xref: /openbmc/linux/block/blk-mq.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.map_size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		ret = wait_event_interruptible(q->mq_freeze_wq,
89 				!q->mq_freeze_depth || blk_queue_dying(q));
90 		if (blk_queue_dying(q))
91 			return -ENODEV;
92 		if (ret)
93 			return ret;
94 	}
95 }
96 
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 	percpu_ref_put(&q->mq_usage_counter);
100 }
101 
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 	struct request_queue *q =
105 		container_of(ref, struct request_queue, mq_usage_counter);
106 
107 	wake_up_all(&q->mq_freeze_wq);
108 }
109 
110 static void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112 	bool freeze;
113 
114 	spin_lock_irq(q->queue_lock);
115 	freeze = !q->mq_freeze_depth++;
116 	spin_unlock_irq(q->queue_lock);
117 
118 	if (freeze) {
119 		percpu_ref_kill(&q->mq_usage_counter);
120 		blk_mq_run_queues(q, false);
121 	}
122 }
123 
124 static void blk_mq_freeze_queue_wait(struct request_queue *q)
125 {
126 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 }
128 
129 /*
130  * Guarantee no request is in use, so we can change any data structure of
131  * the queue afterward.
132  */
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135 	blk_mq_freeze_queue_start(q);
136 	blk_mq_freeze_queue_wait(q);
137 }
138 
139 static void blk_mq_unfreeze_queue(struct request_queue *q)
140 {
141 	bool wake;
142 
143 	spin_lock_irq(q->queue_lock);
144 	wake = !--q->mq_freeze_depth;
145 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
146 	spin_unlock_irq(q->queue_lock);
147 	if (wake) {
148 		percpu_ref_reinit(&q->mq_usage_counter);
149 		wake_up_all(&q->mq_freeze_wq);
150 	}
151 }
152 
153 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
154 {
155 	return blk_mq_has_free_tags(hctx->tags);
156 }
157 EXPORT_SYMBOL(blk_mq_can_queue);
158 
159 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
160 			       struct request *rq, unsigned int rw_flags)
161 {
162 	if (blk_queue_io_stat(q))
163 		rw_flags |= REQ_IO_STAT;
164 
165 	INIT_LIST_HEAD(&rq->queuelist);
166 	/* csd/requeue_work/fifo_time is initialized before use */
167 	rq->q = q;
168 	rq->mq_ctx = ctx;
169 	rq->cmd_flags |= rw_flags;
170 	/* do not touch atomic flags, it needs atomic ops against the timer */
171 	rq->cpu = -1;
172 	INIT_HLIST_NODE(&rq->hash);
173 	RB_CLEAR_NODE(&rq->rb_node);
174 	rq->rq_disk = NULL;
175 	rq->part = NULL;
176 	rq->start_time = jiffies;
177 #ifdef CONFIG_BLK_CGROUP
178 	rq->rl = NULL;
179 	set_start_time_ns(rq);
180 	rq->io_start_time_ns = 0;
181 #endif
182 	rq->nr_phys_segments = 0;
183 #if defined(CONFIG_BLK_DEV_INTEGRITY)
184 	rq->nr_integrity_segments = 0;
185 #endif
186 	rq->special = NULL;
187 	/* tag was already set */
188 	rq->errors = 0;
189 
190 	rq->cmd = rq->__cmd;
191 
192 	rq->extra_len = 0;
193 	rq->sense_len = 0;
194 	rq->resid_len = 0;
195 	rq->sense = NULL;
196 
197 	INIT_LIST_HEAD(&rq->timeout_list);
198 	rq->timeout = 0;
199 
200 	rq->end_io = NULL;
201 	rq->end_io_data = NULL;
202 	rq->next_rq = NULL;
203 
204 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
205 }
206 
207 static struct request *
208 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
209 {
210 	struct request *rq;
211 	unsigned int tag;
212 
213 	tag = blk_mq_get_tag(data);
214 	if (tag != BLK_MQ_TAG_FAIL) {
215 		rq = data->hctx->tags->rqs[tag];
216 
217 		if (blk_mq_tag_busy(data->hctx)) {
218 			rq->cmd_flags = REQ_MQ_INFLIGHT;
219 			atomic_inc(&data->hctx->nr_active);
220 		}
221 
222 		rq->tag = tag;
223 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
224 		return rq;
225 	}
226 
227 	return NULL;
228 }
229 
230 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
231 		bool reserved)
232 {
233 	struct blk_mq_ctx *ctx;
234 	struct blk_mq_hw_ctx *hctx;
235 	struct request *rq;
236 	struct blk_mq_alloc_data alloc_data;
237 	int ret;
238 
239 	ret = blk_mq_queue_enter(q);
240 	if (ret)
241 		return ERR_PTR(ret);
242 
243 	ctx = blk_mq_get_ctx(q);
244 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
246 			reserved, ctx, hctx);
247 
248 	rq = __blk_mq_alloc_request(&alloc_data, rw);
249 	if (!rq && (gfp & __GFP_WAIT)) {
250 		__blk_mq_run_hw_queue(hctx);
251 		blk_mq_put_ctx(ctx);
252 
253 		ctx = blk_mq_get_ctx(q);
254 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
255 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
256 				hctx);
257 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
258 		ctx = alloc_data.ctx;
259 	}
260 	blk_mq_put_ctx(ctx);
261 	if (!rq)
262 		return ERR_PTR(-EWOULDBLOCK);
263 	return rq;
264 }
265 EXPORT_SYMBOL(blk_mq_alloc_request);
266 
267 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
268 				  struct blk_mq_ctx *ctx, struct request *rq)
269 {
270 	const int tag = rq->tag;
271 	struct request_queue *q = rq->q;
272 
273 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
274 		atomic_dec(&hctx->nr_active);
275 	rq->cmd_flags = 0;
276 
277 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
278 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
279 	blk_mq_queue_exit(q);
280 }
281 
282 void blk_mq_free_request(struct request *rq)
283 {
284 	struct blk_mq_ctx *ctx = rq->mq_ctx;
285 	struct blk_mq_hw_ctx *hctx;
286 	struct request_queue *q = rq->q;
287 
288 	ctx->rq_completed[rq_is_sync(rq)]++;
289 
290 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
291 	__blk_mq_free_request(hctx, ctx, rq);
292 }
293 
294 inline void __blk_mq_end_request(struct request *rq, int error)
295 {
296 	blk_account_io_done(rq);
297 
298 	if (rq->end_io) {
299 		rq->end_io(rq, error);
300 	} else {
301 		if (unlikely(blk_bidi_rq(rq)))
302 			blk_mq_free_request(rq->next_rq);
303 		blk_mq_free_request(rq);
304 	}
305 }
306 EXPORT_SYMBOL(__blk_mq_end_request);
307 
308 void blk_mq_end_request(struct request *rq, int error)
309 {
310 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
311 		BUG();
312 	__blk_mq_end_request(rq, error);
313 }
314 EXPORT_SYMBOL(blk_mq_end_request);
315 
316 static void __blk_mq_complete_request_remote(void *data)
317 {
318 	struct request *rq = data;
319 
320 	rq->q->softirq_done_fn(rq);
321 }
322 
323 static void blk_mq_ipi_complete_request(struct request *rq)
324 {
325 	struct blk_mq_ctx *ctx = rq->mq_ctx;
326 	bool shared = false;
327 	int cpu;
328 
329 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
330 		rq->q->softirq_done_fn(rq);
331 		return;
332 	}
333 
334 	cpu = get_cpu();
335 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
336 		shared = cpus_share_cache(cpu, ctx->cpu);
337 
338 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
339 		rq->csd.func = __blk_mq_complete_request_remote;
340 		rq->csd.info = rq;
341 		rq->csd.flags = 0;
342 		smp_call_function_single_async(ctx->cpu, &rq->csd);
343 	} else {
344 		rq->q->softirq_done_fn(rq);
345 	}
346 	put_cpu();
347 }
348 
349 void __blk_mq_complete_request(struct request *rq)
350 {
351 	struct request_queue *q = rq->q;
352 
353 	if (!q->softirq_done_fn)
354 		blk_mq_end_request(rq, rq->errors);
355 	else
356 		blk_mq_ipi_complete_request(rq);
357 }
358 
359 /**
360  * blk_mq_complete_request - end I/O on a request
361  * @rq:		the request being processed
362  *
363  * Description:
364  *	Ends all I/O on a request. It does not handle partial completions.
