xref: /openbmc/linux/block/blk-mq.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PM)
298 		rq->rq_flags |= RQF_PM;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    e->type->ops.limit_depth &&
370 		    !(data->flags & BLK_MQ_REQ_RESERVED))
371 			e->type->ops.limit_depth(data->cmd_flags, data);
372 	}
373 
374 retry:
375 	data->ctx = blk_mq_get_ctx(q);
376 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377 	if (!e)
378 		blk_mq_tag_busy(data->hctx);
379 
380 	/*
381 	 * Waiting allocations only fail because of an inactive hctx.  In that
382 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 	 * should have migrated us to an online CPU by now.
384 	 */
385 	tag = blk_mq_get_tag(data);
386 	if (tag == BLK_MQ_NO_TAG) {
387 		if (data->flags & BLK_MQ_REQ_NOWAIT)
388 			return NULL;
389 
390 		/*
391 		 * Give up the CPU and sleep for a random short time to ensure
392 		 * that thread using a realtime scheduling class are migrated
393 		 * off the CPU, and thus off the hctx that is going away.
394 		 */
395 		msleep(3);
396 		goto retry;
397 	}
398 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400 
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 		blk_mq_req_flags_t flags)
403 {
404 	struct blk_mq_alloc_data data = {
405 		.q		= q,
406 		.flags		= flags,
407 		.cmd_flags	= op,
408 	};
409 	struct request *rq;
410 	int ret;
411 
412 	ret = blk_queue_enter(q, flags);
413 	if (ret)
414 		return ERR_PTR(ret);
415 
416 	rq = __blk_mq_alloc_request(&data);
417 	if (!rq)
418 		goto out_queue_exit;
419 	rq->__data_len = 0;
420 	rq->__sector = (sector_t) -1;
421 	rq->bio = rq->biotail = NULL;
422 	return rq;
423 out_queue_exit:
424 	blk_queue_exit(q);
425 	return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428 
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432 	struct blk_mq_alloc_data data = {
433 		.q		= q,
434 		.flags		= flags,
435 		.cmd_flags	= op,
436 	};
437 	u64 alloc_time_ns = 0;
438 	unsigned int cpu;
439 	unsigned int tag;
440 	int ret;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	ret = -EXDEV;
467 	data.hctx = q->queue_hw_ctx[hctx_idx];
468 	if (!blk_mq_hw_queue_mapped(data.hctx))
469 		goto out_queue_exit;
470 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471 	data.ctx = __blk_mq_get_ctx(q, cpu);
472 
473 	if (!q->elevator)
474 		blk_mq_tag_busy(data.hctx);
475 
476 	ret = -EWOULDBLOCK;
477 	tag = blk_mq_get_tag(&data);
478 	if (tag == BLK_MQ_NO_TAG)
479 		goto out_queue_exit;
480 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481 
482 out_queue_exit:
483 	blk_queue_exit(q);
484 	return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487 
488 static void __blk_mq_free_request(struct request *rq)
489 {
490 	struct request_queue *q = rq->q;
491 	struct blk_mq_ctx *ctx = rq->mq_ctx;
492 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 	const int sched_tag = rq->internal_tag;
494 
495 	blk_crypto_free_request(rq);
496 	blk_pm_mark_last_busy(rq);
497 	rq->mq_hctx = NULL;
498 	if (rq->tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500 	if (sched_tag != BLK_MQ_NO_TAG)
501 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502 	blk_mq_sched_restart(hctx);
503 	blk_queue_exit(q);
504 }
505 
506 void blk_mq_free_request(struct request *rq)
507 {
508 	struct request_queue *q = rq->q;
509 	struct elevator_queue *e = q->elevator;
510 	struct blk_mq_ctx *ctx = rq->mq_ctx;
511 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512 
513 	if (rq->rq_flags & RQF_ELVPRIV) {
514 		if (e && e->type->ops.finish_request)
515 			e->type->ops.finish_request(rq);
516 		if (rq->elv.icq) {
517 			put_io_context(rq->elv.icq->ioc);
518 			rq->elv.icq = NULL;
519 		}
520 	}
521 
522 	ctx->rq_completed[rq_is_sync(rq)]++;
523 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
524 		__blk_mq_dec_active_requests(hctx);
525 
526 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527 		laptop_io_completion(q->backing_dev_info);
528 
529 	rq_qos_done(q, rq);
530 
531 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532 	if (refcount_dec_and_test(&rq->ref))
533 		__blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536 
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539 	u64 now = 0;
540 
541 	if (blk_mq_need_time_stamp(rq))
542 		now = ktime_get_ns();
543 
544 	if (rq->rq_flags & RQF_STATS) {
545 		blk_mq_poll_stats_start(rq->q);
546 		blk_stat_add(rq, now);
547 	}
548 
549 	blk_mq_sched_completed_request(rq, now);
550 
551 	blk_account_io_done(rq, now);
552 
553 	if (rq->end_io) {
554 		rq_qos_done(rq->q, rq);
555 		rq->end_io(rq, error);
556 	} else {
557 		blk_mq_free_request(rq);
558 	}
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561 
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 		BUG();
566 	__blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569 
570 /*
571  * Softirq action handler - move entries to local list and loop over them
572  * while passing them to the queue registered handler.
573  */
574 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
575 {
576 	struct list_head *cpu_list, local_list;
577 
578 	local_irq_disable();
579 	cpu_list = this_cpu_ptr(&blk_cpu_done);
580 	list_replace_init(cpu_list, &local_list);
581 	local_irq_enable();
582 
583 	while (!list_empty(&local_list)) {
584 		struct request *rq;
585 
586 		rq = list_entry(local_list.next, struct request, ipi_list);
587 		list_del_init(&rq->ipi_list);
588 		rq->q->mq_ops->complete(rq);
589 	}
590 }
591 
592 static void blk_mq_trigger_softirq(struct request *rq)
593 {
594 	struct list_head *list;
595 	unsigned long flags;
596 
597 	local_irq_save(flags);
598 	list = this_cpu_ptr(&blk_cpu_done);
599 	list_add_tail(&rq->ipi_list, list);
600 
601 	/*
602 	 * If the list only contains our just added request, signal a raise of
603 	 * the softirq.  If there are already entries there, someone already
604 	 * raised the irq but it hasn't run yet.
605 	 */
606 	if (list->next == &rq->ipi_list)
607 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
608 	local_irq_restore(flags);
609 }
610 
611 static int blk_softirq_cpu_dead(unsigned int cpu)
612 {
613 	/*
614 	 * If a CPU goes away, splice its entries to the current CPU
615 	 * and trigger a run of the softirq
616 	 */
617 	local_irq_disable();
618 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
619 			 this_cpu_ptr(&blk_cpu_done));
620 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
621 	local_irq_enable();
622 
623 	return 0;
624 }
625 
626 
627 static void __blk_mq_complete_request_remote(void *data)
628 {
629 	struct request *rq = data;
630 
631 	/*
632 	 * For most of single queue controllers, there is only one irq vector
633 	 * for handling I/O completion, and the only irq's affinity is set
634 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
635 	 * is handled on one specific CPU.
636 	 *
637 	 * So complete I/O requests in softirq context in case of single queue
638 	 * devices to avoid degrading I/O performance due to irqsoff latency.
639 	 */
640 	if (rq->q->nr_hw_queues == 1)
641 		blk_mq_trigger_softirq(rq);
642 	else
643 		rq->q->mq_ops->complete(rq);
644 }
645 
646 static inline bool blk_mq_complete_need_ipi(struct request *rq)
647 {
648 	int cpu = raw_smp_processor_id();
649 
650 	if (!IS_ENABLED(CONFIG_SMP) ||
651 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
652 		return false;
653 	/*
654 	 * With force threaded interrupts enabled, raising softirq from an SMP
655 	 * function call will always result in waking the ksoftirqd thread.
656 	 * This is probably worse than completing the request on a different
657 	 * cache domain.
658 	 */
659 	if (force_irqthreads)
660 		return false;
661 
662 	/* same CPU or cache domain?  Complete locally */
663 	if (cpu == rq->mq_ctx->cpu ||
664 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
665 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
666 		return false;
667 
668 	/* don't try to IPI to an offline CPU */
669 	return cpu_online(rq->mq_ctx->cpu);
670 }
671 
672 bool blk_mq_complete_request_remote(struct request *rq)
673 {
674 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
675 
676 	/*
677 	 * For a polled request, always complete locallly, it's pointless
678 	 * to redirect the completion.
679 	 */
680 	if (rq->cmd_flags & REQ_HIPRI)
681 		return false;
682 
683 	if (blk_mq_complete_need_ipi(rq)) {
684 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
685 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
686 	} else {
687 		if (rq->q->nr_hw_queues > 1)
688 			return false;
689 		blk_mq_trigger_softirq(rq);
690 	}
691 
692 	return true;
693 }
694 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
695 
696 /**
697  * blk_mq_complete_request - end I/O on a request
698  * @rq:		the request being processed
699  *
700  * Description:
701  *	Complete a request by scheduling the ->complete_rq operation.
702  **/
703 void blk_mq_complete_request(struct request *rq)
704 {
705 	if (!blk_mq_complete_request_remote(rq))
706 		rq->q->mq_ops->complete(rq);
707 }
708 EXPORT_SYMBOL(blk_mq_complete_request);
709 
710 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
711 	__releases(hctx->srcu)
712 {
713 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
714 		rcu_read_unlock();
715 	else
716 		srcu_read_unlock(hctx->srcu, srcu_idx);
717 }
718 
719 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
720 	__acquires(hctx->srcu)
721 {
722 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
723 		/* shut up gcc false positive */
724 		*srcu_idx = 0;
725 		rcu_read_lock();
726 	} else
727 		*srcu_idx = srcu_read_lock(hctx->srcu);
728 }
729 
730 /**
731  * blk_mq_start_request - Start processing a request
732  * @rq: Pointer to request to be started
733  *
734  * Function used by device drivers to notify the block layer that a request
735  * is going to be processed now, so blk layer can do proper initializations
736  * such as starting the timeout timer.
737  */
738 void blk_mq_start_request(struct request *rq)
739 {
740 	struct request_queue *q = rq->q;
741 
742 	trace_block_rq_issue(rq);
743 
744 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
745 		rq->io_start_time_ns = ktime_get_ns();
746 		rq->stats_sectors = blk_rq_sectors(rq);
747 		rq->rq_flags |= RQF_STATS;
748 		rq_qos_issue(q, rq);
749 	}
750 
751 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
752 
753 	blk_add_timer(rq);
754 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
755 
756 #ifdef CONFIG_BLK_DEV_INTEGRITY
757 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
758 		q->integrity.profile->prepare_fn(rq);
759 #endif
760 }
761 EXPORT_SYMBOL(blk_mq_start_request);
762 
763 static void __blk_mq_requeue_request(struct request *rq)
764 {
765 	struct request_queue *q = rq->q;
766 
767 	blk_mq_put_driver_tag(rq);
768 
769 	trace_block_rq_requeue(rq);
770 	rq_qos_requeue(q, rq);
771 
772 	if (blk_mq_request_started(rq)) {
773 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
774 		rq->rq_flags &= ~RQF_TIMED_OUT;
775 	}
776 }
777 
778 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
779 {
780 	__blk_mq_requeue_request(rq);
781 
782 	/* this request will be re-inserted to io scheduler queue */
783 	blk_mq_sched_requeue_request(rq);
784 
785 	BUG_ON(!list_empty(&rq->queuelist));
786 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
787 }
788 EXPORT_SYMBOL(blk_mq_requeue_request);
789 
790 static void blk_mq_requeue_work(struct work_struct *work)
791 {
792 	struct request_queue *q =
793 		container_of(work, struct request_queue, requeue_work.work);
794 	LIST_HEAD(rq_list);
795 	struct request *rq, *next;
796 
797 	spin_lock_irq(&q->requeue_lock);
798 	list_splice_init(&q->requeue_list, &rq_list);
799 	spin_unlock_irq(&q->requeue_lock);
800 
801 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
802 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
803 			continue;
804 
805 		rq->rq_flags &= ~RQF_SOFTBARRIER;
806 		list_del_init(&rq->queuelist);
807 		/*
808 		 * If RQF_DONTPREP, rq has contained some driver specific
809 		 * data, so insert it to hctx dispatch list to avoid any
810 		 * merge.
811 		 */
812 		if (rq->rq_flags & RQF_DONTPREP)
813 			blk_mq_request_bypass_insert(rq, false, false);
814 		else
815 			blk_mq_sched_insert_request(rq, true, false, false);
816 	}
817 
818 	while (!list_empty(&rq_list)) {
819 		rq = list_entry(rq_list.next, struct request, queuelist);
820 		list_del_init(&rq->queuelist);
821 		blk_mq_sched_insert_request(rq, false, false, false);
822 	}
823 
824 	blk_mq_run_hw_queues(q, false);
825 }
826 
827 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
828 				bool kick_requeue_list)
829 {
830 	struct request_queue *q = rq->q;
831 	unsigned long flags;
832 
833 	/*
834 	 * We abuse this flag that is otherwise used by the I/O scheduler to
835 	 * request head insertion from the workqueue.
