queue to run.
1550  * @async: If we want to run the queue asynchronously.
1551  * @msecs: Milliseconds of delay to wait before running the queue.
1552  *
1553  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1554  * with a delay of @msecs.
1555  */
1556 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1557 					unsigned long msecs)
1558 {
1559 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1560 		return;
1561 
1562 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1563 		int cpu = get_cpu();
1564 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1565 			__blk_mq_run_hw_queue(hctx);
1566 			put_cpu();
1567 			return;
1568 		}
1569 
1570 		put_cpu();
1571 	}
1572 
1573 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1574 				    msecs_to_jiffies(msecs));
1575 }
1576 
1577 /**
1578  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1579  * @hctx: Pointer to the hardware queue to run.
1580  * @msecs: Milliseconds of delay to wait before running the queue.
1581  *
1582  * Run a hardware queue asynchronously with a delay of @msecs.
1583  */
1584 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1585 {
1586 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1587 }
1588 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1589 
1590 /**
1591  * blk_mq_run_hw_queue - Start to run a hardware queue.
1592  * @hctx: Pointer to the hardware queue to run.
1593  * @async: If we want to run the queue asynchronously.
1594  *
1595  * Check if the request queue is not in a quiesced state and if there are
1596  * pending requests to be sent. If this is true, run the queue to send requests
1597  * to hardware.
1598  */
1599 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1600 {
1601 	int srcu_idx;
1602 	bool need_run;
1603 
1604 	/*
1605 	 * When queue is quiesced, we may be switching io scheduler, or
1606 	 * updating nr_hw_queues, or other things, and we can't run queue
1607 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1608 	 *
1609 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1610 	 * quiesced.
1611 	 */
1612 	hctx_lock(hctx, &srcu_idx);
1613 	need_run = !blk_queue_quiesced(hctx->queue) &&
1614 		blk_mq_hctx_has_pending(hctx);
1615 	hctx_unlock(hctx, srcu_idx);
1616 
1617 	if (need_run)
1618 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1619 }
1620 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1621 
1622 /*
1623  * Is the request queue handled by an IO scheduler that does not respect
1624  * hardware queues when dispatching?
1625  */
1626 static bool blk_mq_has_sqsched(struct request_queue *q)
1627 {
1628 	struct elevator_queue *e = q->elevator;
1629 
1630 	if (e && e->type->ops.dispatch_request &&
1631 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1632 		return true;
1633 	return false;
1634 }
1635 
1636 /*
1637  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1638  * scheduler.
1639  */
1640 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1641 {
1642 	struct blk_mq_hw_ctx *hctx;
1643 
1644 	/*
1645 	 * If the IO scheduler does not respect hardware queues when
1646 	 * dispatching, we just don't bother with multiple HW queues and
1647 	 * dispatch from hctx for the current CPU since running multiple queues
1648 	 * just causes lock contention inside the scheduler and pointless cache
1649 	 * bouncing.
1650 	 */
1651 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1652 				     raw_smp_processor_id());
1653 	if (!blk_mq_hctx_stopped(hctx))
1654 		return hctx;
1655 	return NULL;
1656 }
1657 
1658 /**
1659  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1660  * @q: Pointer to the request queue to run.
1661  * @async: If we want to run the queue asynchronously.
1662  */
1663 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1664 {
1665 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1666 	int i;
1667 
1668 	sq_hctx = NULL;
1669 	if (blk_mq_has_sqsched(q))
1670 		sq_hctx = blk_mq_get_sq_hctx(q);
1671 	queue_for_each_hw_ctx(q, hctx, i) {
1672 		if (blk_mq_hctx_stopped(hctx))
1673 			continue;
1674 		/*
1675 		 * Dispatch from this hctx either if there's no hctx preferred
1676 		 * by IO scheduler or if it has requests that bypass the
1677 		 * scheduler.
1678 		 */
1679 		if (!sq_hctx || sq_hctx == hctx ||
1680 		    !list_empty_careful(&hctx->dispatch))
1681 			blk_mq_run_hw_queue(hctx, async);
1682 	}
1683 }
1684 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1685 
1686 /**
1687  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1688  * @q: Pointer to the request queue to run.
1689  * @msecs: Milliseconds of delay to wait before running the queues.
1690  */
1691 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1692 {
1693 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1694 	int i;
1695 
1696 	sq_hctx = NULL;
1697 	if (blk_mq_has_sqsched(q))
1698 		sq_hctx = blk_mq_get_sq_hctx(q);
1699 	queue_for_each_hw_ctx(q, hctx, i) {
1700 		if (blk_mq_hctx_stopped(hctx))
1701 			continue;
1702 		/*
1703 		 * Dispatch from this hctx either if there's no hctx preferred
1704 		 * by IO scheduler or if it has requests that bypass the
1705 		 * scheduler.
1706 		 */
1707 		if (!sq_hctx || sq_hctx == hctx ||
1708 		    !list_empty_careful(&hctx->dispatch))
1709 			blk_mq_delay_run_hw_queue(hctx, msecs);
1710 	}
1711 }
1712 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1713 
1714 /**
1715  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1716  * @q: request queue.
1717  *
1718  * The caller is responsible for serializing this function against
1719  * blk_mq_{start,stop}_hw_queue().
1720  */
1721 bool blk_mq_queue_stopped(struct request_queue *q)
1722 {
1723 	struct blk_mq_hw_ctx *hctx;
1724 	int i;
1725 
1726 	queue_for_each_hw_ctx(q, hctx, i)
1727 		if (blk_mq_hctx_stopped(hctx))
1728 			return true;
1729 
1730 	return false;
1731 }
1732 EXPORT_SYMBOL(blk_mq_queue_stopped);
1733 
1734 /*
1735  * This function is often used for pausing .queue_rq() by driver when
1736  * there isn't enough resource or some conditions aren't satisfied, and
1737  * BLK_STS_RESOURCE is usually returned.
1738  *
1739  * We do not guarantee that dispatch can be drained or blocked
1740  * after blk_mq_stop_hw_queue() returns. Please use
1741  * blk_mq_quiesce_queue() for that requirement.
1742  */
1743 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1744 {
1745 	cancel_delayed_work(&hctx->run_work);
1746 
1747 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1748 }
1749 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1750 
1751 /*
1752  * This function is often used for pausing .queue_rq() by driver when
1753  * there isn't enough resource or some conditions aren't satisfied, and
1754  * BLK_STS_RESOURCE is usually returned.
1755  *
1756  * We do not guarantee that dispatch can be drained or blocked
1757  * after blk_mq_stop_hw_queues() returns. Please use
1758  * blk_mq_quiesce_queue() for that requirement.
1759  */
1760 void blk_mq_stop_hw_queues(struct request_queue *q)
1761 {
1762 	struct blk_mq_hw_ctx *hctx;
1763 	int i;
1764 
1765 	queue_for_each_hw_ctx(q, hctx, i)
1766 		blk_mq_stop_hw_queue(hctx);
1767 }
1768 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1769 
1770 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1771 {
1772 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1773 
1774 	blk_mq_run_hw_queue(hctx, false);
1775 }
1776 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1777 
1778 void blk_mq_start_hw_queues(struct request_queue *q)
1779 {
1780 	struct blk_mq_hw_ctx *hctx;
1781 	int i;
1782 
1783 	queue_for_each_hw_ctx(q, hctx, i)
1784 		blk_mq_start_hw_queue(hctx);
1785 }
1786 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1787 
1788 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1789 {
1790 	if (!blk_mq_hctx_stopped(hctx))
1791 		return;
1792 
1793 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1794 	blk_mq_run_hw_queue(hctx, async);
1795 }
1796 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1797 
1798 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1799 {
1800 	struct blk_mq_hw_ctx *hctx;
1801 	int i;
1802 
1803 	queue_for_each_hw_ctx(q, hctx, i)
1804 		blk_mq_start_stopped_hw_queue(hctx, async);
1805 }
1806 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1807 
1808 static void blk_mq_run_work_fn(struct work_struct *work)
1809 {
1810 	struct blk_mq_hw_ctx *hctx;
1811 
1812 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1813 
1814 	/*
1815 	 * If we are stopped, don't run the queue.
1816 	 */
1817 	if (blk_mq_hctx_stopped(hctx))
1818 		return;
1819 
1820 	__blk_mq_run_hw_queue(hctx);
1821 }
1822 
1823 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1824 					    struct request *rq,
1825 					    bool at_head)
1826 {
1827 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1828 	enum hctx_type type = hctx->type;
1829 
1830 	lockdep_assert_held(&ctx->lock);
1831 
1832 	trace_block_rq_insert(rq);
1833 
1834 	if (at_head)
1835 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1836 	else
1837 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1838 }
1839 
1840 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1841 			     bool at_head)
1842 {
1843 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1844 
1845 	lockdep_assert_held(&ctx->lock);
1846 
1847 	__blk_mq_insert_req_list(hctx, rq, at_head);
1848 	blk_mq_hctx_mark_pending(hctx, ctx);
1849 }
1850 
1851 /**
1852  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1853  * @rq: Pointer to request to be inserted.