365  *	The actual completion happens out-of-order, through a IPI handler.
366  **/
367 void blk_mq_complete_request(struct request *rq)
368 {
369 	struct request_queue *q = rq->q;
370 
371 	if (unlikely(blk_should_fake_timeout(q)))
372 		return;
373 	if (!blk_mark_rq_complete(rq))
374 		__blk_mq_complete_request(rq);
375 }
376 EXPORT_SYMBOL(blk_mq_complete_request);
377 
378 void blk_mq_start_request(struct request *rq)
379 {
380 	struct request_queue *q = rq->q;
381 
382 	trace_block_rq_issue(q, rq);
383 
384 	rq->resid_len = blk_rq_bytes(rq);
385 	if (unlikely(blk_bidi_rq(rq)))
386 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
387 
388 	blk_add_timer(rq);
389 
390 	/*
391 	 * Ensure that ->deadline is visible before set the started
392 	 * flag and clear the completed flag.
393 	 */
394 	smp_mb__before_atomic();
395 
396 	/*
397 	 * Mark us as started and clear complete. Complete might have been
398 	 * set if requeue raced with timeout, which then marked it as
399 	 * complete. So be sure to clear complete again when we start
400 	 * the request, otherwise we'll ignore the completion event.
401 	 */
402 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
403 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
404 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
405 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
406 
407 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
408 		/*
409 		 * Make sure space for the drain appears.  We know we can do
410 		 * this because max_hw_segments has been adjusted to be one
411 		 * fewer than the device can handle.
412 		 */
413 		rq->nr_phys_segments++;
414 	}
415 }
416 EXPORT_SYMBOL(blk_mq_start_request);
417 
418 static void __blk_mq_requeue_request(struct request *rq)
419 {
420 	struct request_queue *q = rq->q;
421 
422 	trace_block_rq_requeue(q, rq);
423 
424 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
425 		if (q->dma_drain_size && blk_rq_bytes(rq))
426 			rq->nr_phys_segments--;
427 	}
428 }
429 
430 void blk_mq_requeue_request(struct request *rq)
431 {
432 	__blk_mq_requeue_request(rq);
433 
434 	BUG_ON(blk_queued_rq(rq));
435 	blk_mq_add_to_requeue_list(rq, true);
436 }
437 EXPORT_SYMBOL(blk_mq_requeue_request);
438 
439 static void blk_mq_requeue_work(struct work_struct *work)
440 {
441 	struct request_queue *q =
442 		container_of(work, struct request_queue, requeue_work);
443 	LIST_HEAD(rq_list);
444 	struct request *rq, *next;
445 	unsigned long flags;
446 
447 	spin_lock_irqsave(&q->requeue_lock, flags);
448 	list_splice_init(&q->requeue_list, &rq_list);
449 	spin_unlock_irqrestore(&q->requeue_lock, flags);
450 
451 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
452 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
453 			continue;
454 
455 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
456 		list_del_init(&rq->queuelist);
457 		blk_mq_insert_request(rq, true, false, false);
458 	}
459 
460 	while (!list_empty(&rq_list)) {
461 		rq = list_entry(rq_list.next, struct request, queuelist);
462 		list_del_init(&rq->queuelist);
463 		blk_mq_insert_request(rq, false, false, false);
464 	}
465 
466 	/*
467 	 * Use the start variant of queue running here, so that running
468 	 * the requeue work will kick stopped queues.
469 	 */
470 	blk_mq_start_hw_queues(q);
471 }
472 
473 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
474 {
475 	struct request_queue *q = rq->q;
476 	unsigned long flags;
477 
478 	/*
479 	 * We abuse this flag that is otherwise used by the I/O scheduler to
480 	 * request head insertation from the workqueue.
481 	 */
482 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
483 
484 	spin_lock_irqsave(&q->requeue_lock, flags);
485 	if (at_head) {
486 		rq->cmd_flags |= REQ_SOFTBARRIER;
487 		list_add(&rq->queuelist, &q->requeue_list);
488 	} else {
489 		list_add_tail(&rq->queuelist, &q->requeue_list);
490 	}
491 	spin_unlock_irqrestore(&q->requeue_lock, flags);
492 }
493 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
494 
495 void blk_mq_kick_requeue_list(struct request_queue *q)
496 {
497 	kblockd_schedule_work(&q->requeue_work);
498 }
499 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
500 
501 static inline bool is_flush_request(struct request *rq,
502 		struct blk_flush_queue *fq, unsigned int tag)
503 {
504 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
505 			fq->flush_rq->tag == tag);
506 }
507 
508 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
509 {
510 	struct request *rq = tags->rqs[tag];
511 	/* mq_ctx of flush rq is always cloned from the corresponding req */
512 	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
513 
514 	if (!is_flush_request(rq, fq, tag))
515 		return rq;
516 
517 	return fq->flush_rq;
518 }
519 EXPORT_SYMBOL(blk_mq_tag_to_rq);
520 
521 struct blk_mq_timeout_data {
522 	unsigned long next;
523 	unsigned int next_set;
524 };
525 
526 void blk_mq_rq_timed_out(struct request *req, bool reserved)
527 {
528 	struct blk_mq_ops *ops = req->q->mq_ops;
529 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
530 
531 	/*
532 	 * We know that complete is set at this point. If STARTED isn't set
533 	 * anymore, then the request isn't active and the "timeout" should
534 	 * just be ignored. This can happen due to the bitflag ordering.
535 	 * Timeout first checks if STARTED is set, and if it is, assumes
536 	 * the request is active. But if we race with completion, then
537 	 * we both flags will get cleared. So check here again, and ignore
538 	 * a timeout event with a request that isn't active.
