xref: /openbmc/linux/block/blk-mq.c (revision 23cb0767f0544858169c02cec445d066d4e02e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 	if (blk_queue_has_srcu(q))
265 		synchronize_srcu(q->srcu);
266 	else
267 		synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270 
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 	blk_mq_quiesce_queue_nowait(q);
283 	blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286 
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 	unsigned long flags;
297 	bool run_queue = false;
298 
299 	spin_lock_irqsave(&q->queue_lock, flags);
300 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 		;
302 	} else if (!--q->quiesce_depth) {
303 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 		run_queue = true;
305 	}
306 	spin_unlock_irqrestore(&q->queue_lock, flags);
307 
308 	/* dispatch requests which are inserted during quiescing */
309 	if (run_queue)
310 		blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313 
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 	struct blk_mq_hw_ctx *hctx;
317 	unsigned long i;
318 
319 	queue_for_each_hw_ctx(q, hctx, i)
320 		if (blk_mq_hw_queue_mapped(hctx))
321 			blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323 
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 	memset(rq, 0, sizeof(*rq));
327 
328 	INIT_LIST_HEAD(&rq->queuelist);
329 	rq->q = q;
330 	rq->__sector = (sector_t) -1;
331 	INIT_HLIST_NODE(&rq->hash);
332 	RB_CLEAR_NODE(&rq->rb_node);
333 	rq->tag = BLK_MQ_NO_TAG;
334 	rq->internal_tag = BLK_MQ_NO_TAG;
335 	rq->start_time_ns = ktime_get_ns();
336 	rq->part = NULL;
337 	blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340 
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 	struct blk_mq_ctx *ctx = data->ctx;
345 	struct blk_mq_hw_ctx *hctx = data->hctx;
346 	struct request_queue *q = data->q;
347 	struct request *rq = tags->static_rqs[tag];
348 
349 	rq->q = q;
350 	rq->mq_ctx = ctx;
351 	rq->mq_hctx = hctx;
352 	rq->cmd_flags = data->cmd_flags;
353 
354 	if (data->flags & BLK_MQ_REQ_PM)
355 		data->rq_flags |= RQF_PM;
356 	if (blk_queue_io_stat(q))
357 		data->rq_flags |= RQF_IO_STAT;
358 	rq->rq_flags = data->rq_flags;
359 
360 	if (!(data->rq_flags & RQF_ELV)) {
361 		rq->tag = tag;
362 		rq->internal_tag = BLK_MQ_NO_TAG;
363 	} else {
364 		rq->tag = BLK_MQ_NO_TAG;
365 		rq->internal_tag = tag;
366 	}
367 	rq->timeout = 0;
368 
369 	if (blk_mq_need_time_stamp(rq))
370 		rq->start_time_ns = ktime_get_ns();
371 	else
372 		rq->start_time_ns = 0;
373 	rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 	rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_ELV) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (!op_is_flush(data->cmd_flags) &&
399 		    e->type->ops.prepare_request) {
400 			e->type->ops.prepare_request(rq);
401 			rq->rq_flags |= RQF_ELVPRIV;
402 		}
403 	}
404 
405 	return rq;
406 }
407 
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 		u64 alloc_time_ns)
411 {
412 	unsigned int tag, tag_offset;
413 	struct blk_mq_tags *tags;
414 	struct request *rq;
415 	unsigned long tag_mask;
416 	int i, nr = 0;
417 
418 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 	if (unlikely(!tag_mask))
420 		return NULL;
421 
422 	tags = blk_mq_tags_from_data(data);
423 	for (i = 0; tag_mask; i++) {
424 		if (!(tag_mask & (1UL << i)))
425 			continue;
426 		tag = tag_offset + i;
427 		prefetch(tags->static_rqs[tag]);
428 		tag_mask &= ~(1UL << i);
429 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 		rq_list_add(data->cached_rq, rq);
431 		nr++;
432 	}
433 	/* caller already holds a reference, add for remainder */
434 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 	data->nr_tags -= nr;
436 
437 	return rq_list_pop(data->cached_rq);
438 }
439 
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 	struct request_queue *q = data->q;
443 	u64 alloc_time_ns = 0;
444 	struct request *rq;
445 	unsigned int tag;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	if (data->cmd_flags & REQ_NOWAIT)
452 		data->flags |= BLK_MQ_REQ_NOWAIT;
453 
454 	if (q->elevator) {
455 		struct elevator_queue *e = q->elevator;
456 
457 		data->rq_flags |= RQF_ELV;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list. Don't include reserved tags in the
462 		 * limiting, as it isn't useful.
463 		 */
464 		if (!op_is_flush(data->cmd_flags) &&
465 		    !blk_op_is_passthrough(data->cmd_flags) &&
466 		    e->type->ops.limit_depth &&
467 		    !(data->flags & BLK_MQ_REQ_RESERVED))
468 			e->type->ops.limit_depth(data->cmd_flags, data);
469 	}
470 
471 retry:
472 	data->ctx = blk_mq_get_ctx(q);
473 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 	if (!(data->rq_flags & RQF_ELV))
475 		blk_mq_tag_busy(data->hctx);
476 
477 	if (data->flags & BLK_MQ_REQ_RESERVED)
478 		data->rq_flags |= RQF_RESV;
479 
480 	/*
481 	 * Try batched alloc if we want more than 1 tag.
482 	 */
483 	if (data->nr_tags > 1) {
484 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485 		if (rq)
486 			return rq;
487 		data->nr_tags = 1;
488 	}
489 
490 	/*
491 	 * Waiting allocations only fail because of an inactive hctx.  In that
492 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
493 	 * should have migrated us to an online CPU by now.
494 	 */
495 	tag = blk_mq_get_tag(data);
496 	if (tag == BLK_MQ_NO_TAG) {
497 		if (data->flags & BLK_MQ_REQ_NOWAIT)
498 			return NULL;
499 		/*
500 		 * Give up the CPU and sleep for a random short time to
501 		 * ensure that thread using a realtime scheduling class
502 		 * are migrated off the CPU, and thus off the hctx that
503 		 * is going away.
504 		 */
505 		msleep(3);
506 		goto retry;
507 	}
508 
509 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510 					alloc_time_ns);
511 }
512 
513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
514 		blk_mq_req_flags_t flags)
515 {
516 	struct blk_mq_alloc_data data = {
517 		.q		= q,
518 		.flags		= flags,
519 		.cmd_flags	= opf,
520 		.nr_tags	= 1,
521 	};
522 	struct request *rq;
523 	int ret;
524 
525 	ret = blk_queue_enter(q, flags);
526 	if (ret)
527 		return ERR_PTR(ret);
528 
529 	rq = __blk_mq_alloc_requests(&data);
530 	if (!rq)
531 		goto out_queue_exit;
532 	rq->__data_len = 0;
533 	rq->__sector = (sector_t) -1;
534 	rq->bio = rq->biotail = NULL;
535 	return rq;
536 out_queue_exit:
537 	blk_queue_exit(q);
538 	return ERR_PTR(-EWOULDBLOCK);
539 }
540 EXPORT_SYMBOL(blk_mq_alloc_request);
541 
542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
543 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
544 {
545 	struct blk_mq_alloc_data data = {
546 		.q		= q,
547 		.flags		= flags,
548 		.cmd_flags	= opf,
549 		.nr_tags	= 1,
550 	};
551 	u64 alloc_time_ns = 0;
552 	unsigned int cpu;
553 	unsigned int tag;
554 	int ret;
555 
556 	/* alloc_time includes depth and tag waits */
557 	if (blk_queue_rq_alloc_time(q))
558 		alloc_time_ns = ktime_get_ns();
559 
560 	/*
561 	 * If the tag allocator sleeps we could get an allocation for a
562 	 * different hardware context.  No need to complicate the low level
563 	 * allocator for this for the rare use case of a command tied to
564 	 * a specific queue.
565 	 */
566 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
567 		return ERR_PTR(-EINVAL);
568 
569 	if (hctx_idx >= q->nr_hw_queues)
570 		return ERR_PTR(-EIO);
571 
572 	ret = blk_queue_enter(q, flags);
573 	if (ret)
574 		return ERR_PTR(ret);
575 
576 	/*
577 	 * Check if the hardware context is actually mapped to anything.
578 	 * If not tell the caller that it should skip this queue.
579 	 */
580 	ret = -EXDEV;
581 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
582 	if (!blk_mq_hw_queue_mapped(data.hctx))
583 		goto out_queue_exit;
584 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
585 	if (cpu >= nr_cpu_ids)
586 		goto out_queue_exit;
587 	data.ctx = __blk_mq_get_ctx(q, cpu);
588 
589 	if (!q->elevator)
590 		blk_mq_tag_busy(data.hctx);
591 	else
592 		data.rq_flags |= RQF_ELV;
593 
594 	if (flags & BLK_MQ_REQ_RESERVED)
595 		data.rq_flags |= RQF_RESV;
596 
597 	ret = -EWOULDBLOCK;
598 	tag = blk_mq_get_tag(&data);
599 	if (tag == BLK_MQ_NO_TAG)
600 		goto out_queue_exit;
601 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
602 					alloc_time_ns);
603 
604 out_queue_exit:
605 	blk_queue_exit(q);
606 	return ERR_PTR(ret);
607 }
608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
609 
610 static void __blk_mq_free_request(struct request *rq)
611 {
612 	struct request_queue *q = rq->q;
613 	struct blk_mq_ctx *ctx = rq->mq_ctx;
614 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
615 	const int sched_tag = rq->internal_tag;
616 
617 	blk_crypto_free_request(rq);
618 	blk_pm_mark_last_busy(rq);
619 	rq->mq_hctx = NULL;
620 	if (rq->tag != BLK_MQ_NO_TAG)
621 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
622 	if (sched_tag != BLK_MQ_NO_TAG)
623 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
624 	blk_mq_sched_restart(hctx);
625 	blk_queue_exit(q);
626 }
627 
628 void blk_mq_free_request(struct request *rq)
629 {
630 	struct request_queue *q = rq->q;
631 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
632 
633 	if ((rq->rq_flags & RQF_ELVPRIV) &&
634 	    q->elevator->type->ops.finish_request)
635 		q->elevator->type->ops.finish_request(rq);
636 
637 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
638 		__blk_mq_dec_active_requests(hctx);
639 
640 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
641 		laptop_io_completion(q->disk->bdi);
642 
643 	rq_qos_done(q, rq);
644 
645 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
646 	if (req_ref_put_and_test(rq))
647 		__blk_mq_free_request(rq);
648 }
649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
650 
651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
652 {
653 	struct request *rq;
654 
655 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
656 		blk_mq_free_request(rq);
657 }
658 
659 void blk_dump_rq_flags(struct request *rq, char *msg)
660 {
661 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
662 		rq->q->disk ? rq->q->disk->disk_name : "?",
663 		(__force unsigned long long) rq->cmd_flags);
664 
665 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
666 	       (unsigned long long)blk_rq_pos(rq),
667 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
668 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
669 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
670 }
671 EXPORT_SYMBOL(blk_dump_rq_flags);
672 
673 static void req_bio_endio(struct request *rq, struct bio *bio,
674 			  unsigned int nbytes, blk_status_t error)
675 {
676 	if (unlikely(error)) {
677 		bio->bi_status = error;
678 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
679 		/*
680 		 * Partial zone append completions cannot be supported as the
681 		 * BIO fragments may end up not being written sequentially.
682 		 */
683 		if (bio->bi_iter.bi_size != nbytes)
684 			bio->bi_status = BLK_STS_IOERR;
685 		else
686 			bio->bi_iter.bi_sector = rq->__sector;
687 	}
688 
689 	bio_advance(bio, nbytes);
690 
691 	if (unlikely(rq->rq_flags & RQF_QUIET))
692 		bio_set_flag(bio, BIO_QUIET);
693 	/* don't actually finish bio if it's part of flush sequence */
694 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
695 		bio_endio(bio);
696 }
697 
698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
699 {
700 	if (req->part && blk_do_io_stat(req)) {
701 		const int sgrp = op_stat_group(req_op(req));
702 
703 		part_stat_lock();
704 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
705 		part_stat_unlock();
706 	}
707 }
708 
709 static void blk_print_req_error(struct request *req, blk_status_t status)
710 {
711 	printk_ratelimited(KERN_ERR
712 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
713 		"phys_seg %u prio class %u\n",
714 		blk_status_to_str(status),
715 		req->q->disk ? req->q->disk->disk_name : "?",
716 		blk_rq_pos(req), (__force u32)req_op(req),
717 		blk_op_str(req_op(req)),
718 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
719 		req->nr_phys_segments,
720 		IOPRIO_PRIO_CLASS(req->ioprio));
721 }
722 
723 /*
724  * Fully end IO on a request. Does not support partial completions, or
725  * errors.
726  */
727 static void blk_complete_request(struct request *req)
728 {
729 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
730 	int total_bytes = blk_rq_bytes(req);
731 	struct bio *bio = req->bio;
732 
733 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
734 
735 	if (!bio)
736 		return;
737 
738 #ifdef CONFIG_BLK_DEV_INTEGRITY
739 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
740 		req->q->integrity.profile->complete_fn(req, total_bytes);
741 #endif
742 
743 	blk_account_io_completion(req, total_bytes);
744 
745 	do {
746 		struct bio *next = bio->bi_next;
747 
748 		/* Completion has already been traced */
749 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
750 
751 		if (req_op(req) == REQ_OP_ZONE_APPEND)
752 			bio->bi_iter.bi_sector = req->__sector;
753 
754 		if (!is_flush)
755 			bio_endio(bio);
756 		bio = next;
757 	} while (bio);
758 
759 	/*
760 	 * Reset counters so that the request stacking driver
761 	 * can find how many bytes remain in the request
762 	 * later.
763 	 */
764 	req->bio = NULL;
765 	req->__data_len = 0;
766 }
767 
768 /**
769  * blk_update_request - Complete multiple bytes without completing the request
770  * @req:      the request being processed
771  * @error:    block status code
772  * @nr_bytes: number of bytes to complete for @req
773  *
774  * Description:
775  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
776  *     the request structure even if @req doesn't have leftover.
777  *     If @req has leftover, sets it up for the next range of segments.
778  *
779  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
780  *     %false return from this function.
781  *
782  * Note:
783  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
784  *      except in the consistency check at the end of this function.
785  *
786  * Return:
787  *     %false - this request doesn't have any more data
788  *     %true  - this request has more data
789  **/
790 bool blk_update_request(struct request *req, blk_status_t error,
791 		unsigned int nr_bytes)
792 {
793 	int total_bytes;
794 
795 	trace_block_rq_complete(req, error, nr_bytes);
796 
797 	if (!req->bio)
798 		return false;
799 
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
802 	    error == BLK_STS_OK)
803 		req->q->integrity.profile->complete_fn(req, nr_bytes);
804 #endif
805 
806 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
807 		     !(req->rq_flags & RQF_QUIET)) &&
808 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
809 		blk_print_req_error(req, error);
810 		trace_block_rq_error(req, error, nr_bytes);
811 	}
812 
813 	blk_account_io_completion(req, nr_bytes);
814 
815 	total_bytes = 0;
816 	while (req->bio) {
817 		struct bio *bio = req->bio;
818 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
819 
820 		if (bio_bytes == bio->bi_iter.bi_size)
821 			req->bio = bio->bi_next;
822 
823 		/* Completion has already been traced */
824 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825 		req_bio_endio(req, bio, bio_bytes, error);
826 
827 		total_bytes += bio_bytes;
828 		nr_bytes -= bio_bytes;
829 
830 		if (!nr_bytes)
831 			break;
832 	}
833 
834 	/*
835 	 * completely done
836 	 */
837 	if (!req->bio) {
838 		/*
839 		 * Reset counters so that the request stacking driver
840 		 * can find how many bytes remain in the request
841 		 * later.
842 		 */
843 		req->__data_len = 0;
844 		return false;
845 	}
846 
847 	req->__data_len -= total_bytes;
848 
849 	/* update sector only for requests with clear definition of sector */
850 	if (!blk_rq_is_passthrough(req))
851 		req->__sector += total_bytes >> 9;
852 
853 	/* mixed attributes always follow the first bio */
854 	if (req->rq_flags & RQF_MIXED_MERGE) {
855 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
856 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
857 	}
858 
859 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
860 		/*
861 		 * If total number of sectors is less than the first segment
862 		 * size, something has gone terribly wrong.
863 		 */
864 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
865 			blk_dump_rq_flags(req, "request botched");
866 			req->__data_len = blk_rq_cur_bytes(req);
867 		}
868 
869 		/* recalculate the number of segments */
870 		req->nr_phys_segments = blk_recalc_rq_segments(req);
871 	}
872 
873 	return true;
874 }
875 EXPORT_SYMBOL_GPL(blk_update_request);
876 
877 static void __blk_account_io_done(struct request *req, u64 now)
878 {
879 	const int sgrp = op_stat_group(req_op(req));
880 
881 	part_stat_lock();
882 	update_io_ticks(req->part, jiffies, true);
883 	part_stat_inc(req->part, ios[sgrp]);
884 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
885 	part_stat_unlock();
886 }
887 
888 static inline void blk_account_io_done(struct request *req, u64 now)
889 {
890 	/*
891 	 * Account IO completion.  flush_rq isn't accounted as a
892 	 * normal IO on queueing nor completion.  Accounting the
893 	 * containing request is enough.