1854  * @at_head: true if the request should be inserted at the head of the list.
1855  * @run_queue: If we should run the hardware queue after inserting the request.
1856  *
1857  * Should only be used carefully, when the caller knows we want to
1858  * bypass a potential IO scheduler on the target device.
1859  */
1860 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1861 				  bool run_queue)
1862 {
1863 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1864 
1865 	spin_lock(&hctx->lock);
1866 	if (at_head)
1867 		list_add(&rq->queuelist, &hctx->dispatch);
1868 	else
1869 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1870 	spin_unlock(&hctx->lock);
1871 
1872 	if (run_queue)
1873 		blk_mq_run_hw_queue(hctx, false);
1874 }
1875 
1876 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1877 			    struct list_head *list)
1878 
1879 {
1880 	struct request *rq;
1881 	enum hctx_type type = hctx->type;
1882 
1883 	/*
1884 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1885 	 * offline now
1886 	 */
1887 	list_for_each_entry(rq, list, queuelist) {
1888 		BUG_ON(rq->mq_ctx != ctx);
1889 		trace_block_rq_insert(rq);
1890 	}
1891 
1892 	spin_lock(&ctx->lock);
1893 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1894 	blk_mq_hctx_mark_pending(hctx, ctx);
1895 	spin_unlock(&ctx->lock);
1896 }
1897 
1898 static int plug_rq_cmp(void *priv, const struct list_head *a,
1899 		       const struct list_head *b)
1900 {
1901 	struct request *rqa = container_of(a, struct request, queuelist);
1902 	struct request *rqb = container_of(b, struct request, queuelist);
1903 
1904 	if (rqa->mq_ctx != rqb->mq_ctx)
1905 		return rqa->mq_ctx > rqb->mq_ctx;
1906 	if (rqa->mq_hctx != rqb->mq_hctx)
1907 		return rqa->mq_hctx > rqb->mq_hctx;
1908 
1909 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1910 }
1911 
1912 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1913 {
1914 	LIST_HEAD(list);
1915 
1916 	if (list_empty(&plug->mq_list))
1917 		return;
1918 	list_splice_init(&plug->mq_list, &list);
1919 
1920 	if (plug->rq_count > 2 && plug->multiple_queues)
1921 		list_sort(NULL, &list, plug_rq_cmp);
1922 
1923 	plug->rq_count = 0;
1924 
1925 	do {
1926 		struct list_head rq_list;
1927 		struct request *rq, *head_rq = list_entry_rq(list.next);
1928 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1929 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1930 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1931 		unsigned int depth = 1;
1932 
1933 		list_for_each_continue(pos, &list) {
1934 			rq = list_entry_rq(pos);
1935 			BUG_ON(!rq->q);
1936 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1937 				break;
1938 			depth++;
1939 		}
1940 
1941 		list_cut_before(&rq_list, &list, pos);
1942 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1943 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1944 						from_schedule);
1945 	} while(!list_empty(&list));
1946 }
1947 
1948 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1949 		unsigned int nr_segs)
1950 {
1951 	int err;
1952 
1953 	if (bio->bi_opf & REQ_RAHEAD)
1954 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1955 
1956 	rq->__sector = bio->bi_iter.bi_sector;
1957 	rq->write_hint = bio->bi_write_hint;
1958 	blk_rq_bio_prep(rq, bio, nr_segs);
1959 
1960 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1961 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1962 	WARN_ON_ONCE(err);
1963 
1964 	blk_account_io_start(rq);
1965 }
1966 
1967 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1968 					    struct request *rq,
1969 					    blk_qc_t *cookie, bool last)
1970 {
1971 	struct request_queue *q = rq->q;
1972 	struct blk_mq_queue_data bd = {
1973 		.rq = rq,
1974 		.last = last,
1975 	};
1976 	blk_qc_t new_cookie;
1977 	blk_status_t ret;
1978 
1979 	new_cookie = request_to_qc_t(hctx, rq);
1980 
1981 	/*
1982 	 * For OK queue, we are done. For error, caller may kill it.
1983 	 * Any other error (busy), just add it to our list as we
1984 	 * previously would have done.
1985 	 */
1986 	ret = q->mq_ops->queue_rq(hctx, &bd);
1987 	switch (ret) {
1988 	case BLK_STS_OK:
1989 		blk_mq_update_dispatch_busy(hctx, false);
1990 		*cookie = new_cookie;
1991 		break;
1992 	case BLK_STS_RESOURCE:
1993 	case BLK_STS_DEV_RESOURCE:
1994 		blk_mq_update_dispatch_busy(hctx, true);
1995 		__blk_mq_requeue_request(rq);
1996 		break;
1997 	default:
1998 		blk_mq_update_dispatch_busy(hctx, false);
1999 		*cookie = BLK_QC_T_NONE;
2000 		break;
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2007 						struct request *rq,
2008 						blk_qc_t *cookie,
2009 						bool bypass_insert, bool last)
2010 {
2011 	struct request_queue *q = rq->q;
2012 	bool run_queue = true;
2013 
2014 	/*
2015 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2016 	 *
2017 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2018 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2019 	 * and avoid driver to try to dispatch again.
2020 	 */
2021 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2022 		run_queue = false;
2023 		bypass_insert = false;
2024 		goto insert;
2025 	}
2026 
2027 	if (q->elevator && !bypass_insert)
2028 		goto insert;
2029 
2030 	if (!blk_mq_get_dispatch_budget(q))
2031 		goto insert;
2032 
2033 	if (!blk_mq_get_driver_tag(rq)) {
2034 		blk_mq_put_dispatch_budget(q);
2035 		goto insert;
2036 	}
2037 
2038 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2039 insert:
2040 	if (bypass_insert)
2041 		return BLK_STS_RESOURCE;
2042 
2043 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2044 
2045 	return BLK_STS_OK;
2046 }
2047 
2048 /**
2049  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2050  * @hctx: Pointer of the associated hardware queue.
2051  * @rq: Pointer to request to be sent.
2052  * @cookie: Request queue cookie.
2053  *
2054  * If the device has enough resources to accept a new request now, send the
2055  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2056  * we can try send it another time in the future. Requests inserted at this
2057  * queue have higher priority.
2058  */
2059 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2060 		struct request *rq, blk_qc_t *cookie)
2061 {
2062 	blk_status_t ret;
2063 	int srcu_idx;
2064 
2065 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2066 
2067 	hctx_lock(hctx, &srcu_idx);
2068 
2069 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2070 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2071 		blk_mq_request_bypass_insert(rq, false, true);
2072 	else if (ret != BLK_STS_OK)
2073 		blk_mq_end_request(rq, ret);
2074 
2075 	hctx_unlock(hctx, srcu_idx);
2076 }
2077 
2078 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2079 {
2080 	blk_status_t ret;
2081 	int srcu_idx;
2082 	blk_qc_t unused_cookie;
2083 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2084 
2085 	hctx_lock(hctx, &srcu_idx);
2086 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2087 	hctx_unlock(hctx, srcu_idx);
2088 
2089 	return ret;
2090 }
2091 
2092 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2093 		struct list_head *list)
2094 {
2095 	int queued = 0;
2096 	int errors = 0;
2097 
2098 	while (!list_empty(list)) {
2099 		blk_status_t ret;
2100 		struct request *rq = list_first_entry(list, struct request,
2101 				queuelist);
2102 
2103 		list_del_init(&rq->queuelist);
2104 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2105 		if (ret != BLK_STS_OK) {
2106 			if (ret == BLK_STS_RESOURCE ||
2107 					ret == BLK_STS_DEV_RESOURCE) {
2108 				blk_mq_request_bypass_insert(rq, false,
2109 							list_empty(list));
2110 				break;
2111 			}
2112 			blk_mq_end_request(rq, ret);
2113 			errors++;
2114 		} else
2115 			queued++;
2116 	}
2117 
2118 	/*
2119 	 * If we didn't flush the entire list, we could have told
2120 	 * the driver there was more coming, but that turned out to
2121 	 * be a lie.
2122 	 */
2123 	if ((!list_empty(list) || errors) &&
2124 	     hctx->queue->mq_ops->commit_rqs && queued)
2125 		hctx->queue->mq_ops->commit_rqs(hctx);
2126 }
2127 
2128 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2129 {
2130 	list_add_tail(&rq->queuelist, &plug->mq_list);
2131 	plug->rq_count++;
2132 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2133 		struct request *tmp;
2134 
2135 		tmp = list_first_entry(&plug->mq_list, struct request,
2136 						queuelist);
2137 		if (tmp->q != rq->q)
2138 			plug->multiple_queues = true;
2139 	}
2140 }
2141 
2142 /**
2143  * blk_mq_submit_bio - Create and send a request to block device.
2144  * @bio: Bio pointer.
2145  *
2146  * Builds up a request structure from @q and @bio and send to the device. The
2147  * request may not be queued directly to hardware if:
2148  * * This request can be merged with another one
2149  * * We want to place request at plug queue for possible future merging
2150  * * There is an IO scheduler active at this queue
2151  *
2152  * It will not queue the request if there is an error with the bio, or at the
2153  * request creation.