539 	 */
540 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
541 		return;
542 
543 	if (ops->timeout)
544 		ret = ops->timeout(req, reserved);
545 
546 	switch (ret) {
547 	case BLK_EH_HANDLED:
548 		__blk_mq_complete_request(req);
549 		break;
550 	case BLK_EH_RESET_TIMER:
551 		blk_add_timer(req);
552 		blk_clear_rq_complete(req);
553 		break;
554 	case BLK_EH_NOT_HANDLED:
555 		break;
556 	default:
557 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
558 		break;
559 	}
560 }
561 
562 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
563 		struct request *rq, void *priv, bool reserved)
564 {
565 	struct blk_mq_timeout_data *data = priv;
566 
567 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
568 		return;
569 
570 	if (time_after_eq(jiffies, rq->deadline)) {
571 		if (!blk_mark_rq_complete(rq))
572 			blk_mq_rq_timed_out(rq, reserved);
573 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
574 		data->next = rq->deadline;
575 		data->next_set = 1;
576 	}
577 }
578 
579 static void blk_mq_rq_timer(unsigned long priv)
580 {
581 	struct request_queue *q = (struct request_queue *)priv;
582 	struct blk_mq_timeout_data data = {
583 		.next		= 0,
584 		.next_set	= 0,
585 	};
586 	struct blk_mq_hw_ctx *hctx;
587 	int i;
588 
589 	queue_for_each_hw_ctx(q, hctx, i) {
590 		/*
591 		 * If not software queues are currently mapped to this
592 		 * hardware queue, there's nothing to check
593 		 */
594 		if (!hctx->nr_ctx || !hctx->tags)
595 			continue;
596 
597 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
598 	}
599 
600 	if (data.next_set) {
601 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
602 		mod_timer(&q->timeout, data.next);
603 	} else {
604 		queue_for_each_hw_ctx(q, hctx, i)
605 			blk_mq_tag_idle(hctx);
606 	}
607 }
608 
609 /*
610  * Reverse check our software queue for entries that we could potentially
611  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
612  * too much time checking for merges.
613  */
614 static bool blk_mq_attempt_merge(struct request_queue *q,
615 				 struct blk_mq_ctx *ctx, struct bio *bio)
616 {
617 	struct request *rq;
618 	int checked = 8;
619 
620 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
621 		int el_ret;
622 
623 		if (!checked--)
624 			break;
625 
626 		if (!blk_rq_merge_ok(rq, bio))
627 			continue;
628 
629 		el_ret = blk_try_merge(rq, bio);
630 		if (el_ret == ELEVATOR_BACK_MERGE) {
631 			if (bio_attempt_back_merge(q, rq, bio)) {
632 				ctx->rq_merged++;
633 				return true;
634 			}
635 			break;
636 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
637 			if (bio_attempt_front_merge(q, rq, bio)) {
638 				ctx->rq_merged++;
639 				return true;
640 			}
641 			break;
642 		}
643 	}
644 
645 	return false;
646 }
647 
648 /*
649  * Process software queues that have been marked busy, splicing them
650  * to the for-dispatch
651  */
652 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
653 {
654 	struct blk_mq_ctx *ctx;
655 	int i;
656 
657 	for (i = 0; i < hctx->ctx_map.map_size; i++) {
658 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
659 		unsigned int off, bit;
660 
661 		if (!bm->word)
662 			continue;
663 
664 		bit = 0;
665 		off = i * hctx->ctx_map.bits_per_word;
666 		do {
667 			bit = find_next_bit(&bm->word, bm->depth, bit);
668 			if (bit >= bm->depth)
669 				break;
670 
671 			ctx = hctx->ctxs[bit + off];
672 			clear_bit(bit, &bm->word);
673 			spin_lock(&ctx->lock);
674 			list_splice_tail_init(&ctx->rq_list, list);
675 			spin_unlock(&ctx->lock);
676 
677 			bit++;
678 		} while (1);
679 	}
680 }
681 
682 /*
683  * Run this hardware queue, pulling any software queues mapped to it in.
684  * Note that this function currently has various problems around ordering
685  * of IO. In particular, we'd like FIFO behaviour on handling existing
686  * items on the hctx->dispatch list. Ignore that for now.
687  */
688 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
689 {
690 	struct request_queue *q = hctx->queue;
691 	struct request *rq;
692 	LIST_HEAD(rq_list);
693 	int queued;
694 
695 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
696 
697 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
698 		return;
699 
700 	hctx->run++;
701 
702 	/*
703 	 * Touch any software queue that has pending entries.
704 	 */
705 	flush_busy_ctxs(hctx, &rq_list);
706 
707 	/*
708 	 * If we have previous entries on our dispatch list, grab them
709 	 * and stuff them at the front for more fair dispatch.
710 	 */
711 	if (!list_empty_careful(&hctx->dispatch)) {
712 		spin_lock(&hctx->lock);
713 		if (!list_empty(&hctx->dispatch))
714 			list_splice_init(&hctx->dispatch, &rq_list);
715 		spin_unlock(&hctx->lock);
716 	}
717 
718 	/*
719 	 * Now process all the entries, sending them to the driver.
720 	 */
721 	queued = 0;
722 	while (!list_empty(&rq_list)) {
723 		int ret;
724 
725 		rq = list_first_entry(&rq_list, struct request, queuelist);
726 		list_del_init(&rq->queuelist);
727 
728 		ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
729 		switch (ret) {
730 		case BLK_MQ_RQ_QUEUE_OK:
731 			queued++;
732 			continue;
733 		case BLK_MQ_RQ_QUEUE_BUSY:
734 			list_add(&rq->queuelist, &rq_list);
735 			__blk_mq_requeue_request(rq);
736 			break;
737 		default:
738 			pr_err("blk-mq: bad return on queue: %d\n", ret);
739 		case BLK_MQ_RQ_QUEUE_ERROR:
740 			rq->errors = -EIO;
741 			blk_mq_end_request(rq, rq->errors);
742 			break;
743 		}
744 
745 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
746 			break;
747 	}
748 
749 	if (!queued)
750 		hctx->dispatched[0]++;
751 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
752 		hctx->dispatched[ilog2(queued) + 1]++;
753 
754 	/*
755 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
756 	 * that is where we will continue on next queue run.
757 	 */
758 	if (!list_empty(&rq_list)) {
759 		spin_lock(&hctx->lock);
760 		list_splice(&rq_list, &hctx->dispatch);
761 		spin_unlock(&hctx->lock);
762 	}
763 }
764 
765 /*
766  * It'd be great if the workqueue API had a way to pass
767  * in a mask and had some smarts for more clever placement.
768  * For now we just round-robin here, switching for every
769  * BLK_MQ_CPU_WORK_BATCH queued items.