836 	 */
837 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
838 
839 	spin_lock_irqsave(&q->requeue_lock, flags);
840 	if (at_head) {
841 		rq->rq_flags |= RQF_SOFTBARRIER;
842 		list_add(&rq->queuelist, &q->requeue_list);
843 	} else {
844 		list_add_tail(&rq->queuelist, &q->requeue_list);
845 	}
846 	spin_unlock_irqrestore(&q->requeue_lock, flags);
847 
848 	if (kick_requeue_list)
849 		blk_mq_kick_requeue_list(q);
850 }
851 
852 void blk_mq_kick_requeue_list(struct request_queue *q)
853 {
854 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
855 }
856 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
857 
858 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
859 				    unsigned long msecs)
860 {
861 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
862 				    msecs_to_jiffies(msecs));
863 }
864 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
865 
866 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
867 {
868 	if (tag < tags->nr_tags) {
869 		prefetch(tags->rqs[tag]);
870 		return tags->rqs[tag];
871 	}
872 
873 	return NULL;
874 }
875 EXPORT_SYMBOL(blk_mq_tag_to_rq);
876 
877 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
878 			       void *priv, bool reserved)
879 {
880 	/*
881 	 * If we find a request that isn't idle and the queue matches,
882 	 * we know the queue is busy. Return false to stop the iteration.
883 	 */
884 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
885 		bool *busy = priv;
886 
887 		*busy = true;
888 		return false;
889 	}
890 
891 	return true;
892 }
893 
894 bool blk_mq_queue_inflight(struct request_queue *q)
895 {
896 	bool busy = false;
897 
898 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
899 	return busy;
900 }
901 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
902 
903 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
904 {
905 	req->rq_flags |= RQF_TIMED_OUT;
906 	if (req->q->mq_ops->timeout) {
907 		enum blk_eh_timer_return ret;
908 
909 		ret = req->q->mq_ops->timeout(req, reserved);
910 		if (ret == BLK_EH_DONE)
911 			return;
912 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
913 	}
914 
915 	blk_add_timer(req);
916 }
917 
918 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
919 {
920 	unsigned long deadline;
921 
922 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
923 		return false;
924 	if (rq->rq_flags & RQF_TIMED_OUT)
925 		return false;
926 
927 	deadline = READ_ONCE(rq->deadline);
928 	if (time_after_eq(jiffies, deadline))
929 		return true;
930 
931 	if (*next == 0)
932 		*next = deadline;
933 	else if (time_after(*next, deadline))
934 		*next = deadline;
935 	return false;
936 }
937 
938 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
939 		struct request *rq, void *priv, bool reserved)
940 {
941 	unsigned long *next = priv;
942 
943 	/*
944 	 * Just do a quick check if it is expired before locking the request in
945 	 * so we're not unnecessarilly synchronizing across CPUs.
946 	 */
947 	if (!blk_mq_req_expired(rq, next))
948 		return true;
949 
950 	/*
951 	 * We have reason to believe the request may be expired. Take a
952 	 * reference on the request to lock this request lifetime into its
953 	 * currently allocated context to prevent it from being reallocated in
954 	 * the event the completion by-passes this timeout handler.
955 	 *
956 	 * If the reference was already released, then the driver beat the
957 	 * timeout handler to posting a natural completion.
958 	 */
959 	if (!refcount_inc_not_zero(&rq->ref))
960 		return true;
961 
962 	/*
963 	 * The request is now locked and cannot be reallocated underneath the
964 	 * timeout handler's processing. Re-verify this exact request is truly
965 	 * expired; if it is not expired, then the request was completed and
966 	 * reallocated as a new request.
967 	 */
968 	if (blk_mq_req_expired(rq, next))
969 		blk_mq_rq_timed_out(rq, reserved);
970 
971 	if (is_flush_rq(rq, hctx))
972 		rq->end_io(rq, 0);
973 	else if (refcount_dec_and_test(&rq->ref))
974 		__blk_mq_free_request(rq);
975 
976 	return true;
977 }
978 
979 static void blk_mq_timeout_work(struct work_struct *work)
980 {
981 	struct request_queue *q =
982 		container_of(work, struct request_queue, timeout_work);
983 	unsigned long next = 0;
984 	struct blk_mq_hw_ctx *hctx;
985 	int i;
986 
987 	/* A deadlock might occur if a request is stuck requiring a
988 	 * timeout at the same time a queue freeze is waiting
989 	 * completion, since the timeout code would not be able to
990 	 * acquire the queue reference here.
991 	 *
992 	 * That's why we don't use blk_queue_enter here; instead, we use
993 	 * percpu_ref_tryget directly, because we need to be able to
994 	 * obtain a reference even in the short window between the queue
995 	 * starting to freeze, by dropping the first reference in
996 	 * blk_freeze_queue_start, and the moment the last request is
997 	 * consumed, marked by the instant q_usage_counter reaches
998 	 * zero.
999 	 */
1000 	if (!percpu_ref_tryget(&q->q_usage_counter))
1001 		return;
1002 
1003 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1004 
1005 	if (next != 0) {
1006 		mod_timer(&q->timeout, next);
1007 	} else {
1008 		/*
1009 		 * Request timeouts are handled as a forward rolling timer. If
1010 		 * we end up here it means that no requests are pending and
1011 		 * also that no request has been pending for a while. Mark
1012 		 * each hctx as idle.
1013 		 */
1014 		queue_for_each_hw_ctx(q, hctx, i) {
1015 			/* the hctx may be unmapped, so check it here */
1016 			if (blk_mq_hw_queue_mapped(hctx))
1017 				blk_mq_tag_idle(hctx);
1018 		}
1019 	}
1020 	blk_queue_exit(q);
1021 }
1022 
1023 struct flush_busy_ctx_data {
1024 	struct blk_mq_hw_ctx *hctx;
1025 	struct list_head *list;
1026 };
1027 
1028 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1029 {
1030 	struct flush_busy_ctx_data *flush_data = data;
1031 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1032 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033 	enum hctx_type type = hctx->type;
1034 
1035 	spin_lock(&ctx->lock);
1036 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1037 	sbitmap_clear_bit(sb, bitnr);
1038 	spin_unlock(&ctx->lock);
1039 	return true;
1040 }
1041 
1042 /*
1043  * Process software queues that have been marked busy, splicing them
1044  * to the for-dispatch
1045  */
1046 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1047 {
1048 	struct flush_busy_ctx_data data = {
1049 		.hctx = hctx,
1050 		.list = list,
1051 	};
1052 
1053 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1054 }
1055 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1056 
1057 struct dispatch_rq_data {
1058 	struct blk_mq_hw_ctx *hctx;
1059 	struct request *rq;
1060 };
1061 
1062 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1063 		void *data)
1064 {
1065 	struct dispatch_rq_data *dispatch_data = data;
1066 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1067 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1068 	enum hctx_type type = hctx->type;
1069 
1070 	spin_lock(&ctx->lock);
1071 	if (!list_empty(&ctx->rq_lists[type])) {
1072 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1073 		list_del_init(&dispatch_data->rq->queuelist);
1074 		if (list_empty(&ctx->rq_lists[type]))
1075 			sbitmap_clear_bit(sb, bitnr);
1076 	}
1077 	spin_unlock(&ctx->lock);
1078 
1079 	return !dispatch_data->rq;
1080 }
1081 
1082 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1083 					struct blk_mq_ctx *start)
1084 {
1085 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1086 	struct dispatch_rq_data data = {
1087 		.hctx = hctx,
1088 		.rq   = NULL,
1089 	};
1090 
1091 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1092 			       dispatch_rq_from_ctx, &data);
1093 
1094 	return data.rq;
1095 }
1096 
1097 static inline unsigned int queued_to_index(unsigned int queued)
1098 {
1099 	if (!queued)
1100 		return 0;
1101 
1102 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1103 }
1104 
1105 static bool __blk_mq_get_driver_tag(struct request *rq)
1106 {
1107 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1108 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1109 	int tag;
1110 
1111 	blk_mq_tag_busy(rq->mq_hctx);
1112 
1113 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1114 		bt = rq->mq_hctx->tags->breserved_tags;
1115 		tag_offset = 0;
1116 	} else {
1117 		if (!hctx_may_queue(rq->mq_hctx, bt))
1118 			return false;
1119 	}
1120 
1121 	tag = __sbitmap_queue_get(bt);
1122 	if (tag == BLK_MQ_NO_TAG)
1123 		return false;
1124 
1125 	rq->tag = tag + tag_offset;
1126 	return true;
1127 }
1128 
1129 static bool blk_mq_get_driver_tag(struct request *rq)
1130 {
1131 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1132 
1133 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1134 		return false;
1135 
1136 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1137 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1138 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1139 		__blk_mq_inc_active_requests(hctx);
1140 	}
1141 	hctx->tags->rqs[rq->tag] = rq;
1142 	return true;
1143 }
1144 
1145 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1146 				int flags, void *key)
1147 {
1148 	struct blk_mq_hw_ctx *hctx;
1149 
1150 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1151 
1152 	spin_lock(&hctx->dispatch_wait_lock);
1153 	if (!list_empty(&wait->entry)) {
1154 		struct sbitmap_queue *sbq;
1155 
1156 		list_del_init(&wait->entry);
1157 		sbq = hctx->tags->bitmap_tags;
1158 		atomic_dec(&sbq->ws_active);
1159 	}
1160 	spin_unlock(&hctx->dispatch_wait_lock);
1161 
1162 	blk_mq_run_hw_queue(hctx, true);
1163 	return 1;
1164 }
1165 
1166 /*
1167  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1168  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1169  * restart. For both cases, take care to check the condition again after
1170  * marking us as waiting.
1171  */
1172 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1173 				 struct request *rq)
1174 {
1175 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1176 	struct wait_queue_head *wq;
1177 	wait_queue_entry_t *wait;
1178 	bool ret;
1179 
1180 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1181 		blk_mq_sched_mark_restart_hctx(hctx);
1182 
1183 		/*
1184 		 * It's possible that a tag was freed in the window between the
1185 		 * allocation failure and adding the hardware queue to the wait
1186 		 * queue.
1187 		 *
1188 		 * Don't clear RESTART here, someone else could have set it.
1189 		 * At most this will cost an extra queue run.
1190 		 */
1191 		return blk_mq_get_driver_tag(rq);
1192 	}
1193 
1194 	wait = &hctx->dispatch_wait;
1195 	if (!list_empty_careful(&wait->entry))
1196 		return false;
1197 
1198 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1199 
1200 	spin_lock_irq(&wq->lock);
1201 	spin_lock(&hctx->dispatch_wait_lock);
1202 	if (!list_empty(&wait->entry)) {
1203 		spin_unlock(&hctx->dispatch_wait_lock);
1204 		spin_unlock_irq(&wq->lock);
1205 		return false;
1206 	}
1207 
1208 	atomic_inc(&sbq->ws_active);
1209 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1210 	__add_wait_queue(wq, wait);
1211 
1212 	/*
1213 	 * It's possible that a tag was freed in the window between the
1214 	 * allocation failure and adding the hardware queue to the wait
1215 	 * queue.
1216 	 */
1217 	ret = blk_mq_get_driver_tag(rq);
1218 	if (!ret) {
1219 		spin_unlock(&hctx->dispatch_wait_lock);
1220 		spin_unlock_irq(&wq->lock);
1221 		return false;
1222 	}
1223 
1224 	/*
1225 	 * We got a tag, remove ourselves from the wait queue to ensure
1226 	 * someone else gets the wakeup.
1227 	 */
1228 	list_del_init(&wait->entry);
1229 	atomic_dec(&sbq->ws_active);
1230 	spin_unlock(&hctx->dispatch_wait_lock);
1231 	spin_unlock_irq(&wq->lock);
1232 
1233 	return true;
1234 }
1235 
1236 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1237 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1238 /*
1239  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1240  * - EWMA is one simple way to compute running average value
1241  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1242  * - take 4 as factor for avoiding to get too small(0) result, and this
1243  *   factor doesn't matter because EWMA decreases exponentially
1244  */
1245 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1246 {
1247 	unsigned int ewma;
1248 
1249 	if (hctx->queue->elevator)
1250 		return;
1251 
1252 	ewma = hctx->dispatch_busy;
1253 
1254 	if (!ewma && !busy)
1255 		return;
1256 
1257 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1258 	if (busy)
1259 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1260 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1261 
1262 	hctx->dispatch_busy = ewma;
1263 }
1264 
1265 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1266 
1267 static void blk_mq_handle_dev_resource(struct request *rq,
1268 				       struct list_head *list)
1269 {
1270 	struct request *next =
1271 		list_first_entry_or_null(list, struct request, queuelist);
1272 
1273 	/*
1274 	 * If an I/O scheduler has been configured and we got a driver tag for
1275 	 * the next request already, free it.
1276 	 */
1277 	if (next)
1278 		blk_mq_put_driver_tag(next);
1279 
1280 	list_add(&rq->queuelist, list);
1281 	__blk_mq_requeue_request(rq);
1282 }
1283 
1284 static void blk_mq_handle_zone_resource(struct request *rq,
1285 					struct list_head *zone_list)
1286 {
1287 	/*
1288 	 * If we end up here it is because we cannot dispatch a request to a
1289 	 * specific zone due to LLD level zone-write locking or other zone
1290 	 * related resource not being available. In this case, set the request
1291 	 * aside in zone_list for retrying it later.