2154  *
2155  * Returns: Request queue cookie.
2156  */
2157 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2158 {
2159 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2160 	const int is_sync = op_is_sync(bio->bi_opf);
2161 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2162 	struct blk_mq_alloc_data data = {
2163 		.q		= q,
2164 	};
2165 	struct request *rq;
2166 	struct blk_plug *plug;
2167 	struct request *same_queue_rq = NULL;
2168 	unsigned int nr_segs;
2169 	blk_qc_t cookie;
2170 	blk_status_t ret;
2171 	bool hipri;
2172 
2173 	blk_queue_bounce(q, &bio);
2174 	__blk_queue_split(&bio, &nr_segs);
2175 
2176 	if (!bio_integrity_prep(bio))
2177 		goto queue_exit;
2178 
2179 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2180 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2181 		goto queue_exit;
2182 
2183 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2184 		goto queue_exit;
2185 
2186 	rq_qos_throttle(q, bio);
2187 
2188 	hipri = bio->bi_opf & REQ_HIPRI;
2189 
2190 	data.cmd_flags = bio->bi_opf;
2191 	rq = __blk_mq_alloc_request(&data);
2192 	if (unlikely(!rq)) {
2193 		rq_qos_cleanup(q, bio);
2194 		if (bio->bi_opf & REQ_NOWAIT)
2195 			bio_wouldblock_error(bio);
2196 		goto queue_exit;
2197 	}
2198 
2199 	trace_block_getrq(bio);
2200 
2201 	rq_qos_track(q, rq, bio);
2202 
2203 	cookie = request_to_qc_t(data.hctx, rq);
2204 
2205 	blk_mq_bio_to_request(rq, bio, nr_segs);
2206 
2207 	ret = blk_crypto_init_request(rq);
2208 	if (ret != BLK_STS_OK) {
2209 		bio->bi_status = ret;
2210 		bio_endio(bio);
2211 		blk_mq_free_request(rq);
2212 		return BLK_QC_T_NONE;
2213 	}
2214 
2215 	plug = blk_mq_plug(q, bio);
2216 	if (unlikely(is_flush_fua)) {
2217 		/* Bypass scheduler for flush requests */
2218 		blk_insert_flush(rq);
2219 		blk_mq_run_hw_queue(data.hctx, true);
2220 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2221 				!blk_queue_nonrot(q))) {
2222 		/*
2223 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2224 		 * we know the driver uses bd->last in a smart fashion.
2225 		 *
2226 		 * Use normal plugging if this disk is slow HDD, as sequential
2227 		 * IO may benefit a lot from plug merging.
2228 		 */
2229 		unsigned int request_count = plug->rq_count;
2230 		struct request *last = NULL;
2231 
2232 		if (!request_count)
2233 			trace_block_plug(q);
2234 		else
2235 			last = list_entry_rq(plug->mq_list.prev);
2236 
2237 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2238 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2239 			blk_flush_plug_list(plug, false);
2240 			trace_block_plug(q);
2241 		}
2242 
2243 		blk_add_rq_to_plug(plug, rq);
2244 	} else if (q->elevator) {
2245 		/* Insert the request at the IO scheduler queue */
2246 		blk_mq_sched_insert_request(rq, false, true, true);
2247 	} else if (plug && !blk_queue_nomerges(q)) {
2248 		/*
2249 		 * We do limited plugging. If the bio can be merged, do that.
2250 		 * Otherwise the existing request in the plug list will be
2251 		 * issued. So the plug list will have one request at most
2252 		 * The plug list might get flushed before this. If that happens,
2253 		 * the plug list is empty, and same_queue_rq is invalid.
2254 		 */
2255 		if (list_empty(&plug->mq_list))
2256 			same_queue_rq = NULL;
2257 		if (same_queue_rq) {
2258 			list_del_init(&same_queue_rq->queuelist);
2259 			plug->rq_count--;
2260 		}
2261 		blk_add_rq_to_plug(plug, rq);
2262 		trace_block_plug(q);
2263 
2264 		if (same_queue_rq) {
2265 			data.hctx = same_queue_rq->mq_hctx;
2266 			trace_block_unplug(q, 1, true);
2267 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2268 					&cookie);
2269 		}
2270 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2271 			!data.hctx->dispatch_busy) {
2272 		/*
2273 		 * There is no scheduler and we can try to send directly
2274 		 * to the hardware.
2275 		 */
2276 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2277 	} else {
2278 		/* Default case. */
2279 		blk_mq_sched_insert_request(rq, false, true, true);
2280 	}
2281 
2282 	if (!hipri)
2283 		return BLK_QC_T_NONE;
2284 	return cookie;
2285 queue_exit:
2286 	blk_queue_exit(q);
2287 	return BLK_QC_T_NONE;
2288 }
2289 
2290 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2291 		     unsigned int hctx_idx)
2292 {
2293 	struct page *page;
2294 
2295 	if (tags->rqs && set->ops->exit_request) {
2296 		int i;
2297 
2298 		for (i = 0; i < tags->nr_tags; i++) {
2299 			struct request *rq = tags->static_rqs[i];
2300 
2301 			if (!rq)
2302 				continue;
2303 			set->ops->exit_request(set, rq, hctx_idx);
2304 			tags->static_rqs[i] = NULL;
2305 		}
2306 	}
2307 
2308 	while (!list_empty(&tags->page_list)) {
2309 		page = list_first_entry(&tags->page_list, struct page, lru);
2310 		list_del_init(&page->lru);
2311 		/*
2312 		 * Remove kmemleak object previously allocated in
2313 		 * blk_mq_alloc_rqs().
2314 		 */
2315 		kmemleak_free(page_address(page));
2316 		__free_pages(page, page->private);
2317 	}
2318 }
2319 
2320 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2321 {
2322 	kfree(tags->rqs);
2323 	tags->rqs = NULL;
2324 	kfree(tags->static_rqs);
2325 	tags->static_rqs = NULL;
2326 
2327 	blk_mq_free_tags(tags, flags);
2328 }
2329 
2330 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2331 					unsigned int hctx_idx,
2332 					unsigned int nr_tags,
2333 					unsigned int reserved_tags,
2334 					unsigned int flags)
2335 {
2336 	struct blk_mq_tags *tags;
2337 	int node;
2338 
2339 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2340 	if (node == NUMA_NO_NODE)
2341 		node = set->numa_node;
2342 
2343 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2344 	if (!tags)
2345 		return NULL;
2346 
2347 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2348 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2349 				 node);
2350 	if (!tags->rqs) {
2351 		blk_mq_free_tags(tags, flags);
2352 		return NULL;
2353 	}
2354 
2355 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2356 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2357 					node);
2358 	if (!tags->static_rqs) {
2359 		kfree(tags->rqs);
2360 		blk_mq_free_tags(tags, flags);
2361 		return NULL;
2362 	}
2363 
2364 	return tags;
2365 }
2366 
2367 static size_t order_to_size(unsigned int order)
2368 {
2369 	return (size_t)PAGE_SIZE << order;
2370 }
2371 
2372 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2373 			       unsigned int hctx_idx, int node)
2374 {
2375 	int ret;
2376 
2377 	if (set->ops->init_request) {
2378 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2379 		if (ret)
2380 			return ret;
2381 	}
2382 
2383 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2384 	return 0;
2385 }
2386 
2387 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2388 		     unsigned int hctx_idx, unsigned int depth)
2389 {
2390 	unsigned int i, j, entries_per_page, max_order = 4;
2391 	size_t rq_size, left;
2392 	int node;
2393 
2394 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2395 	if (node == NUMA_NO_NODE)
2396 		node = set->numa_node;
2397 
2398 	INIT_LIST_HEAD(&tags->page_list);
2399 
2400 	/*
2401 	 * rq_size is the size of the request plus driver payload, rounded
2402 	 * to the cacheline size
2403 	 */
2404 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2405 				cache_line_size());
2406 	left = rq_size * depth;
2407 
2408 	for (i = 0; i < depth; ) {
2409 		int this_order = max_order;
2410 		struct page *page;
2411 		int to_do;
2412 		void *p;
2413 
2414 		while (this_order && left < order_to_size(this_order - 1))
2415 			this_order--;
2416 
2417 		do {
2418 			page = alloc_pages_node(node,
2419 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2420 				this_order);
2421 			if (page)
2422 				break;
2423 			if (!this_order--)
2424 				break;
2425 			if (order_to_size(this_order) < rq_size)
2426 				break;
2427 		} while (1);
2428 
2429 		if (!page)
2430 			goto fail;
2431 
2432 		page->private = this_order;
2433 		list_add_tail(&page->lru, &tags->page_list);
2434 
2435 		p = page_address(page);
2436 		/*
2437 		 * Allow kmemleak to scan these pages as they contain pointers
2438 		 * to additional allocations like via ops->init_request().