770  */
771 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
772 {
773 	int cpu = hctx->next_cpu;
774 
775 	if (--hctx->next_cpu_batch <= 0) {
776 		int next_cpu;
777 
778 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
779 		if (next_cpu >= nr_cpu_ids)
780 			next_cpu = cpumask_first(hctx->cpumask);
781 
782 		hctx->next_cpu = next_cpu;
783 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
784 	}
785 
786 	return cpu;
787 }
788 
789 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
790 {
791 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
792 		return;
793 
794 	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
795 		__blk_mq_run_hw_queue(hctx);
796 	else if (hctx->queue->nr_hw_queues == 1)
797 		kblockd_schedule_delayed_work(&hctx->run_work, 0);
798 	else {
799 		unsigned int cpu;
800 
801 		cpu = blk_mq_hctx_next_cpu(hctx);
802 		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
803 	}
804 }
805 
806 void blk_mq_run_queues(struct request_queue *q, bool async)
807 {
808 	struct blk_mq_hw_ctx *hctx;
809 	int i;
810 
811 	queue_for_each_hw_ctx(q, hctx, i) {
812 		if ((!blk_mq_hctx_has_pending(hctx) &&
813 		    list_empty_careful(&hctx->dispatch)) ||
814 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
815 			continue;
816 
817 		preempt_disable();
818 		blk_mq_run_hw_queue(hctx, async);
819 		preempt_enable();
820 	}
821 }
822 EXPORT_SYMBOL(blk_mq_run_queues);
823 
824 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
825 {
826 	cancel_delayed_work(&hctx->run_work);
827 	cancel_delayed_work(&hctx->delay_work);
828 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
829 }
830 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
831 
832 void blk_mq_stop_hw_queues(struct request_queue *q)
833 {
834 	struct blk_mq_hw_ctx *hctx;
835 	int i;
836 
837 	queue_for_each_hw_ctx(q, hctx, i)
838 		blk_mq_stop_hw_queue(hctx);
839 }
840 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
841 
842 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
843 {
844 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
845 
846 	preempt_disable();
847 	blk_mq_run_hw_queue(hctx, false);
848 	preempt_enable();
849 }
850 EXPORT_SYMBOL(blk_mq_start_hw_queue);
851 
852 void blk_mq_start_hw_queues(struct request_queue *q)
853 {
854 	struct blk_mq_hw_ctx *hctx;
855 	int i;
856 
857 	queue_for_each_hw_ctx(q, hctx, i)
858 		blk_mq_start_hw_queue(hctx);
859 }
860 EXPORT_SYMBOL(blk_mq_start_hw_queues);
861 
862 
863 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
864 {
865 	struct blk_mq_hw_ctx *hctx;
866 	int i;
867 
868 	queue_for_each_hw_ctx(q, hctx, i) {
869 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
870 			continue;
871 
872 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
873 		preempt_disable();
874 		blk_mq_run_hw_queue(hctx, async);
875 		preempt_enable();
876 	}
877 }
878 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
879 
880 static void blk_mq_run_work_fn(struct work_struct *work)
881 {
882 	struct blk_mq_hw_ctx *hctx;
883 
884 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
885 
886 	__blk_mq_run_hw_queue(hctx);
887 }
888 
889 static void blk_mq_delay_work_fn(struct work_struct *work)
890 {
891 	struct blk_mq_hw_ctx *hctx;
892 
893 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
894 
895 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
896 		__blk_mq_run_hw_queue(hctx);
897 }
898 
899 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
900 {
901 	unsigned long tmo = msecs_to_jiffies(msecs);
902 
903 	if (hctx->queue->nr_hw_queues == 1)
904 		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
905 	else {
906 		unsigned int cpu;
907 
908 		cpu = blk_mq_hctx_next_cpu(hctx);
909 		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
910 	}
911 }
912 EXPORT_SYMBOL(blk_mq_delay_queue);
913 
914 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
915 				    struct request *rq, bool at_head)
916 {
917 	struct blk_mq_ctx *ctx = rq->mq_ctx;
918 
919 	trace_block_rq_insert(hctx->queue, rq);
920 
921 	if (at_head)
922 		list_add(&rq->queuelist, &ctx->rq_list);
923 	else
924 		list_add_tail(&rq->queuelist, &ctx->rq_list);
925 
926 	blk_mq_hctx_mark_pending(hctx, ctx);
927 }
928 
929 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
930 		bool async)
931 {
932 	struct request_queue *q = rq->q;
933 	struct blk_mq_hw_ctx *hctx;
934 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
935 
936 	current_ctx = blk_mq_get_ctx(q);
937 	if (!cpu_online(ctx->cpu))
938 		rq->mq_ctx = ctx = current_ctx;
939 
940 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
941 
942 	spin_lock(&ctx->lock);
943 	__blk_mq_insert_request(hctx, rq, at_head);
944 	spin_unlock(&ctx->lock);
945 
946 	if (run_queue)
947 		blk_mq_run_hw_queue(hctx, async);
948 
949 	blk_mq_put_ctx(current_ctx);
950 }
951 
952 static void blk_mq_insert_requests(struct request_queue *q,
953 				     struct blk_mq_ctx *ctx,
954 				     struct list_head *list,
955 				     int depth,
956 				     bool from_schedule)
957 
958 {
959 	struct blk_mq_hw_ctx *hctx;
960 	struct blk_mq_ctx *current_ctx;
961 
962 	trace_block_unplug(q, depth, !from_schedule);
963 
964 	current_ctx = blk_mq_get_ctx(q);
965 
966 	if (!cpu_online(ctx->cpu))
967 		ctx = current_ctx;
968 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
969 
970 	/*
971 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
972 	 * offline now
973 	 */
974 	spin_lock(&ctx->lock);
975 	while (!list_empty(list)) {
976 		struct request *rq;
977 
978 		rq = list_first_entry(list, struct request, queuelist);
979 		list_del_init(&rq->queuelist);
980 		rq->mq_ctx = ctx;
981 		__blk_mq_insert_request(hctx, rq, false);
982 	}
983 	spin_unlock(&ctx->lock);
984 
985 	blk_mq_run_hw_queue(hctx, from_schedule);
986 	blk_mq_put_ctx(current_ctx);
987 }
988 
989 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
990 {
991 	struct request *rqa = container_of(a, struct request, queuelist);
992 	struct request *rqb = container_of(b, struct request, queuelist);
993 
994 	return !(rqa->mq_ctx < rqb->mq_ctx ||
995 		 (rqa->mq_ctx == rqb->mq_ctx &&
996 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
997 }
998 
999 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1000 {
1001 	struct blk_mq_ctx *this_ctx;
1002 	struct request_queue *this_q;
1003 	struct request *rq;
1004 	LIST_HEAD(list);
1005 	LIST_HEAD(ctx_list);
1006 	unsigned int depth;
1007 
1008 	list_splice_init(&plug->mq_list, &list);
1009 
1010 	list_sort(NULL, &list, plug_ctx_cmp);
1011 
1012 	this_q = NULL;
1013 	this_ctx = NULL;
1014 	depth = 0;
1015 
1016 	while (!list_empty(&list)) {
1017 		rq = list_entry_rq(list.next);
1018 		list_del_init(&rq->queuelist);
1019 		BUG_ON(!rq->q);
1020 		if (rq->mq_ctx != this_ctx) {
1021 			if (this_ctx) {
1022 				blk_mq_insert_requests(this_q, this_ctx,
1023 							&ctx_list, depth,
1024 							from_schedule);
1025 			}
1026 
1027 			this_ctx = rq->mq_ctx;
1028 			this_q = rq->q;
1029 			depth = 0;
1030 		}
1031 
1032 		depth++;
1033 		list_add_tail(&rq->queuelist, &ctx_list);
1034 	}
1035 
1036 	/*
1037 	 * If 'this_ctx' is set, we know we have entries to complete
1038 	 * on 'ctx_list'. Do those.