894 	 */
895 	if (blk_do_io_stat(req) && req->part &&
896 	    !(req->rq_flags & RQF_FLUSH_SEQ))
897 		__blk_account_io_done(req, now);
898 }
899 
900 static void __blk_account_io_start(struct request *rq)
901 {
902 	/*
903 	 * All non-passthrough requests are created from a bio with one
904 	 * exception: when a flush command that is part of a flush sequence
905 	 * generated by the state machine in blk-flush.c is cloned onto the
906 	 * lower device by dm-multipath we can get here without a bio.
907 	 */
908 	if (rq->bio)
909 		rq->part = rq->bio->bi_bdev;
910 	else
911 		rq->part = rq->q->disk->part0;
912 
913 	part_stat_lock();
914 	update_io_ticks(rq->part, jiffies, false);
915 	part_stat_unlock();
916 }
917 
918 static inline void blk_account_io_start(struct request *req)
919 {
920 	if (blk_do_io_stat(req))
921 		__blk_account_io_start(req);
922 }
923 
924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
925 {
926 	if (rq->rq_flags & RQF_STATS) {
927 		blk_mq_poll_stats_start(rq->q);
928 		blk_stat_add(rq, now);
929 	}
930 
931 	blk_mq_sched_completed_request(rq, now);
932 	blk_account_io_done(rq, now);
933 }
934 
935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
936 {
937 	if (blk_mq_need_time_stamp(rq))
938 		__blk_mq_end_request_acct(rq, ktime_get_ns());
939 
940 	if (rq->end_io) {
941 		rq_qos_done(rq->q, rq);
942 		rq->end_io(rq, error);
943 	} else {
944 		blk_mq_free_request(rq);
945 	}
946 }
947 EXPORT_SYMBOL(__blk_mq_end_request);
948 
949 void blk_mq_end_request(struct request *rq, blk_status_t error)
950 {
951 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
952 		BUG();
953 	__blk_mq_end_request(rq, error);
954 }
955 EXPORT_SYMBOL(blk_mq_end_request);
956 
957 #define TAG_COMP_BATCH		32
958 
959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
960 					  int *tag_array, int nr_tags)
961 {
962 	struct request_queue *q = hctx->queue;
963 
964 	/*
965 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
966 	 * update hctx->nr_active in batch
967 	 */
968 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
969 		__blk_mq_sub_active_requests(hctx, nr_tags);
970 
971 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
972 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
973 }
974 
975 void blk_mq_end_request_batch(struct io_comp_batch *iob)
976 {
977 	int tags[TAG_COMP_BATCH], nr_tags = 0;
978 	struct blk_mq_hw_ctx *cur_hctx = NULL;
979 	struct request *rq;
980 	u64 now = 0;
981 
982 	if (iob->need_ts)
983 		now = ktime_get_ns();
984 
985 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
986 		prefetch(rq->bio);
987 		prefetch(rq->rq_next);
988 
989 		blk_complete_request(rq);
990 		if (iob->need_ts)
991 			__blk_mq_end_request_acct(rq, now);
992 
993 		rq_qos_done(rq->q, rq);
994 
995 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
996 		if (!req_ref_put_and_test(rq))
997 			continue;
998 
999 		blk_crypto_free_request(rq);
1000 		blk_pm_mark_last_busy(rq);
1001 
1002 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1003 			if (cur_hctx)
1004 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1005 			nr_tags = 0;
1006 			cur_hctx = rq->mq_hctx;
1007 		}
1008 		tags[nr_tags++] = rq->tag;
1009 	}
1010 
1011 	if (nr_tags)
1012 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1013 }
1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1015 
1016 static void blk_complete_reqs(struct llist_head *list)
1017 {
1018 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1019 	struct request *rq, *next;
1020 
1021 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1022 		rq->q->mq_ops->complete(rq);
1023 }
1024 
1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1026 {
1027 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1028 }
1029 
1030 static int blk_softirq_cpu_dead(unsigned int cpu)
1031 {
1032 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1033 	return 0;
1034 }
1035 
1036 static void __blk_mq_complete_request_remote(void *data)
1037 {
1038 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1039 }
1040 
1041 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1042 {
1043 	int cpu = raw_smp_processor_id();
1044 
1045 	if (!IS_ENABLED(CONFIG_SMP) ||
1046 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1047 		return false;
1048 	/*
1049 	 * With force threaded interrupts enabled, raising softirq from an SMP
1050 	 * function call will always result in waking the ksoftirqd thread.
1051 	 * This is probably worse than completing the request on a different
1052 	 * cache domain.
1053 	 */
1054 	if (force_irqthreads())
1055 		return false;
1056 
1057 	/* same CPU or cache domain?  Complete locally */
1058 	if (cpu == rq->mq_ctx->cpu ||
1059 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1060 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1061 		return false;
1062 
1063 	/* don't try to IPI to an offline CPU */
1064 	return cpu_online(rq->mq_ctx->cpu);
1065 }
1066 
1067 static void blk_mq_complete_send_ipi(struct request *rq)
1068 {
1069 	struct llist_head *list;
1070 	unsigned int cpu;
1071 
1072 	cpu = rq->mq_ctx->cpu;
1073 	list = &per_cpu(blk_cpu_done, cpu);
1074 	if (llist_add(&rq->ipi_list, list)) {
1075 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1076 		smp_call_function_single_async(cpu, &rq->csd);
1077 	}
1078 }
1079 
1080 static void blk_mq_raise_softirq(struct request *rq)
1081 {
1082 	struct llist_head *list;
1083 
1084 	preempt_disable();
1085 	list = this_cpu_ptr(&blk_cpu_done);
1086 	if (llist_add(&rq->ipi_list, list))
1087 		raise_softirq(BLOCK_SOFTIRQ);
1088 	preempt_enable();
1089 }
1090 
1091 bool blk_mq_complete_request_remote(struct request *rq)
1092 {
1093 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1094 
1095 	/*
1096 	 * For a polled request, always complete locally, it's pointless
1097 	 * to redirect the completion.
1098 	 */
1099 	if (rq->cmd_flags & REQ_POLLED)
1100 		return false;
1101 
1102 	if (blk_mq_complete_need_ipi(rq)) {
1103 		blk_mq_complete_send_ipi(rq);
1104 		return true;
1105 	}
1106 
1107 	if (rq->q->nr_hw_queues == 1) {
1108 		blk_mq_raise_softirq(rq);
1109 		return true;
1110 	}
1111 	return false;
1112 }
1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1114 
1115 /**
1116  * blk_mq_complete_request - end I/O on a request
1117  * @rq:		the request being processed
1118  *
1119  * Description:
1120  *	Complete a request by scheduling the ->complete_rq operation.
1121  **/
1122 void blk_mq_complete_request(struct request *rq)
1123 {
1124 	if (!blk_mq_complete_request_remote(rq))
1125 		rq->q->mq_ops->complete(rq);
1126 }
1127 EXPORT_SYMBOL(blk_mq_complete_request);
1128 
1129 /**
1130  * blk_mq_start_request - Start processing a request
1131  * @rq: Pointer to request to be started
1132  *
1133  * Function used by device drivers to notify the block layer that a request
1134  * is going to be processed now, so blk layer can do proper initializations
1135  * such as starting the timeout timer.
1136  */
1137 void blk_mq_start_request(struct request *rq)
1138 {
1139 	struct request_queue *q = rq->q;
1140 
1141 	trace_block_rq_issue(rq);
1142 
1143 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1144 		rq->io_start_time_ns = ktime_get_ns();
1145 		rq->stats_sectors = blk_rq_sectors(rq);
1146 		rq->rq_flags |= RQF_STATS;
1147 		rq_qos_issue(q, rq);
1148 	}
1149 
1150 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1151 
1152 	blk_add_timer(rq);
1153 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1154 
1155 #ifdef CONFIG_BLK_DEV_INTEGRITY
1156 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1157 		q->integrity.profile->prepare_fn(rq);
1158 #endif
1159 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1160 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1161 }
1162 EXPORT_SYMBOL(blk_mq_start_request);
1163 
1164 /*
1165  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1166  * queues. This is important for md arrays to benefit from merging
1167  * requests.
1168  */
1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1170 {
1171 	if (plug->multiple_queues)
1172 		return BLK_MAX_REQUEST_COUNT * 2;
1173 	return BLK_MAX_REQUEST_COUNT;
1174 }
1175 
1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1177 {
1178 	struct request *last = rq_list_peek(&plug->mq_list);
1179 
1180 	if (!plug->rq_count) {
1181 		trace_block_plug(rq->q);
1182 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1183 		   (!blk_queue_nomerges(rq->q) &&
1184 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1185 		blk_mq_flush_plug_list(plug, false);
1186 		trace_block_plug(rq->q);
1187 	}
1188 
1189 	if (!plug->multiple_queues && last && last->q != rq->q)
1190 		plug->multiple_queues = true;
1191 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1192 		plug->has_elevator = true;
1193 	rq->rq_next = NULL;
1194 	rq_list_add(&plug->mq_list, rq);
1195 	plug->rq_count++;
1196 }
1197 
1198 /**
1199  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1200  * @rq:		request to insert
1201  * @at_head:    insert request at head or tail of queue
1202  *
1203  * Description:
1204  *    Insert a fully prepared request at the back of the I/O scheduler queue
1205  *    for execution.  Don't wait for completion.
1206  *
1207  * Note:
1208  *    This function will invoke @done directly if the queue is dead.
1209  */
1210 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1211 {
1212 	WARN_ON(irqs_disabled());
1213 	WARN_ON(!blk_rq_is_passthrough(rq));
1214 
1215 	blk_account_io_start(rq);
1216 	if (current->plug)
1217 		blk_add_rq_to_plug(current->plug, rq);
1218 	else
1219 		blk_mq_sched_insert_request(rq, at_head, true, false);
1220 }
1221 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1222 
1223 struct blk_rq_wait {
1224 	struct completion done;
1225 	blk_status_t ret;
1226 };
1227 
1228 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1229 {
1230 	struct blk_rq_wait *wait = rq->end_io_data;
1231 
1232 	wait->ret = ret;
1233 	complete(&wait->done);
1234 }
1235 
1236 static bool blk_rq_is_poll(struct request *rq)
1237 {
1238 	if (!rq->mq_hctx)
1239 		return false;
1240 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1241 		return false;
1242 	if (WARN_ON_ONCE(!rq->bio))
1243 		return false;
1244 	return true;
1245 }
1246 
1247 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1248 {
1249 	do {
1250 		bio_poll(rq->bio, NULL, 0);
1251 		cond_resched();
1252 	} while (!completion_done(wait));
1253 }
1254 
1255 /**
1256  * blk_execute_rq - insert a request into queue for execution
1257  * @rq:		request to insert
1258  * @at_head:    insert request at head or tail of queue
1259  *
1260  * Description:
1261  *    Insert a fully prepared request at the back of the I/O scheduler queue
1262  *    for execution and wait for completion.
1263  * Return: The blk_status_t result provided to blk_mq_end_request().
1264  */
1265 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1266 {
1267 	struct blk_rq_wait wait = {
1268 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1269 	};
1270 
1271 	WARN_ON(irqs_disabled());
1272 	WARN_ON(!blk_rq_is_passthrough(rq));
1273 
1274 	rq->end_io_data = &wait;
1275 	rq->end_io = blk_end_sync_rq;
1276 
1277 	blk_account_io_start(rq);
1278 	blk_mq_sched_insert_request(rq, at_head, true, false);
1279 
1280 	if (blk_rq_is_poll(rq)) {
1281 		blk_rq_poll_completion(rq, &wait.done);
1282 	} else {
1283 		/*
1284 		 * Prevent hang_check timer from firing at us during very long
1285 		 * I/O
1286 		 */
1287 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1288 
1289 		if (hang_check)
1290 			while (!wait_for_completion_io_timeout(&wait.done,
1291 					hang_check * (HZ/2)))
1292 				;
1293 		else
1294 			wait_for_completion_io(&wait.done);
1295 	}
1296 
1297 	return wait.ret;
1298 }
1299 EXPORT_SYMBOL(blk_execute_rq);
1300 
1301 static void __blk_mq_requeue_request(struct request *rq)
1302 {
1303 	struct request_queue *q = rq->q;
1304 
1305 	blk_mq_put_driver_tag(rq);
1306 
1307 	trace_block_rq_requeue(rq);
1308 	rq_qos_requeue(q, rq);
1309 
1310 	if (blk_mq_request_started(rq)) {
1311 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1312 		rq->rq_flags &= ~RQF_TIMED_OUT;
1313 	}
1314 }
1315 
1316 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1317 {
1318 	__blk_mq_requeue_request(rq);
1319 
1320 	/* this request will be re-inserted to io scheduler queue */
1321 	blk_mq_sched_requeue_request(rq);
1322 
1323 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1324 }
1325 EXPORT_SYMBOL(blk_mq_requeue_request);
1326 
1327 static void blk_mq_requeue_work(struct work_struct *work)
1328 {
1329 	struct request_queue *q =
1330 		container_of(work, struct request_queue, requeue_work.work);
1331 	LIST_HEAD(rq_list);
1332 	struct request *rq, *next;
1333 
1334 	spin_lock_irq(&q->requeue_lock);
1335 	list_splice_init(&q->requeue_list, &rq_list);
1336 	spin_unlock_irq(&q->requeue_lock);
1337 
1338 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1339 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1340 			continue;
1341 
1342 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1343 		list_del_init(&rq->queuelist);
1344 		/*
1345 		 * If RQF_DONTPREP, rq has contained some driver specific
1346 		 * data, so insert it to hctx dispatch list to avoid any
1347 		 * merge.
1348 		 */
1349 		if (rq->rq_flags & RQF_DONTPREP)
1350 			blk_mq_request_bypass_insert(rq, false, false);
1351 		else
1352 			blk_mq_sched_insert_request(rq, true, false, false);
1353 	}
1354 
1355 	while (!list_empty(&rq_list)) {
1356 		rq = list_entry(rq_list.next, struct request, queuelist);
1357 		list_del_init(&rq->queuelist);
1358 		blk_mq_sched_insert_request(rq, false, false, false);
1359 	}
1360 
1361 	blk_mq_run_hw_queues(q, false);
1362 }
1363 
1364 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1365 				bool kick_requeue_list)
1366 {
1367 	struct request_queue *q = rq->q;
1368 	unsigned long flags;
1369 
1370 	/*
1371 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1372 	 * request head insertion from the workqueue.
1373 	 */
1374 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1375 
1376 	spin_lock_irqsave(&q->requeue_lock, flags);
1377 	if (at_head) {
1378 		rq->rq_flags |= RQF_SOFTBARRIER;
1379 		list_add(&rq->queuelist, &q->requeue_list);
1380 	} else {
1381 		list_add_tail(&rq->queuelist, &q->requeue_list);
1382 	}
1383 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1384 
1385 	if (kick_requeue_list)
1386 		blk_mq_kick_requeue_list(q);
1387 }
1388 
1389 void blk_mq_kick_requeue_list(struct request_queue *q)
1390 {
1391 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1392 }
1393 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1394 
1395 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1396 				    unsigned long msecs)
1397 {
1398 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1399 				    msecs_to_jiffies(msecs));
1400 }
1401 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1402 
1403 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1404 {
1405 	/*
1406 	 * If we find a request that isn't idle we know the queue is busy
1407 	 * as it's checked in the iter.
1408 	 * Return false to stop the iteration.
1409 	 */
1410 	if (blk_mq_request_started(rq)) {
1411 		bool *busy = priv;
1412 
1413 		*busy = true;
1414 		return false;
1415 	}
1416 
1417 	return true;
1418 }
1419 
1420 bool blk_mq_queue_inflight(struct request_queue *q)
1421 {
1422 	bool busy = false;
1423 
1424 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1425 	return busy;
1426 }
1427 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1428 
1429 static void blk_mq_rq_timed_out(struct request *req)
1430 {
1431 	req->rq_flags |= RQF_TIMED_OUT;
1432 	if (req->q->mq_ops->timeout) {
1433 		enum blk_eh_timer_return ret;
1434 
1435 		ret = req->q->mq_ops->timeout(req);
1436 		if (ret == BLK_EH_DONE)
1437 			return;
1438 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1439 	}
1440 
1441 	blk_add_timer(req);
1442 }
1443 
1444 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1445 {
1446 	unsigned long deadline;
1447 
1448 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1449 		return false;
1450 	if (rq->rq_flags & RQF_TIMED_OUT)
1451 		return false;
1452 
1453 	deadline = READ_ONCE(rq->deadline);
1454 	if (time_after_eq(jiffies, deadline))
1455 		return true;
1456 
1457 	if (*next == 0)
1458 		*next = deadline;
1459 	else if (time_after(*next, deadline))
1460 		*next = deadline;
1461 	return false;
1462 }
1463 
1464 void blk_mq_put_rq_ref(struct request *rq)
1465 {
1466 	if (is_flush_rq(rq))
1467 		rq->end_io(rq, 0);
1468 	else if (req_ref_put_and_test(rq))
1469 		__blk_mq_free_request(rq);
1470 }
1471 
1472 static bool blk_mq_check_expired(struct request *rq, void *priv)
1473 {
1474 	unsigned long *next = priv;
1475 
1476 	/*
1477 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1478 	 * be reallocated underneath the timeout handler's processing, then
1479 	 * the expire check is reliable. If the request is not expired, then
1480 	 * it was completed and reallocated as a new request after returning
1481 	 * from blk_mq_check_expired().