1292 	 */
1293 	list_add(&rq->queuelist, zone_list);
1294 	__blk_mq_requeue_request(rq);
1295 }
1296 
1297 enum prep_dispatch {
1298 	PREP_DISPATCH_OK,
1299 	PREP_DISPATCH_NO_TAG,
1300 	PREP_DISPATCH_NO_BUDGET,
1301 };
1302 
1303 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1304 						  bool need_budget)
1305 {
1306 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1307 
1308 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1309 		blk_mq_put_driver_tag(rq);
1310 		return PREP_DISPATCH_NO_BUDGET;
1311 	}
1312 
1313 	if (!blk_mq_get_driver_tag(rq)) {
1314 		/*
1315 		 * The initial allocation attempt failed, so we need to
1316 		 * rerun the hardware queue when a tag is freed. The
1317 		 * waitqueue takes care of that. If the queue is run
1318 		 * before we add this entry back on the dispatch list,
1319 		 * we'll re-run it below.
1320 		 */
1321 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1322 			/*
1323 			 * All budgets not got from this function will be put
1324 			 * together during handling partial dispatch
1325 			 */
1326 			if (need_budget)
1327 				blk_mq_put_dispatch_budget(rq->q);
1328 			return PREP_DISPATCH_NO_TAG;
1329 		}
1330 	}
1331 
1332 	return PREP_DISPATCH_OK;
1333 }
1334 
1335 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1336 static void blk_mq_release_budgets(struct request_queue *q,
1337 		unsigned int nr_budgets)
1338 {
1339 	int i;
1340 
1341 	for (i = 0; i < nr_budgets; i++)
1342 		blk_mq_put_dispatch_budget(q);
1343 }
1344 
1345 /*
1346  * Returns true if we did some work AND can potentially do more.
1347  */
1348 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1349 			     unsigned int nr_budgets)
1350 {
1351 	enum prep_dispatch prep;
1352 	struct request_queue *q = hctx->queue;
1353 	struct request *rq, *nxt;
1354 	int errors, queued;
1355 	blk_status_t ret = BLK_STS_OK;
1356 	LIST_HEAD(zone_list);
1357 
1358 	if (list_empty(list))
1359 		return false;
1360 
1361 	/*
1362 	 * Now process all the entries, sending them to the driver.
1363 	 */
1364 	errors = queued = 0;
1365 	do {
1366 		struct blk_mq_queue_data bd;
1367 
1368 		rq = list_first_entry(list, struct request, queuelist);
1369 
1370 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1371 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1372 		if (prep != PREP_DISPATCH_OK)
1373 			break;
1374 
1375 		list_del_init(&rq->queuelist);
1376 
1377 		bd.rq = rq;
1378 
1379 		/*
1380 		 * Flag last if we have no more requests, or if we have more
1381 		 * but can't assign a driver tag to it.
1382 		 */
1383 		if (list_empty(list))
1384 			bd.last = true;
1385 		else {
1386 			nxt = list_first_entry(list, struct request, queuelist);
1387 			bd.last = !blk_mq_get_driver_tag(nxt);
1388 		}
1389 
1390 		/*
1391 		 * once the request is queued to lld, no need to cover the
1392 		 * budget any more
1393 		 */
1394 		if (nr_budgets)
1395 			nr_budgets--;
1396 		ret = q->mq_ops->queue_rq(hctx, &bd);
1397 		switch (ret) {
1398 		case BLK_STS_OK:
1399 			queued++;
1400 			break;
1401 		case BLK_STS_RESOURCE:
1402 		case BLK_STS_DEV_RESOURCE:
1403 			blk_mq_handle_dev_resource(rq, list);
1404 			goto out;
1405 		case BLK_STS_ZONE_RESOURCE:
1406 			/*
1407 			 * Move the request to zone_list and keep going through
1408 			 * the dispatch list to find more requests the drive can
1409 			 * accept.
1410 			 */
1411 			blk_mq_handle_zone_resource(rq, &zone_list);
1412 			break;
1413 		default:
1414 			errors++;
1415 			blk_mq_end_request(rq, ret);
1416 		}
1417 	} while (!list_empty(list));
1418 out:
1419 	if (!list_empty(&zone_list))
1420 		list_splice_tail_init(&zone_list, list);
1421 
1422 	hctx->dispatched[queued_to_index(queued)]++;
1423 
1424 	/* If we didn't flush the entire list, we could have told the driver
1425 	 * there was more coming, but that turned out to be a lie.
1426 	 */
1427 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1428 		q->mq_ops->commit_rqs(hctx);
1429 	/*
1430 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1431 	 * that is where we will continue on next queue run.
1432 	 */
1433 	if (!list_empty(list)) {
1434 		bool needs_restart;
1435 		/* For non-shared tags, the RESTART check will suffice */
1436 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1437 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1438 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1439 
1440 		blk_mq_release_budgets(q, nr_budgets);
1441 
1442 		spin_lock(&hctx->lock);
1443 		list_splice_tail_init(list, &hctx->dispatch);
1444 		spin_unlock(&hctx->lock);
1445 
1446 		/*
1447 		 * Order adding requests to hctx->dispatch and checking
1448 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1449 		 * in blk_mq_sched_restart(). Avoid restart code path to
1450 		 * miss the new added requests to hctx->dispatch, meantime
1451 		 * SCHED_RESTART is observed here.
1452 		 */
1453 		smp_mb();
1454 
1455 		/*
1456 		 * If SCHED_RESTART was set by the caller of this function and
1457 		 * it is no longer set that means that it was cleared by another
1458 		 * thread and hence that a queue rerun is needed.
1459 		 *
1460 		 * If 'no_tag' is set, that means that we failed getting
1461 		 * a driver tag with an I/O scheduler attached. If our dispatch
1462 		 * waitqueue is no longer active, ensure that we run the queue
1463 		 * AFTER adding our entries back to the list.
1464 		 *
1465 		 * If no I/O scheduler has been configured it is possible that
1466 		 * the hardware queue got stopped and restarted before requests
1467 		 * were pushed back onto the dispatch list. Rerun the queue to
1468 		 * avoid starvation. Notes:
1469 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1470 		 *   been stopped before rerunning a queue.
1471 		 * - Some but not all block drivers stop a queue before
1472 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1473 		 *   and dm-rq.
1474 		 *
1475 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1476 		 * bit is set, run queue after a delay to avoid IO stalls
1477 		 * that could otherwise occur if the queue is idle.  We'll do
1478 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1479 		 */
1480 		needs_restart = blk_mq_sched_needs_restart(hctx);
1481 		if (!needs_restart ||
1482 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1483 			blk_mq_run_hw_queue(hctx, true);
1484 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1485 					   no_budget_avail))
1486 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1487 
1488 		blk_mq_update_dispatch_busy(hctx, true);
1489 		return false;
1490 	} else
1491 		blk_mq_update_dispatch_busy(hctx, false);
1492 
1493 	return (queued + errors) != 0;
1494 }
1495 
1496 /**
1497  * __blk_mq_run_hw_queue - Run a hardware queue.
1498  * @hctx: Pointer to the hardware queue to run.
1499  *
1500  * Send pending requests to the hardware.
1501  */
1502 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1503 {
1504 	int srcu_idx;
1505 
1506 	/*
1507 	 * We can't run the queue inline with ints disabled. Ensure that
1508 	 * we catch bad users of this early.
1509 	 */
1510 	WARN_ON_ONCE(in_interrupt());
1511 
1512 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1513 
1514 	hctx_lock(hctx, &srcu_idx);
1515 	blk_mq_sched_dispatch_requests(hctx);
1516 	hctx_unlock(hctx, srcu_idx);
1517 }
1518 
1519 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1520 {
1521 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1522 
1523 	if (cpu >= nr_cpu_ids)
1524 		cpu = cpumask_first(hctx->cpumask);
1525 	return cpu;
1526 }
1527 
1528 /*
1529  * It'd be great if the workqueue API had a way to pass
1530  * in a mask and had some smarts for more clever placement.
1531  * For now we just round-robin here, switching for every
1532  * BLK_MQ_CPU_WORK_BATCH queued items.
1533  */
1534 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1535 {
1536 	bool tried = false;
1537 	int next_cpu = hctx->next_cpu;
1538 
1539 	if (hctx->queue->nr_hw_queues == 1)
1540 		return WORK_CPU_UNBOUND;
1541 
1542 	if (--hctx->next_cpu_batch <= 0) {
1543 select_cpu:
1544 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1545 				cpu_online_mask);
1546 		if (next_cpu >= nr_cpu_ids)
1547 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1548 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1549 	}
1550 
1551 	/*
1552 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1553 	 * and it should only happen in the path of handling CPU DEAD.
1554 	 */
1555 	if (!cpu_online(next_cpu)) {
1556 		if (!tried) {
1557 			tried = true;
1558 			goto select_cpu;
1559 		}
1560 
1561 		/*
1562 		 * Make sure to re-select CPU next time once after CPUs
1563 		 * in hctx->cpumask become online again.
1564 		 */
1565 		hctx->next_cpu = next_cpu;
1566 		hctx->next_cpu_batch = 1;
1567 		return WORK_CPU_UNBOUND;
1568 	}
1569 
1570 	hctx->next_cpu = next_cpu;
1571 	return next_cpu;
1572 }
1573 
1574 /**
1575  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1576  * @hctx: Pointer to the hardware queue to run.
1577  * @async: If we want to run the queue asynchronously.
1578  * @msecs: Milliseconds of delay to wait before running the queue.
1579  *
1580  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1581  * with a delay of @msecs.
1582  */
1583 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1584 					unsigned long msecs)
1585 {
1586 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1587 		return;
1588 
1589 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1590 		int cpu = get_cpu();
1591 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1592 			__blk_mq_run_hw_queue(hctx);
1593 			put_cpu();
1594 			return;
1595 		}
1596 
1597 		put_cpu();
1598 	}
1599 
1600 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1601 				    msecs_to_jiffies(msecs));
1602 }
1603 
1604 /**
1605  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1606  * @hctx: Pointer to the hardware queue to run.
1607  * @msecs: Milliseconds of delay to wait before running the queue.
1608  *
1609  * Run a hardware queue asynchronously with a delay of @msecs.
1610  */
1611 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1612 {
1613 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1614 }
1615 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1616 
1617 /**
1618  * blk_mq_run_hw_queue - Start to run a hardware queue.
1619  * @hctx: Pointer to the hardware queue to run.
1620  * @async: If we want to run the queue asynchronously.
1621  *
1622  * Check if the request queue is not in a quiesced state and if there are
1623  * pending requests to be sent. If this is true, run the queue to send requests
1624  * to hardware.
1625  */
1626 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1627 {
1628 	int srcu_idx;
1629 	bool need_run;
1630 
1631 	/*
1632 	 * When queue is quiesced, we may be switching io scheduler, or
1633 	 * updating nr_hw_queues, or other things, and we can't run queue
1634 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1635 	 *
1636 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1637 	 * quiesced.
1638 	 */
1639 	hctx_lock(hctx, &srcu_idx);
1640 	need_run = !blk_queue_quiesced(hctx->queue) &&
1641 		blk_mq_hctx_has_pending(hctx);
1642 	hctx_unlock(hctx, srcu_idx);
1643 
1644 	if (need_run)
1645 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1646 }
1647 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1648 
1649 /*
1650  * Is the request queue handled by an IO scheduler that does not respect
1651  * hardware queues when dispatching?
1652  */
1653 static bool blk_mq_has_sqsched(struct request_queue *q)
1654 {
1655 	struct elevator_queue *e = q->elevator;
1656 
1657 	if (e && e->type->ops.dispatch_request &&
1658 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1659 		return true;
1660 	return false;
1661 }
1662 
1663 /*
1664  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1665  * scheduler.
1666  */
1667 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1668 {
1669 	struct blk_mq_hw_ctx *hctx;
1670 
1671 	/*
1672 	 * If the IO scheduler does not respect hardware queues when
1673 	 * dispatching, we just don't bother with multiple HW queues and
1674 	 * dispatch from hctx for the current CPU since running multiple queues
1675 	 * just causes lock contention inside the scheduler and pointless cache
1676 	 * bouncing.
1677 	 */
1678 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1679 				     raw_smp_processor_id());
1680 	if (!blk_mq_hctx_stopped(hctx))
1681 		return hctx;
1682 	return NULL;
1683 }
1684 
1685 /**
1686  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1687  * @q: Pointer to the request queue to run.
1688  * @async: If we want to run the queue asynchronously.
1689  */
1690 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1691 {
1692 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1693 	int i;
1694 
1695 	sq_hctx = NULL;
1696 	if (blk_mq_has_sqsched(q))
1697 		sq_hctx = blk_mq_get_sq_hctx(q);
1698 	queue_for_each_hw_ctx(q, hctx, i) {
1699 		if (blk_mq_hctx_stopped(hctx))
1700 			continue;
1701 		/*
1702 		 * Dispatch from this hctx either if there's no hctx preferred
1703 		 * by IO scheduler or if it has requests that bypass the
1704 		 * scheduler.
1705 		 */
1706 		if (!sq_hctx || sq_hctx == hctx ||
1707 		    !list_empty_careful(&hctx->dispatch))
1708 			blk_mq_run_hw_queue(hctx, async);
1709 	}
1710 }
1711 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1712 
1713 /**
1714  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1715  * @q: Pointer to the request queue to run.
1716  * @msecs: Milliseconds of delay to wait before running the queues.
1717  */
1718 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1719 {
1720 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1721 	int i;
1722 
1723 	sq_hctx = NULL;
1724 	if (blk_mq_has_sqsched(q))
1725 		sq_hctx = blk_mq_get_sq_hctx(q);
1726 	queue_for_each_hw_ctx(q, hctx, i) {
1727 		if (blk_mq_hctx_stopped(hctx))
1728 			continue;
1729 		/*
1730 		 * Dispatch from this hctx either if there's no hctx preferred
1731 		 * by IO scheduler or if it has requests that bypass the
1732 		 * scheduler.