1039 	 */
1040 	if (this_ctx) {
1041 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1042 				       from_schedule);
1043 	}
1044 }
1045 
1046 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1047 {
1048 	init_request_from_bio(rq, bio);
1049 
1050 	if (blk_do_io_stat(rq))
1051 		blk_account_io_start(rq, 1);
1052 }
1053 
1054 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1055 {
1056 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1057 		!blk_queue_nomerges(hctx->queue);
1058 }
1059 
1060 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1061 					 struct blk_mq_ctx *ctx,
1062 					 struct request *rq, struct bio *bio)
1063 {
1064 	if (!hctx_allow_merges(hctx)) {
1065 		blk_mq_bio_to_request(rq, bio);
1066 		spin_lock(&ctx->lock);
1067 insert_rq:
1068 		__blk_mq_insert_request(hctx, rq, false);
1069 		spin_unlock(&ctx->lock);
1070 		return false;
1071 	} else {
1072 		struct request_queue *q = hctx->queue;
1073 
1074 		spin_lock(&ctx->lock);
1075 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1076 			blk_mq_bio_to_request(rq, bio);
1077 			goto insert_rq;
1078 		}
1079 
1080 		spin_unlock(&ctx->lock);
1081 		__blk_mq_free_request(hctx, ctx, rq);
1082 		return true;
1083 	}
1084 }
1085 
1086 struct blk_map_ctx {
1087 	struct blk_mq_hw_ctx *hctx;
1088 	struct blk_mq_ctx *ctx;
1089 };
1090 
1091 static struct request *blk_mq_map_request(struct request_queue *q,
1092 					  struct bio *bio,
1093 					  struct blk_map_ctx *data)
1094 {
1095 	struct blk_mq_hw_ctx *hctx;
1096 	struct blk_mq_ctx *ctx;
1097 	struct request *rq;
1098 	int rw = bio_data_dir(bio);
1099 	struct blk_mq_alloc_data alloc_data;
1100 
1101 	if (unlikely(blk_mq_queue_enter(q))) {
1102 		bio_endio(bio, -EIO);
1103 		return NULL;
1104 	}
1105 
1106 	ctx = blk_mq_get_ctx(q);
1107 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1108 
1109 	if (rw_is_sync(bio->bi_rw))
1110 		rw |= REQ_SYNC;
1111 
1112 	trace_block_getrq(q, bio, rw);
1113 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1114 			hctx);
1115 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1116 	if (unlikely(!rq)) {
1117 		__blk_mq_run_hw_queue(hctx);
1118 		blk_mq_put_ctx(ctx);
1119 		trace_block_sleeprq(q, bio, rw);
1120 
1121 		ctx = blk_mq_get_ctx(q);
1122 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1123 		blk_mq_set_alloc_data(&alloc_data, q,
1124 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1125 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1126 		ctx = alloc_data.ctx;
1127 		hctx = alloc_data.hctx;
1128 	}
1129 
1130 	hctx->queued++;
1131 	data->hctx = hctx;
1132 	data->ctx = ctx;
1133 	return rq;
1134 }
1135 
1136 /*
1137  * Multiple hardware queue variant. This will not use per-process plugs,
1138  * but will attempt to bypass the hctx queueing if we can go straight to
1139  * hardware for SYNC IO.
1140  */
1141 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1142 {
1143 	const int is_sync = rw_is_sync(bio->bi_rw);
1144 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1145 	struct blk_map_ctx data;
1146 	struct request *rq;
1147 
1148 	blk_queue_bounce(q, &bio);
1149 
1150 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1151 		bio_endio(bio, -EIO);
1152 		return;
1153 	}
1154 
1155 	rq = blk_mq_map_request(q, bio, &data);
1156 	if (unlikely(!rq))
1157 		return;
1158 
1159 	if (unlikely(is_flush_fua)) {
1160 		blk_mq_bio_to_request(rq, bio);
1161 		blk_insert_flush(rq);
1162 		goto run_queue;
1163 	}
1164 
1165 	if (is_sync) {
1166 		int ret;
1167 
1168 		blk_mq_bio_to_request(rq, bio);
1169 
1170 		/*
1171 		 * For OK queue, we are done. For error, kill it. Any other
1172 		 * error (busy), just add it to our list as we previously
1173 		 * would have done
1174 		 */
1175 		ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1176 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1177 			goto done;
1178 		else {
1179 			__blk_mq_requeue_request(rq);
1180 
1181 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1182 				rq->errors = -EIO;
1183 				blk_mq_end_request(rq, rq->errors);
1184 				goto done;
1185 			}
1186 		}
1187 	}
1188 
1189 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1190 		/*
1191 		 * For a SYNC request, send it to the hardware immediately. For
1192 		 * an ASYNC request, just ensure that we run it later on. The
1193 		 * latter allows for merging opportunities and more efficient
1194 		 * dispatching.
1195 		 */
1196 run_queue:
1197 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1198 	}
1199 done:
1200 	blk_mq_put_ctx(data.ctx);
1201 }
1202 
1203 /*
1204  * Single hardware queue variant. This will attempt to use any per-process
1205  * plug for merging and IO deferral.
1206  */
1207 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1208 {
1209 	const int is_sync = rw_is_sync(bio->bi_rw);
1210 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1211 	unsigned int use_plug, request_count = 0;
1212 	struct blk_map_ctx data;
1213 	struct request *rq;
1214 
1215 	/*
1216 	 * If we have multiple hardware queues, just go directly to
1217 	 * one of those for sync IO.
1218 	 */
1219 	use_plug = !is_flush_fua && !is_sync;
1220 
1221 	blk_queue_bounce(q, &bio);
1222 
1223 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1224 		bio_endio(bio, -EIO);
1225 		return;
1226 	}
1227 
1228 	if (use_plug && !blk_queue_nomerges(q) &&
1229 	    blk_attempt_plug_merge(q, bio, &request_count))
1230 		return;
1231 
1232 	rq = blk_mq_map_request(q, bio, &data);
1233 	if (unlikely(!rq))
1234 		return;
1235 
1236 	if (unlikely(is_flush_fua)) {
1237 		blk_mq_bio_to_request(rq, bio);
1238 		blk_insert_flush(rq);
1239 		goto run_queue;
1240 	}
1241 
1242 	/*
1243 	 * A task plug currently exists. Since this is completely lockless,
1244 	 * utilize that to temporarily store requests until the task is
1245 	 * either done or scheduled away.