1482 	 */
1483 	if (blk_mq_req_expired(rq, next))
1484 		blk_mq_rq_timed_out(rq);
1485 	return true;
1486 }
1487 
1488 static void blk_mq_timeout_work(struct work_struct *work)
1489 {
1490 	struct request_queue *q =
1491 		container_of(work, struct request_queue, timeout_work);
1492 	unsigned long next = 0;
1493 	struct blk_mq_hw_ctx *hctx;
1494 	unsigned long i;
1495 
1496 	/* A deadlock might occur if a request is stuck requiring a
1497 	 * timeout at the same time a queue freeze is waiting
1498 	 * completion, since the timeout code would not be able to
1499 	 * acquire the queue reference here.
1500 	 *
1501 	 * That's why we don't use blk_queue_enter here; instead, we use
1502 	 * percpu_ref_tryget directly, because we need to be able to
1503 	 * obtain a reference even in the short window between the queue
1504 	 * starting to freeze, by dropping the first reference in
1505 	 * blk_freeze_queue_start, and the moment the last request is
1506 	 * consumed, marked by the instant q_usage_counter reaches
1507 	 * zero.
1508 	 */
1509 	if (!percpu_ref_tryget(&q->q_usage_counter))
1510 		return;
1511 
1512 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1513 
1514 	if (next != 0) {
1515 		mod_timer(&q->timeout, next);
1516 	} else {
1517 		/*
1518 		 * Request timeouts are handled as a forward rolling timer. If
1519 		 * we end up here it means that no requests are pending and
1520 		 * also that no request has been pending for a while. Mark
1521 		 * each hctx as idle.
1522 		 */
1523 		queue_for_each_hw_ctx(q, hctx, i) {
1524 			/* the hctx may be unmapped, so check it here */
1525 			if (blk_mq_hw_queue_mapped(hctx))
1526 				blk_mq_tag_idle(hctx);
1527 		}
1528 	}
1529 	blk_queue_exit(q);
1530 }
1531 
1532 struct flush_busy_ctx_data {
1533 	struct blk_mq_hw_ctx *hctx;
1534 	struct list_head *list;
1535 };
1536 
1537 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1538 {
1539 	struct flush_busy_ctx_data *flush_data = data;
1540 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1541 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1542 	enum hctx_type type = hctx->type;
1543 
1544 	spin_lock(&ctx->lock);
1545 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1546 	sbitmap_clear_bit(sb, bitnr);
1547 	spin_unlock(&ctx->lock);
1548 	return true;
1549 }
1550 
1551 /*
1552  * Process software queues that have been marked busy, splicing them
1553  * to the for-dispatch
1554  */
1555 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1556 {
1557 	struct flush_busy_ctx_data data = {
1558 		.hctx = hctx,
1559 		.list = list,
1560 	};
1561 
1562 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1563 }
1564 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1565 
1566 struct dispatch_rq_data {
1567 	struct blk_mq_hw_ctx *hctx;
1568 	struct request *rq;
1569 };
1570 
1571 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1572 		void *data)
1573 {
1574 	struct dispatch_rq_data *dispatch_data = data;
1575 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1576 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1577 	enum hctx_type type = hctx->type;
1578 
1579 	spin_lock(&ctx->lock);
1580 	if (!list_empty(&ctx->rq_lists[type])) {
1581 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1582 		list_del_init(&dispatch_data->rq->queuelist);
1583 		if (list_empty(&ctx->rq_lists[type]))
1584 			sbitmap_clear_bit(sb, bitnr);
1585 	}
1586 	spin_unlock(&ctx->lock);
1587 
1588 	return !dispatch_data->rq;
1589 }
1590 
1591 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1592 					struct blk_mq_ctx *start)
1593 {
1594 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1595 	struct dispatch_rq_data data = {
1596 		.hctx = hctx,
1597 		.rq   = NULL,
1598 	};
1599 
1600 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1601 			       dispatch_rq_from_ctx, &data);
1602 
1603 	return data.rq;
1604 }
1605 
1606 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1607 {
1608 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1609 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1610 	int tag;
1611 
1612 	blk_mq_tag_busy(rq->mq_hctx);
1613 
1614 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1615 		bt = &rq->mq_hctx->tags->breserved_tags;
1616 		tag_offset = 0;
1617 	} else {
1618 		if (!hctx_may_queue(rq->mq_hctx, bt))
1619 			return false;
1620 	}
1621 
1622 	tag = __sbitmap_queue_get(bt);
1623 	if (tag == BLK_MQ_NO_TAG)
1624 		return false;
1625 
1626 	rq->tag = tag + tag_offset;
1627 	return true;
1628 }
1629 
1630 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1631 {
1632 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1633 		return false;
1634 
1635 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1636 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1637 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1638 		__blk_mq_inc_active_requests(hctx);
1639 	}
1640 	hctx->tags->rqs[rq->tag] = rq;
1641 	return true;
1642 }
1643 
1644 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1645 				int flags, void *key)
1646 {
1647 	struct blk_mq_hw_ctx *hctx;
1648 
1649 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1650 
1651 	spin_lock(&hctx->dispatch_wait_lock);
1652 	if (!list_empty(&wait->entry)) {
1653 		struct sbitmap_queue *sbq;
1654 
1655 		list_del_init(&wait->entry);
1656 		sbq = &hctx->tags->bitmap_tags;
1657 		atomic_dec(&sbq->ws_active);
1658 	}
1659 	spin_unlock(&hctx->dispatch_wait_lock);
1660 
1661 	blk_mq_run_hw_queue(hctx, true);
1662 	return 1;
1663 }
1664 
1665 /*
1666  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1667  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1668  * restart. For both cases, take care to check the condition again after
1669  * marking us as waiting.
1670  */
1671 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1672 				 struct request *rq)
1673 {
1674 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1675 	struct wait_queue_head *wq;
1676 	wait_queue_entry_t *wait;
1677 	bool ret;
1678 
1679 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1680 		blk_mq_sched_mark_restart_hctx(hctx);
1681 
1682 		/*
1683 		 * It's possible that a tag was freed in the window between the
1684 		 * allocation failure and adding the hardware queue to the wait
1685 		 * queue.
1686 		 *
1687 		 * Don't clear RESTART here, someone else could have set it.
1688 		 * At most this will cost an extra queue run.
1689 		 */
1690 		return blk_mq_get_driver_tag(rq);
1691 	}
1692 
1693 	wait = &hctx->dispatch_wait;
1694 	if (!list_empty_careful(&wait->entry))
1695 		return false;
1696 
1697 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1698 
1699 	spin_lock_irq(&wq->lock);
1700 	spin_lock(&hctx->dispatch_wait_lock);
1701 	if (!list_empty(&wait->entry)) {
1702 		spin_unlock(&hctx->dispatch_wait_lock);
1703 		spin_unlock_irq(&wq->lock);
1704 		return false;
1705 	}
1706 
1707 	atomic_inc(&sbq->ws_active);
1708 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1709 	__add_wait_queue(wq, wait);
1710 
1711 	/*
1712 	 * It's possible that a tag was freed in the window between the
1713 	 * allocation failure and adding the hardware queue to the wait
1714 	 * queue.
1715 	 */
1716 	ret = blk_mq_get_driver_tag(rq);
1717 	if (!ret) {
1718 		spin_unlock(&hctx->dispatch_wait_lock);
1719 		spin_unlock_irq(&wq->lock);
1720 		return false;
1721 	}
1722 
1723 	/*
1724 	 * We got a tag, remove ourselves from the wait queue to ensure
1725 	 * someone else gets the wakeup.
1726 	 */
1727 	list_del_init(&wait->entry);
1728 	atomic_dec(&sbq->ws_active);
1729 	spin_unlock(&hctx->dispatch_wait_lock);
1730 	spin_unlock_irq(&wq->lock);
1731 
1732 	return true;
1733 }
1734 
1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1737 /*
1738  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1739  * - EWMA is one simple way to compute running average value
1740  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1741  * - take 4 as factor for avoiding to get too small(0) result, and this
1742  *   factor doesn't matter because EWMA decreases exponentially
1743  */
1744 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1745 {
1746 	unsigned int ewma;
1747 
1748 	ewma = hctx->dispatch_busy;
1749 
1750 	if (!ewma && !busy)
1751 		return;
1752 
1753 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1754 	if (busy)
1755 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1756 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1757 
1758 	hctx->dispatch_busy = ewma;
1759 }
1760 
1761 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1762 
1763 static void blk_mq_handle_dev_resource(struct request *rq,
1764 				       struct list_head *list)
1765 {
1766 	struct request *next =
1767 		list_first_entry_or_null(list, struct request, queuelist);
1768 
1769 	/*
1770 	 * If an I/O scheduler has been configured and we got a driver tag for
1771 	 * the next request already, free it.
1772 	 */
1773 	if (next)
1774 		blk_mq_put_driver_tag(next);
1775 
1776 	list_add(&rq->queuelist, list);
1777 	__blk_mq_requeue_request(rq);
1778 }
1779 
1780 static void blk_mq_handle_zone_resource(struct request *rq,
1781 					struct list_head *zone_list)
1782 {
1783 	/*
1784 	 * If we end up here it is because we cannot dispatch a request to a
1785 	 * specific zone due to LLD level zone-write locking or other zone
1786 	 * related resource not being available. In this case, set the request
1787 	 * aside in zone_list for retrying it later.
1788 	 */
1789 	list_add(&rq->queuelist, zone_list);
1790 	__blk_mq_requeue_request(rq);
1791 }
1792 
1793 enum prep_dispatch {
1794 	PREP_DISPATCH_OK,
1795 	PREP_DISPATCH_NO_TAG,
1796 	PREP_DISPATCH_NO_BUDGET,
1797 };
1798 
1799 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1800 						  bool need_budget)
1801 {
1802 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1803 	int budget_token = -1;
1804 
1805 	if (need_budget) {
1806 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1807 		if (budget_token < 0) {
1808 			blk_mq_put_driver_tag(rq);
1809 			return PREP_DISPATCH_NO_BUDGET;
1810 		}
1811 		blk_mq_set_rq_budget_token(rq, budget_token);
1812 	}
1813 
1814 	if (!blk_mq_get_driver_tag(rq)) {
1815 		/*
1816 		 * The initial allocation attempt failed, so we need to
1817 		 * rerun the hardware queue when a tag is freed. The
1818 		 * waitqueue takes care of that. If the queue is run
1819 		 * before we add this entry back on the dispatch list,
1820 		 * we'll re-run it below.
1821 		 */
1822 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1823 			/*
1824 			 * All budgets not got from this function will be put
1825 			 * together during handling partial dispatch
1826 			 */
1827 			if (need_budget)
1828 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1829 			return PREP_DISPATCH_NO_TAG;
1830 		}
1831 	}
1832 
1833 	return PREP_DISPATCH_OK;
1834 }
1835 
1836 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1837 static void blk_mq_release_budgets(struct request_queue *q,
1838 		struct list_head *list)
1839 {
1840 	struct request *rq;
1841 
1842 	list_for_each_entry(rq, list, queuelist) {
1843 		int budget_token = blk_mq_get_rq_budget_token(rq);
1844 
1845 		if (budget_token >= 0)
1846 			blk_mq_put_dispatch_budget(q, budget_token);
1847 	}
1848 }
1849 
1850 /*
1851  * Returns true if we did some work AND can potentially do more.
1852  */
1853 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1854 			     unsigned int nr_budgets)
1855 {
1856 	enum prep_dispatch prep;
1857 	struct request_queue *q = hctx->queue;
1858 	struct request *rq, *nxt;
1859 	int errors, queued;
1860 	blk_status_t ret = BLK_STS_OK;
1861 	LIST_HEAD(zone_list);
1862 	bool needs_resource = false;
1863 
1864 	if (list_empty(list))
1865 		return false;
1866 
1867 	/*
1868 	 * Now process all the entries, sending them to the driver.
1869 	 */
1870 	errors = queued = 0;
1871 	do {
1872 		struct blk_mq_queue_data bd;
1873 
1874 		rq = list_first_entry(list, struct request, queuelist);
1875 
1876 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1877 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1878 		if (prep != PREP_DISPATCH_OK)
1879 			break;
1880 
1881 		list_del_init(&rq->queuelist);
1882 
1883 		bd.rq = rq;
1884 
1885 		/*
1886 		 * Flag last if we have no more requests, or if we have more
1887 		 * but can't assign a driver tag to it.
1888 		 */
1889 		if (list_empty(list))
1890 			bd.last = true;
1891 		else {
1892 			nxt = list_first_entry(list, struct request, queuelist);
1893 			bd.last = !blk_mq_get_driver_tag(nxt);
1894 		}
1895 
1896 		/*
1897 		 * once the request is queued to lld, no need to cover the
1898 		 * budget any more
1899 		 */
1900 		if (nr_budgets)
1901 			nr_budgets--;
1902 		ret = q->mq_ops->queue_rq(hctx, &bd);
1903 		switch (ret) {
1904 		case BLK_STS_OK:
1905 			queued++;
1906 			break;
1907 		case BLK_STS_RESOURCE:
1908 			needs_resource = true;
1909 			fallthrough;
1910 		case BLK_STS_DEV_RESOURCE:
1911 			blk_mq_handle_dev_resource(rq, list);
1912 			goto out;
1913 		case BLK_STS_ZONE_RESOURCE:
1914 			/*
1915 			 * Move the request to zone_list and keep going through
1916 			 * the dispatch list to find more requests the drive can
1917 			 * accept.
1918 			 */
1919 			blk_mq_handle_zone_resource(rq, &zone_list);
1920 			needs_resource = true;
1921 			break;
1922 		default:
1923 			errors++;
1924 			blk_mq_end_request(rq, ret);
1925 		}
1926 	} while (!list_empty(list));
1927 out:
1928 	if (!list_empty(&zone_list))
1929 		list_splice_tail_init(&zone_list, list);
1930 
1931 	/* If we didn't flush the entire list, we could have told the driver
1932 	 * there was more coming, but that turned out to be a lie.
1933 	 */
1934 	if ((!list_empty(list) || errors || needs_resource ||
1935 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1936 		q->mq_ops->commit_rqs(hctx);
1937 	/*
1938 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1939 	 * that is where we will continue on next queue run.
1940 	 */
1941 	if (!list_empty(list)) {
1942 		bool needs_restart;
1943 		/* For non-shared tags, the RESTART check will suffice */
1944 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1945 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1946 
1947 		if (nr_budgets)
1948 			blk_mq_release_budgets(q, list);
1949 
1950 		spin_lock(&hctx->lock);
1951 		list_splice_tail_init(list, &hctx->dispatch);
1952 		spin_unlock(&hctx->lock);
1953 
1954 		/*
1955 		 * Order adding requests to hctx->dispatch and checking
1956 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1957 		 * in blk_mq_sched_restart(). Avoid restart code path to
1958 		 * miss the new added requests to hctx->dispatch, meantime
1959 		 * SCHED_RESTART is observed here.
1960 		 */
1961 		smp_mb();
1962 
1963 		/*
1964 		 * If SCHED_RESTART was set by the caller of this function and
1965 		 * it is no longer set that means that it was cleared by another
1966 		 * thread and hence that a queue rerun is needed.
1967 		 *
1968 		 * If 'no_tag' is set, that means that we failed getting
1969 		 * a driver tag with an I/O scheduler attached. If our dispatch
1970 		 * waitqueue is no longer active, ensure that we run the queue
1971 		 * AFTER adding our entries back to the list.
1972 		 *
1973 		 * If no I/O scheduler has been configured it is possible that
1974 		 * the hardware queue got stopped and restarted before requests
1975 		 * were pushed back onto the dispatch list. Rerun the queue to
1976 		 * avoid starvation. Notes:
1977 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1978 		 *   been stopped before rerunning a queue.
1979 		 * - Some but not all block drivers stop a queue before
1980 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1981 		 *   and dm-rq.