2439 		 */
2440 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2441 		entries_per_page = order_to_size(this_order) / rq_size;
2442 		to_do = min(entries_per_page, depth - i);
2443 		left -= to_do * rq_size;
2444 		for (j = 0; j < to_do; j++) {
2445 			struct request *rq = p;
2446 
2447 			tags->static_rqs[i] = rq;
2448 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2449 				tags->static_rqs[i] = NULL;
2450 				goto fail;
2451 			}
2452 
2453 			p += rq_size;
2454 			i++;
2455 		}
2456 	}
2457 	return 0;
2458 
2459 fail:
2460 	blk_mq_free_rqs(set, tags, hctx_idx);
2461 	return -ENOMEM;
2462 }
2463 
2464 struct rq_iter_data {
2465 	struct blk_mq_hw_ctx *hctx;
2466 	bool has_rq;
2467 };
2468 
2469 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2470 {
2471 	struct rq_iter_data *iter_data = data;
2472 
2473 	if (rq->mq_hctx != iter_data->hctx)
2474 		return true;
2475 	iter_data->has_rq = true;
2476 	return false;
2477 }
2478 
2479 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2480 {
2481 	struct blk_mq_tags *tags = hctx->sched_tags ?
2482 			hctx->sched_tags : hctx->tags;
2483 	struct rq_iter_data data = {
2484 		.hctx	= hctx,
2485 	};
2486 
2487 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2488 	return data.has_rq;
2489 }
2490 
2491 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2492 		struct blk_mq_hw_ctx *hctx)
2493 {
2494 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2495 		return false;
2496 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2497 		return false;
2498 	return true;
2499 }
2500 
2501 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2502 {
2503 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2504 			struct blk_mq_hw_ctx, cpuhp_online);
2505 
2506 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2507 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2508 		return 0;
2509 
2510 	/*
2511 	 * Prevent new request from being allocated on the current hctx.
2512 	 *
2513 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2514 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2515 	 * seen once we return from the tag allocator.
2516 	 */
2517 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2518 	smp_mb__after_atomic();
2519 
2520 	/*
2521 	 * Try to grab a reference to the queue and wait for any outstanding
2522 	 * requests.  If we could not grab a reference the queue has been
2523 	 * frozen and there are no requests.
2524 	 */
2525 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2526 		while (blk_mq_hctx_has_requests(hctx))
2527 			msleep(5);
2528 		percpu_ref_put(&hctx->queue->q_usage_counter);
2529 	}
2530 
2531 	return 0;
2532 }
2533 
2534 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2535 {
2536 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2537 			struct blk_mq_hw_ctx, cpuhp_online);
2538 
2539 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2540 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2541 	return 0;
2542 }
2543 
2544 /*
2545  * 'cpu' is going away. splice any existing rq_list entries from this
2546  * software queue to the hw queue dispatch list, and ensure that it
2547  * gets run.
2548  */
2549 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2550 {
2551 	struct blk_mq_hw_ctx *hctx;
2552 	struct blk_mq_ctx *ctx;
2553 	LIST_HEAD(tmp);
2554 	enum hctx_type type;
2555 
2556 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2557 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2558 		return 0;
2559 
2560 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2561 	type = hctx->type;
2562 
2563 	spin_lock(&ctx->lock);
2564 	if (!list_empty(&ctx->rq_lists[type])) {
2565 		list_splice_init(&ctx->rq_lists[type], &tmp);
2566 		blk_mq_hctx_clear_pending(hctx, ctx);
2567 	}
2568 	spin_unlock(&ctx->lock);
2569 
2570 	if (list_empty(&tmp))
2571 		return 0;
2572 
2573 	spin_lock(&hctx->lock);
2574 	list_splice_tail_init(&tmp, &hctx->dispatch);
2575 	spin_unlock(&hctx->lock);
2576 
2577 	blk_mq_run_hw_queue(hctx, true);
2578 	return 0;
2579 }
2580 
2581 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2582 {
2583 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2584 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2585 						    &hctx->cpuhp_online);
2586 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2587 					    &hctx->cpuhp_dead);
2588 }
2589 
2590 /* hctx->ctxs will be freed in queue's release handler */
2591 static void blk_mq_exit_hctx(struct request_queue *q,
2592 		struct blk_mq_tag_set *set,
2593 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2594 {
2595 	if (blk_mq_hw_queue_mapped(hctx))
2596 		blk_mq_tag_idle(hctx);
2597 
2598 	if (set->ops->exit_request)
2599 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2600 
2601 	if (set->ops->exit_hctx)
2602 		set->ops->exit_hctx(hctx, hctx_idx);
2603 
2604 	blk_mq_remove_cpuhp(hctx);
2605 
2606 	spin_lock(&q->unused_hctx_lock);
2607 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2608 	spin_unlock(&q->unused_hctx_lock);
2609 }
2610 
2611 static void blk_mq_exit_hw_queues(struct request_queue *q,
2612 		struct blk_mq_tag_set *set, int nr_queue)
2613 {
2614 	struct blk_mq_hw_ctx *hctx;
2615 	unsigned int i;
2616 
2617 	queue_for_each_hw_ctx(q, hctx, i) {
2618 		if (i == nr_queue)
2619 			break;
2620 		blk_mq_debugfs_unregister_hctx(hctx);
2621 		blk_mq_exit_hctx(q, set, hctx, i);
2622 	}
2623 }
2624 
2625 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2626 {
2627 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2628 
2629 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2630 			   __alignof__(struct blk_mq_hw_ctx)) !=
2631 		     sizeof(struct blk_mq_hw_ctx));
2632 
2633 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2634 		hw_ctx_size += sizeof(struct srcu_struct);
2635 
2636 	return hw_ctx_size;
2637 }
2638 
2639 static int blk_mq_init_hctx(struct request_queue *q,
2640 		struct blk_mq_tag_set *set,
2641 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2642 {
2643 	hctx->queue_num = hctx_idx;
2644 
2645 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2646 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2647 				&hctx->cpuhp_online);
2648 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2649 
2650 	hctx->tags = set->tags[hctx_idx];
2651 
2652 	if (set->ops->init_hctx &&
2653 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2654 		goto unregister_cpu_notifier;
2655 
2656 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2657 				hctx->numa_node))
2658 		goto exit_hctx;
2659 	return 0;
2660 
2661  exit_hctx:
2662 	if (set->ops->exit_hctx)
2663 		set->ops->exit_hctx(hctx, hctx_idx);
2664  unregister_cpu_notifier:
2665 	blk_mq_remove_cpuhp(hctx);
2666 	return -1;
2667 }
2668 
2669 static struct blk_mq_hw_ctx *
2670 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2671 		int node)
2672 {
2673 	struct blk_mq_hw_ctx *hctx;
2674 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2675 
2676 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2677 	if (!hctx)
2678 		goto fail_alloc_hctx;
2679 
2680 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2681 		goto free_hctx;
2682 
2683 	atomic_set(&hctx->nr_active, 0);
2684 	if (node == NUMA_NO_NODE)
2685 		node = set->numa_node;
2686 	hctx->numa_node = node;
2687 
2688 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2689 	spin_lock_init(&hctx->lock);
2690 	INIT_LIST_HEAD(&hctx->dispatch);
2691 	hctx->queue = q;
2692 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2693 
2694 	INIT_LIST_HEAD(&hctx->hctx_list);
2695 
2696 	/*
2697 	 * Allocate space for all possible cpus to avoid allocation at
2698 	 * runtime
2699 	 */
2700 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2701 			gfp, node);
2702 	if (!hctx->ctxs)
2703 		goto free_cpumask;
2704 
2705 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2706 				gfp, node))
2707 		goto free_ctxs;
2708 	hctx->nr_ctx = 0;
2709 
2710 	spin_lock_init(&hctx->dispatch_wait_lock);
2711 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2712 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2713 
2714 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2715 	if (!hctx->fq)
2716 		goto free_bitmap;
2717 
2718 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2719 		init_srcu_struct(hctx->srcu);
2720 	blk_mq_hctx_kobj_init(hctx);
2721 
2722 	return hctx;
2723 
2724  free_bitmap:
2725 	sbitmap_free(&hctx->ctx_map);
2726  free_ctxs:
2727 	kfree(hctx->ctxs);
2728  free_cpumask:
2729 	free_cpumask_var(hctx->cpumask);
2730  free_hctx:
2731 	kfree(hctx);
2732  fail_alloc_hctx:
2733 	return NULL;
2734 }
2735 
2736 static void blk_mq_init_cpu_queues(struct request_queue *q,
2737 				   unsigned int nr_hw_queues)
2738 {
2739 	struct blk_mq_tag_set *set = q->tag_set;
2740 	unsigned int i, j;
2741 
2742 	for_each_possible_cpu(i) {
2743 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2744 		struct blk_mq_hw_ctx *hctx;
2745 		int k;
2746 
2747 		__ctx->cpu = i;
2748 		spin_lock_init(&__ctx->lock);
2749 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2750 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2751 
2752 		__ctx->queue = q;
2753 
2754 		/*
2755 		 * Set local node, IFF we have more than one hw queue. If
2756 		 * not, we remain on the home node of the device
2757 		 */
2758 		for (j = 0; j < set->nr_maps; j++) {
2759 			hctx = blk_mq_map_queue_type(q, j, i);
2760 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2761 				hctx->numa_node = cpu_to_node(i);
2762 		}
2763 	}
2764 }
2765 
2766 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2767 					int hctx_idx)
2768 {
2769 	unsigned int flags = set->flags;
2770 	int ret = 0;
2771 
2772 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2773 					set->queue_depth, set->reserved_tags, flags);
2774 	if (!set->tags[hctx_idx])
2775 		return false;
2776 
2777 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2778 				set->queue_depth);
2779 	if (!ret)
2780 		return true;
2781 
2782 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2783 	set->tags[hctx_idx] = NULL;
2784 	return false;
2785 }
2786 
2787 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2788 					 unsigned int hctx_idx)
2789 {
2790 	unsigned int flags = set->flags;
2791 
2792 	if (set->tags && set->tags[hctx_idx]) {
2793 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2794 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2795 		set->tags[hctx_idx] = NULL;
2796 	}
2797 }
2798 
2799 static void blk_mq_map_swqueue(struct request_queue *q)
2800 {
2801 	unsigned int i, j, hctx_idx;
2802 	struct blk_mq_hw_ctx *hctx;
2803 	struct blk_mq_ctx *ctx;
2804 	struct blk_mq_tag_set *set = q->tag_set;
2805 
2806 	queue_for_each_hw_ctx(q, hctx, i) {
2807 		cpumask_clear(hctx->cpumask);
2808 		hctx->nr_ctx = 0;
2809 		hctx->dispatch_from = NULL;
2810 	}
2811 
2812 	/*
2813 	 * Map software to hardware queues.