1246 	 */
1247 	if (use_plug) {
1248 		struct blk_plug *plug = current->plug;
1249 
1250 		if (plug) {
1251 			blk_mq_bio_to_request(rq, bio);
1252 			if (list_empty(&plug->mq_list))
1253 				trace_block_plug(q);
1254 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1255 				blk_flush_plug_list(plug, false);
1256 				trace_block_plug(q);
1257 			}
1258 			list_add_tail(&rq->queuelist, &plug->mq_list);
1259 			blk_mq_put_ctx(data.ctx);
1260 			return;
1261 		}
1262 	}
1263 
1264 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1265 		/*
1266 		 * For a SYNC request, send it to the hardware immediately. For
1267 		 * an ASYNC request, just ensure that we run it later on. The
1268 		 * latter allows for merging opportunities and more efficient
1269 		 * dispatching.
1270 		 */
1271 run_queue:
1272 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1273 	}
1274 
1275 	blk_mq_put_ctx(data.ctx);
1276 }
1277 
1278 /*
1279  * Default mapping to a software queue, since we use one per CPU.
1280  */
1281 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1282 {
1283 	return q->queue_hw_ctx[q->mq_map[cpu]];
1284 }
1285 EXPORT_SYMBOL(blk_mq_map_queue);
1286 
1287 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1288 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1289 {
1290 	struct page *page;
1291 
1292 	if (tags->rqs && set->ops->exit_request) {
1293 		int i;
1294 
1295 		for (i = 0; i < tags->nr_tags; i++) {
1296 			if (!tags->rqs[i])
1297 				continue;
1298 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1299 						hctx_idx, i);
1300 			tags->rqs[i] = NULL;
1301 		}
1302 	}
1303 
1304 	while (!list_empty(&tags->page_list)) {
1305 		page = list_first_entry(&tags->page_list, struct page, lru);
1306 		list_del_init(&page->lru);
1307 		__free_pages(page, page->private);
1308 	}
1309 
1310 	kfree(tags->rqs);
1311 
1312 	blk_mq_free_tags(tags);
1313 }
1314 
1315 static size_t order_to_size(unsigned int order)
1316 {
1317 	return (size_t)PAGE_SIZE << order;
1318 }
1319 
1320 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1321 		unsigned int hctx_idx)
1322 {
1323 	struct blk_mq_tags *tags;
1324 	unsigned int i, j, entries_per_page, max_order = 4;
1325 	size_t rq_size, left;
1326 
1327 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1328 				set->numa_node);
1329 	if (!tags)
1330 		return NULL;
1331 
1332 	INIT_LIST_HEAD(&tags->page_list);
1333 
1334 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1335 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1336 				 set->numa_node);
1337 	if (!tags->rqs) {
1338 		blk_mq_free_tags(tags);
1339 		return NULL;
1340 	}
1341 
1342 	/*
1343 	 * rq_size is the size of the request plus driver payload, rounded
1344 	 * to the cacheline size
1345 	 */
1346 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1347 				cache_line_size());
1348 	left = rq_size * set->queue_depth;
1349 
1350 	for (i = 0; i < set->queue_depth; ) {
1351 		int this_order = max_order;
1352 		struct page *page;
1353 		int to_do;
1354 		void *p;
1355 
1356 		while (left < order_to_size(this_order - 1) && this_order)
1357 			this_order--;
1358 
1359 		do {
1360 			page = alloc_pages_node(set->numa_node,
1361 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1362 				this_order);
1363 			if (page)
1364 				break;
1365 			if (!this_order--)
1366 				break;
1367 			if (order_to_size(this_order) < rq_size)
1368 				break;
1369 		} while (1);
1370 
1371 		if (!page)
1372 			goto fail;
1373 
1374 		page->private = this_order;
1375 		list_add_tail(&page->lru, &tags->page_list);
1376 
1377 		p = page_address(page);
1378 		entries_per_page = order_to_size(this_order) / rq_size;
1379 		to_do = min(entries_per_page, set->queue_depth - i);
1380 		left -= to_do * rq_size;
1381 		for (j = 0; j < to_do; j++) {
1382 			tags->rqs[i] = p;
1383 			tags->rqs[i]->atomic_flags = 0;
1384 			tags->rqs[i]->cmd_flags = 0;
1385 			if (set->ops->init_request) {
1386 				if (set->ops->init_request(set->driver_data,
1387 						tags->rqs[i], hctx_idx, i,
1388 						set->numa_node)) {
1389 					tags->rqs[i] = NULL;
1390 					goto fail;
1391 				}
1392 			}
1393 
1394 			p += rq_size;
1395 			i++;
1396 		}
1397 	}
1398 
1399 	return tags;
1400 
1401 fail:
1402 	blk_mq_free_rq_map(set, tags, hctx_idx);
1403 	return NULL;
1404 }
1405 
1406 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1407 {
1408 	kfree(bitmap->map);
1409 }
1410 
1411 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1412 {
1413 	unsigned int bpw = 8, total, num_maps, i;
1414 
1415 	bitmap->bits_per_word = bpw;
1416 
1417 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1418 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1419 					GFP_KERNEL, node);
1420 	if (!bitmap->map)
1421 		return -ENOMEM;
1422 
1423 	bitmap->map_size = num_maps;
1424 
1425 	total = nr_cpu_ids;
1426 	for (i = 0; i < num_maps; i++) {
1427 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1428 		total -= bitmap->map[i].depth;
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1435 {
1436 	struct request_queue *q = hctx->queue;
1437 	struct blk_mq_ctx *ctx;
1438 	LIST_HEAD(tmp);
1439 
1440 	/*
1441 	 * Move ctx entries to new CPU, if this one is going away.