1982 		 *
1983 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1984 		 * bit is set, run queue after a delay to avoid IO stalls
1985 		 * that could otherwise occur if the queue is idle.  We'll do
1986 		 * similar if we couldn't get budget or couldn't lock a zone
1987 		 * and SCHED_RESTART is set.
1988 		 */
1989 		needs_restart = blk_mq_sched_needs_restart(hctx);
1990 		if (prep == PREP_DISPATCH_NO_BUDGET)
1991 			needs_resource = true;
1992 		if (!needs_restart ||
1993 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1994 			blk_mq_run_hw_queue(hctx, true);
1995 		else if (needs_restart && needs_resource)
1996 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1997 
1998 		blk_mq_update_dispatch_busy(hctx, true);
1999 		return false;
2000 	} else
2001 		blk_mq_update_dispatch_busy(hctx, false);
2002 
2003 	return (queued + errors) != 0;
2004 }
2005 
2006 /**
2007  * __blk_mq_run_hw_queue - Run a hardware queue.
2008  * @hctx: Pointer to the hardware queue to run.
2009  *
2010  * Send pending requests to the hardware.
2011  */
2012 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2013 {
2014 	/*
2015 	 * We can't run the queue inline with ints disabled. Ensure that
2016 	 * we catch bad users of this early.
2017 	 */
2018 	WARN_ON_ONCE(in_interrupt());
2019 
2020 	blk_mq_run_dispatch_ops(hctx->queue,
2021 			blk_mq_sched_dispatch_requests(hctx));
2022 }
2023 
2024 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2025 {
2026 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2027 
2028 	if (cpu >= nr_cpu_ids)
2029 		cpu = cpumask_first(hctx->cpumask);
2030 	return cpu;
2031 }
2032 
2033 /*
2034  * It'd be great if the workqueue API had a way to pass
2035  * in a mask and had some smarts for more clever placement.
2036  * For now we just round-robin here, switching for every
2037  * BLK_MQ_CPU_WORK_BATCH queued items.
2038  */
2039 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2040 {
2041 	bool tried = false;
2042 	int next_cpu = hctx->next_cpu;
2043 
2044 	if (hctx->queue->nr_hw_queues == 1)
2045 		return WORK_CPU_UNBOUND;
2046 
2047 	if (--hctx->next_cpu_batch <= 0) {
2048 select_cpu:
2049 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2050 				cpu_online_mask);
2051 		if (next_cpu >= nr_cpu_ids)
2052 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2053 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2054 	}
2055 
2056 	/*
2057 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2058 	 * and it should only happen in the path of handling CPU DEAD.
2059 	 */
2060 	if (!cpu_online(next_cpu)) {
2061 		if (!tried) {
2062 			tried = true;
2063 			goto select_cpu;
2064 		}
2065 
2066 		/*
2067 		 * Make sure to re-select CPU next time once after CPUs
2068 		 * in hctx->cpumask become online again.
2069 		 */
2070 		hctx->next_cpu = next_cpu;
2071 		hctx->next_cpu_batch = 1;
2072 		return WORK_CPU_UNBOUND;
2073 	}
2074 
2075 	hctx->next_cpu = next_cpu;
2076 	return next_cpu;
2077 }
2078 
2079 /**
2080  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2081  * @hctx: Pointer to the hardware queue to run.
2082  * @async: If we want to run the queue asynchronously.
2083  * @msecs: Milliseconds of delay to wait before running the queue.
2084  *
2085  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2086  * with a delay of @msecs.
2087  */
2088 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2089 					unsigned long msecs)
2090 {
2091 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2092 		return;
2093 
2094 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2095 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2096 			__blk_mq_run_hw_queue(hctx);
2097 			return;
2098 		}
2099 	}
2100 
2101 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2102 				    msecs_to_jiffies(msecs));
2103 }
2104 
2105 /**
2106  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2107  * @hctx: Pointer to the hardware queue to run.
2108  * @msecs: Milliseconds of delay to wait before running the queue.
2109  *
2110  * Run a hardware queue asynchronously with a delay of @msecs.
2111  */
2112 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2113 {
2114 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2115 }
2116 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2117 
2118 /**
2119  * blk_mq_run_hw_queue - Start to run a hardware queue.
2120  * @hctx: Pointer to the hardware queue to run.
2121  * @async: If we want to run the queue asynchronously.
2122  *
2123  * Check if the request queue is not in a quiesced state and if there are
2124  * pending requests to be sent. If this is true, run the queue to send requests
2125  * to hardware.
2126  */
2127 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2128 {
2129 	bool need_run;
2130 
2131 	/*
2132 	 * When queue is quiesced, we may be switching io scheduler, or
2133 	 * updating nr_hw_queues, or other things, and we can't run queue
2134 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2135 	 *
2136 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2137 	 * quiesced.
2138 	 */
2139 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2140 		need_run = !blk_queue_quiesced(hctx->queue) &&
2141 		blk_mq_hctx_has_pending(hctx));
2142 
2143 	if (need_run)
2144 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2145 }
2146 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2147 
2148 /*
2149  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2150  * scheduler.
2151  */
2152 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2153 {
2154 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2155 	/*
2156 	 * If the IO scheduler does not respect hardware queues when
2157 	 * dispatching, we just don't bother with multiple HW queues and
2158 	 * dispatch from hctx for the current CPU since running multiple queues
2159 	 * just causes lock contention inside the scheduler and pointless cache
2160 	 * bouncing.
2161 	 */
2162 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2163 
2164 	if (!blk_mq_hctx_stopped(hctx))
2165 		return hctx;
2166 	return NULL;
2167 }
2168 
2169 /**
2170  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2171  * @q: Pointer to the request queue to run.
2172  * @async: If we want to run the queue asynchronously.
2173  */
2174 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2175 {
2176 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2177 	unsigned long i;
2178 
2179 	sq_hctx = NULL;
2180 	if (blk_queue_sq_sched(q))
2181 		sq_hctx = blk_mq_get_sq_hctx(q);
2182 	queue_for_each_hw_ctx(q, hctx, i) {
2183 		if (blk_mq_hctx_stopped(hctx))
2184 			continue;
2185 		/*
2186 		 * Dispatch from this hctx either if there's no hctx preferred
2187 		 * by IO scheduler or if it has requests that bypass the
2188 		 * scheduler.
2189 		 */
2190 		if (!sq_hctx || sq_hctx == hctx ||
2191 		    !list_empty_careful(&hctx->dispatch))
2192 			blk_mq_run_hw_queue(hctx, async);
2193 	}
2194 }
2195 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2196 
2197 /**
2198  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2199  * @q: Pointer to the request queue to run.
2200  * @msecs: Milliseconds of delay to wait before running the queues.
2201  */
2202 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2203 {
2204 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2205 	unsigned long i;
2206 
2207 	sq_hctx = NULL;
2208 	if (blk_queue_sq_sched(q))
2209 		sq_hctx = blk_mq_get_sq_hctx(q);
2210 	queue_for_each_hw_ctx(q, hctx, i) {
2211 		if (blk_mq_hctx_stopped(hctx))
2212 			continue;
2213 		/*
2214 		 * If there is already a run_work pending, leave the
2215 		 * pending delay untouched. Otherwise, a hctx can stall
2216 		 * if another hctx is re-delaying the other's work
2217 		 * before the work executes.
2218 		 */
2219 		if (delayed_work_pending(&hctx->run_work))
2220 			continue;
2221 		/*
2222 		 * Dispatch from this hctx either if there's no hctx preferred
2223 		 * by IO scheduler or if it has requests that bypass the
2224 		 * scheduler.
2225 		 */
2226 		if (!sq_hctx || sq_hctx == hctx ||
2227 		    !list_empty_careful(&hctx->dispatch))
2228 			blk_mq_delay_run_hw_queue(hctx, msecs);
2229 	}
2230 }
2231 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2232 
2233 /*
2234  * This function is often used for pausing .queue_rq() by driver when
2235  * there isn't enough resource or some conditions aren't satisfied, and
2236  * BLK_STS_RESOURCE is usually returned.
2237  *
2238  * We do not guarantee that dispatch can be drained or blocked
2239  * after blk_mq_stop_hw_queue() returns. Please use
2240  * blk_mq_quiesce_queue() for that requirement.
2241  */
2242 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2243 {
2244 	cancel_delayed_work(&hctx->run_work);
2245 
2246 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2247 }
2248 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2249 
2250 /*
2251  * This function is often used for pausing .queue_rq() by driver when
2252  * there isn't enough resource or some conditions aren't satisfied, and
2253  * BLK_STS_RESOURCE is usually returned.
2254  *
2255  * We do not guarantee that dispatch can be drained or blocked
2256  * after blk_mq_stop_hw_queues() returns. Please use
2257  * blk_mq_quiesce_queue() for that requirement.
2258  */
2259 void blk_mq_stop_hw_queues(struct request_queue *q)
2260 {
2261 	struct blk_mq_hw_ctx *hctx;
2262 	unsigned long i;
2263 
2264 	queue_for_each_hw_ctx(q, hctx, i)
2265 		blk_mq_stop_hw_queue(hctx);
2266 }
2267 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2268 
2269 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2270 {
2271 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2272 
2273 	blk_mq_run_hw_queue(hctx, false);
2274 }
2275 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2276 
2277 void blk_mq_start_hw_queues(struct request_queue *q)
2278 {
2279 	struct blk_mq_hw_ctx *hctx;
2280 	unsigned long i;
2281 
2282 	queue_for_each_hw_ctx(q, hctx, i)
2283 		blk_mq_start_hw_queue(hctx);
2284 }
2285 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2286 
2287 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2288 {
2289 	if (!blk_mq_hctx_stopped(hctx))
2290 		return;
2291 
2292 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2293 	blk_mq_run_hw_queue(hctx, async);
2294 }
2295 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2296 
2297 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2298 {
2299 	struct blk_mq_hw_ctx *hctx;
2300 	unsigned long i;
2301 
2302 	queue_for_each_hw_ctx(q, hctx, i)
2303 		blk_mq_start_stopped_hw_queue(hctx, async);
2304 }
2305 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2306 
2307 static void blk_mq_run_work_fn(struct work_struct *work)
2308 {
2309 	struct blk_mq_hw_ctx *hctx;
2310 
2311 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2312 
2313 	/*
2314 	 * If we are stopped, don't run the queue.
2315 	 */
2316 	if (blk_mq_hctx_stopped(hctx))
2317 		return;
2318 
2319 	__blk_mq_run_hw_queue(hctx);
2320 }
2321 
2322 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2323 					    struct request *rq,
2324 					    bool at_head)
2325 {
2326 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2327 	enum hctx_type type = hctx->type;
2328 
2329 	lockdep_assert_held(&ctx->lock);
2330 
2331 	trace_block_rq_insert(rq);
2332 
2333 	if (at_head)
2334 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2335 	else
2336 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2337 }
2338 
2339 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2340 			     bool at_head)
2341 {
2342 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2343 
2344 	lockdep_assert_held(&ctx->lock);
2345 
2346 	__blk_mq_insert_req_list(hctx, rq, at_head);
2347 	blk_mq_hctx_mark_pending(hctx, ctx);
2348 }
2349 
2350 /**
2351  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2352  * @rq: Pointer to request to be inserted.
2353  * @at_head: true if the request should be inserted at the head of the list.
2354  * @run_queue: If we should run the hardware queue after inserting the request.
2355  *
2356  * Should only be used carefully, when the caller knows we want to
2357  * bypass a potential IO scheduler on the target device.
2358  */
2359 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2360 				  bool run_queue)
2361 {
2362 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2363 
2364 	spin_lock(&hctx->lock);
2365 	if (at_head)
2366 		list_add(&rq->queuelist, &hctx->dispatch);
2367 	else
2368 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2369 	spin_unlock(&hctx->lock);
2370 
2371 	if (run_queue)
2372 		blk_mq_run_hw_queue(hctx, false);
2373 }
2374 
2375 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2376 			    struct list_head *list)
2377 
2378 {
2379 	struct request *rq;
2380 	enum hctx_type type = hctx->type;
2381 
2382 	/*
2383 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2384 	 * offline now
2385 	 */
2386 	list_for_each_entry(rq, list, queuelist) {
2387 		BUG_ON(rq->mq_ctx != ctx);
2388 		trace_block_rq_insert(rq);
2389 	}
2390 
2391 	spin_lock(&ctx->lock);
2392 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2393 	blk_mq_hctx_mark_pending(hctx, ctx);
2394 	spin_unlock(&ctx->lock);
2395 }
2396 
2397 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2398 			      bool from_schedule)
2399 {
2400 	if (hctx->queue->mq_ops->commit_rqs) {
2401 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2402 		hctx->queue->mq_ops->commit_rqs(hctx);
2403 	}
2404 	*queued = 0;
2405 }
2406 
2407 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2408 		unsigned int nr_segs)
2409 {
2410 	int err;
2411 
2412 	if (bio->bi_opf & REQ_RAHEAD)
2413 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2414 
2415 	rq->__sector = bio->bi_iter.bi_sector;
2416 	blk_rq_bio_prep(rq, bio, nr_segs);
2417 
2418 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2419 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2420 	WARN_ON_ONCE(err);
2421 
2422 	blk_account_io_start(rq);
2423 }
2424 
2425 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2426 					    struct request *rq, bool last)
2427 {
2428 	struct request_queue *q = rq->q;
2429 	struct blk_mq_queue_data bd = {
2430 		.rq = rq,
2431 		.last = last,
2432 	};
2433 	blk_status_t ret;
2434 
2435 	/*
2436 	 * For OK queue, we are done. For error, caller may kill it.
2437 	 * Any other error (busy), just add it to our list as we
2438 	 * previously would have done.
2439 	 */
2440 	ret = q->mq_ops->queue_rq(hctx, &bd);
2441 	switch (ret) {
2442 	case BLK_STS_OK:
2443 		blk_mq_update_dispatch_busy(hctx, false);
2444 		break;
2445 	case BLK_STS_RESOURCE:
2446 	case BLK_STS_DEV_RESOURCE:
2447 		blk_mq_update_dispatch_busy(hctx, true);
2448 		__blk_mq_requeue_request(rq);
2449 		break;
2450 	default:
2451 		blk_mq_update_dispatch_busy(hctx, false);
2452 		break;
2453 	}
2454 
2455 	return ret;
2456 }
2457 
2458 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2459 						struct request *rq,
2460 						bool bypass_insert, bool last)
2461 {
2462 	struct request_queue *q = rq->q;
2463 	bool run_queue = true;
2464 	int budget_token;
2465 
2466 	/*
2467 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2468 	 *
2469 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2470 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2471 	 * and avoid driver to try to dispatch again.
2472 	 */
2473 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2474 		run_queue = false;
2475 		bypass_insert = false;
2476 		goto insert;
2477 	}
2478 
2479 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2480 		goto insert;
2481 
2482 	budget_token = blk_mq_get_dispatch_budget(q);
2483 	if (budget_token < 0)
2484 		goto insert;
2485 
2486 	blk_mq_set_rq_budget_token(rq, budget_token);
2487 
2488 	if (!blk_mq_get_driver_tag(rq)) {
2489 		blk_mq_put_dispatch_budget(q, budget_token);
2490 		goto insert;
2491 	}
2492 
2493 	return __blk_mq_issue_directly(hctx, rq, last);
2494 insert:
2495 	if (bypass_insert)
2496 		return BLK_STS_RESOURCE;
2497 
2498 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2499 
2500 	return BLK_STS_OK;
2501 }
2502 
2503 /**
2504  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2505  * @hctx: Pointer of the associated hardware queue.
2506  * @rq: Pointer to request to be sent.
2507  *
2508  * If the device has enough resources to accept a new request now, send the
2509  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2510  * we can try send it another time in the future. Requests inserted at this
2511  * queue have higher priority.
2512  */
2513 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2514 		struct request *rq)
2515 {
2516 	blk_status_t ret =
2517 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2518 
2519 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2520 		blk_mq_request_bypass_insert(rq, false, true);
2521 	else if (ret != BLK_STS_OK)
2522 		blk_mq_end_request(rq, ret);
2523 }
2524 
2525 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2526 {
2527 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2528 }
2529 
2530 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2531 {
2532 	struct blk_mq_hw_ctx *hctx = NULL;
2533 	struct request *rq;
2534 	int queued = 0;
2535 	int errors = 0;
2536 
2537 	while ((rq = rq_list_pop(&plug->mq_list))) {
2538 		bool last = rq_list_empty(plug->mq_list);
2539 		blk_status_t ret;
2540 
2541 		if (hctx != rq->mq_hctx) {
2542 			if (hctx)
2543 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2544 			hctx = rq->mq_hctx;
2545 		}
2546 
2547 		ret = blk_mq_request_issue_directly(rq, last);
2548 		switch (ret) {
2549 		case BLK_STS_OK:
2550 			queued++;
2551 			break;
2552 		case BLK_STS_RESOURCE:
2553 		case BLK_STS_DEV_RESOURCE:
2554 			blk_mq_request_bypass_insert(rq, false, true);
2555 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2556 			return;
2557 		default:
2558 			blk_mq_end_request(rq, ret);
2559 			errors++;
2560 			break;
2561 		}
2562 	}
2563 
2564 	/*
2565 	 * If we didn't flush the entire list, we could have told the driver
2566 	 * there was more coming, but that turned out to be a lie.