1733 		 */
1734 		if (!sq_hctx || sq_hctx == hctx ||
1735 		    !list_empty_careful(&hctx->dispatch))
1736 			blk_mq_delay_run_hw_queue(hctx, msecs);
1737 	}
1738 }
1739 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1740 
1741 /**
1742  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1743  * @q: request queue.
1744  *
1745  * The caller is responsible for serializing this function against
1746  * blk_mq_{start,stop}_hw_queue().
1747  */
1748 bool blk_mq_queue_stopped(struct request_queue *q)
1749 {
1750 	struct blk_mq_hw_ctx *hctx;
1751 	int i;
1752 
1753 	queue_for_each_hw_ctx(q, hctx, i)
1754 		if (blk_mq_hctx_stopped(hctx))
1755 			return true;
1756 
1757 	return false;
1758 }
1759 EXPORT_SYMBOL(blk_mq_queue_stopped);
1760 
1761 /*
1762  * This function is often used for pausing .queue_rq() by driver when
1763  * there isn't enough resource or some conditions aren't satisfied, and
1764  * BLK_STS_RESOURCE is usually returned.
1765  *
1766  * We do not guarantee that dispatch can be drained or blocked
1767  * after blk_mq_stop_hw_queue() returns. Please use
1768  * blk_mq_quiesce_queue() for that requirement.
1769  */
1770 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1771 {
1772 	cancel_delayed_work(&hctx->run_work);
1773 
1774 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1775 }
1776 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1777 
1778 /*
1779  * This function is often used for pausing .queue_rq() by driver when
1780  * there isn't enough resource or some conditions aren't satisfied, and
1781  * BLK_STS_RESOURCE is usually returned.
1782  *
1783  * We do not guarantee that dispatch can be drained or blocked
1784  * after blk_mq_stop_hw_queues() returns. Please use
1785  * blk_mq_quiesce_queue() for that requirement.
1786  */
1787 void blk_mq_stop_hw_queues(struct request_queue *q)
1788 {
1789 	struct blk_mq_hw_ctx *hctx;
1790 	int i;
1791 
1792 	queue_for_each_hw_ctx(q, hctx, i)
1793 		blk_mq_stop_hw_queue(hctx);
1794 }
1795 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1796 
1797 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1798 {
1799 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1800 
1801 	blk_mq_run_hw_queue(hctx, false);
1802 }
1803 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1804 
1805 void blk_mq_start_hw_queues(struct request_queue *q)
1806 {
1807 	struct blk_mq_hw_ctx *hctx;
1808 	int i;
1809 
1810 	queue_for_each_hw_ctx(q, hctx, i)
1811 		blk_mq_start_hw_queue(hctx);
1812 }
1813 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1814 
1815 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1816 {
1817 	if (!blk_mq_hctx_stopped(hctx))
1818 		return;
1819 
1820 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1821 	blk_mq_run_hw_queue(hctx, async);
1822 }
1823 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1824 
1825 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1826 {
1827 	struct blk_mq_hw_ctx *hctx;
1828 	int i;
1829 
1830 	queue_for_each_hw_ctx(q, hctx, i)
1831 		blk_mq_start_stopped_hw_queue(hctx, async);
1832 }
1833 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1834 
1835 static void blk_mq_run_work_fn(struct work_struct *work)
1836 {
1837 	struct blk_mq_hw_ctx *hctx;
1838 
1839 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1840 
1841 	/*
1842 	 * If we are stopped, don't run the queue.
1843 	 */
1844 	if (blk_mq_hctx_stopped(hctx))
1845 		return;
1846 
1847 	__blk_mq_run_hw_queue(hctx);
1848 }
1849 
1850 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1851 					    struct request *rq,
1852 					    bool at_head)
1853 {
1854 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1855 	enum hctx_type type = hctx->type;
1856 
1857 	lockdep_assert_held(&ctx->lock);
1858 
1859 	trace_block_rq_insert(rq);
1860 
1861 	if (at_head)
1862 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1863 	else
1864 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1865 }
1866 
1867 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1868 			     bool at_head)
1869 {
1870 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1871 
1872 	lockdep_assert_held(&ctx->lock);
1873 
1874 	__blk_mq_insert_req_list(hctx, rq, at_head);
1875 	blk_mq_hctx_mark_pending(hctx, ctx);
1876 }
1877 
1878 /**
1879  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1880  * @rq: Pointer to request to be inserted.
1881  * @at_head: true if the request should be inserted at the head of the list.
1882  * @run_queue: If we should run the hardware queue after inserting the request.
1883  *
1884  * Should only be used carefully, when the caller knows we want to
1885  * bypass a potential IO scheduler on the target device.
1886  */
1887 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1888 				  bool run_queue)
1889 {
1890 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1891 
1892 	spin_lock(&hctx->lock);
1893 	if (at_head)
1894 		list_add(&rq->queuelist, &hctx->dispatch);
1895 	else
1896 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1897 	spin_unlock(&hctx->lock);
1898 
1899 	if (run_queue)
1900 		blk_mq_run_hw_queue(hctx, false);
1901 }
1902 
1903 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1904 			    struct list_head *list)
1905 
1906 {
1907 	struct request *rq;
1908 	enum hctx_type type = hctx->type;
1909 
1910 	/*
1911 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1912 	 * offline now
1913 	 */
1914 	list_for_each_entry(rq, list, queuelist) {
1915 		BUG_ON(rq->mq_ctx != ctx);
1916 		trace_block_rq_insert(rq);
1917 	}
1918 
1919 	spin_lock(&ctx->lock);
1920 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1921 	blk_mq_hctx_mark_pending(hctx, ctx);
1922 	spin_unlock(&ctx->lock);
1923 }
1924 
1925 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1926 {
1927 	struct request *rqa = container_of(a, struct request, queuelist);
1928 	struct request *rqb = container_of(b, struct request, queuelist);
1929 
1930 	if (rqa->mq_ctx != rqb->mq_ctx)
1931 		return rqa->mq_ctx > rqb->mq_ctx;
1932 	if (rqa->mq_hctx != rqb->mq_hctx)
1933 		return rqa->mq_hctx > rqb->mq_hctx;
1934 
1935 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1936 }
1937 
1938 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1939 {
1940 	LIST_HEAD(list);
1941 
1942 	if (list_empty(&plug->mq_list))
1943 		return;
1944 	list_splice_init(&plug->mq_list, &list);
1945 
1946 	if (plug->rq_count > 2 && plug->multiple_queues)
1947 		list_sort(NULL, &list, plug_rq_cmp);
1948 
1949 	plug->rq_count = 0;
1950 
1951 	do {
1952 		struct list_head rq_list;
1953 		struct request *rq, *head_rq = list_entry_rq(list.next);
1954 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1955 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1956 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1957 		unsigned int depth = 1;
1958 
1959 		list_for_each_continue(pos, &list) {
1960 			rq = list_entry_rq(pos);
1961 			BUG_ON(!rq->q);
1962 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1963 				break;
1964 			depth++;
1965 		}
1966 
1967 		list_cut_before(&rq_list, &list, pos);
1968 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1969 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1970 						from_schedule);
1971 	} while(!list_empty(&list));
1972 }
1973 
1974 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1975 		unsigned int nr_segs)
1976 {
1977 	int err;
1978 
1979 	if (bio->bi_opf & REQ_RAHEAD)
1980 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1981 
1982 	rq->__sector = bio->bi_iter.bi_sector;
1983 	rq->write_hint = bio->bi_write_hint;
1984 	blk_rq_bio_prep(rq, bio, nr_segs);
1985 
1986 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1987 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1988 	WARN_ON_ONCE(err);
1989 
1990 	blk_account_io_start(rq);
1991 }
1992 
1993 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1994 					    struct request *rq,
1995 					    blk_qc_t *cookie, bool last)
1996 {
1997 	struct request_queue *q = rq->q;
1998 	struct blk_mq_queue_data bd = {
1999 		.rq = rq,
2000 		.last = last,
2001 	};
2002 	blk_qc_t new_cookie;
2003 	blk_status_t ret;
2004 
2005 	new_cookie = request_to_qc_t(hctx, rq);
2006 
2007 	/*
2008 	 * For OK queue, we are done. For error, caller may kill it.
2009 	 * Any other error (busy), just add it to our list as we
2010 	 * previously would have done.
2011 	 */
2012 	ret = q->mq_ops->queue_rq(hctx, &bd);
2013 	switch (ret) {
2014 	case BLK_STS_OK:
2015 		blk_mq_update_dispatch_busy(hctx, false);
2016 		*cookie = new_cookie;
2017 		break;
2018 	case BLK_STS_RESOURCE:
2019 	case BLK_STS_DEV_RESOURCE:
2020 		blk_mq_update_dispatch_busy(hctx, true);
2021 		__blk_mq_requeue_request(rq);
2022 		break;
2023 	default:
2024 		blk_mq_update_dispatch_busy(hctx, false);
2025 		*cookie = BLK_QC_T_NONE;
2026 		break;
2027 	}
2028 
2029 	return ret;
2030 }
2031 
2032 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2033 						struct request *rq,
2034 						blk_qc_t *cookie,
2035 						bool bypass_insert, bool last)
2036 {
2037 	struct request_queue *q = rq->q;
2038 	bool run_queue = true;
2039 
2040 	/*
2041 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2042 	 *
2043 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2044 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2045 	 * and avoid driver to try to dispatch again.
2046 	 */
2047 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2048 		run_queue = false;
2049 		bypass_insert = false;
2050 		goto insert;
2051 	}
2052 
2053 	if (q->elevator && !bypass_insert)
2054 		goto insert;
2055 
2056 	if (!blk_mq_get_dispatch_budget(q))
2057 		goto insert;
2058 
2059 	if (!blk_mq_get_driver_tag(rq)) {
2060 		blk_mq_put_dispatch_budget(q);
2061 		goto insert;
2062 	}
2063 
2064 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2065 insert:
2066 	if (bypass_insert)
2067 		return BLK_STS_RESOURCE;
2068 
2069 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2070 
2071 	return BLK_STS_OK;
2072 }
2073 
2074 /**
2075  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2076  * @hctx: Pointer of the associated hardware queue.
2077  * @rq: Pointer to request to be sent.
2078  * @cookie: Request queue cookie.
2079  *
2080  * If the device has enough resources to accept a new request now, send the
2081  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2082  * we can try send it another time in the future. Requests inserted at this
2083  * queue have higher priority.
2084  */
2085 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2086 		struct request *rq, blk_qc_t *cookie)
2087 {
2088 	blk_status_t ret;
2089 	int srcu_idx;
2090 
2091 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2092 
2093 	hctx_lock(hctx, &srcu_idx);
2094 
2095 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2096 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2097 		blk_mq_request_bypass_insert(rq, false, true);
2098 	else if (ret != BLK_STS_OK)
2099 		blk_mq_end_request(rq, ret);
2100 
2101 	hctx_unlock(hctx, srcu_idx);
2102 }
2103 
2104 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2105 {
2106 	blk_status_t ret;
2107 	int srcu_idx;
2108 	blk_qc_t unused_cookie;
2109 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2110 
2111 	hctx_lock(hctx, &srcu_idx);
2112 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2113 	hctx_unlock(hctx, srcu_idx);
2114 
2115 	return ret;
2116 }
2117 
2118 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2119 		struct list_head *list)
2120 {
2121 	int queued = 0;
2122 	int errors = 0;
2123 
2124 	while (!list_empty(list)) {
2125 		blk_status_t ret;
2126 		struct request *rq = list_first_entry(list, struct request,
2127 				queuelist);
2128 
2129 		list_del_init(&rq->queuelist);
2130 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2131 		if (ret != BLK_STS_OK) {
2132 			if (ret == BLK_STS_RESOURCE ||
2133 					ret == BLK_STS_DEV_RESOURCE) {
2134 				blk_mq_request_bypass_insert(rq, false,
2135 							list_empty(list));
2136 				break;
2137 			}
2138 			blk_mq_end_request(rq, ret);
2139 			errors++;
2140 		} else
2141 			queued++;
2142 	}
2143 
2144 	/*
2145 	 * If we didn't flush the entire list, we could have told
2146 	 * the driver there was more coming, but that turned out to
2147 	 * be a lie.
2148 	 */
2149 	if ((!list_empty(list) || errors) &&
2150 	     hctx->queue->mq_ops->commit_rqs && queued)
2151 		hctx->queue->mq_ops->commit_rqs(hctx);
2152 }
2153 
2154 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2155 {
2156 	list_add_tail(&rq->queuelist, &plug->mq_list);
2157 	plug->rq_count++;
2158 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2159 		struct request *tmp;
2160 
2161 		tmp = list_first_entry(&plug->mq_list, struct request,
2162 						queuelist);
2163 		if (tmp->q != rq->q)
2164 			plug->multiple_queues = true;
2165 	}
2166 }
2167 
2168 /**
2169  * blk_mq_submit_bio - Create and send a request to block device.
2170  * @bio: Bio pointer.
2171  *
2172  * Builds up a request structure from @q and @bio and send to the device. The
2173  * request may not be queued directly to hardware if:
2174  * * This request can be merged with another one
2175  * * We want to place request at plug queue for possible future merging
2176  * * There is an IO scheduler active at this queue
2177  *
2178  * It will not queue the request if there is an error with the bio, or at the
2179  * request creation.