1442 	 */
1443 	ctx = __blk_mq_get_ctx(q, cpu);
1444 
1445 	spin_lock(&ctx->lock);
1446 	if (!list_empty(&ctx->rq_list)) {
1447 		list_splice_init(&ctx->rq_list, &tmp);
1448 		blk_mq_hctx_clear_pending(hctx, ctx);
1449 	}
1450 	spin_unlock(&ctx->lock);
1451 
1452 	if (list_empty(&tmp))
1453 		return NOTIFY_OK;
1454 
1455 	ctx = blk_mq_get_ctx(q);
1456 	spin_lock(&ctx->lock);
1457 
1458 	while (!list_empty(&tmp)) {
1459 		struct request *rq;
1460 
1461 		rq = list_first_entry(&tmp, struct request, queuelist);
1462 		rq->mq_ctx = ctx;
1463 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1464 	}
1465 
1466 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1467 	blk_mq_hctx_mark_pending(hctx, ctx);
1468 
1469 	spin_unlock(&ctx->lock);
1470 
1471 	blk_mq_run_hw_queue(hctx, true);
1472 	blk_mq_put_ctx(ctx);
1473 	return NOTIFY_OK;
1474 }
1475 
1476 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1477 {
1478 	struct request_queue *q = hctx->queue;
1479 	struct blk_mq_tag_set *set = q->tag_set;
1480 
1481 	if (set->tags[hctx->queue_num])
1482 		return NOTIFY_OK;
1483 
1484 	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1485 	if (!set->tags[hctx->queue_num])
1486 		return NOTIFY_STOP;
1487 
1488 	hctx->tags = set->tags[hctx->queue_num];
1489 	return NOTIFY_OK;
1490 }
1491 
1492 static int blk_mq_hctx_notify(void *data, unsigned long action,
1493 			      unsigned int cpu)
1494 {
1495 	struct blk_mq_hw_ctx *hctx = data;
1496 
1497 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1498 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1499 	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1500 		return blk_mq_hctx_cpu_online(hctx, cpu);
1501 
1502 	return NOTIFY_OK;
1503 }
1504 
1505 static void blk_mq_exit_hctx(struct request_queue *q,
1506 		struct blk_mq_tag_set *set,
1507 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1508 {
1509 	unsigned flush_start_tag = set->queue_depth;
1510 
1511 	blk_mq_tag_idle(hctx);
1512 
1513 	if (set->ops->exit_request)
1514 		set->ops->exit_request(set->driver_data,
1515 				       hctx->fq->flush_rq, hctx_idx,
1516 				       flush_start_tag + hctx_idx);
1517 
1518 	if (set->ops->exit_hctx)
1519 		set->ops->exit_hctx(hctx, hctx_idx);
1520 
1521 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1522 	blk_free_flush_queue(hctx->fq);
1523 	kfree(hctx->ctxs);
1524 	blk_mq_free_bitmap(&hctx->ctx_map);
1525 }
1526 
1527 static void blk_mq_exit_hw_queues(struct request_queue *q,
1528 		struct blk_mq_tag_set *set, int nr_queue)
1529 {
1530 	struct blk_mq_hw_ctx *hctx;
1531 	unsigned int i;
1532 
1533 	queue_for_each_hw_ctx(q, hctx, i) {
1534 		if (i == nr_queue)
1535 			break;
1536 		blk_mq_exit_hctx(q, set, hctx, i);
1537 	}
1538 }
1539 
1540 static void blk_mq_free_hw_queues(struct request_queue *q,
1541 		struct blk_mq_tag_set *set)
1542 {
1543 	struct blk_mq_hw_ctx *hctx;
1544 	unsigned int i;
1545 
1546 	queue_for_each_hw_ctx(q, hctx, i) {
1547 		free_cpumask_var(hctx->cpumask);
1548 		kfree(hctx);
1549 	}
1550 }
1551 
1552 static int blk_mq_init_hctx(struct request_queue *q,
1553 		struct blk_mq_tag_set *set,
1554 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1555 {
1556 	int node;
1557 	unsigned flush_start_tag = set->queue_depth;
1558 
1559 	node = hctx->numa_node;
1560 	if (node == NUMA_NO_NODE)
1561 		node = hctx->numa_node = set->numa_node;
1562 
1563 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1564 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1565 	spin_lock_init(&hctx->lock);
1566 	INIT_LIST_HEAD(&hctx->dispatch);
1567 	hctx->queue = q;
1568 	hctx->queue_num = hctx_idx;
1569 	hctx->flags = set->flags;
1570 	hctx->cmd_size = set->cmd_size;
1571 
1572 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1573 					blk_mq_hctx_notify, hctx);
1574 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1575 
1576 	hctx->tags = set->tags[hctx_idx];
1577 
1578 	/*
1579 	 * Allocate space for all possible cpus to avoid allocation at
1580 	 * runtime
1581 	 */
1582 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1583 					GFP_KERNEL, node);
1584 	if (!hctx->ctxs)
1585 		goto unregister_cpu_notifier;
1586 
1587 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1588 		goto free_ctxs;
1589 
1590 	hctx->nr_ctx = 0;
1591 
1592 	if (set->ops->init_hctx &&
1593 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1594 		goto free_bitmap;
1595 
1596 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1597 	if (!hctx->fq)
1598 		goto exit_hctx;
1599 
1600 	if (set->ops->init_request &&
1601 	    set->ops->init_request(set->driver_data,
1602 				   hctx->fq->flush_rq, hctx_idx,
1603 				   flush_start_tag + hctx_idx, node))
1604 		goto free_fq;
1605 
1606 	return 0;
1607 
1608  free_fq:
1609 	kfree(hctx->fq);
1610  exit_hctx:
1611 	if (set->ops->exit_hctx)
1612 		set->ops->exit_hctx(hctx, hctx_idx);
1613  free_bitmap:
1614 	blk_mq_free_bitmap(&hctx->ctx_map);
1615  free_ctxs:
1616 	kfree(hctx->ctxs);
1617  unregister_cpu_notifier:
1618 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1619 
1620 	return -1;
1621 }
1622 
1623 static int blk_mq_init_hw_queues(struct request_queue *q,
1624 		struct blk_mq_tag_set *set)
1625 {
1626 	struct blk_mq_hw_ctx *hctx;
1627 	unsigned int i;
1628 
1629 	/*
1630 	 * Initialize hardware queues
1631 	 */
1632 	queue_for_each_hw_ctx(q, hctx, i) {
1633 		if (blk_mq_init_hctx(q, set, hctx, i))
1634 			break;
1635 	}
1636 
1637 	if (i == q->nr_hw_queues)
1638 		return 0;
1639 
1640 	/*
1641 	 * Init failed
1642 	 */
1643 	blk_mq_exit_hw_queues(q, set, i);
1644 
1645 	return 1;
1646 }
1647 
1648 static void blk_mq_init_cpu_queues(struct request_queue *q,
1649 				   unsigned int nr_hw_queues)
1650 {
1651 	unsigned int i;
1652 
1653 	for_each_possible_cpu(i) {
1654 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1655 		struct blk_mq_hw_ctx *hctx;
1656 
1657 		memset(__ctx, 0, sizeof(*__ctx));
1658 		__ctx->cpu = i;
1659 		spin_lock_init(&__ctx->lock);
1660 		INIT_LIST_HEAD(&__ctx->rq_list);
1661 		__ctx->queue = q;
1662 
1663 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1664 		if (!cpu_online(i))
1665 			continue;
1666 
1667 		hctx = q->mq_ops->map_queue(q, i);
1668 		cpumask_set_cpu(i, hctx->cpumask);
1669 		hctx->nr_ctx++;
1670 
1671 		/*
1672 		 * Set local node, IFF we have more than one hw queue. If
1673 		 * not, we remain on the home node of the device
1674 		 */
1675 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1676 			hctx->numa_node = cpu_to_node(i);
1677 	}
1678 }
1679 
1680 static void blk_mq_map_swqueue(struct request_queue *q)
1681 {
1682 	unsigned int i;
1683 	struct blk_mq_hw_ctx *hctx;
1684 	struct blk_mq_ctx *ctx;
1685 
1686 	queue_for_each_hw_ctx(q, hctx, i) {
1687 		cpumask_clear(hctx->cpumask);
1688 		hctx->nr_ctx = 0;
1689 	}
1690 
1691 	/*
1692 	 * Map software to hardware queues
1693 	 */
1694 	queue_for_each_ctx(q, ctx, i) {
1695 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1696 		if (!cpu_online(i))
1697 			continue;
1698 
1699 		hctx = q->mq_ops->map_queue(q, i);
1700 		cpumask_set_cpu(i, hctx->cpumask);
1701 		ctx->index_hw = hctx->nr_ctx;
1702 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1703 	}
1704 
1705 	queue_for_each_hw_ctx(q, hctx, i) {
1706 		/*
1707 		 * If no software queues are mapped to this hardware queue,
1708 		 * disable it and free the request entries.