2567 	 */
2568 	if (errors)
2569 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2570 }
2571 
2572 static void __blk_mq_flush_plug_list(struct request_queue *q,
2573 				     struct blk_plug *plug)
2574 {
2575 	if (blk_queue_quiesced(q))
2576 		return;
2577 	q->mq_ops->queue_rqs(&plug->mq_list);
2578 }
2579 
2580 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2581 {
2582 	struct blk_mq_hw_ctx *this_hctx = NULL;
2583 	struct blk_mq_ctx *this_ctx = NULL;
2584 	struct request *requeue_list = NULL;
2585 	unsigned int depth = 0;
2586 	LIST_HEAD(list);
2587 
2588 	do {
2589 		struct request *rq = rq_list_pop(&plug->mq_list);
2590 
2591 		if (!this_hctx) {
2592 			this_hctx = rq->mq_hctx;
2593 			this_ctx = rq->mq_ctx;
2594 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2595 			rq_list_add(&requeue_list, rq);
2596 			continue;
2597 		}
2598 		list_add_tail(&rq->queuelist, &list);
2599 		depth++;
2600 	} while (!rq_list_empty(plug->mq_list));
2601 
2602 	plug->mq_list = requeue_list;
2603 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2604 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2605 }
2606 
2607 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2608 {
2609 	struct request *rq;
2610 
2611 	if (rq_list_empty(plug->mq_list))
2612 		return;
2613 	plug->rq_count = 0;
2614 
2615 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2616 		struct request_queue *q;
2617 
2618 		rq = rq_list_peek(&plug->mq_list);
2619 		q = rq->q;
2620 
2621 		/*
2622 		 * Peek first request and see if we have a ->queue_rqs() hook.
2623 		 * If we do, we can dispatch the whole plug list in one go. We
2624 		 * already know at this point that all requests belong to the
2625 		 * same queue, caller must ensure that's the case.
2626 		 *
2627 		 * Since we pass off the full list to the driver at this point,
2628 		 * we do not increment the active request count for the queue.
2629 		 * Bypass shared tags for now because of that.
2630 		 */
2631 		if (q->mq_ops->queue_rqs &&
2632 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2633 			blk_mq_run_dispatch_ops(q,
2634 				__blk_mq_flush_plug_list(q, plug));
2635 			if (rq_list_empty(plug->mq_list))
2636 				return;
2637 		}
2638 
2639 		blk_mq_run_dispatch_ops(q,
2640 				blk_mq_plug_issue_direct(plug, false));
2641 		if (rq_list_empty(plug->mq_list))
2642 			return;
2643 	}
2644 
2645 	do {
2646 		blk_mq_dispatch_plug_list(plug, from_schedule);
2647 	} while (!rq_list_empty(plug->mq_list));
2648 }
2649 
2650 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2651 		struct list_head *list)
2652 {
2653 	int queued = 0;
2654 	int errors = 0;
2655 
2656 	while (!list_empty(list)) {
2657 		blk_status_t ret;
2658 		struct request *rq = list_first_entry(list, struct request,
2659 				queuelist);
2660 
2661 		list_del_init(&rq->queuelist);
2662 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2663 		if (ret != BLK_STS_OK) {
2664 			errors++;
2665 			if (ret == BLK_STS_RESOURCE ||
2666 					ret == BLK_STS_DEV_RESOURCE) {
2667 				blk_mq_request_bypass_insert(rq, false,
2668 							list_empty(list));
2669 				break;
2670 			}
2671 			blk_mq_end_request(rq, ret);
2672 		} else
2673 			queued++;
2674 	}
2675 
2676 	/*
2677 	 * If we didn't flush the entire list, we could have told
2678 	 * the driver there was more coming, but that turned out to
2679 	 * be a lie.
2680 	 */
2681 	if ((!list_empty(list) || errors) &&
2682 	     hctx->queue->mq_ops->commit_rqs && queued)
2683 		hctx->queue->mq_ops->commit_rqs(hctx);
2684 }
2685 
2686 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2687 				     struct bio *bio, unsigned int nr_segs)
2688 {
2689 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2690 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2691 			return true;
2692 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2693 			return true;
2694 	}
2695 	return false;
2696 }
2697 
2698 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2699 					       struct blk_plug *plug,
2700 					       struct bio *bio,
2701 					       unsigned int nsegs)
2702 {
2703 	struct blk_mq_alloc_data data = {
2704 		.q		= q,
2705 		.nr_tags	= 1,
2706 		.cmd_flags	= bio->bi_opf,
2707 	};
2708 	struct request *rq;
2709 
2710 	if (unlikely(bio_queue_enter(bio)))
2711 		return NULL;
2712 
2713 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2714 		goto queue_exit;
2715 
2716 	rq_qos_throttle(q, bio);
2717 
2718 	if (plug) {
2719 		data.nr_tags = plug->nr_ios;
2720 		plug->nr_ios = 1;
2721 		data.cached_rq = &plug->cached_rq;
2722 	}
2723 
2724 	rq = __blk_mq_alloc_requests(&data);
2725 	if (rq)
2726 		return rq;
2727 	rq_qos_cleanup(q, bio);
2728 	if (bio->bi_opf & REQ_NOWAIT)
2729 		bio_wouldblock_error(bio);
2730 queue_exit:
2731 	blk_queue_exit(q);
2732 	return NULL;
2733 }
2734 
2735 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2736 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2737 {
2738 	struct request *rq;
2739 
2740 	if (!plug)
2741 		return NULL;
2742 	rq = rq_list_peek(&plug->cached_rq);
2743 	if (!rq || rq->q != q)
2744 		return NULL;
2745 
2746 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2747 		*bio = NULL;
2748 		return NULL;
2749 	}
2750 
2751 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2752 		return NULL;
2753 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2754 		return NULL;
2755 
2756 	/*
2757 	 * If any qos ->throttle() end up blocking, we will have flushed the
2758 	 * plug and hence killed the cached_rq list as well. Pop this entry
2759 	 * before we throttle.
2760 	 */
2761 	plug->cached_rq = rq_list_next(rq);
2762 	rq_qos_throttle(q, *bio);
2763 
2764 	rq->cmd_flags = (*bio)->bi_opf;
2765 	INIT_LIST_HEAD(&rq->queuelist);
2766 	return rq;
2767 }
2768 
2769 static void bio_set_ioprio(struct bio *bio)
2770 {
2771 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2772 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2773 		bio->bi_ioprio = get_current_ioprio();
2774 	blkcg_set_ioprio(bio);
2775 }
2776 
2777 /**
2778  * blk_mq_submit_bio - Create and send a request to block device.
2779  * @bio: Bio pointer.
2780  *
2781  * Builds up a request structure from @q and @bio and send to the device. The
2782  * request may not be queued directly to hardware if:
2783  * * This request can be merged with another one
2784  * * We want to place request at plug queue for possible future merging
2785  * * There is an IO scheduler active at this queue
2786  *
2787  * It will not queue the request if there is an error with the bio, or at the
2788  * request creation.
2789  */
2790 void blk_mq_submit_bio(struct bio *bio)
2791 {
2792 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2793 	struct blk_plug *plug = blk_mq_plug(bio);
2794 	const int is_sync = op_is_sync(bio->bi_opf);
2795 	struct request *rq;
2796 	unsigned int nr_segs = 1;
2797 	blk_status_t ret;
2798 
2799 	bio = blk_queue_bounce(bio, q);
2800 	if (bio_may_exceed_limits(bio, &q->limits))
2801 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2802 
2803 	if (!bio_integrity_prep(bio))
2804 		return;
2805 
2806 	bio_set_ioprio(bio);
2807 
2808 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2809 	if (!rq) {
2810 		if (!bio)
2811 			return;
2812 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2813 		if (unlikely(!rq))
2814 			return;
2815 	}
2816 
2817 	trace_block_getrq(bio);
2818 
2819 	rq_qos_track(q, rq, bio);
2820 
2821 	blk_mq_bio_to_request(rq, bio, nr_segs);
2822 
2823 	ret = blk_crypto_init_request(rq);
2824 	if (ret != BLK_STS_OK) {
2825 		bio->bi_status = ret;
2826 		bio_endio(bio);
2827 		blk_mq_free_request(rq);
2828 		return;
2829 	}
2830 
2831 	if (op_is_flush(bio->bi_opf)) {
2832 		blk_insert_flush(rq);
2833 		return;
2834 	}
2835 
2836 	if (plug)
2837 		blk_add_rq_to_plug(plug, rq);
2838 	else if ((rq->rq_flags & RQF_ELV) ||
2839 		 (rq->mq_hctx->dispatch_busy &&
2840 		  (q->nr_hw_queues == 1 || !is_sync)))
2841 		blk_mq_sched_insert_request(rq, false, true, true);
2842 	else
2843 		blk_mq_run_dispatch_ops(rq->q,
2844 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2845 }
2846 
2847 #ifdef CONFIG_BLK_MQ_STACKING
2848 /**
2849  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2850  * @rq: the request being queued
2851  */
2852 blk_status_t blk_insert_cloned_request(struct request *rq)
2853 {
2854 	struct request_queue *q = rq->q;
2855 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2856 	blk_status_t ret;
2857 
2858 	if (blk_rq_sectors(rq) > max_sectors) {
2859 		/*
2860 		 * SCSI device does not have a good way to return if
2861 		 * Write Same/Zero is actually supported. If a device rejects
2862 		 * a non-read/write command (discard, write same,etc.) the
2863 		 * low-level device driver will set the relevant queue limit to
2864 		 * 0 to prevent blk-lib from issuing more of the offending
2865 		 * operations. Commands queued prior to the queue limit being
2866 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2867 		 * errors being propagated to upper layers.
2868 		 */
2869 		if (max_sectors == 0)
2870 			return BLK_STS_NOTSUPP;
2871 
2872 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2873 			__func__, blk_rq_sectors(rq), max_sectors);
2874 		return BLK_STS_IOERR;
2875 	}
2876 
2877 	/*
2878 	 * The queue settings related to segment counting may differ from the
2879 	 * original queue.
2880 	 */
2881 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2882 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2883 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2884 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2885 		return BLK_STS_IOERR;
2886 	}
2887 
2888 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2889 		return BLK_STS_IOERR;
2890 
2891 	if (blk_crypto_insert_cloned_request(rq))
2892 		return BLK_STS_IOERR;
2893 
2894 	blk_account_io_start(rq);
2895 
2896 	/*
2897 	 * Since we have a scheduler attached on the top device,
2898 	 * bypass a potential scheduler on the bottom device for
2899 	 * insert.
2900 	 */
2901 	blk_mq_run_dispatch_ops(q,
2902 			ret = blk_mq_request_issue_directly(rq, true));
2903 	if (ret)
2904 		blk_account_io_done(rq, ktime_get_ns());
2905 	return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2908 
2909 /**
2910  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2911  * @rq: the clone request to be cleaned up
2912  *
2913  * Description:
2914  *     Free all bios in @rq for a cloned request.
2915  */
2916 void blk_rq_unprep_clone(struct request *rq)
2917 {
2918 	struct bio *bio;
2919 
2920 	while ((bio = rq->bio) != NULL) {
2921 		rq->bio = bio->bi_next;
2922 
2923 		bio_put(bio);
2924 	}
2925 }
2926 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2927 
2928 /**
2929  * blk_rq_prep_clone - Helper function to setup clone request
2930  * @rq: the request to be setup
2931  * @rq_src: original request to be cloned
2932  * @bs: bio_set that bios for clone are allocated from
2933  * @gfp_mask: memory allocation mask for bio
2934  * @bio_ctr: setup function to be called for each clone bio.
2935  *           Returns %0 for success, non %0 for failure.
2936  * @data: private data to be passed to @bio_ctr
2937  *
2938  * Description:
2939  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2940  *     Also, pages which the original bios are pointing to are not copied
2941  *     and the cloned bios just point same pages.
2942  *     So cloned bios must be completed before original bios, which means
2943  *     the caller must complete @rq before @rq_src.
2944  */
2945 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2946 		      struct bio_set *bs, gfp_t gfp_mask,
2947 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2948 		      void *data)
2949 {
2950 	struct bio *bio, *bio_src;
2951 
2952 	if (!bs)
2953 		bs = &fs_bio_set;
2954 
2955 	__rq_for_each_bio(bio_src, rq_src) {
2956 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2957 				      bs);
2958 		if (!bio)
2959 			goto free_and_out;
2960 
2961 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2962 			goto free_and_out;
2963 
2964 		if (rq->bio) {
2965 			rq->biotail->bi_next = bio;
2966 			rq->biotail = bio;
2967 		} else {
2968 			rq->bio = rq->biotail = bio;
2969 		}
2970 		bio = NULL;
2971 	}
2972 
2973 	/* Copy attributes of the original request to the clone request. */
2974 	rq->__sector = blk_rq_pos(rq_src);
2975 	rq->__data_len = blk_rq_bytes(rq_src);
2976 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2977 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2978 		rq->special_vec = rq_src->special_vec;
2979 	}
2980 	rq->nr_phys_segments = rq_src->nr_phys_segments;
2981 	rq->ioprio = rq_src->ioprio;
2982 
2983 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2984 		goto free_and_out;
2985 
2986 	return 0;
2987 
2988 free_and_out:
2989 	if (bio)
2990 		bio_put(bio);
2991 	blk_rq_unprep_clone(rq);
2992 
2993 	return -ENOMEM;
2994 }
2995 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2996 #endif /* CONFIG_BLK_MQ_STACKING */
2997 
2998 /*
2999  * Steal bios from a request and add them to a bio list.
3000  * The request must not have been partially completed before.
3001  */
3002 void blk_steal_bios(struct bio_list *list, struct request *rq)
3003 {
3004 	if (rq->bio) {
3005 		if (list->tail)
3006 			list->tail->bi_next = rq->bio;
3007 		else
3008 			list->head = rq->bio;
3009 		list->tail = rq->biotail;
3010 
3011 		rq->bio = NULL;
3012 		rq->biotail = NULL;
3013 	}
3014 
3015 	rq->__data_len = 0;
3016 }
3017 EXPORT_SYMBOL_GPL(blk_steal_bios);
3018 
3019 static size_t order_to_size(unsigned int order)
3020 {
3021 	return (size_t)PAGE_SIZE << order;
3022 }
3023 
3024 /* called before freeing request pool in @tags */
3025 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3026 				    struct blk_mq_tags *tags)
3027 {
3028 	struct page *page;
3029 	unsigned long flags;
3030 
3031 	/* There is no need to clear a driver tags own mapping */
3032 	if (drv_tags == tags)
3033 		return;
3034 
3035 	list_for_each_entry(page, &tags->page_list, lru) {
3036 		unsigned long start = (unsigned long)page_address(page);
3037 		unsigned long end = start + order_to_size(page->private);
3038 		int i;
3039 
3040 		for (i = 0; i < drv_tags->nr_tags; i++) {
3041 			struct request *rq = drv_tags->rqs[i];
3042 			unsigned long rq_addr = (unsigned long)rq;
3043 
3044 			if (rq_addr >= start && rq_addr < end) {
3045 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3046 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3047 			}
3048 		}
3049 	}
3050 
3051 	/*
3052 	 * Wait until all pending iteration is done.
3053 	 *
3054 	 * Request reference is cleared and it is guaranteed to be observed
3055 	 * after the ->lock is released.
3056 	 */
3057 	spin_lock_irqsave(&drv_tags->lock, flags);
3058 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3059 }
3060 
3061 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3062 		     unsigned int hctx_idx)
3063 {
3064 	struct blk_mq_tags *drv_tags;
3065 	struct page *page;
3066 
3067 	if (list_empty(&tags->page_list))
3068 		return;
3069 
3070 	if (blk_mq_is_shared_tags(set->flags))
3071 		drv_tags = set->shared_tags;
3072 	else
3073 		drv_tags = set->tags[hctx_idx];
3074 
3075 	if (tags->static_rqs && set->ops->exit_request) {
3076 		int i;
3077 
3078 		for (i = 0; i < tags->nr_tags; i++) {
3079 			struct request *rq = tags->static_rqs[i];
3080 
3081 			if (!rq)
3082 				continue;
3083 			set->ops->exit_request(set, rq, hctx_idx);
3084 			tags->static_rqs[i] = NULL;
3085 		}
3086 	}
3087 
3088 	blk_mq_clear_rq_mapping(drv_tags, tags);
3089 
3090 	while (!list_empty(&tags->page_list)) {
3091 		page = list_first_entry(&tags->page_list, struct page, lru);
3092 		list_del_init(&page->lru);
3093 		/*
3094 		 * Remove kmemleak object previously allocated in
3095 		 * blk_mq_alloc_rqs().