2180  *
2181  * Returns: Request queue cookie.
2182  */
2183 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2184 {
2185 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2186 	const int is_sync = op_is_sync(bio->bi_opf);
2187 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2188 	struct blk_mq_alloc_data data = {
2189 		.q		= q,
2190 	};
2191 	struct request *rq;
2192 	struct blk_plug *plug;
2193 	struct request *same_queue_rq = NULL;
2194 	unsigned int nr_segs;
2195 	blk_qc_t cookie;
2196 	blk_status_t ret;
2197 	bool hipri;
2198 
2199 	blk_queue_bounce(q, &bio);
2200 	__blk_queue_split(&bio, &nr_segs);
2201 
2202 	if (!bio_integrity_prep(bio))
2203 		goto queue_exit;
2204 
2205 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2206 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2207 		goto queue_exit;
2208 
2209 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2210 		goto queue_exit;
2211 
2212 	rq_qos_throttle(q, bio);
2213 
2214 	hipri = bio->bi_opf & REQ_HIPRI;
2215 
2216 	data.cmd_flags = bio->bi_opf;
2217 	rq = __blk_mq_alloc_request(&data);
2218 	if (unlikely(!rq)) {
2219 		rq_qos_cleanup(q, bio);
2220 		if (bio->bi_opf & REQ_NOWAIT)
2221 			bio_wouldblock_error(bio);
2222 		goto queue_exit;
2223 	}
2224 
2225 	trace_block_getrq(bio);
2226 
2227 	rq_qos_track(q, rq, bio);
2228 
2229 	cookie = request_to_qc_t(data.hctx, rq);
2230 
2231 	blk_mq_bio_to_request(rq, bio, nr_segs);
2232 
2233 	ret = blk_crypto_init_request(rq);
2234 	if (ret != BLK_STS_OK) {
2235 		bio->bi_status = ret;
2236 		bio_endio(bio);
2237 		blk_mq_free_request(rq);
2238 		return BLK_QC_T_NONE;
2239 	}
2240 
2241 	plug = blk_mq_plug(q, bio);
2242 	if (unlikely(is_flush_fua)) {
2243 		/* Bypass scheduler for flush requests */
2244 		blk_insert_flush(rq);
2245 		blk_mq_run_hw_queue(data.hctx, true);
2246 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2247 				!blk_queue_nonrot(q))) {
2248 		/*
2249 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2250 		 * we know the driver uses bd->last in a smart fashion.
2251 		 *
2252 		 * Use normal plugging if this disk is slow HDD, as sequential
2253 		 * IO may benefit a lot from plug merging.
2254 		 */
2255 		unsigned int request_count = plug->rq_count;
2256 		struct request *last = NULL;
2257 
2258 		if (!request_count)
2259 			trace_block_plug(q);
2260 		else
2261 			last = list_entry_rq(plug->mq_list.prev);
2262 
2263 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2264 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2265 			blk_flush_plug_list(plug, false);
2266 			trace_block_plug(q);
2267 		}
2268 
2269 		blk_add_rq_to_plug(plug, rq);
2270 	} else if (q->elevator) {
2271 		/* Insert the request at the IO scheduler queue */
2272 		blk_mq_sched_insert_request(rq, false, true, true);
2273 	} else if (plug && !blk_queue_nomerges(q)) {
2274 		/*
2275 		 * We do limited plugging. If the bio can be merged, do that.
2276 		 * Otherwise the existing request in the plug list will be
2277 		 * issued. So the plug list will have one request at most
2278 		 * The plug list might get flushed before this. If that happens,
2279 		 * the plug list is empty, and same_queue_rq is invalid.
2280 		 */
2281 		if (list_empty(&plug->mq_list))
2282 			same_queue_rq = NULL;
2283 		if (same_queue_rq) {
2284 			list_del_init(&same_queue_rq->queuelist);
2285 			plug->rq_count--;
2286 		}
2287 		blk_add_rq_to_plug(plug, rq);
2288 		trace_block_plug(q);
2289 
2290 		if (same_queue_rq) {
2291 			data.hctx = same_queue_rq->mq_hctx;
2292 			trace_block_unplug(q, 1, true);
2293 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2294 					&cookie);
2295 		}
2296 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2297 			!data.hctx->dispatch_busy) {
2298 		/*
2299 		 * There is no scheduler and we can try to send directly
2300 		 * to the hardware.
2301 		 */
2302 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2303 	} else {
2304 		/* Default case. */
2305 		blk_mq_sched_insert_request(rq, false, true, true);
2306 	}
2307 
2308 	if (!hipri)
2309 		return BLK_QC_T_NONE;
2310 	return cookie;
2311 queue_exit:
2312 	blk_queue_exit(q);
2313 	return BLK_QC_T_NONE;
2314 }
2315 
2316 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2317 		     unsigned int hctx_idx)
2318 {
2319 	struct page *page;
2320 
2321 	if (tags->rqs && set->ops->exit_request) {
2322 		int i;
2323 
2324 		for (i = 0; i < tags->nr_tags; i++) {
2325 			struct request *rq = tags->static_rqs[i];
2326 
2327 			if (!rq)
2328 				continue;
2329 			set->ops->exit_request(set, rq, hctx_idx);
2330 			tags->static_rqs[i] = NULL;
2331 		}
2332 	}
2333 
2334 	while (!list_empty(&tags->page_list)) {
2335 		page = list_first_entry(&tags->page_list, struct page, lru);
2336 		list_del_init(&page->lru);
2337 		/*
2338 		 * Remove kmemleak object previously allocated in
2339 		 * blk_mq_alloc_rqs().
2340 		 */
2341 		kmemleak_free(page_address(page));
2342 		__free_pages(page, page->private);
2343 	}
2344 }
2345 
2346 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2347 {
2348 	kfree(tags->rqs);
2349 	tags->rqs = NULL;
2350 	kfree(tags->static_rqs);
2351 	tags->static_rqs = NULL;
2352 
2353 	blk_mq_free_tags(tags, flags);
2354 }
2355 
2356 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2357 					unsigned int hctx_idx,
2358 					unsigned int nr_tags,
2359 					unsigned int reserved_tags,
2360 					unsigned int flags)
2361 {
2362 	struct blk_mq_tags *tags;
2363 	int node;
2364 
2365 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2366 	if (node == NUMA_NO_NODE)
2367 		node = set->numa_node;
2368 
2369 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2370 	if (!tags)
2371 		return NULL;
2372 
2373 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2374 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2375 				 node);
2376 	if (!tags->rqs) {
2377 		blk_mq_free_tags(tags, flags);
2378 		return NULL;
2379 	}
2380 
2381 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2382 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2383 					node);
2384 	if (!tags->static_rqs) {
2385 		kfree(tags->rqs);
2386 		blk_mq_free_tags(tags, flags);
2387 		return NULL;
2388 	}
2389 
2390 	return tags;
2391 }
2392 
2393 static size_t order_to_size(unsigned int order)
2394 {
2395 	return (size_t)PAGE_SIZE << order;
2396 }
2397 
2398 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2399 			       unsigned int hctx_idx, int node)
2400 {
2401 	int ret;
2402 
2403 	if (set->ops->init_request) {
2404 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2405 		if (ret)
2406 			return ret;
2407 	}
2408 
2409 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2410 	return 0;
2411 }
2412 
2413 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2414 		     unsigned int hctx_idx, unsigned int depth)
2415 {
2416 	unsigned int i, j, entries_per_page, max_order = 4;
2417 	size_t rq_size, left;
2418 	int node;
2419 
2420 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2421 	if (node == NUMA_NO_NODE)
2422 		node = set->numa_node;
2423 
2424 	INIT_LIST_HEAD(&tags->page_list);
2425 
2426 	/*
2427 	 * rq_size is the size of the request plus driver payload, rounded
2428 	 * to the cacheline size
2429 	 */
2430 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2431 				cache_line_size());
2432 	left = rq_size * depth;
2433 
2434 	for (i = 0; i < depth; ) {
2435 		int this_order = max_order;
2436 		struct page *page;
2437 		int to_do;
2438 		void *p;
2439 
2440 		while (this_order && left < order_to_size(this_order - 1))
2441 			this_order--;
2442 
2443 		do {
2444 			page = alloc_pages_node(node,
2445 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2446 				this_order);
2447 			if (page)
2448 				break;
2449 			if (!this_order--)
2450 				break;
2451 			if (order_to_size(this_order) < rq_size)
2452 				break;
2453 		} while (1);
2454 
2455 		if (!page)
2456 			goto fail;
2457 
2458 		page->private = this_order;
2459 		list_add_tail(&page->lru, &tags->page_list);
2460 
2461 		p = page_address(page);
2462 		/*
2463 		 * Allow kmemleak to scan these pages as they contain pointers
2464 		 * to additional allocations like via ops->init_request().
2465 		 */
2466 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2467 		entries_per_page = order_to_size(this_order) / rq_size;
2468 		to_do = min(entries_per_page, depth - i);
2469 		left -= to_do * rq_size;
2470 		for (j = 0; j < to_do; j++) {
2471 			struct request *rq = p;
2472 
2473 			tags->static_rqs[i] = rq;
2474 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2475 				tags->static_rqs[i] = NULL;
2476 				goto fail;
2477 			}
2478 
2479 			p += rq_size;
2480 			i++;
2481 		}
2482 	}
2483 	return 0;
2484 
2485 fail:
2486 	blk_mq_free_rqs(set, tags, hctx_idx);
2487 	return -ENOMEM;
2488 }
2489 
2490 struct rq_iter_data {
2491 	struct blk_mq_hw_ctx *hctx;
2492 	bool has_rq;
2493 };
2494 
2495 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2496 {
2497 	struct rq_iter_data *iter_data = data;
2498 
2499 	if (rq->mq_hctx != iter_data->hctx)
2500 		return true;
2501 	iter_data->has_rq = true;
2502 	return false;
2503 }
2504 
2505 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2506 {
2507 	struct blk_mq_tags *tags = hctx->sched_tags ?
2508 			hctx->sched_tags : hctx->tags;
2509 	struct rq_iter_data data = {
2510 		.hctx	= hctx,
2511 	};
2512 
2513 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2514 	return data.has_rq;
2515 }
2516 
2517 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2518 		struct blk_mq_hw_ctx *hctx)
2519 {
2520 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2521 		return false;
2522 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2523 		return false;
2524 	return true;
2525 }
2526 
2527 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2528 {
2529 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2530 			struct blk_mq_hw_ctx, cpuhp_online);
2531 
2532 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2533 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2534 		return 0;
2535 
2536 	/*
2537 	 * Prevent new request from being allocated on the current hctx.
2538 	 *
2539 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2540 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2541 	 * seen once we return from the tag allocator.
2542 	 */
2543 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2544 	smp_mb__after_atomic();
2545 
2546 	/*
2547 	 * Try to grab a reference to the queue and wait for any outstanding
2548 	 * requests.  If we could not grab a reference the queue has been
2549 	 * frozen and there are no requests.
2550 	 */
2551 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2552 		while (blk_mq_hctx_has_requests(hctx))
2553 			msleep(5);
2554 		percpu_ref_put(&hctx->queue->q_usage_counter);
2555 	}
2556 
2557 	return 0;
2558 }
2559 
2560 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2561 {
2562 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2563 			struct blk_mq_hw_ctx, cpuhp_online);
2564 
2565 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2566 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2567 	return 0;
2568 }
2569 
2570 /*
2571  * 'cpu' is going away. splice any existing rq_list entries from this
2572  * software queue to the hw queue dispatch list, and ensure that it
2573  * gets run.