2814 	 *
2815 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2816 	 */
2817 	for_each_possible_cpu(i) {
2818 
2819 		ctx = per_cpu_ptr(q->queue_ctx, i);
2820 		for (j = 0; j < set->nr_maps; j++) {
2821 			if (!set->map[j].nr_queues) {
2822 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2823 						HCTX_TYPE_DEFAULT, i);
2824 				continue;
2825 			}
2826 			hctx_idx = set->map[j].mq_map[i];
2827 			/* unmapped hw queue can be remapped after CPU topo changed */
2828 			if (!set->tags[hctx_idx] &&
2829 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2830 				/*
2831 				 * If tags initialization fail for some hctx,
2832 				 * that hctx won't be brought online.  In this
2833 				 * case, remap the current ctx to hctx[0] which
2834 				 * is guaranteed to always have tags allocated
2835 				 */
2836 				set->map[j].mq_map[i] = 0;
2837 			}
2838 
2839 			hctx = blk_mq_map_queue_type(q, j, i);
2840 			ctx->hctxs[j] = hctx;
2841 			/*
2842 			 * If the CPU is already set in the mask, then we've
2843 			 * mapped this one already. This can happen if
2844 			 * devices share queues across queue maps.
2845 			 */
2846 			if (cpumask_test_cpu(i, hctx->cpumask))
2847 				continue;
2848 
2849 			cpumask_set_cpu(i, hctx->cpumask);
2850 			hctx->type = j;
2851 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2852 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2853 
2854 			/*
2855 			 * If the nr_ctx type overflows, we have exceeded the
2856 			 * amount of sw queues we can support.
2857 			 */
2858 			BUG_ON(!hctx->nr_ctx);
2859 		}
2860 
2861 		for (; j < HCTX_MAX_TYPES; j++)
2862 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2863 					HCTX_TYPE_DEFAULT, i);
2864 	}
2865 
2866 	queue_for_each_hw_ctx(q, hctx, i) {
2867 		/*
2868 		 * If no software queues are mapped to this hardware queue,
2869 		 * disable it and free the request entries.
2870 		 */
2871 		if (!hctx->nr_ctx) {
2872 			/* Never unmap queue 0.  We need it as a
2873 			 * fallback in case of a new remap fails
2874 			 * allocation
2875 			 */
2876 			if (i && set->tags[i])
2877 				blk_mq_free_map_and_requests(set, i);
2878 
2879 			hctx->tags = NULL;
2880 			continue;
2881 		}
2882 
2883 		hctx->tags = set->tags[i];
2884 		WARN_ON(!hctx->tags);
2885 
2886 		/*
2887 		 * Set the map size to the number of mapped software queues.
2888 		 * This is more accurate and more efficient than looping
2889 		 * over all possibly mapped software queues.
2890 		 */
2891 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2892 
2893 		/*
2894 		 * Initialize batch roundrobin counts
2895 		 */
2896 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2897 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2898 	}
2899 }
2900 
2901 /*
2902  * Caller needs to ensure that we're either frozen/quiesced, or that
2903  * the queue isn't live yet.
2904  */
2905 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2906 {
2907 	struct blk_mq_hw_ctx *hctx;
2908 	int i;
2909 
2910 	queue_for_each_hw_ctx(q, hctx, i) {
2911 		if (shared)
2912 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2913 		else
2914 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2915 	}
2916 }
2917 
2918 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2919 					 bool shared)
2920 {
2921 	struct request_queue *q;
2922 
2923 	lockdep_assert_held(&set->tag_list_lock);
2924 
2925 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2926 		blk_mq_freeze_queue(q);
2927 		queue_set_hctx_shared(q, shared);
2928 		blk_mq_unfreeze_queue(q);
2929 	}
2930 }
2931 
2932 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2933 {
2934 	struct blk_mq_tag_set *set = q->tag_set;
2935 
2936 	mutex_lock(&set->tag_list_lock);
2937 	list_del(&q->tag_set_list);
2938 	if (list_is_singular(&set->tag_list)) {
2939 		/* just transitioned to unshared */
2940 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2941 		/* update existing queue */
2942 		blk_mq_update_tag_set_shared(set, false);
2943 	}
2944 	mutex_unlock(&set->tag_list_lock);
2945 	INIT_LIST_HEAD(&q->tag_set_list);
2946 }
2947 
2948 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2949 				     struct request_queue *q)
2950 {
2951 	mutex_lock(&set->tag_list_lock);
2952 
2953 	/*
2954 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2955 	 */
2956 	if (!list_empty(&set->tag_list) &&
2957 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2958 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2959 		/* update existing queue */
2960 		blk_mq_update_tag_set_shared(set, true);
2961 	}
2962 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2963 		queue_set_hctx_shared(q, true);
2964 	list_add_tail(&q->tag_set_list, &set->tag_list);
2965 
2966 	mutex_unlock(&set->tag_list_lock);
2967 }
2968 
2969 /* All allocations will be freed in release handler of q->mq_kobj */
2970 static int blk_mq_alloc_ctxs(struct request_queue *q)
2971 {
2972 	struct blk_mq_ctxs *ctxs;
2973 	int cpu;
2974 
2975 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2976 	if (!ctxs)
2977 		return -ENOMEM;
2978 
2979 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2980 	if (!ctxs->queue_ctx)
2981 		goto fail;
2982 
2983 	for_each_possible_cpu(cpu) {
2984 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2985 		ctx->ctxs = ctxs;
2986 	}
2987 
2988 	q->mq_kobj = &ctxs->kobj;
2989 	q->queue_ctx = ctxs->queue_ctx;
2990 
2991 	return 0;
2992  fail:
2993 	kfree(ctxs);
2994 	return -ENOMEM;
2995 }
2996 
2997 /*
2998  * It is the actual release handler for mq, but we do it from
2999  * request queue's release handler for avoiding use-after-free
3000  * and headache because q->mq_kobj shouldn't have been introduced,
3001  * but we can't group ctx/kctx kobj without it.
3002  */
3003 void blk_mq_release(struct request_queue *q)
3004 {
3005 	struct blk_mq_hw_ctx *hctx, *next;
3006 	int i;
3007 
3008 	queue_for_each_hw_ctx(q, hctx, i)
3009 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3010 
3011 	/* all hctx are in .unused_hctx_list now */
3012 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3013 		list_del_init(&hctx->hctx_list);
3014 		kobject_put(&hctx->kobj);
3015 	}
3016 
3017 	kfree(q->queue_hw_ctx);
3018 
3019 	/*
3020 	 * release .mq_kobj and sw queue's kobject now because
3021 	 * both share lifetime with request queue.
3022 	 */
3023 	blk_mq_sysfs_deinit(q);
3024 }
3025 
3026 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3027 		void *queuedata)
3028 {
3029 	struct request_queue *uninit_q, *q;
3030 
3031 	uninit_q = blk_alloc_queue(set->numa_node);
3032 	if (!uninit_q)
3033 		return ERR_PTR(-ENOMEM);
3034 	uninit_q->queuedata = queuedata;
3035 
3036 	/*
3037 	 * Initialize the queue without an elevator. device_add_disk() will do
3038 	 * the initialization.
3039 	 */
3040 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3041 	if (IS_ERR(q))
3042 		blk_cleanup_queue(uninit_q);
3043 
3044 	return q;
3045 }
3046 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3047 
3048 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3049 {
3050 	return blk_mq_init_queue_data(set, NULL);
3051 }
3052 EXPORT_SYMBOL(blk_mq_init_queue);
3053 
3054 /*
3055  * Helper for setting up a queue with mq ops, given queue depth, and
3056  * the passed in mq ops flags.