3096 		 */
3097 		kmemleak_free(page_address(page));
3098 		__free_pages(page, page->private);
3099 	}
3100 }
3101 
3102 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3103 {
3104 	kfree(tags->rqs);
3105 	tags->rqs = NULL;
3106 	kfree(tags->static_rqs);
3107 	tags->static_rqs = NULL;
3108 
3109 	blk_mq_free_tags(tags);
3110 }
3111 
3112 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3113 		unsigned int hctx_idx)
3114 {
3115 	int i;
3116 
3117 	for (i = 0; i < set->nr_maps; i++) {
3118 		unsigned int start = set->map[i].queue_offset;
3119 		unsigned int end = start + set->map[i].nr_queues;
3120 
3121 		if (hctx_idx >= start && hctx_idx < end)
3122 			break;
3123 	}
3124 
3125 	if (i >= set->nr_maps)
3126 		i = HCTX_TYPE_DEFAULT;
3127 
3128 	return i;
3129 }
3130 
3131 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3132 		unsigned int hctx_idx)
3133 {
3134 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3135 
3136 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3137 }
3138 
3139 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3140 					       unsigned int hctx_idx,
3141 					       unsigned int nr_tags,
3142 					       unsigned int reserved_tags)
3143 {
3144 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3145 	struct blk_mq_tags *tags;
3146 
3147 	if (node == NUMA_NO_NODE)
3148 		node = set->numa_node;
3149 
3150 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3151 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3152 	if (!tags)
3153 		return NULL;
3154 
3155 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3156 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3157 				 node);
3158 	if (!tags->rqs) {
3159 		blk_mq_free_tags(tags);
3160 		return NULL;
3161 	}
3162 
3163 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3164 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3165 					node);
3166 	if (!tags->static_rqs) {
3167 		kfree(tags->rqs);
3168 		blk_mq_free_tags(tags);
3169 		return NULL;
3170 	}
3171 
3172 	return tags;
3173 }
3174 
3175 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3176 			       unsigned int hctx_idx, int node)
3177 {
3178 	int ret;
3179 
3180 	if (set->ops->init_request) {
3181 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3182 		if (ret)
3183 			return ret;
3184 	}
3185 
3186 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3187 	return 0;
3188 }
3189 
3190 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3191 			    struct blk_mq_tags *tags,
3192 			    unsigned int hctx_idx, unsigned int depth)
3193 {
3194 	unsigned int i, j, entries_per_page, max_order = 4;
3195 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3196 	size_t rq_size, left;
3197 
3198 	if (node == NUMA_NO_NODE)
3199 		node = set->numa_node;
3200 
3201 	INIT_LIST_HEAD(&tags->page_list);
3202 
3203 	/*
3204 	 * rq_size is the size of the request plus driver payload, rounded
3205 	 * to the cacheline size
3206 	 */
3207 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3208 				cache_line_size());
3209 	left = rq_size * depth;
3210 
3211 	for (i = 0; i < depth; ) {
3212 		int this_order = max_order;
3213 		struct page *page;
3214 		int to_do;
3215 		void *p;
3216 
3217 		while (this_order && left < order_to_size(this_order - 1))
3218 			this_order--;
3219 
3220 		do {
3221 			page = alloc_pages_node(node,
3222 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3223 				this_order);
3224 			if (page)
3225 				break;
3226 			if (!this_order--)
3227 				break;
3228 			if (order_to_size(this_order) < rq_size)
3229 				break;
3230 		} while (1);
3231 
3232 		if (!page)
3233 			goto fail;
3234 
3235 		page->private = this_order;
3236 		list_add_tail(&page->lru, &tags->page_list);
3237 
3238 		p = page_address(page);
3239 		/*
3240 		 * Allow kmemleak to scan these pages as they contain pointers
3241 		 * to additional allocations like via ops->init_request().
3242 		 */
3243 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3244 		entries_per_page = order_to_size(this_order) / rq_size;
3245 		to_do = min(entries_per_page, depth - i);
3246 		left -= to_do * rq_size;
3247 		for (j = 0; j < to_do; j++) {
3248 			struct request *rq = p;
3249 
3250 			tags->static_rqs[i] = rq;
3251 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3252 				tags->static_rqs[i] = NULL;
3253 				goto fail;
3254 			}
3255 
3256 			p += rq_size;
3257 			i++;
3258 		}
3259 	}
3260 	return 0;
3261 
3262 fail:
3263 	blk_mq_free_rqs(set, tags, hctx_idx);
3264 	return -ENOMEM;
3265 }
3266 
3267 struct rq_iter_data {
3268 	struct blk_mq_hw_ctx *hctx;
3269 	bool has_rq;
3270 };
3271 
3272 static bool blk_mq_has_request(struct request *rq, void *data)
3273 {
3274 	struct rq_iter_data *iter_data = data;
3275 
3276 	if (rq->mq_hctx != iter_data->hctx)
3277 		return true;
3278 	iter_data->has_rq = true;
3279 	return false;
3280 }
3281 
3282 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3283 {
3284 	struct blk_mq_tags *tags = hctx->sched_tags ?
3285 			hctx->sched_tags : hctx->tags;
3286 	struct rq_iter_data data = {
3287 		.hctx	= hctx,
3288 	};
3289 
3290 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3291 	return data.has_rq;
3292 }
3293 
3294 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3295 		struct blk_mq_hw_ctx *hctx)
3296 {
3297 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3298 		return false;
3299 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3300 		return false;
3301 	return true;
3302 }
3303 
3304 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3305 {
3306 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3307 			struct blk_mq_hw_ctx, cpuhp_online);
3308 
3309 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3310 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3311 		return 0;
3312 
3313 	/*
3314 	 * Prevent new request from being allocated on the current hctx.
3315 	 *
3316 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3317 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3318 	 * seen once we return from the tag allocator.
3319 	 */
3320 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3321 	smp_mb__after_atomic();
3322 
3323 	/*
3324 	 * Try to grab a reference to the queue and wait for any outstanding
3325 	 * requests.  If we could not grab a reference the queue has been
3326 	 * frozen and there are no requests.
3327 	 */
3328 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3329 		while (blk_mq_hctx_has_requests(hctx))
3330 			msleep(5);
3331 		percpu_ref_put(&hctx->queue->q_usage_counter);
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3338 {
3339 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3340 			struct blk_mq_hw_ctx, cpuhp_online);
3341 
3342 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3343 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3344 	return 0;
3345 }
3346 
3347 /*
3348  * 'cpu' is going away. splice any existing rq_list entries from this
3349  * software queue to the hw queue dispatch list, and ensure that it
3350  * gets run.
3351  */
3352 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3353 {
3354 	struct blk_mq_hw_ctx *hctx;
3355 	struct blk_mq_ctx *ctx;
3356 	LIST_HEAD(tmp);
3357 	enum hctx_type type;
3358 
3359 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3360 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3361 		return 0;
3362 
3363 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3364 	type = hctx->type;
3365 
3366 	spin_lock(&ctx->lock);
3367 	if (!list_empty(&ctx->rq_lists[type])) {
3368 		list_splice_init(&ctx->rq_lists[type], &tmp);
3369 		blk_mq_hctx_clear_pending(hctx, ctx);
3370 	}
3371 	spin_unlock(&ctx->lock);
3372 
3373 	if (list_empty(&tmp))
3374 		return 0;
3375 
3376 	spin_lock(&hctx->lock);
3377 	list_splice_tail_init(&tmp, &hctx->dispatch);
3378 	spin_unlock(&hctx->lock);
3379 
3380 	blk_mq_run_hw_queue(hctx, true);
3381 	return 0;
3382 }
3383 
3384 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3385 {
3386 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3387 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3388 						    &hctx->cpuhp_online);
3389 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3390 					    &hctx->cpuhp_dead);
3391 }
3392 
3393 /*
3394  * Before freeing hw queue, clearing the flush request reference in
3395  * tags->rqs[] for avoiding potential UAF.
3396  */
3397 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3398 		unsigned int queue_depth, struct request *flush_rq)
3399 {
3400 	int i;
3401 	unsigned long flags;
3402 
3403 	/* The hw queue may not be mapped yet */
3404 	if (!tags)
3405 		return;
3406 
3407 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3408 
3409 	for (i = 0; i < queue_depth; i++)
3410 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3411 
3412 	/*
3413 	 * Wait until all pending iteration is done.
3414 	 *
3415 	 * Request reference is cleared and it is guaranteed to be observed
3416 	 * after the ->lock is released.
3417 	 */
3418 	spin_lock_irqsave(&tags->lock, flags);
3419 	spin_unlock_irqrestore(&tags->lock, flags);
3420 }
3421 
3422 /* hctx->ctxs will be freed in queue's release handler */
3423 static void blk_mq_exit_hctx(struct request_queue *q,
3424 		struct blk_mq_tag_set *set,
3425 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3426 {
3427 	struct request *flush_rq = hctx->fq->flush_rq;
3428 
3429 	if (blk_mq_hw_queue_mapped(hctx))
3430 		blk_mq_tag_idle(hctx);
3431 
3432 	if (blk_queue_init_done(q))
3433 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3434 				set->queue_depth, flush_rq);
3435 	if (set->ops->exit_request)
3436 		set->ops->exit_request(set, flush_rq, hctx_idx);
3437 
3438 	if (set->ops->exit_hctx)
3439 		set->ops->exit_hctx(hctx, hctx_idx);
3440 
3441 	blk_mq_remove_cpuhp(hctx);
3442 
3443 	xa_erase(&q->hctx_table, hctx_idx);
3444 
3445 	spin_lock(&q->unused_hctx_lock);
3446 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3447 	spin_unlock(&q->unused_hctx_lock);
3448 }
3449 
3450 static void blk_mq_exit_hw_queues(struct request_queue *q,
3451 		struct blk_mq_tag_set *set, int nr_queue)
3452 {
3453 	struct blk_mq_hw_ctx *hctx;
3454 	unsigned long i;
3455 
3456 	queue_for_each_hw_ctx(q, hctx, i) {
3457 		if (i == nr_queue)
3458 			break;
3459 		blk_mq_exit_hctx(q, set, hctx, i);
3460 	}
3461 }
3462 
3463 static int blk_mq_init_hctx(struct request_queue *q,
3464 		struct blk_mq_tag_set *set,
3465 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3466 {
3467 	hctx->queue_num = hctx_idx;
3468 
3469 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3470 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3471 				&hctx->cpuhp_online);
3472 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3473 
3474 	hctx->tags = set->tags[hctx_idx];
3475 
3476 	if (set->ops->init_hctx &&
3477 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3478 		goto unregister_cpu_notifier;
3479 
3480 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3481 				hctx->numa_node))
3482 		goto exit_hctx;
3483 
3484 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3485 		goto exit_flush_rq;
3486 
3487 	return 0;
3488 
3489  exit_flush_rq:
3490 	if (set->ops->exit_request)
3491 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3492  exit_hctx:
3493 	if (set->ops->exit_hctx)
3494 		set->ops->exit_hctx(hctx, hctx_idx);
3495  unregister_cpu_notifier:
3496 	blk_mq_remove_cpuhp(hctx);
3497 	return -1;
3498 }
3499 
3500 static struct blk_mq_hw_ctx *
3501 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3502 		int node)
3503 {
3504 	struct blk_mq_hw_ctx *hctx;
3505 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3506 
3507 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3508 	if (!hctx)
3509 		goto fail_alloc_hctx;
3510 
3511 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3512 		goto free_hctx;
3513 
3514 	atomic_set(&hctx->nr_active, 0);
3515 	if (node == NUMA_NO_NODE)
3516 		node = set->numa_node;
3517 	hctx->numa_node = node;
3518 
3519 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3520 	spin_lock_init(&hctx->lock);
3521 	INIT_LIST_HEAD(&hctx->dispatch);
3522 	hctx->queue = q;
3523 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3524 
3525 	INIT_LIST_HEAD(&hctx->hctx_list);
3526 
3527 	/*
3528 	 * Allocate space for all possible cpus to avoid allocation at
3529 	 * runtime
3530 	 */
3531 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3532 			gfp, node);
3533 	if (!hctx->ctxs)
3534 		goto free_cpumask;
3535 
3536 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3537 				gfp, node, false, false))
3538 		goto free_ctxs;
3539 	hctx->nr_ctx = 0;
3540 
3541 	spin_lock_init(&hctx->dispatch_wait_lock);
3542 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3543 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3544 
3545 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3546 	if (!hctx->fq)
3547 		goto free_bitmap;
3548 
3549 	blk_mq_hctx_kobj_init(hctx);
3550 
3551 	return hctx;
3552 
3553  free_bitmap:
3554 	sbitmap_free(&hctx->ctx_map);
3555  free_ctxs:
3556 	kfree(hctx->ctxs);
3557  free_cpumask:
3558 	free_cpumask_var(hctx->cpumask);
3559  free_hctx:
3560 	kfree(hctx);
3561  fail_alloc_hctx:
3562 	return NULL;
3563 }
3564 
3565 static void blk_mq_init_cpu_queues(struct request_queue *q,
3566 				   unsigned int nr_hw_queues)
3567 {
3568 	struct blk_mq_tag_set *set = q->tag_set;
3569 	unsigned int i, j;
3570 
3571 	for_each_possible_cpu(i) {
3572 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3573 		struct blk_mq_hw_ctx *hctx;
3574 		int k;
3575 
3576 		__ctx->cpu = i;
3577 		spin_lock_init(&__ctx->lock);
3578 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3579 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3580 
3581 		__ctx->queue = q;
3582 
3583 		/*
3584 		 * Set local node, IFF we have more than one hw queue. If
3585 		 * not, we remain on the home node of the device
3586 		 */
3587 		for (j = 0; j < set->nr_maps; j++) {
3588 			hctx = blk_mq_map_queue_type(q, j, i);
3589 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3590 				hctx->numa_node = cpu_to_node(i);
3591 		}
3592 	}
3593 }
3594 
3595 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3596 					     unsigned int hctx_idx,
3597 					     unsigned int depth)
3598 {
3599 	struct blk_mq_tags *tags;
3600 	int ret;
3601 
3602 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3603 	if (!tags)
3604 		return NULL;
3605 
3606 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3607 	if (ret) {
3608 		blk_mq_free_rq_map(tags);
3609 		return NULL;
3610 	}
3611 
3612 	return tags;
3613 }
3614 
3615 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3616 				       int hctx_idx)
3617 {
3618 	if (blk_mq_is_shared_tags(set->flags)) {
3619 		set->tags[hctx_idx] = set->shared_tags;
3620 
3621 		return true;
3622 	}
3623 
3624 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3625 						       set->queue_depth);
3626 
3627 	return set->tags[hctx_idx];
3628 }
3629 
3630 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3631 			     struct blk_mq_tags *tags,
3632 			     unsigned int hctx_idx)
3633 {
3634 	if (tags) {
3635 		blk_mq_free_rqs(set, tags, hctx_idx);
3636 		blk_mq_free_rq_map(tags);
3637 	}
3638 }
3639 
3640 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3641 				      unsigned int hctx_idx)
3642 {
3643 	if (!blk_mq_is_shared_tags(set->flags))
3644 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3645 
3646 	set->tags[hctx_idx] = NULL;
3647 }
3648 
3649 static void blk_mq_map_swqueue(struct request_queue *q)
3650 {
3651 	unsigned int j, hctx_idx;
3652 	unsigned long i;
3653 	struct blk_mq_hw_ctx *hctx;
3654 	struct blk_mq_ctx *ctx;
3655 	struct blk_mq_tag_set *set = q->tag_set;
3656 
3657 	queue_for_each_hw_ctx(q, hctx, i) {
3658 		cpumask_clear(hctx->cpumask);
3659 		hctx->nr_ctx = 0;
3660 		hctx->dispatch_from = NULL;
3661 	}
3662 
3663 	/*
3664 	 * Map software to hardware queues.
3665 	 *
3666 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3667 	 */
3668 	for_each_possible_cpu(i) {
3669 
3670 		ctx = per_cpu_ptr(q->queue_ctx, i);
3671 		for (j = 0; j < set->nr_maps; j++) {
3672 			if (!set->map[j].nr_queues) {
3673 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3674 						HCTX_TYPE_DEFAULT, i);
3675 				continue;
3676 			}
3677 			hctx_idx = set->map[j].mq_map[i];
3678 			/* unmapped hw queue can be remapped after CPU topo changed */
3679 			if (!set->tags[hctx_idx] &&
3680 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3681 				/*
3682 				 * If tags initialization fail for some hctx,
3683 				 * that hctx won't be brought online.  In this
3684 				 * case, remap the current ctx to hctx[0] which
3685 				 * is guaranteed to always have tags allocated
3686 				 */
3687 				set->map[j].mq_map[i] = 0;
3688 			}
3689 
3690 			hctx = blk_mq_map_queue_type(q, j, i);
3691 			ctx->hctxs[j] = hctx;
3692 			/*
3693 			 * If the CPU is already set in the mask, then we've
3694 			 * mapped this one already. This can happen if
3695 			 * devices share queues across queue maps.