2574  */
2575 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2576 {
2577 	struct blk_mq_hw_ctx *hctx;
2578 	struct blk_mq_ctx *ctx;
2579 	LIST_HEAD(tmp);
2580 	enum hctx_type type;
2581 
2582 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2583 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2584 		return 0;
2585 
2586 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2587 	type = hctx->type;
2588 
2589 	spin_lock(&ctx->lock);
2590 	if (!list_empty(&ctx->rq_lists[type])) {
2591 		list_splice_init(&ctx->rq_lists[type], &tmp);
2592 		blk_mq_hctx_clear_pending(hctx, ctx);
2593 	}
2594 	spin_unlock(&ctx->lock);
2595 
2596 	if (list_empty(&tmp))
2597 		return 0;
2598 
2599 	spin_lock(&hctx->lock);
2600 	list_splice_tail_init(&tmp, &hctx->dispatch);
2601 	spin_unlock(&hctx->lock);
2602 
2603 	blk_mq_run_hw_queue(hctx, true);
2604 	return 0;
2605 }
2606 
2607 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2608 {
2609 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2610 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2611 						    &hctx->cpuhp_online);
2612 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2613 					    &hctx->cpuhp_dead);
2614 }
2615 
2616 /* hctx->ctxs will be freed in queue's release handler */
2617 static void blk_mq_exit_hctx(struct request_queue *q,
2618 		struct blk_mq_tag_set *set,
2619 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2620 {
2621 	if (blk_mq_hw_queue_mapped(hctx))
2622 		blk_mq_tag_idle(hctx);
2623 
2624 	if (set->ops->exit_request)
2625 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2626 
2627 	if (set->ops->exit_hctx)
2628 		set->ops->exit_hctx(hctx, hctx_idx);
2629 
2630 	blk_mq_remove_cpuhp(hctx);
2631 
2632 	spin_lock(&q->unused_hctx_lock);
2633 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2634 	spin_unlock(&q->unused_hctx_lock);
2635 }
2636 
2637 static void blk_mq_exit_hw_queues(struct request_queue *q,
2638 		struct blk_mq_tag_set *set, int nr_queue)
2639 {
2640 	struct blk_mq_hw_ctx *hctx;
2641 	unsigned int i;
2642 
2643 	queue_for_each_hw_ctx(q, hctx, i) {
2644 		if (i == nr_queue)
2645 			break;
2646 		blk_mq_debugfs_unregister_hctx(hctx);
2647 		blk_mq_exit_hctx(q, set, hctx, i);
2648 	}
2649 }
2650 
2651 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2652 {
2653 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2654 
2655 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2656 			   __alignof__(struct blk_mq_hw_ctx)) !=
2657 		     sizeof(struct blk_mq_hw_ctx));
2658 
2659 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2660 		hw_ctx_size += sizeof(struct srcu_struct);
2661 
2662 	return hw_ctx_size;
2663 }
2664 
2665 static int blk_mq_init_hctx(struct request_queue *q,
2666 		struct blk_mq_tag_set *set,
2667 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2668 {
2669 	hctx->queue_num = hctx_idx;
2670 
2671 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2672 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2673 				&hctx->cpuhp_online);
2674 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2675 
2676 	hctx->tags = set->tags[hctx_idx];
2677 
2678 	if (set->ops->init_hctx &&
2679 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2680 		goto unregister_cpu_notifier;
2681 
2682 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2683 				hctx->numa_node))
2684 		goto exit_hctx;
2685 	return 0;
2686 
2687  exit_hctx:
2688 	if (set->ops->exit_hctx)
2689 		set->ops->exit_hctx(hctx, hctx_idx);
2690  unregister_cpu_notifier:
2691 	blk_mq_remove_cpuhp(hctx);
2692 	return -1;
2693 }
2694 
2695 static struct blk_mq_hw_ctx *
2696 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2697 		int node)
2698 {
2699 	struct blk_mq_hw_ctx *hctx;
2700 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2701 
2702 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2703 	if (!hctx)
2704 		goto fail_alloc_hctx;
2705 
2706 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2707 		goto free_hctx;
2708 
2709 	atomic_set(&hctx->nr_active, 0);
2710 	if (node == NUMA_NO_NODE)
2711 		node = set->numa_node;
2712 	hctx->numa_node = node;
2713 
2714 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2715 	spin_lock_init(&hctx->lock);
2716 	INIT_LIST_HEAD(&hctx->dispatch);
2717 	hctx->queue = q;
2718 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2719 
2720 	INIT_LIST_HEAD(&hctx->hctx_list);
2721 
2722 	/*
2723 	 * Allocate space for all possible cpus to avoid allocation at
2724 	 * runtime
2725 	 */
2726 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2727 			gfp, node);
2728 	if (!hctx->ctxs)
2729 		goto free_cpumask;
2730 
2731 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2732 				gfp, node))
2733 		goto free_ctxs;
2734 	hctx->nr_ctx = 0;
2735 
2736 	spin_lock_init(&hctx->dispatch_wait_lock);
2737 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2738 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2739 
2740 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2741 	if (!hctx->fq)
2742 		goto free_bitmap;
2743 
2744 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2745 		init_srcu_struct(hctx->srcu);
2746 	blk_mq_hctx_kobj_init(hctx);
2747 
2748 	return hctx;
2749 
2750  free_bitmap:
2751 	sbitmap_free(&hctx->ctx_map);
2752  free_ctxs:
2753 	kfree(hctx->ctxs);
2754  free_cpumask:
2755 	free_cpumask_var(hctx->cpumask);
2756  free_hctx:
2757 	kfree(hctx);
2758  fail_alloc_hctx:
2759 	return NULL;
2760 }
2761 
2762 static void blk_mq_init_cpu_queues(struct request_queue *q,
2763 				   unsigned int nr_hw_queues)
2764 {
2765 	struct blk_mq_tag_set *set = q->tag_set;
2766 	unsigned int i, j;
2767 
2768 	for_each_possible_cpu(i) {
2769 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2770 		struct blk_mq_hw_ctx *hctx;
2771 		int k;
2772 
2773 		__ctx->cpu = i;
2774 		spin_lock_init(&__ctx->lock);
2775 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2776 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2777 
2778 		__ctx->queue = q;
2779 
2780 		/*
2781 		 * Set local node, IFF we have more than one hw queue. If
2782 		 * not, we remain on the home node of the device
2783 		 */
2784 		for (j = 0; j < set->nr_maps; j++) {
2785 			hctx = blk_mq_map_queue_type(q, j, i);
2786 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2787 				hctx->numa_node = cpu_to_node(i);
2788 		}
2789 	}
2790 }
2791 
2792 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2793 					int hctx_idx)
2794 {
2795 	unsigned int flags = set->flags;
2796 	int ret = 0;
2797 
2798 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2799 					set->queue_depth, set->reserved_tags, flags);
2800 	if (!set->tags[hctx_idx])
2801 		return false;
2802 
2803 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2804 				set->queue_depth);
2805 	if (!ret)
2806 		return true;
2807 
2808 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2809 	set->tags[hctx_idx] = NULL;
2810 	return false;
2811 }
2812 
2813 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2814 					 unsigned int hctx_idx)
2815 {
2816 	unsigned int flags = set->flags;
2817 
2818 	if (set->tags && set->tags[hctx_idx]) {
2819 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2820 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2821 		set->tags[hctx_idx] = NULL;
2822 	}
2823 }
2824 
2825 static void blk_mq_map_swqueue(struct request_queue *q)
2826 {
2827 	unsigned int i, j, hctx_idx;
2828 	struct blk_mq_hw_ctx *hctx;
2829 	struct blk_mq_ctx *ctx;
2830 	struct blk_mq_tag_set *set = q->tag_set;
2831 
2832 	queue_for_each_hw_ctx(q, hctx, i) {
2833 		cpumask_clear(hctx->cpumask);
2834 		hctx->nr_ctx = 0;
2835 		hctx->dispatch_from = NULL;
2836 	}
2837 
2838 	/*
2839 	 * Map software to hardware queues.
2840 	 *
2841 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2842 	 */
2843 	for_each_possible_cpu(i) {
2844 
2845 		ctx = per_cpu_ptr(q->queue_ctx, i);
2846 		for (j = 0; j < set->nr_maps; j++) {
2847 			if (!set->map[j].nr_queues) {
2848 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2849 						HCTX_TYPE_DEFAULT, i);
2850 				continue;
2851 			}
2852 			hctx_idx = set->map[j].mq_map[i];
2853 			/* unmapped hw queue can be remapped after CPU topo changed */
2854 			if (!set->tags[hctx_idx] &&
2855 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2856 				/*
2857 				 * If tags initialization fail for some hctx,
2858 				 * that hctx won't be brought online.  In this
2859 				 * case, remap the current ctx to hctx[0] which
2860 				 * is guaranteed to always have tags allocated
2861 				 */
2862 				set->map[j].mq_map[i] = 0;
2863 			}
2864 
2865 			hctx = blk_mq_map_queue_type(q, j, i);
2866 			ctx->hctxs[j] = hctx;
2867 			/*
2868 			 * If the CPU is already set in the mask, then we've
2869 			 * mapped this one already. This can happen if
2870 			 * devices share queues across queue maps.
2871 			 */
2872 			if (cpumask_test_cpu(i, hctx->cpumask))
2873 				continue;
2874 
2875 			cpumask_set_cpu(i, hctx->cpumask);
2876 			hctx->type = j;
2877 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2878 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2879 
2880 			/*
2881 			 * If the nr_ctx type overflows, we have exceeded the
2882 			 * amount of sw queues we can support.
2883 			 */
2884 			BUG_ON(!hctx->nr_ctx);
2885 		}
2886 
2887 		for (; j < HCTX_MAX_TYPES; j++)
2888 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2889 					HCTX_TYPE_DEFAULT, i);
2890 	}
2891 
2892 	queue_for_each_hw_ctx(q, hctx, i) {
2893 		/*
2894 		 * If no software queues are mapped to this hardware queue,
2895 		 * disable it and free the request entries.
2896 		 */
2897 		if (!hctx->nr_ctx) {
2898 			/* Never unmap queue 0.  We need it as a
2899 			 * fallback in case of a new remap fails
2900 			 * allocation
2901 			 */
2902 			if (i && set->tags[i])
2903 				blk_mq_free_map_and_requests(set, i);
2904 
2905 			hctx->tags = NULL;
2906 			continue;
2907 		}
2908 
2909 		hctx->tags = set->tags[i];
2910 		WARN_ON(!hctx->tags);
2911 
2912 		/*
2913 		 * Set the map size to the number of mapped software queues.
2914 		 * This is more accurate and more efficient than looping
2915 		 * over all possibly mapped software queues.
2916 		 */
2917 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2918 
2919 		/*
2920 		 * Initialize batch roundrobin counts
2921 		 */
2922 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2923 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2924 	}
2925 }
2926 
2927 /*
2928  * Caller needs to ensure that we're either frozen/quiesced, or that
2929  * the queue isn't live yet.
2930  */
2931 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2932 {
2933 	struct blk_mq_hw_ctx *hctx;
2934 	int i;
2935 
2936 	queue_for_each_hw_ctx(q, hctx, i) {
2937 		if (shared)
2938 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2939 		else
2940 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2941 	}
2942 }
2943 
2944 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2945 					 bool shared)
2946 {
2947 	struct request_queue *q;
2948 
2949 	lockdep_assert_held(&set->tag_list_lock);
2950 
2951 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2952 		blk_mq_freeze_queue(q);
2953 		queue_set_hctx_shared(q, shared);
2954 		blk_mq_unfreeze_queue(q);
2955 	}
2956 }
2957 
2958 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2959 {
2960 	struct blk_mq_tag_set *set = q->tag_set;
2961 
2962 	mutex_lock(&set->tag_list_lock);
2963 	list_del(&q->tag_set_list);
2964 	if (list_is_singular(&set->tag_list)) {
2965 		/* just transitioned to unshared */
2966 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2967 		/* update existing queue */
2968 		blk_mq_update_tag_set_shared(set, false);
2969 	}
2970 	mutex_unlock(&set->tag_list_lock);
2971 	INIT_LIST_HEAD(&q->tag_set_list);
2972 }
2973 
2974 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2975 				     struct request_queue *q)
2976 {
2977 	mutex_lock(&set->tag_list_lock);
2978 
2979 	/*
2980 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2981 	 */
2982 	if (!list_empty(&set->tag_list) &&
2983 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2984 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2985 		/* update existing queue */
2986 		blk_mq_update_tag_set_shared(set, true);
2987 	}
2988 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2989 		queue_set_hctx_shared(q, true);
2990 	list_add_tail(&q->tag_set_list, &set->tag_list);
2991 
2992 	mutex_unlock(&set->tag_list_lock);
2993 }
2994 
2995 /* All allocations will be freed in release handler of q->mq_kobj */
2996 static int blk_mq_alloc_ctxs(struct request_queue *q)
2997 {
2998 	struct blk_mq_ctxs *ctxs;
2999 	int cpu;
3000 
3001 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3002 	if (!ctxs)
3003 		return -ENOMEM;
3004 
3005 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3006 	if (!ctxs->queue_ctx)
3007 		goto fail;
3008 
3009 	for_each_possible_cpu(cpu) {
3010 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3011 		ctx->ctxs = ctxs;
3012 	}
3013 
3014 	q->mq_kobj = &ctxs->kobj;
3015 	q->queue_ctx = ctxs->queue_ctx;
3016 
3017 	return 0;
3018  fail:
3019 	kfree(ctxs);
3020 	return -ENOMEM;
3021 }
3022 
3023 /*
3024  * It is the actual release handler for mq, but we do it from
3025  * request queue's release handler for avoiding use-after-free
3026  * and headache because q->mq_kobj shouldn't have been introduced,
3027  * but we can't group ctx/kctx kobj without it.
3028  */
3029 void blk_mq_release(struct request_queue *q)
3030 {
3031 	struct blk_mq_hw_ctx *hctx, *next;
3032 	int i;
3033 
3034 	queue_for_each_hw_ctx(q, hctx, i)
3035 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3036 
3037 	/* all hctx are in .unused_hctx_list now */
3038 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3039 		list_del_init(&hctx->hctx_list);
3040 		kobject_put(&hctx->kobj);
3041 	}
3042 
3043 	kfree(q->queue_hw_ctx);
3044 
3045 	/*
3046 	 * release .mq_kobj and sw queue's kobject now because
3047 	 * both share lifetime with request queue.
3048 	 */
3049 	blk_mq_sysfs_deinit(q);
3050 }
3051 
3052 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3053 		void *queuedata)
3054 {
3055 	struct request_queue *uninit_q, *q;
3056 
3057 	uninit_q = blk_alloc_queue(set->numa_node);
3058 	if (!uninit_q)
3059 		return ERR_PTR(-ENOMEM);
3060 	uninit_q->queuedata = queuedata;
3061 
3062 	/*
3063 	 * Initialize the queue without an elevator. device_add_disk() will do
3064 	 * the initialization.
3065 	 */
3066 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3067 	if (IS_ERR(q))
3068 		blk_cleanup_queue(uninit_q);
3069 
3070 	return q;
3071 }
3072 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3073 
3074 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3075 {
3076 	return blk_mq_init_queue_data(set, NULL);
3077 }
3078 EXPORT_SYMBOL(blk_mq_init_queue);
3079 
3080 /*
3081  * Helper for setting up a queue with mq ops, given queue depth, and
3082  * the passed in mq ops flags.