3057  */
3058 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3059 					   const struct blk_mq_ops *ops,
3060 					   unsigned int queue_depth,
3061 					   unsigned int set_flags)
3062 {
3063 	struct request_queue *q;
3064 	int ret;
3065 
3066 	memset(set, 0, sizeof(*set));
3067 	set->ops = ops;
3068 	set->nr_hw_queues = 1;
3069 	set->nr_maps = 1;
3070 	set->queue_depth = queue_depth;
3071 	set->numa_node = NUMA_NO_NODE;
3072 	set->flags = set_flags;
3073 
3074 	ret = blk_mq_alloc_tag_set(set);
3075 	if (ret)
3076 		return ERR_PTR(ret);
3077 
3078 	q = blk_mq_init_queue(set);
3079 	if (IS_ERR(q)) {
3080 		blk_mq_free_tag_set(set);
3081 		return q;
3082 	}
3083 
3084 	return q;
3085 }
3086 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3087 
3088 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3089 		struct blk_mq_tag_set *set, struct request_queue *q,
3090 		int hctx_idx, int node)
3091 {
3092 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3093 
3094 	/* reuse dead hctx first */
3095 	spin_lock(&q->unused_hctx_lock);
3096 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3097 		if (tmp->numa_node == node) {
3098 			hctx = tmp;
3099 			break;
3100 		}
3101 	}
3102 	if (hctx)
3103 		list_del_init(&hctx->hctx_list);
3104 	spin_unlock(&q->unused_hctx_lock);
3105 
3106 	if (!hctx)
3107 		hctx = blk_mq_alloc_hctx(q, set, node);
3108 	if (!hctx)
3109 		goto fail;
3110 
3111 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3112 		goto free_hctx;
3113 
3114 	return hctx;
3115 
3116  free_hctx:
3117 	kobject_put(&hctx->kobj);
3118  fail:
3119 	return NULL;
3120 }
3121 
3122 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3123 						struct request_queue *q)
3124 {
3125 	int i, j, end;
3126 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3127 
3128 	if (q->nr_hw_queues < set->nr_hw_queues) {
3129 		struct blk_mq_hw_ctx **new_hctxs;
3130 
3131 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3132 				       sizeof(*new_hctxs), GFP_KERNEL,
3133 				       set->numa_node);
3134 		if (!new_hctxs)
3135 			return;
3136 		if (hctxs)
3137 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3138 			       sizeof(*hctxs));
3139 		q->queue_hw_ctx = new_hctxs;
3140 		kfree(hctxs);
3141 		hctxs = new_hctxs;
3142 	}
3143 
3144 	/* protect against switching io scheduler  */
3145 	mutex_lock(&q->sysfs_lock);
3146 	for (i = 0; i < set->nr_hw_queues; i++) {
3147 		int node;
3148 		struct blk_mq_hw_ctx *hctx;
3149 
3150 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3151 		/*
3152 		 * If the hw queue has been mapped to another numa node,
3153 		 * we need to realloc the hctx. If allocation fails, fallback
3154 		 * to use the previous one.
3155 		 */
3156 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3157 			continue;
3158 
3159 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3160 		if (hctx) {
3161 			if (hctxs[i])
3162 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3163 			hctxs[i] = hctx;
3164 		} else {
3165 			if (hctxs[i])
3166 				pr_warn("Allocate new hctx on node %d fails,\
3167 						fallback to previous one on node %d\n",
3168 						node, hctxs[i]->numa_node);
3169 			else
3170 				break;
3171 		}
3172 	}
3173 	/*
3174 	 * Increasing nr_hw_queues fails. Free the newly allocated
3175 	 * hctxs and keep the previous q->nr_hw_queues.
3176 	 */
3177 	if (i != set->nr_hw_queues) {
3178 		j = q->nr_hw_queues;
3179 		end = i;
3180 	} else {
3181 		j = i;
3182 		end = q->nr_hw_queues;
3183 		q->nr_hw_queues = set->nr_hw_queues;
3184 	}
3185 
3186 	for (; j < end; j++) {
3187 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3188 
3189 		if (hctx) {
3190 			if (hctx->tags)
3191 				blk_mq_free_map_and_requests(set, j);
3192 			blk_mq_exit_hctx(q, set, hctx, j);
3193 			hctxs[j] = NULL;
3194 		}
3195 	}
3196 	mutex_unlock(&q->sysfs_lock);
3197 }
3198 
3199 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3200 						  struct request_queue *q,
3201 						  bool elevator_init)
3202 {
3203 	/* mark the queue as mq asap */
3204 	q->mq_ops = set->ops;
3205 
3206 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3207 					     blk_mq_poll_stats_bkt,
3208 					     BLK_MQ_POLL_STATS_BKTS, q);
3209 	if (!q->poll_cb)
3210 		goto err_exit;
3211 
3212 	if (blk_mq_alloc_ctxs(q))
3213 		goto err_poll;
3214 
3215 	/* init q->mq_kobj and sw queues' kobjects */
3216 	blk_mq_sysfs_init(q);
3217 
3218 	INIT_LIST_HEAD(&q->unused_hctx_list);
3219 	spin_lock_init(&q->unused_hctx_lock);
3220 
3221 	blk_mq_realloc_hw_ctxs(set, q);
3222 	if (!q->nr_hw_queues)
3223 		goto err_hctxs;
3224 
3225 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3226 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3227 
3228 	q->tag_set = set;
3229 
3230 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3231 	if (set->nr_maps > HCTX_TYPE_POLL &&
3232 	    set->map[HCTX_TYPE_POLL].nr_queues)
3233 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3234 
3235 	q->sg_reserved_size = INT_MAX;
3236 
3237 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3238 	INIT_LIST_HEAD(&q->requeue_list);
3239 	spin_lock_init(&q->requeue_lock);
3240 
3241 	q->nr_requests = set->queue_depth;
3242 
3243 	/*
3244 	 * Default to classic polling
3245 	 */
3246 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3247 
3248 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3249 	blk_mq_add_queue_tag_set(set, q);
3250 	blk_mq_map_swqueue(q);
3251 
3252 	if (elevator_init)
3253 		elevator_init_mq(q);
3254 
3255 	return q;
3256 
3257 err_hctxs:
3258 	kfree(q->queue_hw_ctx);
3259 	q->nr_hw_queues = 0;
3260 	blk_mq_sysfs_deinit(q);
3261 err_poll:
3262 	blk_stat_free_callback(q->poll_cb);
3263 	q->poll_cb = NULL;
3264 err_exit:
3265 	q->mq_ops = NULL;
3266 	return ERR_PTR(-ENOMEM);
3267 }
3268 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3269 
3270 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3271 void blk_mq_exit_queue(struct request_queue *q)
3272 {
3273 	struct blk_mq_tag_set	*set = q->tag_set;
3274 
3275 	blk_mq_del_queue_tag_set(q);
3276 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3277 }
3278 
3279 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3280 {
3281 	int i;
3282 
3283 	for (i = 0; i < set->nr_hw_queues; i++) {
3284 		if (!__blk_mq_alloc_map_and_request(set, i))
3285 			goto out_unwind;
3286 		cond_resched();
3287 	}
3288 
3289 	return 0;
3290 
3291 out_unwind:
3292 	while (--i >= 0)
3293 		blk_mq_free_map_and_requests(set, i);
3294 
3295 	return -ENOMEM;
3296 }
3297 
3298 /*
3299  * Allocate the request maps associated with this tag_set. Note that this
3300  * may reduce the depth asked for, if memory is tight. set->queue_depth
3301  * will be updated to reflect the allocated depth.
3302  */
3303 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3304 {
3305 	unsigned int depth;
3306 	int err;
3307 
3308 	depth = set->queue_depth;
3309 	do {
3310 		err = __blk_mq_alloc_rq_maps(set);
3311 		if (!err)
3312 			break;
3313 
3314 		set->queue_depth >>= 1;
3315 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3316 			err = -ENOMEM;
3317 			break;
3318 		}
3319 	} while (set->queue_depth);
3320 
3321 	if (!set->queue_depth || err) {
3322 		pr_err("blk-mq: failed to allocate request map\n");
3323 		return -ENOMEM;
3324 	}
3325 
3326 	if (depth != set->queue_depth)
3327 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3328 						depth, set->queue_depth);
3329 
3330 	return 0;
3331 }
3332 
3333 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3334 {
3335 	/*
3336 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3337 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3338 	 * number of hardware queues.
3339 	 */
3340 	if (set->nr_maps == 1)
3341 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3342 
3343 	if (set->ops->map_queues && !is_kdump_kernel()) {
3344 		int i;
3345 
3346 		/*
3347 		 * transport .map_queues is usually done in the following
3348 		 * way:
3349 		 *
3350 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3351 		 * 	mask = get_cpu_mask(queue)
3352 		 * 	for_each_cpu(cpu, mask)
3353 		 * 		set->map[x].mq_map[cpu] = queue;
3354 		 * }
3355 		 *
3356 		 * When we need to remap, the table has to be cleared for
3357 		 * killing stale mapping since one CPU may not be mapped
3358 		 * to any hw queue.