3696 			 */
3697 			if (cpumask_test_cpu(i, hctx->cpumask))
3698 				continue;
3699 
3700 			cpumask_set_cpu(i, hctx->cpumask);
3701 			hctx->type = j;
3702 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3703 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3704 
3705 			/*
3706 			 * If the nr_ctx type overflows, we have exceeded the
3707 			 * amount of sw queues we can support.
3708 			 */
3709 			BUG_ON(!hctx->nr_ctx);
3710 		}
3711 
3712 		for (; j < HCTX_MAX_TYPES; j++)
3713 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3714 					HCTX_TYPE_DEFAULT, i);
3715 	}
3716 
3717 	queue_for_each_hw_ctx(q, hctx, i) {
3718 		/*
3719 		 * If no software queues are mapped to this hardware queue,
3720 		 * disable it and free the request entries.
3721 		 */
3722 		if (!hctx->nr_ctx) {
3723 			/* Never unmap queue 0.  We need it as a
3724 			 * fallback in case of a new remap fails
3725 			 * allocation
3726 			 */
3727 			if (i)
3728 				__blk_mq_free_map_and_rqs(set, i);
3729 
3730 			hctx->tags = NULL;
3731 			continue;
3732 		}
3733 
3734 		hctx->tags = set->tags[i];
3735 		WARN_ON(!hctx->tags);
3736 
3737 		/*
3738 		 * Set the map size to the number of mapped software queues.
3739 		 * This is more accurate and more efficient than looping
3740 		 * over all possibly mapped software queues.
3741 		 */
3742 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3743 
3744 		/*
3745 		 * Initialize batch roundrobin counts
3746 		 */
3747 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3748 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3749 	}
3750 }
3751 
3752 /*
3753  * Caller needs to ensure that we're either frozen/quiesced, or that
3754  * the queue isn't live yet.
3755  */
3756 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3757 {
3758 	struct blk_mq_hw_ctx *hctx;
3759 	unsigned long i;
3760 
3761 	queue_for_each_hw_ctx(q, hctx, i) {
3762 		if (shared) {
3763 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3764 		} else {
3765 			blk_mq_tag_idle(hctx);
3766 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3767 		}
3768 	}
3769 }
3770 
3771 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3772 					 bool shared)
3773 {
3774 	struct request_queue *q;
3775 
3776 	lockdep_assert_held(&set->tag_list_lock);
3777 
3778 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3779 		blk_mq_freeze_queue(q);
3780 		queue_set_hctx_shared(q, shared);
3781 		blk_mq_unfreeze_queue(q);
3782 	}
3783 }
3784 
3785 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3786 {
3787 	struct blk_mq_tag_set *set = q->tag_set;
3788 
3789 	mutex_lock(&set->tag_list_lock);
3790 	list_del(&q->tag_set_list);
3791 	if (list_is_singular(&set->tag_list)) {
3792 		/* just transitioned to unshared */
3793 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3794 		/* update existing queue */
3795 		blk_mq_update_tag_set_shared(set, false);
3796 	}
3797 	mutex_unlock(&set->tag_list_lock);
3798 	INIT_LIST_HEAD(&q->tag_set_list);
3799 }
3800 
3801 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3802 				     struct request_queue *q)
3803 {
3804 	mutex_lock(&set->tag_list_lock);
3805 
3806 	/*
3807 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3808 	 */
3809 	if (!list_empty(&set->tag_list) &&
3810 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3811 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3812 		/* update existing queue */
3813 		blk_mq_update_tag_set_shared(set, true);
3814 	}
3815 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3816 		queue_set_hctx_shared(q, true);
3817 	list_add_tail(&q->tag_set_list, &set->tag_list);
3818 
3819 	mutex_unlock(&set->tag_list_lock);
3820 }
3821 
3822 /* All allocations will be freed in release handler of q->mq_kobj */
3823 static int blk_mq_alloc_ctxs(struct request_queue *q)
3824 {
3825 	struct blk_mq_ctxs *ctxs;
3826 	int cpu;
3827 
3828 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3829 	if (!ctxs)
3830 		return -ENOMEM;
3831 
3832 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3833 	if (!ctxs->queue_ctx)
3834 		goto fail;
3835 
3836 	for_each_possible_cpu(cpu) {
3837 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3838 		ctx->ctxs = ctxs;
3839 	}
3840 
3841 	q->mq_kobj = &ctxs->kobj;
3842 	q->queue_ctx = ctxs->queue_ctx;
3843 
3844 	return 0;
3845  fail:
3846 	kfree(ctxs);
3847 	return -ENOMEM;
3848 }
3849 
3850 /*
3851  * It is the actual release handler for mq, but we do it from
3852  * request queue's release handler for avoiding use-after-free
3853  * and headache because q->mq_kobj shouldn't have been introduced,
3854  * but we can't group ctx/kctx kobj without it.
3855  */
3856 void blk_mq_release(struct request_queue *q)
3857 {
3858 	struct blk_mq_hw_ctx *hctx, *next;
3859 	unsigned long i;
3860 
3861 	queue_for_each_hw_ctx(q, hctx, i)
3862 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3863 
3864 	/* all hctx are in .unused_hctx_list now */
3865 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3866 		list_del_init(&hctx->hctx_list);
3867 		kobject_put(&hctx->kobj);
3868 	}
3869 
3870 	xa_destroy(&q->hctx_table);
3871 
3872 	/*
3873 	 * release .mq_kobj and sw queue's kobject now because
3874 	 * both share lifetime with request queue.
3875 	 */
3876 	blk_mq_sysfs_deinit(q);
3877 }
3878 
3879 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3880 		void *queuedata)
3881 {
3882 	struct request_queue *q;
3883 	int ret;
3884 
3885 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3886 	if (!q)
3887 		return ERR_PTR(-ENOMEM);
3888 	q->queuedata = queuedata;
3889 	ret = blk_mq_init_allocated_queue(set, q);
3890 	if (ret) {
3891 		blk_put_queue(q);
3892 		return ERR_PTR(ret);
3893 	}
3894 	return q;
3895 }
3896 
3897 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3898 {
3899 	return blk_mq_init_queue_data(set, NULL);
3900 }
3901 EXPORT_SYMBOL(blk_mq_init_queue);
3902 
3903 /**
3904  * blk_mq_destroy_queue - shutdown a request queue
3905  * @q: request queue to shutdown
3906  *
3907  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3908  * the initial reference.  All future requests will failed with -ENODEV.
3909  *
3910  * Context: can sleep
3911  */
3912 void blk_mq_destroy_queue(struct request_queue *q)
3913 {
3914 	WARN_ON_ONCE(!queue_is_mq(q));
3915 	WARN_ON_ONCE(blk_queue_registered(q));
3916 
3917 	might_sleep();
3918 
3919 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3920 	blk_queue_start_drain(q);
3921 	blk_freeze_queue(q);
3922 
3923 	blk_sync_queue(q);
3924 	blk_mq_cancel_work_sync(q);
3925 	blk_mq_exit_queue(q);
3926 
3927 	/* @q is and will stay empty, shutdown and put */
3928 	blk_put_queue(q);
3929 }
3930 EXPORT_SYMBOL(blk_mq_destroy_queue);
3931 
3932 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3933 		struct lock_class_key *lkclass)
3934 {
3935 	struct request_queue *q;
3936 	struct gendisk *disk;
3937 
3938 	q = blk_mq_init_queue_data(set, queuedata);
3939 	if (IS_ERR(q))
3940 		return ERR_CAST(q);
3941 
3942 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3943 	if (!disk) {
3944 		blk_mq_destroy_queue(q);
3945 		return ERR_PTR(-ENOMEM);
3946 	}
3947 	set_bit(GD_OWNS_QUEUE, &disk->state);
3948 	return disk;
3949 }
3950 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3951 
3952 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3953 		struct lock_class_key *lkclass)
3954 {
3955 	if (!blk_get_queue(q))
3956 		return NULL;
3957 	return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3958 }
3959 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3960 
3961 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3962 		struct blk_mq_tag_set *set, struct request_queue *q,
3963 		int hctx_idx, int node)
3964 {
3965 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3966 
3967 	/* reuse dead hctx first */
3968 	spin_lock(&q->unused_hctx_lock);
3969 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3970 		if (tmp->numa_node == node) {
3971 			hctx = tmp;
3972 			break;
3973 		}
3974 	}
3975 	if (hctx)
3976 		list_del_init(&hctx->hctx_list);
3977 	spin_unlock(&q->unused_hctx_lock);
3978 
3979 	if (!hctx)
3980 		hctx = blk_mq_alloc_hctx(q, set, node);
3981 	if (!hctx)
3982 		goto fail;
3983 
3984 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3985 		goto free_hctx;
3986 
3987 	return hctx;
3988 
3989  free_hctx:
3990 	kobject_put(&hctx->kobj);
3991  fail:
3992 	return NULL;
3993 }
3994 
3995 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3996 						struct request_queue *q)
3997 {
3998 	struct blk_mq_hw_ctx *hctx;
3999 	unsigned long i, j;
4000 
4001 	/* protect against switching io scheduler  */
4002 	mutex_lock(&q->sysfs_lock);
4003 	for (i = 0; i < set->nr_hw_queues; i++) {
4004 		int old_node;
4005 		int node = blk_mq_get_hctx_node(set, i);
4006 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4007 
4008 		if (old_hctx) {
4009 			old_node = old_hctx->numa_node;
4010 			blk_mq_exit_hctx(q, set, old_hctx, i);
4011 		}
4012 
4013 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4014 			if (!old_hctx)
4015 				break;
4016 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4017 					node, old_node);
4018 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4019 			WARN_ON_ONCE(!hctx);
4020 		}
4021 	}
4022 	/*
4023 	 * Increasing nr_hw_queues fails. Free the newly allocated
4024 	 * hctxs and keep the previous q->nr_hw_queues.
4025 	 */
4026 	if (i != set->nr_hw_queues) {
4027 		j = q->nr_hw_queues;
4028 	} else {
4029 		j = i;
4030 		q->nr_hw_queues = set->nr_hw_queues;
4031 	}
4032 
4033 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4034 		blk_mq_exit_hctx(q, set, hctx, j);
4035 	mutex_unlock(&q->sysfs_lock);
4036 }
4037 
4038 static void blk_mq_update_poll_flag(struct request_queue *q)
4039 {
4040 	struct blk_mq_tag_set *set = q->tag_set;
4041 
4042 	if (set->nr_maps > HCTX_TYPE_POLL &&
4043 	    set->map[HCTX_TYPE_POLL].nr_queues)
4044 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4045 	else
4046 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4047 }
4048 
4049 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4050 		struct request_queue *q)
4051 {
4052 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4053 			!!(set->flags & BLK_MQ_F_BLOCKING));
4054 
4055 	/* mark the queue as mq asap */
4056 	q->mq_ops = set->ops;
4057 
4058 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4059 					     blk_mq_poll_stats_bkt,
4060 					     BLK_MQ_POLL_STATS_BKTS, q);
4061 	if (!q->poll_cb)
4062 		goto err_exit;
4063 
4064 	if (blk_mq_alloc_ctxs(q))
4065 		goto err_poll;
4066 
4067 	/* init q->mq_kobj and sw queues' kobjects */
4068 	blk_mq_sysfs_init(q);
4069 
4070 	INIT_LIST_HEAD(&q->unused_hctx_list);
4071 	spin_lock_init(&q->unused_hctx_lock);
4072 
4073 	xa_init(&q->hctx_table);
4074 
4075 	blk_mq_realloc_hw_ctxs(set, q);
4076 	if (!q->nr_hw_queues)
4077 		goto err_hctxs;
4078 
4079 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4080 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4081 
4082 	q->tag_set = set;
4083 
4084 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4085 	blk_mq_update_poll_flag(q);
4086 
4087 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4088 	INIT_LIST_HEAD(&q->requeue_list);
4089 	spin_lock_init(&q->requeue_lock);
4090 
4091 	q->nr_requests = set->queue_depth;
4092 
4093 	/*
4094 	 * Default to classic polling
4095 	 */
4096 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4097 
4098 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4099 	blk_mq_add_queue_tag_set(set, q);
4100 	blk_mq_map_swqueue(q);
4101 	return 0;
4102 
4103 err_hctxs:
4104 	xa_destroy(&q->hctx_table);
4105 	q->nr_hw_queues = 0;
4106 	blk_mq_sysfs_deinit(q);
4107 err_poll:
4108 	blk_stat_free_callback(q->poll_cb);
4109 	q->poll_cb = NULL;
4110 err_exit:
4111 	q->mq_ops = NULL;
4112 	return -ENOMEM;
4113 }
4114 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4115 
4116 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4117 void blk_mq_exit_queue(struct request_queue *q)
4118 {
4119 	struct blk_mq_tag_set *set = q->tag_set;
4120 
4121 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4122 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4123 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4124 	blk_mq_del_queue_tag_set(q);
4125 }
4126 
4127 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4128 {
4129 	int i;
4130 
4131 	if (blk_mq_is_shared_tags(set->flags)) {
4132 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4133 						BLK_MQ_NO_HCTX_IDX,
4134 						set->queue_depth);
4135 		if (!set->shared_tags)
4136 			return -ENOMEM;
4137 	}
4138 
4139 	for (i = 0; i < set->nr_hw_queues; i++) {
4140 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4141 			goto out_unwind;
4142 		cond_resched();
4143 	}
4144 
4145 	return 0;
4146 
4147 out_unwind:
4148 	while (--i >= 0)
4149 		__blk_mq_free_map_and_rqs(set, i);
4150 
4151 	if (blk_mq_is_shared_tags(set->flags)) {
4152 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4153 					BLK_MQ_NO_HCTX_IDX);
4154 	}
4155 
4156 	return -ENOMEM;
4157 }
4158 
4159 /*
4160  * Allocate the request maps associated with this tag_set. Note that this
4161  * may reduce the depth asked for, if memory is tight. set->queue_depth
4162  * will be updated to reflect the allocated depth.
4163  */
4164 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4165 {
4166 	unsigned int depth;
4167 	int err;
4168 
4169 	depth = set->queue_depth;
4170 	do {
4171 		err = __blk_mq_alloc_rq_maps(set);
4172 		if (!err)
4173 			break;
4174 
4175 		set->queue_depth >>= 1;
4176 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4177 			err = -ENOMEM;
4178 			break;
4179 		}
4180 	} while (set->queue_depth);
4181 
4182 	if (!set->queue_depth || err) {
4183 		pr_err("blk-mq: failed to allocate request map\n");
4184 		return -ENOMEM;
4185 	}
4186 
4187 	if (depth != set->queue_depth)
4188 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4189 						depth, set->queue_depth);
4190 
4191 	return 0;
4192 }
4193 
4194 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4195 {
4196 	/*
4197 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4198 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4199 	 * number of hardware queues.
4200 	 */
4201 	if (set->nr_maps == 1)
4202 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4203 
4204 	if (set->ops->map_queues && !is_kdump_kernel()) {
4205 		int i;
4206 
4207 		/*
4208 		 * transport .map_queues is usually done in the following
4209 		 * way:
4210 		 *
4211 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4212 		 * 	mask = get_cpu_mask(queue)
4213 		 * 	for_each_cpu(cpu, mask)
4214 		 * 		set->map[x].mq_map[cpu] = queue;
4215 		 * }
4216 		 *
4217 		 * When we need to remap, the table has to be cleared for
4218 		 * killing stale mapping since one CPU may not be mapped
4219 		 * to any hw queue.
4220 		 */
4221 		for (i = 0; i < set->nr_maps; i++)
4222 			blk_mq_clear_mq_map(&set->map[i]);
4223 
4224 		return set->ops->map_queues(set);
4225 	} else {
4226 		BUG_ON(set->nr_maps > 1);
4227 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4228 	}
4229 }
4230 
4231 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4232 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4233 {
4234 	struct blk_mq_tags **new_tags;
4235 
4236 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4237 		return 0;
4238 
4239 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4240 				GFP_KERNEL, set->numa_node);
4241 	if (!new_tags)
4242 		return -ENOMEM;
4243 
4244 	if (set->tags)
4245 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4246 		       sizeof(*set->tags));
4247 	kfree(set->tags);
4248 	set->tags = new_tags;
4249 	set->nr_hw_queues = new_nr_hw_queues;
4250 
4251 	return 0;
4252 }
4253 
4254 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4255 				int new_nr_hw_queues)
4256 {
4257 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4258 }
4259 
4260 /*
4261  * Alloc a tag set to be associated with one or more request queues.
4262  * May fail with EINVAL for various error conditions. May adjust the
4263  * requested depth down, if it's too large. In that case, the set
4264  * value will be stored in set->queue_depth.