3083  */
3084 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3085 					   const struct blk_mq_ops *ops,
3086 					   unsigned int queue_depth,
3087 					   unsigned int set_flags)
3088 {
3089 	struct request_queue *q;
3090 	int ret;
3091 
3092 	memset(set, 0, sizeof(*set));
3093 	set->ops = ops;
3094 	set->nr_hw_queues = 1;
3095 	set->nr_maps = 1;
3096 	set->queue_depth = queue_depth;
3097 	set->numa_node = NUMA_NO_NODE;
3098 	set->flags = set_flags;
3099 
3100 	ret = blk_mq_alloc_tag_set(set);
3101 	if (ret)
3102 		return ERR_PTR(ret);
3103 
3104 	q = blk_mq_init_queue(set);
3105 	if (IS_ERR(q)) {
3106 		blk_mq_free_tag_set(set);
3107 		return q;
3108 	}
3109 
3110 	return q;
3111 }
3112 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3113 
3114 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3115 		struct blk_mq_tag_set *set, struct request_queue *q,
3116 		int hctx_idx, int node)
3117 {
3118 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3119 
3120 	/* reuse dead hctx first */
3121 	spin_lock(&q->unused_hctx_lock);
3122 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3123 		if (tmp->numa_node == node) {
3124 			hctx = tmp;
3125 			break;
3126 		}
3127 	}
3128 	if (hctx)
3129 		list_del_init(&hctx->hctx_list);
3130 	spin_unlock(&q->unused_hctx_lock);
3131 
3132 	if (!hctx)
3133 		hctx = blk_mq_alloc_hctx(q, set, node);
3134 	if (!hctx)
3135 		goto fail;
3136 
3137 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3138 		goto free_hctx;
3139 
3140 	return hctx;
3141 
3142  free_hctx:
3143 	kobject_put(&hctx->kobj);
3144  fail:
3145 	return NULL;
3146 }
3147 
3148 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3149 						struct request_queue *q)
3150 {
3151 	int i, j, end;
3152 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3153 
3154 	if (q->nr_hw_queues < set->nr_hw_queues) {
3155 		struct blk_mq_hw_ctx **new_hctxs;
3156 
3157 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3158 				       sizeof(*new_hctxs), GFP_KERNEL,
3159 				       set->numa_node);
3160 		if (!new_hctxs)
3161 			return;
3162 		if (hctxs)
3163 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3164 			       sizeof(*hctxs));
3165 		q->queue_hw_ctx = new_hctxs;
3166 		kfree(hctxs);
3167 		hctxs = new_hctxs;
3168 	}
3169 
3170 	/* protect against switching io scheduler  */
3171 	mutex_lock(&q->sysfs_lock);
3172 	for (i = 0; i < set->nr_hw_queues; i++) {
3173 		int node;
3174 		struct blk_mq_hw_ctx *hctx;
3175 
3176 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3177 		/*
3178 		 * If the hw queue has been mapped to another numa node,
3179 		 * we need to realloc the hctx. If allocation fails, fallback
3180 		 * to use the previous one.
3181 		 */
3182 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3183 			continue;
3184 
3185 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3186 		if (hctx) {
3187 			if (hctxs[i])
3188 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3189 			hctxs[i] = hctx;
3190 		} else {
3191 			if (hctxs[i])
3192 				pr_warn("Allocate new hctx on node %d fails,\
3193 						fallback to previous one on node %d\n",
3194 						node, hctxs[i]->numa_node);
3195 			else
3196 				break;
3197 		}
3198 	}
3199 	/*
3200 	 * Increasing nr_hw_queues fails. Free the newly allocated
3201 	 * hctxs and keep the previous q->nr_hw_queues.
3202 	 */
3203 	if (i != set->nr_hw_queues) {
3204 		j = q->nr_hw_queues;
3205 		end = i;
3206 	} else {
3207 		j = i;
3208 		end = q->nr_hw_queues;
3209 		q->nr_hw_queues = set->nr_hw_queues;
3210 	}
3211 
3212 	for (; j < end; j++) {
3213 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3214 
3215 		if (hctx) {
3216 			if (hctx->tags)
3217 				blk_mq_free_map_and_requests(set, j);
3218 			blk_mq_exit_hctx(q, set, hctx, j);
3219 			hctxs[j] = NULL;
3220 		}
3221 	}
3222 	mutex_unlock(&q->sysfs_lock);
3223 }
3224 
3225 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3226 						  struct request_queue *q,
3227 						  bool elevator_init)
3228 {
3229 	/* mark the queue as mq asap */
3230 	q->mq_ops = set->ops;
3231 
3232 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3233 					     blk_mq_poll_stats_bkt,
3234 					     BLK_MQ_POLL_STATS_BKTS, q);
3235 	if (!q->poll_cb)
3236 		goto err_exit;
3237 
3238 	if (blk_mq_alloc_ctxs(q))
3239 		goto err_poll;
3240 
3241 	/* init q->mq_kobj and sw queues' kobjects */
3242 	blk_mq_sysfs_init(q);
3243 
3244 	INIT_LIST_HEAD(&q->unused_hctx_list);
3245 	spin_lock_init(&q->unused_hctx_lock);
3246 
3247 	blk_mq_realloc_hw_ctxs(set, q);
3248 	if (!q->nr_hw_queues)
3249 		goto err_hctxs;
3250 
3251 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3252 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3253 
3254 	q->tag_set = set;
3255 
3256 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3257 	if (set->nr_maps > HCTX_TYPE_POLL &&
3258 	    set->map[HCTX_TYPE_POLL].nr_queues)
3259 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3260 
3261 	q->sg_reserved_size = INT_MAX;
3262 
3263 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3264 	INIT_LIST_HEAD(&q->requeue_list);
3265 	spin_lock_init(&q->requeue_lock);
3266 
3267 	q->nr_requests = set->queue_depth;
3268 
3269 	/*
3270 	 * Default to classic polling
3271 	 */
3272 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3273 
3274 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3275 	blk_mq_add_queue_tag_set(set, q);
3276 	blk_mq_map_swqueue(q);
3277 
3278 	if (elevator_init)
3279 		elevator_init_mq(q);
3280 
3281 	return q;
3282 
3283 err_hctxs:
3284 	kfree(q->queue_hw_ctx);
3285 	q->nr_hw_queues = 0;
3286 	blk_mq_sysfs_deinit(q);
3287 err_poll:
3288 	blk_stat_free_callback(q->poll_cb);
3289 	q->poll_cb = NULL;
3290 err_exit:
3291 	q->mq_ops = NULL;
3292 	return ERR_PTR(-ENOMEM);
3293 }
3294 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3295 
3296 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3297 void blk_mq_exit_queue(struct request_queue *q)
3298 {
3299 	struct blk_mq_tag_set	*set = q->tag_set;
3300 
3301 	blk_mq_del_queue_tag_set(q);
3302 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3303 }
3304 
3305 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3306 {
3307 	int i;
3308 
3309 	for (i = 0; i < set->nr_hw_queues; i++) {
3310 		if (!__blk_mq_alloc_map_and_request(set, i))
3311 			goto out_unwind;
3312 		cond_resched();
3313 	}
3314 
3315 	return 0;
3316 
3317 out_unwind:
3318 	while (--i >= 0)
3319 		blk_mq_free_map_and_requests(set, i);
3320 
3321 	return -ENOMEM;
3322 }
3323 
3324 /*
3325  * Allocate the request maps associated with this tag_set. Note that this
3326  * may reduce the depth asked for, if memory is tight. set->queue_depth
3327  * will be updated to reflect the allocated depth.
3328  */
3329 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3330 {
3331 	unsigned int depth;
3332 	int err;
3333 
3334 	depth = set->queue_depth;
3335 	do {
3336 		err = __blk_mq_alloc_rq_maps(set);
3337 		if (!err)
3338 			break;
3339 
3340 		set->queue_depth >>= 1;
3341 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3342 			err = -ENOMEM;
3343 			break;
3344 		}
3345 	} while (set->queue_depth);
3346 
3347 	if (!set->queue_depth || err) {
3348 		pr_err("blk-mq: failed to allocate request map\n");
3349 		return -ENOMEM;
3350 	}
3351 
3352 	if (depth != set->queue_depth)
3353 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3354 						depth, set->queue_depth);
3355 
3356 	return 0;
3357 }
3358 
3359 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3360 {
3361 	/*
3362 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3363 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3364 	 * number of hardware queues.
3365 	 */
3366 	if (set->nr_maps == 1)
3367 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3368 
3369 	if (set->ops->map_queues && !is_kdump_kernel()) {
3370 		int i;
3371 
3372 		/*
3373 		 * transport .map_queues is usually done in the following
3374 		 * way:
3375 		 *
3376 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3377 		 * 	mask = get_cpu_mask(queue)
3378 		 * 	for_each_cpu(cpu, mask)
3379 		 * 		set->map[x].mq_map[cpu] = queue;
3380 		 * }
3381 		 *
3382 		 * When we need to remap, the table has to be cleared for
3383 		 * killing stale mapping since one CPU may not be mapped
3384 		 * to any hw queue.
3385 		 */
3386 		for (i = 0; i < set->nr_maps; i++)
3387 			blk_mq_clear_mq_map(&set->map[i]);
3388 
3389 		return set->ops->map_queues(set);
3390 	} else {
3391 		BUG_ON(set->nr_maps > 1);
3392 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3393 	}
3394 }
3395 
3396 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3397 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3398 {
3399 	struct blk_mq_tags **new_tags;
3400 
3401 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3402 		return 0;
3403 
3404 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3405 				GFP_KERNEL, set->numa_node);
3406 	if (!new_tags)
3407 		return -ENOMEM;
3408 
3409 	if (set->tags)
3410 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3411 		       sizeof(*set->tags));
3412 	kfree(set->tags);
3413 	set->tags = new_tags;
3414 	set->nr_hw_queues = new_nr_hw_queues;
3415 
3416 	return 0;
3417 }
3418 
3419 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3420 				int new_nr_hw_queues)
3421 {
3422 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3423 }
3424 
3425 /*
3426  * Alloc a tag set to be associated with one or more request queues.
3427  * May fail with EINVAL for various error conditions. May adjust the
3428  * requested depth down, if it's too large. In that case, the set
3429  * value will be stored in set->queue_depth.
3430  */
3431 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3432 {
3433 	int i, ret;
3434 
3435 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3436 
3437 	if (!set->nr_hw_queues)
3438 		return -EINVAL;
3439 	if (!set->queue_depth)
3440 		return -EINVAL;
3441 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3442 		return -EINVAL;
3443 
3444 	if (!set->ops->queue_rq)
3445 		return -EINVAL;
3446 
3447 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3448 		return -EINVAL;
3449 
3450 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3451 		pr_info("blk-mq: reduced tag depth to %u\n",
3452 			BLK_MQ_MAX_DEPTH);
3453 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3454 	}
3455 
3456 	if (!set->nr_maps)
3457 		set->nr_maps = 1;
3458 	else if (set->nr_maps > HCTX_MAX_TYPES)
3459 		return -EINVAL;
3460 
3461 	/*
3462 	 * If a crashdump is active, then we are potentially in a very
3463 	 * memory constrained environment. Limit us to 1 queue and
3464 	 * 64 tags to prevent using too much memory.
3465 	 */
3466 	if (is_kdump_kernel()) {
3467 		set->nr_hw_queues = 1;
3468 		set->nr_maps = 1;
3469 		set->queue_depth = min(64U, set->queue_depth);
3470 	}
3471 	/*
3472 	 * There is no use for more h/w queues than cpus if we just have
3473 	 * a single map
3474 	 */
3475 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3476 		set->nr_hw_queues = nr_cpu_ids;
3477 
3478 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3479 		return -ENOMEM;
3480 
3481 	ret = -ENOMEM;
3482 	for (i = 0; i < set->nr_maps; i++) {
3483 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3484 						  sizeof(set->map[i].mq_map[0]),
3485 						  GFP_KERNEL, set->numa_node);
3486 		if (!set->map[i].mq_map)
3487 			goto out_free_mq_map;
3488 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3489 	}
3490 
3491 	ret = blk_mq_update_queue_map(set);
3492 	if (ret)
3493 		goto out_free_mq_map;
3494 
3495 	ret = blk_mq_alloc_map_and_requests(set);
3496 	if (ret)
3497 		goto out_free_mq_map;
3498 
3499 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3500 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3501 
3502 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3503 			ret = -ENOMEM;
3504 			goto out_free_mq_rq_maps;
3505 		}
3506 	}
3507 
3508 	mutex_init(&set->tag_list_lock);
3509 	INIT_LIST_HEAD(&set->tag_list);
3510 
3511 	return 0;
3512 
3513 out_free_mq_rq_maps:
3514 	for (i = 0; i < set->nr_hw_queues; i++)
3515 		blk_mq_free_map_and_requests(set, i);
3516 out_free_mq_map:
3517 	for (i = 0; i < set->nr_maps; i++) {
3518 		kfree(set->map[i].mq_map);
3519 		set->map[i].mq_map = NULL;
3520 	}
3521 	kfree(set->tags);
3522 	set->tags = NULL;
3523 	return ret;
3524 }
3525 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3526 
3527 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3528 {
3529 	int i, j;
3530 
3531 	for (i = 0; i < set->nr_hw_queues; i++)
3532 		blk_mq_free_map_and_requests(set, i);
3533 
3534 	if (blk_mq_is_sbitmap_shared(set->flags))
3535 		blk_mq_exit_shared_sbitmap(set);
3536 
3537 	for (j = 0; j < set->nr_maps; j++) {
3538 		kfree(set->map[j].mq_map);
3539 		set->map[j].mq_map = NULL;
3540 	}
3541 
3542 	kfree(set->tags);
3543 	set->tags = NULL;
3544 }
3545 EXPORT_SYMBOL(blk_mq_free_tag_set);
3546 
3547 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3548 {
3549 	struct blk_mq_tag_set *set = q->tag_set;
3550 	struct blk_mq_hw_ctx *hctx;
3551 	int i, ret;
3552 
3553 	if (!set)
3554 		return -EINVAL;
3555 
3556 	if (q->nr_requests == nr)
3557 		return 0;
3558 
3559 	blk_mq_freeze_queue(q);
3560 	blk_mq_quiesce_queue(q);
3561 
3562 	ret = 0;
3563 	queue_for_each_hw_ctx(q, hctx, i) {
3564 		if (!hctx->tags)
3565 			continue;
3566 		/*
3567 		 * If we're using an MQ scheduler, just update the scheduler
3568 		 * queue depth. This is similar to what the old code would do.