3359 		 */
3360 		for (i = 0; i < set->nr_maps; i++)
3361 			blk_mq_clear_mq_map(&set->map[i]);
3362 
3363 		return set->ops->map_queues(set);
3364 	} else {
3365 		BUG_ON(set->nr_maps > 1);
3366 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3367 	}
3368 }
3369 
3370 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3371 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3372 {
3373 	struct blk_mq_tags **new_tags;
3374 
3375 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3376 		return 0;
3377 
3378 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3379 				GFP_KERNEL, set->numa_node);
3380 	if (!new_tags)
3381 		return -ENOMEM;
3382 
3383 	if (set->tags)
3384 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3385 		       sizeof(*set->tags));
3386 	kfree(set->tags);
3387 	set->tags = new_tags;
3388 	set->nr_hw_queues = new_nr_hw_queues;
3389 
3390 	return 0;
3391 }
3392 
3393 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3394 				int new_nr_hw_queues)
3395 {
3396 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3397 }
3398 
3399 /*
3400  * Alloc a tag set to be associated with one or more request queues.
3401  * May fail with EINVAL for various error conditions. May adjust the
3402  * requested depth down, if it's too large. In that case, the set
3403  * value will be stored in set->queue_depth.
3404  */
3405 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3406 {
3407 	int i, ret;
3408 
3409 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3410 
3411 	if (!set->nr_hw_queues)
3412 		return -EINVAL;
3413 	if (!set->queue_depth)
3414 		return -EINVAL;
3415 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3416 		return -EINVAL;
3417 
3418 	if (!set->ops->queue_rq)
3419 		return -EINVAL;
3420 
3421 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3422 		return -EINVAL;
3423 
3424 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3425 		pr_info("blk-mq: reduced tag depth to %u\n",
3426 			BLK_MQ_MAX_DEPTH);
3427 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3428 	}
3429 
3430 	if (!set->nr_maps)
3431 		set->nr_maps = 1;
3432 	else if (set->nr_maps > HCTX_MAX_TYPES)
3433 		return -EINVAL;
3434 
3435 	/*
3436 	 * If a crashdump is active, then we are potentially in a very
3437 	 * memory constrained environment. Limit us to 1 queue and
3438 	 * 64 tags to prevent using too much memory.
3439 	 */
3440 	if (is_kdump_kernel()) {
3441 		set->nr_hw_queues = 1;
3442 		set->nr_maps = 1;
3443 		set->queue_depth = min(64U, set->queue_depth);
3444 	}
3445 	/*
3446 	 * There is no use for more h/w queues than cpus if we just have
3447 	 * a single map
3448 	 */
3449 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3450 		set->nr_hw_queues = nr_cpu_ids;
3451 
3452 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3453 		return -ENOMEM;
3454 
3455 	ret = -ENOMEM;
3456 	for (i = 0; i < set->nr_maps; i++) {
3457 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3458 						  sizeof(set->map[i].mq_map[0]),
3459 						  GFP_KERNEL, set->numa_node);
3460 		if (!set->map[i].mq_map)
3461 			goto out_free_mq_map;
3462 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3463 	}
3464 
3465 	ret = blk_mq_update_queue_map(set);
3466 	if (ret)
3467 		goto out_free_mq_map;
3468 
3469 	ret = blk_mq_alloc_map_and_requests(set);
3470 	if (ret)
3471 		goto out_free_mq_map;
3472 
3473 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3474 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3475 
3476 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3477 			ret = -ENOMEM;
3478 			goto out_free_mq_rq_maps;
3479 		}
3480 	}
3481 
3482 	mutex_init(&set->tag_list_lock);
3483 	INIT_LIST_HEAD(&set->tag_list);
3484 
3485 	return 0;
3486 
3487 out_free_mq_rq_maps:
3488 	for (i = 0; i < set->nr_hw_queues; i++)
3489 		blk_mq_free_map_and_requests(set, i);
3490 out_free_mq_map:
3491 	for (i = 0; i < set->nr_maps; i++) {
3492 		kfree(set->map[i].mq_map);
3493 		set->map[i].mq_map = NULL;
3494 	}
3495 	kfree(set->tags);
3496 	set->tags = NULL;
3497 	return ret;
3498 }
3499 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3500 
3501 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3502 {
3503 	int i, j;
3504 
3505 	for (i = 0; i < set->nr_hw_queues; i++)
3506 		blk_mq_free_map_and_requests(set, i);
3507 
3508 	if (blk_mq_is_sbitmap_shared(set->flags))
3509 		blk_mq_exit_shared_sbitmap(set);
3510 
3511 	for (j = 0; j < set->nr_maps; j++) {
3512 		kfree(set->map[j].mq_map);
3513 		set->map[j].mq_map = NULL;
3514 	}
3515 
3516 	kfree(set->tags);
3517 	set->tags = NULL;
3518 }
3519 EXPORT_SYMBOL(blk_mq_free_tag_set);
3520 
3521 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3522 {
3523 	struct blk_mq_tag_set *set = q->tag_set;
3524 	struct blk_mq_hw_ctx *hctx;
3525 	int i, ret;
3526 
3527 	if (!set)
3528 		return -EINVAL;
3529 
3530 	if (q->nr_requests == nr)
3531 		return 0;
3532 
3533 	blk_mq_freeze_queue(q);
3534 	blk_mq_quiesce_queue(q);
3535 
3536 	ret = 0;
3537 	queue_for_each_hw_ctx(q, hctx, i) {
3538 		if (!hctx->tags)
3539 			continue;
3540 		/*
3541 		 * If we're using an MQ scheduler, just update the scheduler
3542 		 * queue depth. This is similar to what the old code would do.
3543 		 */
3544 		if (!hctx->sched_tags) {
3545 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3546 							false);
3547 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3548 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3549 		} else {
3550 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3551 							nr, true);
3552 		}
3553 		if (ret)
3554 			break;
3555 		if (q->elevator && q->elevator->type->ops.depth_updated)
3556 			q->elevator->type->ops.depth_updated(hctx);
3557 	}
3558 
3559 	if (!ret)
3560 		q->nr_requests = nr;
3561 
3562 	blk_mq_unquiesce_queue(q);
3563 	blk_mq_unfreeze_queue(q);
3564 
3565 	return ret;
3566 }
3567 
3568 /*
3569  * request_queue and elevator_type pair.
3570  * It is just used by __blk_mq_update_nr_hw_queues to cache
3571  * the elevator_type associated with a request_queue.
3572  */
3573 struct blk_mq_qe_pair {
3574 	struct list_head node;
3575 	struct request_queue *q;
3576 	struct elevator_type *type;
3577 };
3578 
3579 /*
3580  * Cache the elevator_type in qe pair list and switch the
3581  * io scheduler to 'none'
3582  */
3583 static bool blk_mq_elv_switch_none(struct list_head *head,
3584 		struct request_queue *q)
3585 {
3586 	struct blk_mq_qe_pair *qe;
3587 
3588 	if (!q->elevator)
3589 		return true;
3590 
3591 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3592 	if (!qe)
3593 		return false;
3594 
3595 	INIT_LIST_HEAD(&qe->node);
3596 	qe->q = q;
3597 	qe->type = q->elevator->type;
3598 	list_add(&qe->node, head);
3599 
3600 	mutex_lock(&q->sysfs_lock);
3601 	/*
3602 	 * After elevator_switch_mq, the previous elevator_queue will be
3603 	 * released by elevator_release. The reference of the io scheduler
3604 	 * module get by elevator_get will also be put. So we need to get
3605 	 * a reference of the io scheduler module here to prevent it to be
3606 	 * removed.
3607 	 */
3608 	__module_get(qe->type->elevator_owner);
3609 	elevator_switch_mq(q, NULL);
3610 	mutex_unlock(&q->sysfs_lock);
3611 
3612 	return true;
3613 }
3614 
3615 static void blk_mq_elv_switch_back(struct list_head *head,
3616 		struct request_queue *q)
3617 {
3618 	struct blk_mq_qe_pair *qe;
3619 	struct elevator_type *t = NULL;
3620 
3621 	list_for_each_entry(qe, head, node)
3622 		if (qe->q == q) {
3623 			t = qe->type;
3624 			break;
3625 		}
3626 
3627 	if (!t)
3628 		return;
3629 
3630 	list_del(&qe->node);
3631 	kfree(qe);
3632 
3633 	mutex_lock(&q->sysfs_lock);
3634 	elevator_switch_mq(q, t);
3635 	mutex_unlock(&q->sysfs_lock);
3636 }
3637 
3638 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3639 							int nr_hw_queues)
3640 {
3641 	struct request_queue *q;
3642 	LIST_HEAD(head);
3643 	int prev_nr_hw_queues;
3644 
3645 	lockdep_assert_held(&set->tag_list_lock);
3646 
3647 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3648 		nr_hw_queues = nr_cpu_ids;
3649 	if (nr_hw_queues < 1)
3650 		return;
3651 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3652 		return;
3653 
3654 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3655 		blk_mq_freeze_queue(q);
3656 	/*
3657 	 * Switch IO scheduler to 'none', cleaning up the data associated
3658 	 * with the previous scheduler. We will switch back once we are done
3659 	 * updating the new sw to hw queue mappings.