4265  */
4266 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4267 {
4268 	int i, ret;
4269 
4270 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4271 
4272 	if (!set->nr_hw_queues)
4273 		return -EINVAL;
4274 	if (!set->queue_depth)
4275 		return -EINVAL;
4276 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4277 		return -EINVAL;
4278 
4279 	if (!set->ops->queue_rq)
4280 		return -EINVAL;
4281 
4282 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4283 		return -EINVAL;
4284 
4285 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4286 		pr_info("blk-mq: reduced tag depth to %u\n",
4287 			BLK_MQ_MAX_DEPTH);
4288 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4289 	}
4290 
4291 	if (!set->nr_maps)
4292 		set->nr_maps = 1;
4293 	else if (set->nr_maps > HCTX_MAX_TYPES)
4294 		return -EINVAL;
4295 
4296 	/*
4297 	 * If a crashdump is active, then we are potentially in a very
4298 	 * memory constrained environment. Limit us to 1 queue and
4299 	 * 64 tags to prevent using too much memory.
4300 	 */
4301 	if (is_kdump_kernel()) {
4302 		set->nr_hw_queues = 1;
4303 		set->nr_maps = 1;
4304 		set->queue_depth = min(64U, set->queue_depth);
4305 	}
4306 	/*
4307 	 * There is no use for more h/w queues than cpus if we just have
4308 	 * a single map
4309 	 */
4310 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4311 		set->nr_hw_queues = nr_cpu_ids;
4312 
4313 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4314 		return -ENOMEM;
4315 
4316 	ret = -ENOMEM;
4317 	for (i = 0; i < set->nr_maps; i++) {
4318 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4319 						  sizeof(set->map[i].mq_map[0]),
4320 						  GFP_KERNEL, set->numa_node);
4321 		if (!set->map[i].mq_map)
4322 			goto out_free_mq_map;
4323 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4324 	}
4325 
4326 	ret = blk_mq_update_queue_map(set);
4327 	if (ret)
4328 		goto out_free_mq_map;
4329 
4330 	ret = blk_mq_alloc_set_map_and_rqs(set);
4331 	if (ret)
4332 		goto out_free_mq_map;
4333 
4334 	mutex_init(&set->tag_list_lock);
4335 	INIT_LIST_HEAD(&set->tag_list);
4336 
4337 	return 0;
4338 
4339 out_free_mq_map:
4340 	for (i = 0; i < set->nr_maps; i++) {
4341 		kfree(set->map[i].mq_map);
4342 		set->map[i].mq_map = NULL;
4343 	}
4344 	kfree(set->tags);
4345 	set->tags = NULL;
4346 	return ret;
4347 }
4348 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4349 
4350 /* allocate and initialize a tagset for a simple single-queue device */
4351 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4352 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4353 		unsigned int set_flags)
4354 {
4355 	memset(set, 0, sizeof(*set));
4356 	set->ops = ops;
4357 	set->nr_hw_queues = 1;
4358 	set->nr_maps = 1;
4359 	set->queue_depth = queue_depth;
4360 	set->numa_node = NUMA_NO_NODE;
4361 	set->flags = set_flags;
4362 	return blk_mq_alloc_tag_set(set);
4363 }
4364 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4365 
4366 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4367 {
4368 	int i, j;
4369 
4370 	for (i = 0; i < set->nr_hw_queues; i++)
4371 		__blk_mq_free_map_and_rqs(set, i);
4372 
4373 	if (blk_mq_is_shared_tags(set->flags)) {
4374 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4375 					BLK_MQ_NO_HCTX_IDX);
4376 	}
4377 
4378 	for (j = 0; j < set->nr_maps; j++) {
4379 		kfree(set->map[j].mq_map);
4380 		set->map[j].mq_map = NULL;
4381 	}
4382 
4383 	kfree(set->tags);
4384 	set->tags = NULL;
4385 }
4386 EXPORT_SYMBOL(blk_mq_free_tag_set);
4387 
4388 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4389 {
4390 	struct blk_mq_tag_set *set = q->tag_set;
4391 	struct blk_mq_hw_ctx *hctx;
4392 	int ret;
4393 	unsigned long i;
4394 
4395 	if (!set)
4396 		return -EINVAL;
4397 
4398 	if (q->nr_requests == nr)
4399 		return 0;
4400 
4401 	blk_mq_freeze_queue(q);
4402 	blk_mq_quiesce_queue(q);
4403 
4404 	ret = 0;
4405 	queue_for_each_hw_ctx(q, hctx, i) {
4406 		if (!hctx->tags)
4407 			continue;
4408 		/*
4409 		 * If we're using an MQ scheduler, just update the scheduler
4410 		 * queue depth. This is similar to what the old code would do.
4411 		 */
4412 		if (hctx->sched_tags) {
4413 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4414 						      nr, true);
4415 		} else {
4416 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4417 						      false);
4418 		}
4419 		if (ret)
4420 			break;
4421 		if (q->elevator && q->elevator->type->ops.depth_updated)
4422 			q->elevator->type->ops.depth_updated(hctx);
4423 	}
4424 	if (!ret) {
4425 		q->nr_requests = nr;
4426 		if (blk_mq_is_shared_tags(set->flags)) {
4427 			if (q->elevator)
4428 				blk_mq_tag_update_sched_shared_tags(q);
4429 			else
4430 				blk_mq_tag_resize_shared_tags(set, nr);
4431 		}
4432 	}
4433 
4434 	blk_mq_unquiesce_queue(q);
4435 	blk_mq_unfreeze_queue(q);
4436 
4437 	return ret;
4438 }
4439 
4440 /*
4441  * request_queue and elevator_type pair.
4442  * It is just used by __blk_mq_update_nr_hw_queues to cache
4443  * the elevator_type associated with a request_queue.
4444  */
4445 struct blk_mq_qe_pair {
4446 	struct list_head node;
4447 	struct request_queue *q;
4448 	struct elevator_type *type;
4449 };
4450 
4451 /*
4452  * Cache the elevator_type in qe pair list and switch the
4453  * io scheduler to 'none'
4454  */
4455 static bool blk_mq_elv_switch_none(struct list_head *head,
4456 		struct request_queue *q)
4457 {
4458 	struct blk_mq_qe_pair *qe;
4459 
4460 	if (!q->elevator)
4461 		return true;
4462 
4463 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4464 	if (!qe)
4465 		return false;
4466 
4467 	/* q->elevator needs protection from ->sysfs_lock */
4468 	mutex_lock(&q->sysfs_lock);
4469 
4470 	INIT_LIST_HEAD(&qe->node);
4471 	qe->q = q;
4472 	qe->type = q->elevator->type;
4473 	list_add(&qe->node, head);
4474 
4475 	/*
4476 	 * After elevator_switch_mq, the previous elevator_queue will be
4477 	 * released by elevator_release. The reference of the io scheduler
4478 	 * module get by elevator_get will also be put. So we need to get
4479 	 * a reference of the io scheduler module here to prevent it to be
4480 	 * removed.
4481 	 */
4482 	__module_get(qe->type->elevator_owner);
4483 	elevator_switch_mq(q, NULL);
4484 	mutex_unlock(&q->sysfs_lock);
4485 
4486 	return true;
4487 }
4488 
4489 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4490 						struct request_queue *q)
4491 {
4492 	struct blk_mq_qe_pair *qe;
4493 
4494 	list_for_each_entry(qe, head, node)
4495 		if (qe->q == q)
4496 			return qe;
4497 
4498 	return NULL;
4499 }
4500 
4501 static void blk_mq_elv_switch_back(struct list_head *head,
4502 				  struct request_queue *q)
4503 {
4504 	struct blk_mq_qe_pair *qe;
4505 	struct elevator_type *t;
4506 
4507 	qe = blk_lookup_qe_pair(head, q);
4508 	if (!qe)
4509 		return;
4510 	t = qe->type;
4511 	list_del(&qe->node);
4512 	kfree(qe);
4513 
4514 	mutex_lock(&q->sysfs_lock);
4515 	elevator_switch_mq(q, t);
4516 	mutex_unlock(&q->sysfs_lock);
4517 }
4518 
4519 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4520 							int nr_hw_queues)
4521 {
4522 	struct request_queue *q;
4523 	LIST_HEAD(head);
4524 	int prev_nr_hw_queues;
4525 
4526 	lockdep_assert_held(&set->tag_list_lock);
4527 
4528 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4529 		nr_hw_queues = nr_cpu_ids;
4530 	if (nr_hw_queues < 1)
4531 		return;
4532 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4533 		return;
4534 
4535 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4536 		blk_mq_freeze_queue(q);
4537 	/*
4538 	 * Switch IO scheduler to 'none', cleaning up the data associated
4539 	 * with the previous scheduler. We will switch back once we are done
4540 	 * updating the new sw to hw queue mappings.
4541 	 */
4542 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4543 		if (!blk_mq_elv_switch_none(&head, q))
4544 			goto switch_back;
4545 
4546 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547 		blk_mq_debugfs_unregister_hctxs(q);
4548 		blk_mq_sysfs_unregister_hctxs(q);
4549 	}
4550 
4551 	prev_nr_hw_queues = set->nr_hw_queues;
4552 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4553 	    0)
4554 		goto reregister;
4555 
4556 	set->nr_hw_queues = nr_hw_queues;
4557 fallback:
4558 	blk_mq_update_queue_map(set);
4559 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4560 		blk_mq_realloc_hw_ctxs(set, q);
4561 		blk_mq_update_poll_flag(q);
4562 		if (q->nr_hw_queues != set->nr_hw_queues) {
4563 			int i = prev_nr_hw_queues;
4564 
4565 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4566 					nr_hw_queues, prev_nr_hw_queues);
4567 			for (; i < set->nr_hw_queues; i++)
4568 				__blk_mq_free_map_and_rqs(set, i);
4569 
4570 			set->nr_hw_queues = prev_nr_hw_queues;
4571 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4572 			goto fallback;
4573 		}
4574 		blk_mq_map_swqueue(q);
4575 	}
4576 
4577 reregister:
4578 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4579 		blk_mq_sysfs_register_hctxs(q);
4580 		blk_mq_debugfs_register_hctxs(q);
4581 	}
4582 
4583 switch_back:
4584 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4585 		blk_mq_elv_switch_back(&head, q);
4586 
4587 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4588 		blk_mq_unfreeze_queue(q);
4589 }
4590 
4591 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4592 {
4593 	mutex_lock(&set->tag_list_lock);
4594 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4595 	mutex_unlock(&set->tag_list_lock);
4596 }
4597 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4598 
4599 /* Enable polling stats and return whether they were already enabled. */
4600 static bool blk_poll_stats_enable(struct request_queue *q)
4601 {
4602 	if (q->poll_stat)
4603 		return true;
4604 
4605 	return blk_stats_alloc_enable(q);
4606 }
4607 
4608 static void blk_mq_poll_stats_start(struct request_queue *q)
4609 {
4610 	/*
4611 	 * We don't arm the callback if polling stats are not enabled or the
4612 	 * callback is already active.
4613 	 */
4614 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4615 		return;
4616 
4617 	blk_stat_activate_msecs(q->poll_cb, 100);
4618 }
4619 
4620 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4621 {
4622 	struct request_queue *q = cb->data;
4623 	int bucket;
4624 
4625 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4626 		if (cb->stat[bucket].nr_samples)
4627 			q->poll_stat[bucket] = cb->stat[bucket];
4628 	}
4629 }
4630 
4631 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4632 				       struct request *rq)
4633 {
4634 	unsigned long ret = 0;
4635 	int bucket;
4636 
4637 	/*
4638 	 * If stats collection isn't on, don't sleep but turn it on for
4639 	 * future users
4640 	 */
4641 	if (!blk_poll_stats_enable(q))
4642 		return 0;
4643 
4644 	/*
4645 	 * As an optimistic guess, use half of the mean service time
4646 	 * for this type of request. We can (and should) make this smarter.
4647 	 * For instance, if the completion latencies are tight, we can
4648 	 * get closer than just half the mean. This is especially
4649 	 * important on devices where the completion latencies are longer
4650 	 * than ~10 usec. We do use the stats for the relevant IO size
4651 	 * if available which does lead to better estimates.
4652 	 */
4653 	bucket = blk_mq_poll_stats_bkt(rq);
4654 	if (bucket < 0)
4655 		return ret;
4656 
4657 	if (q->poll_stat[bucket].nr_samples)
4658 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4659 
4660 	return ret;
4661 }
4662 
4663 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4664 {
4665 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4666 	struct request *rq = blk_qc_to_rq(hctx, qc);
4667 	struct hrtimer_sleeper hs;
4668 	enum hrtimer_mode mode;
4669 	unsigned int nsecs;
4670 	ktime_t kt;
4671 
4672 	/*
4673 	 * If a request has completed on queue that uses an I/O scheduler, we
4674 	 * won't get back a request from blk_qc_to_rq.
4675 	 */
4676 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4677 		return false;
4678 
4679 	/*
4680 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4681 	 *
4682 	 *  0:	use half of prev avg
4683 	 * >0:	use this specific value
4684 	 */
4685 	if (q->poll_nsec > 0)
4686 		nsecs = q->poll_nsec;
4687 	else
4688 		nsecs = blk_mq_poll_nsecs(q, rq);
4689 
4690 	if (!nsecs)
4691 		return false;
4692 
4693 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4694 
4695 	/*
4696 	 * This will be replaced with the stats tracking code, using
4697 	 * 'avg_completion_time / 2' as the pre-sleep target.
4698 	 */
4699 	kt = nsecs;
4700 
4701 	mode = HRTIMER_MODE_REL;
4702 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4703 	hrtimer_set_expires(&hs.timer, kt);
4704 
4705 	do {
4706 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4707 			break;
4708 		set_current_state(TASK_UNINTERRUPTIBLE);
4709 		hrtimer_sleeper_start_expires(&hs, mode);
4710 		if (hs.task)
4711 			io_schedule();
4712 		hrtimer_cancel(&hs.timer);
4713 		mode = HRTIMER_MODE_ABS;
4714 	} while (hs.task && !signal_pending(current));
4715 
4716 	__set_current_state(TASK_RUNNING);
4717 	destroy_hrtimer_on_stack(&hs.timer);
4718 
4719 	/*
4720 	 * If we sleep, have the caller restart the poll loop to reset the
4721 	 * state.  Like for the other success return cases, the caller is
4722 	 * responsible for checking if the IO completed.  If the IO isn't
4723 	 * complete, we'll get called again and will go straight to the busy
4724 	 * poll loop.
4725 	 */
4726 	return true;
4727 }
4728 
4729 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4730 			       struct io_comp_batch *iob, unsigned int flags)
4731 {
4732 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4733 	long state = get_current_state();
4734 	int ret;
4735 
4736 	do {
4737 		ret = q->mq_ops->poll(hctx, iob);
4738 		if (ret > 0) {
4739 			__set_current_state(TASK_RUNNING);
4740 			return ret;
4741 		}
4742 
4743 		if (signal_pending_state(state, current))
4744 			__set_current_state(TASK_RUNNING);
4745 		if (task_is_running(current))
4746 			return 1;
4747 
4748 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4749 			break;
4750 		cpu_relax();
4751 	} while (!need_resched());
4752 
4753 	__set_current_state(TASK_RUNNING);
4754 	return 0;
4755 }
4756 
4757 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4758 		unsigned int flags)
4759 {
4760 	if (!(flags & BLK_POLL_NOSLEEP) &&
4761 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4762 		if (blk_mq_poll_hybrid(q, cookie))
4763 			return 1;
4764 	}
4765 	return blk_mq_poll_classic(q, cookie, iob, flags);
4766 }
4767 
4768 unsigned int blk_mq_rq_cpu(struct request *rq)
4769 {
4770 	return rq->mq_ctx->cpu;
4771 }
4772 EXPORT_SYMBOL(blk_mq_rq_cpu);
4773 
4774 void blk_mq_cancel_work_sync(struct request_queue *q)
4775 {
4776 	if (queue_is_mq(q)) {
4777 		struct blk_mq_hw_ctx *hctx;
4778 		unsigned long i;
4779 
4780 		cancel_delayed_work_sync(&q->requeue_work);
4781 
4782 		queue_for_each_hw_ctx(q, hctx, i)
4783 			cancel_delayed_work_sync(&hctx->run_work);
4784 	}
4785 }
4786 
4787 static int __init blk_mq_init(void)
4788 {
4789 	int i;
4790 
4791 	for_each_possible_cpu(i)
4792 		init_llist_head(&per_cpu(blk_cpu_done, i));
4793 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4794 
4795 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4796 				  "block/softirq:dead", NULL,
4797 				  blk_softirq_cpu_dead);
4798 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4799 				blk_mq_hctx_notify_dead);
4800 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4801 				blk_mq_hctx_notify_online,
4802 				blk_mq_hctx_notify_offline);
4803 	return 0;
4804 }
4805 subsys_initcall(blk_mq_init);
4806