3569 		 */
3570 		if (!hctx->sched_tags) {
3571 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3572 							false);
3573 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3574 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3575 		} else {
3576 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3577 							nr, true);
3578 		}
3579 		if (ret)
3580 			break;
3581 		if (q->elevator && q->elevator->type->ops.depth_updated)
3582 			q->elevator->type->ops.depth_updated(hctx);
3583 	}
3584 
3585 	if (!ret)
3586 		q->nr_requests = nr;
3587 
3588 	blk_mq_unquiesce_queue(q);
3589 	blk_mq_unfreeze_queue(q);
3590 
3591 	return ret;
3592 }
3593 
3594 /*
3595  * request_queue and elevator_type pair.
3596  * It is just used by __blk_mq_update_nr_hw_queues to cache
3597  * the elevator_type associated with a request_queue.
3598  */
3599 struct blk_mq_qe_pair {
3600 	struct list_head node;
3601 	struct request_queue *q;
3602 	struct elevator_type *type;
3603 };
3604 
3605 /*
3606  * Cache the elevator_type in qe pair list and switch the
3607  * io scheduler to 'none'
3608  */
3609 static bool blk_mq_elv_switch_none(struct list_head *head,
3610 		struct request_queue *q)
3611 {
3612 	struct blk_mq_qe_pair *qe;
3613 
3614 	if (!q->elevator)
3615 		return true;
3616 
3617 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3618 	if (!qe)
3619 		return false;
3620 
3621 	INIT_LIST_HEAD(&qe->node);
3622 	qe->q = q;
3623 	qe->type = q->elevator->type;
3624 	list_add(&qe->node, head);
3625 
3626 	mutex_lock(&q->sysfs_lock);
3627 	/*
3628 	 * After elevator_switch_mq, the previous elevator_queue will be
3629 	 * released by elevator_release. The reference of the io scheduler
3630 	 * module get by elevator_get will also be put. So we need to get
3631 	 * a reference of the io scheduler module here to prevent it to be
3632 	 * removed.
3633 	 */
3634 	__module_get(qe->type->elevator_owner);
3635 	elevator_switch_mq(q, NULL);
3636 	mutex_unlock(&q->sysfs_lock);
3637 
3638 	return true;
3639 }
3640 
3641 static void blk_mq_elv_switch_back(struct list_head *head,
3642 		struct request_queue *q)
3643 {
3644 	struct blk_mq_qe_pair *qe;
3645 	struct elevator_type *t = NULL;
3646 
3647 	list_for_each_entry(qe, head, node)
3648 		if (qe->q == q) {
3649 			t = qe->type;
3650 			break;
3651 		}
3652 
3653 	if (!t)
3654 		return;
3655 
3656 	list_del(&qe->node);
3657 	kfree(qe);
3658 
3659 	mutex_lock(&q->sysfs_lock);
3660 	elevator_switch_mq(q, t);
3661 	mutex_unlock(&q->sysfs_lock);
3662 }
3663 
3664 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3665 							int nr_hw_queues)
3666 {
3667 	struct request_queue *q;
3668 	LIST_HEAD(head);
3669 	int prev_nr_hw_queues;
3670 
3671 	lockdep_assert_held(&set->tag_list_lock);
3672 
3673 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3674 		nr_hw_queues = nr_cpu_ids;
3675 	if (nr_hw_queues < 1)
3676 		return;
3677 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3678 		return;
3679 
3680 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3681 		blk_mq_freeze_queue(q);
3682 	/*
3683 	 * Switch IO scheduler to 'none', cleaning up the data associated
3684 	 * with the previous scheduler. We will switch back once we are done
3685 	 * updating the new sw to hw queue mappings.
3686 	 */
3687 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3688 		if (!blk_mq_elv_switch_none(&head, q))
3689 			goto switch_back;
3690 
3691 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3692 		blk_mq_debugfs_unregister_hctxs(q);
3693 		blk_mq_sysfs_unregister(q);
3694 	}
3695 
3696 	prev_nr_hw_queues = set->nr_hw_queues;
3697 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3698 	    0)
3699 		goto reregister;
3700 
3701 	set->nr_hw_queues = nr_hw_queues;
3702 fallback:
3703 	blk_mq_update_queue_map(set);
3704 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3705 		blk_mq_realloc_hw_ctxs(set, q);
3706 		if (q->nr_hw_queues != set->nr_hw_queues) {
3707 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3708 					nr_hw_queues, prev_nr_hw_queues);
3709 			set->nr_hw_queues = prev_nr_hw_queues;
3710 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3711 			goto fallback;
3712 		}
3713 		blk_mq_map_swqueue(q);
3714 	}
3715 
3716 reregister:
3717 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3718 		blk_mq_sysfs_register(q);
3719 		blk_mq_debugfs_register_hctxs(q);
3720 	}
3721 
3722 switch_back:
3723 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3724 		blk_mq_elv_switch_back(&head, q);
3725 
3726 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3727 		blk_mq_unfreeze_queue(q);
3728 }
3729 
3730 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3731 {
3732 	mutex_lock(&set->tag_list_lock);
3733 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3734 	mutex_unlock(&set->tag_list_lock);
3735 }
3736 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3737 
3738 /* Enable polling stats and return whether they were already enabled. */
3739 static bool blk_poll_stats_enable(struct request_queue *q)
3740 {
3741 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3742 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3743 		return true;
3744 	blk_stat_add_callback(q, q->poll_cb);
3745 	return false;
3746 }
3747 
3748 static void blk_mq_poll_stats_start(struct request_queue *q)
3749 {
3750 	/*
3751 	 * We don't arm the callback if polling stats are not enabled or the
3752 	 * callback is already active.
3753 	 */
3754 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3755 	    blk_stat_is_active(q->poll_cb))
3756 		return;
3757 
3758 	blk_stat_activate_msecs(q->poll_cb, 100);
3759 }
3760 
3761 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3762 {
3763 	struct request_queue *q = cb->data;
3764 	int bucket;
3765 
3766 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3767 		if (cb->stat[bucket].nr_samples)
3768 			q->poll_stat[bucket] = cb->stat[bucket];
3769 	}
3770 }
3771 
3772 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3773 				       struct request *rq)
3774 {
3775 	unsigned long ret = 0;
3776 	int bucket;
3777 
3778 	/*
3779 	 * If stats collection isn't on, don't sleep but turn it on for
3780 	 * future users
3781 	 */
3782 	if (!blk_poll_stats_enable(q))
3783 		return 0;
3784 
3785 	/*
3786 	 * As an optimistic guess, use half of the mean service time
3787 	 * for this type of request. We can (and should) make this smarter.
3788 	 * For instance, if the completion latencies are tight, we can
3789 	 * get closer than just half the mean. This is especially
3790 	 * important on devices where the completion latencies are longer
3791 	 * than ~10 usec. We do use the stats for the relevant IO size
3792 	 * if available which does lead to better estimates.
3793 	 */
3794 	bucket = blk_mq_poll_stats_bkt(rq);
3795 	if (bucket < 0)
3796 		return ret;
3797 
3798 	if (q->poll_stat[bucket].nr_samples)
3799 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3800 
3801 	return ret;
3802 }
3803 
3804 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3805 				     struct request *rq)
3806 {
3807 	struct hrtimer_sleeper hs;
3808 	enum hrtimer_mode mode;
3809 	unsigned int nsecs;
3810 	ktime_t kt;
3811 
3812 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3813 		return false;
3814 
3815 	/*
3816 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3817 	 *
3818 	 *  0:	use half of prev avg
3819 	 * >0:	use this specific value
3820 	 */
3821 	if (q->poll_nsec > 0)
3822 		nsecs = q->poll_nsec;
3823 	else
3824 		nsecs = blk_mq_poll_nsecs(q, rq);
3825 
3826 	if (!nsecs)
3827 		return false;
3828 
3829 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3830 
3831 	/*
3832 	 * This will be replaced with the stats tracking code, using
3833 	 * 'avg_completion_time / 2' as the pre-sleep target.
3834 	 */
3835 	kt = nsecs;
3836 
3837 	mode = HRTIMER_MODE_REL;
3838 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3839 	hrtimer_set_expires(&hs.timer, kt);
3840 
3841 	do {
3842 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3843 			break;
3844 		set_current_state(TASK_UNINTERRUPTIBLE);
3845 		hrtimer_sleeper_start_expires(&hs, mode);
3846 		if (hs.task)
3847 			io_schedule();
3848 		hrtimer_cancel(&hs.timer);
3849 		mode = HRTIMER_MODE_ABS;
3850 	} while (hs.task && !signal_pending(current));
3851 
3852 	__set_current_state(TASK_RUNNING);
3853 	destroy_hrtimer_on_stack(&hs.timer);
3854 	return true;
3855 }
3856 
3857 static bool blk_mq_poll_hybrid(struct request_queue *q,
3858 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3859 {
3860 	struct request *rq;
3861 
3862 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3863 		return false;
3864 
3865 	if (!blk_qc_t_is_internal(cookie))
3866 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3867 	else {
3868 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3869 		/*
3870 		 * With scheduling, if the request has completed, we'll
3871 		 * get a NULL return here, as we clear the sched tag when
3872 		 * that happens. The request still remains valid, like always,
3873 		 * so we should be safe with just the NULL check.
3874 		 */
3875 		if (!rq)
3876 			return false;
3877 	}
3878 
3879 	return blk_mq_poll_hybrid_sleep(q, rq);
3880 }
3881 
3882 /**
3883  * blk_poll - poll for IO completions
3884  * @q:  the queue
3885  * @cookie: cookie passed back at IO submission time
3886  * @spin: whether to spin for completions
3887  *
3888  * Description:
3889  *    Poll for completions on the passed in queue. Returns number of
3890  *    completed entries found. If @spin is true, then blk_poll will continue
3891  *    looping until at least one completion is found, unless the task is
3892  *    otherwise marked running (or we need to reschedule).
3893  */
3894 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3895 {
3896 	struct blk_mq_hw_ctx *hctx;
3897 	long state;
3898 
3899 	if (!blk_qc_t_valid(cookie) ||
3900 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3901 		return 0;
3902 
3903 	if (current->plug)
3904 		blk_flush_plug_list(current->plug, false);
3905 
3906 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3907 
3908 	/*
3909 	 * If we sleep, have the caller restart the poll loop to reset
3910 	 * the state. Like for the other success return cases, the
3911 	 * caller is responsible for checking if the IO completed. If
3912 	 * the IO isn't complete, we'll get called again and will go
3913 	 * straight to the busy poll loop. If specified not to spin,
3914 	 * we also should not sleep.
3915 	 */
3916 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3917 		return 1;
3918 
3919 	hctx->poll_considered++;
3920 
3921 	state = current->state;
3922 	do {
3923 		int ret;
3924 
3925 		hctx->poll_invoked++;
3926 
3927 		ret = q->mq_ops->poll(hctx);
3928 		if (ret > 0) {
3929 			hctx->poll_success++;
3930 			__set_current_state(TASK_RUNNING);
3931 			return ret;
3932 		}
3933 
3934 		if (signal_pending_state(state, current))
3935 			__set_current_state(TASK_RUNNING);
3936 
3937 		if (current->state == TASK_RUNNING)
3938 			return 1;
3939 		if (ret < 0 || !spin)
3940 			break;
3941 		cpu_relax();
3942 	} while (!need_resched());
3943 
3944 	__set_current_state(TASK_RUNNING);
3945 	return 0;
3946 }
3947 EXPORT_SYMBOL_GPL(blk_poll);
3948 
3949 unsigned int blk_mq_rq_cpu(struct request *rq)
3950 {
3951 	return rq->mq_ctx->cpu;
3952 }
3953 EXPORT_SYMBOL(blk_mq_rq_cpu);
3954 
3955 static int __init blk_mq_init(void)
3956 {
3957 	int i;
3958 
3959 	for_each_possible_cpu(i)
3960 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3961 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3962 
3963 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3964 				  "block/softirq:dead", NULL,
3965 				  blk_softirq_cpu_dead);
3966 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3967 				blk_mq_hctx_notify_dead);
3968 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3969 				blk_mq_hctx_notify_online,
3970 				blk_mq_hctx_notify_offline);
3971 	return 0;
3972 }
3973 subsys_initcall(blk_mq_init);
3974