3660 	 */
3661 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3662 		if (!blk_mq_elv_switch_none(&head, q))
3663 			goto switch_back;
3664 
3665 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3666 		blk_mq_debugfs_unregister_hctxs(q);
3667 		blk_mq_sysfs_unregister(q);
3668 	}
3669 
3670 	prev_nr_hw_queues = set->nr_hw_queues;
3671 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3672 	    0)
3673 		goto reregister;
3674 
3675 	set->nr_hw_queues = nr_hw_queues;
3676 fallback:
3677 	blk_mq_update_queue_map(set);
3678 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3679 		blk_mq_realloc_hw_ctxs(set, q);
3680 		if (q->nr_hw_queues != set->nr_hw_queues) {
3681 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3682 					nr_hw_queues, prev_nr_hw_queues);
3683 			set->nr_hw_queues = prev_nr_hw_queues;
3684 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3685 			goto fallback;
3686 		}
3687 		blk_mq_map_swqueue(q);
3688 	}
3689 
3690 reregister:
3691 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3692 		blk_mq_sysfs_register(q);
3693 		blk_mq_debugfs_register_hctxs(q);
3694 	}
3695 
3696 switch_back:
3697 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3698 		blk_mq_elv_switch_back(&head, q);
3699 
3700 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3701 		blk_mq_unfreeze_queue(q);
3702 }
3703 
3704 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3705 {
3706 	mutex_lock(&set->tag_list_lock);
3707 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3708 	mutex_unlock(&set->tag_list_lock);
3709 }
3710 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3711 
3712 /* Enable polling stats and return whether they were already enabled. */
3713 static bool blk_poll_stats_enable(struct request_queue *q)
3714 {
3715 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3716 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3717 		return true;
3718 	blk_stat_add_callback(q, q->poll_cb);
3719 	return false;
3720 }
3721 
3722 static void blk_mq_poll_stats_start(struct request_queue *q)
3723 {
3724 	/*
3725 	 * We don't arm the callback if polling stats are not enabled or the
3726 	 * callback is already active.
3727 	 */
3728 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3729 	    blk_stat_is_active(q->poll_cb))
3730 		return;
3731 
3732 	blk_stat_activate_msecs(q->poll_cb, 100);
3733 }
3734 
3735 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3736 {
3737 	struct request_queue *q = cb->data;
3738 	int bucket;
3739 
3740 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3741 		if (cb->stat[bucket].nr_samples)
3742 			q->poll_stat[bucket] = cb->stat[bucket];
3743 	}
3744 }
3745 
3746 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3747 				       struct request *rq)
3748 {
3749 	unsigned long ret = 0;
3750 	int bucket;
3751 
3752 	/*
3753 	 * If stats collection isn't on, don't sleep but turn it on for
3754 	 * future users
3755 	 */
3756 	if (!blk_poll_stats_enable(q))
3757 		return 0;
3758 
3759 	/*
3760 	 * As an optimistic guess, use half of the mean service time
3761 	 * for this type of request. We can (and should) make this smarter.
3762 	 * For instance, if the completion latencies are tight, we can
3763 	 * get closer than just half the mean. This is especially
3764 	 * important on devices where the completion latencies are longer
3765 	 * than ~10 usec. We do use the stats for the relevant IO size
3766 	 * if available which does lead to better estimates.
3767 	 */
3768 	bucket = blk_mq_poll_stats_bkt(rq);
3769 	if (bucket < 0)
3770 		return ret;
3771 
3772 	if (q->poll_stat[bucket].nr_samples)
3773 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3774 
3775 	return ret;
3776 }
3777 
3778 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3779 				     struct request *rq)
3780 {
3781 	struct hrtimer_sleeper hs;
3782 	enum hrtimer_mode mode;
3783 	unsigned int nsecs;
3784 	ktime_t kt;
3785 
3786 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3787 		return false;
3788 
3789 	/*
3790 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3791 	 *
3792 	 *  0:	use half of prev avg
3793 	 * >0:	use this specific value
3794 	 */
3795 	if (q->poll_nsec > 0)
3796 		nsecs = q->poll_nsec;
3797 	else
3798 		nsecs = blk_mq_poll_nsecs(q, rq);
3799 
3800 	if (!nsecs)
3801 		return false;
3802 
3803 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3804 
3805 	/*
3806 	 * This will be replaced with the stats tracking code, using
3807 	 * 'avg_completion_time / 2' as the pre-sleep target.
3808 	 */
3809 	kt = nsecs;
3810 
3811 	mode = HRTIMER_MODE_REL;
3812 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3813 	hrtimer_set_expires(&hs.timer, kt);
3814 
3815 	do {
3816 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3817 			break;
3818 		set_current_state(TASK_UNINTERRUPTIBLE);
3819 		hrtimer_sleeper_start_expires(&hs, mode);
3820 		if (hs.task)
3821 			io_schedule();
3822 		hrtimer_cancel(&hs.timer);
3823 		mode = HRTIMER_MODE_ABS;
3824 	} while (hs.task && !signal_pending(current));
3825 
3826 	__set_current_state(TASK_RUNNING);
3827 	destroy_hrtimer_on_stack(&hs.timer);
3828 	return true;
3829 }
3830 
3831 static bool blk_mq_poll_hybrid(struct request_queue *q,
3832 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3833 {
3834 	struct request *rq;
3835 
3836 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3837 		return false;
3838 
3839 	if (!blk_qc_t_is_internal(cookie))
3840 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3841 	else {
3842 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3843 		/*
3844 		 * With scheduling, if the request has completed, we'll
3845 		 * get a NULL return here, as we clear the sched tag when
3846 		 * that happens. The request still remains valid, like always,
3847 		 * so we should be safe with just the NULL check.
3848 		 */
3849 		if (!rq)
3850 			return false;
3851 	}
3852 
3853 	return blk_mq_poll_hybrid_sleep(q, rq);
3854 }
3855 
3856 /**
3857  * blk_poll - poll for IO completions
3858  * @q:  the queue
3859  * @cookie: cookie passed back at IO submission time
3860  * @spin: whether to spin for completions
3861  *
3862  * Description:
3863  *    Poll for completions on the passed in queue. Returns number of
3864  *    completed entries found. If @spin is true, then blk_poll will continue
3865  *    looping until at least one completion is found, unless the task is
3866  *    otherwise marked running (or we need to reschedule).
3867  */
3868 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3869 {
3870 	struct blk_mq_hw_ctx *hctx;
3871 	long state;
3872 
3873 	if (!blk_qc_t_valid(cookie) ||
3874 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3875 		return 0;
3876 
3877 	if (current->plug)
3878 		blk_flush_plug_list(current->plug, false);
3879 
3880 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3881 
3882 	/*
3883 	 * If we sleep, have the caller restart the poll loop to reset
3884 	 * the state. Like for the other success return cases, the
3885 	 * caller is responsible for checking if the IO completed. If
3886 	 * the IO isn't complete, we'll get called again and will go
3887 	 * straight to the busy poll loop. If specified not to spin,
3888 	 * we also should not sleep.
3889 	 */
3890 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3891 		return 1;
3892 
3893 	hctx->poll_considered++;
3894 
3895 	state = current->state;
3896 	do {
3897 		int ret;
3898 
3899 		hctx->poll_invoked++;
3900 
3901 		ret = q->mq_ops->poll(hctx);
3902 		if (ret > 0) {
3903 			hctx->poll_success++;
3904 			__set_current_state(TASK_RUNNING);
3905 			return ret;
3906 		}
3907 
3908 		if (signal_pending_state(state, current))
3909 			__set_current_state(TASK_RUNNING);
3910 
3911 		if (current->state == TASK_RUNNING)
3912 			return 1;
3913 		if (ret < 0 || !spin)
3914 			break;
3915 		cpu_relax();
3916 	} while (!need_resched());
3917 
3918 	__set_current_state(TASK_RUNNING);
3919 	return 0;
3920 }
3921 EXPORT_SYMBOL_GPL(blk_poll);
3922 
3923 unsigned int blk_mq_rq_cpu(struct request *rq)
3924 {
3925 	return rq->mq_ctx->cpu;
3926 }
3927 EXPORT_SYMBOL(blk_mq_rq_cpu);
3928 
3929 static int __init blk_mq_init(void)
3930 {
3931 	int i;
3932 
3933 	for_each_possible_cpu(i)
3934 		init_llist_head(&per_cpu(blk_cpu_done, i));
3935 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3936 
3937 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3938 				  "block/softirq:dead", NULL,
3939 				  blk_softirq_cpu_dead);
3940 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3941 				blk_mq_hctx_notify_dead);
3942 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3943 				blk_mq_hctx_notify_online,
3944 				blk_mq_hctx_notify_offline);
3945 	return 0;
3946 }
3947 subsys_initcall(blk_mq_init);
3948