1709 		 */
1710 		if (!hctx->nr_ctx) {
1711 			struct blk_mq_tag_set *set = q->tag_set;
1712 
1713 			if (set->tags[i]) {
1714 				blk_mq_free_rq_map(set, set->tags[i], i);
1715 				set->tags[i] = NULL;
1716 				hctx->tags = NULL;
1717 			}
1718 			continue;
1719 		}
1720 
1721 		/*
1722 		 * Initialize batch roundrobin counts
1723 		 */
1724 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1725 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1726 	}
1727 }
1728 
1729 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1730 {
1731 	struct blk_mq_hw_ctx *hctx;
1732 	struct request_queue *q;
1733 	bool shared;
1734 	int i;
1735 
1736 	if (set->tag_list.next == set->tag_list.prev)
1737 		shared = false;
1738 	else
1739 		shared = true;
1740 
1741 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1742 		blk_mq_freeze_queue(q);
1743 
1744 		queue_for_each_hw_ctx(q, hctx, i) {
1745 			if (shared)
1746 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1747 			else
1748 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1749 		}
1750 		blk_mq_unfreeze_queue(q);
1751 	}
1752 }
1753 
1754 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1755 {
1756 	struct blk_mq_tag_set *set = q->tag_set;
1757 
1758 	mutex_lock(&set->tag_list_lock);
1759 	list_del_init(&q->tag_set_list);
1760 	blk_mq_update_tag_set_depth(set);
1761 	mutex_unlock(&set->tag_list_lock);
1762 }
1763 
1764 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1765 				     struct request_queue *q)
1766 {
1767 	q->tag_set = set;
1768 
1769 	mutex_lock(&set->tag_list_lock);
1770 	list_add_tail(&q->tag_set_list, &set->tag_list);
1771 	blk_mq_update_tag_set_depth(set);
1772 	mutex_unlock(&set->tag_list_lock);
1773 }
1774 
1775 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1776 {
1777 	struct blk_mq_hw_ctx **hctxs;
1778 	struct blk_mq_ctx __percpu *ctx;
1779 	struct request_queue *q;
1780 	unsigned int *map;
1781 	int i;
1782 
1783 	ctx = alloc_percpu(struct blk_mq_ctx);
1784 	if (!ctx)
1785 		return ERR_PTR(-ENOMEM);
1786 
1787 	/*
1788 	 * If a crashdump is active, then we are potentially in a very
1789 	 * memory constrained environment. Limit us to 1 queue and
1790 	 * 64 tags to prevent using too much memory.
1791 	 */
1792 	if (is_kdump_kernel()) {
1793 		set->nr_hw_queues = 1;
1794 		set->queue_depth = min(64U, set->queue_depth);
1795 	}
1796 
1797 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1798 			set->numa_node);
1799 
1800 	if (!hctxs)
1801 		goto err_percpu;
1802 
1803 	map = blk_mq_make_queue_map(set);
1804 	if (!map)
1805 		goto err_map;
1806 
1807 	for (i = 0; i < set->nr_hw_queues; i++) {
1808 		int node = blk_mq_hw_queue_to_node(map, i);
1809 
1810 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1811 					GFP_KERNEL, node);
1812 		if (!hctxs[i])
1813 			goto err_hctxs;
1814 
1815 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1816 						node))
1817 			goto err_hctxs;
1818 
1819 		atomic_set(&hctxs[i]->nr_active, 0);
1820 		hctxs[i]->numa_node = node;
1821 		hctxs[i]->queue_num = i;
1822 	}
1823 
1824 	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1825 	if (!q)
1826 		goto err_hctxs;
1827 
1828 	/*
1829 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1830 	 * See blk_register_queue() for details.
1831 	 */
1832 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1833 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1834 		goto err_map;
1835 
1836 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1837 	blk_queue_rq_timeout(q, 30000);
1838 
1839 	q->nr_queues = nr_cpu_ids;
1840 	q->nr_hw_queues = set->nr_hw_queues;
1841 	q->mq_map = map;
1842 
1843 	q->queue_ctx = ctx;
1844 	q->queue_hw_ctx = hctxs;
1845 
1846 	q->mq_ops = set->ops;
1847 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1848 
1849 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1850 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1851 
1852 	q->sg_reserved_size = INT_MAX;
1853 
1854 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1855 	INIT_LIST_HEAD(&q->requeue_list);
1856 	spin_lock_init(&q->requeue_lock);
1857 
1858 	if (q->nr_hw_queues > 1)
1859 		blk_queue_make_request(q, blk_mq_make_request);
1860 	else
1861 		blk_queue_make_request(q, blk_sq_make_request);
1862 
1863 	if (set->timeout)
1864 		blk_queue_rq_timeout(q, set->timeout);
1865 
1866 	/*
1867 	 * Do this after blk_queue_make_request() overrides it...
1868 	 */
1869 	q->nr_requests = set->queue_depth;
1870 
1871 	if (set->ops->complete)
1872 		blk_queue_softirq_done(q, set->ops->complete);
1873 
1874 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1875 
1876 	if (blk_mq_init_hw_queues(q, set))
1877 		goto err_hw;
1878 
1879 	mutex_lock(&all_q_mutex);
1880 	list_add_tail(&q->all_q_node, &all_q_list);
1881 	mutex_unlock(&all_q_mutex);
1882 
1883 	blk_mq_add_queue_tag_set(set, q);
1884 
1885 	blk_mq_map_swqueue(q);
1886 
1887 	return q;
1888 
1889 err_hw:
1890 	blk_cleanup_queue(q);
1891 err_hctxs:
1892 	kfree(map);
1893 	for (i = 0; i < set->nr_hw_queues; i++) {
1894 		if (!hctxs[i])
1895 			break;
1896 		free_cpumask_var(hctxs[i]->cpumask);
1897 		kfree(hctxs[i]);
1898 	}
1899 err_map:
1900 	kfree(hctxs);
1901 err_percpu:
1902 	free_percpu(ctx);
1903 	return ERR_PTR(-ENOMEM);
1904 }
1905 EXPORT_SYMBOL(blk_mq_init_queue);
1906 
1907 void blk_mq_free_queue(struct request_queue *q)
1908 {
1909 	struct blk_mq_tag_set	*set = q->tag_set;
1910 
1911 	blk_mq_del_queue_tag_set(q);
1912 
1913 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1914 	blk_mq_free_hw_queues(q, set);
1915 
1916 	percpu_ref_exit(&q->mq_usage_counter);
1917 
1918 	free_percpu(q->queue_ctx);
1919 	kfree(q->queue_hw_ctx);
1920 	kfree(q->mq_map);
1921 
1922 	q->queue_ctx = NULL;
1923 	q->queue_hw_ctx = NULL;
1924 	q->mq_map = NULL;
1925 
1926 	mutex_lock(&all_q_mutex);
1927 	list_del_init(&q->all_q_node);
1928 	mutex_unlock(&all_q_mutex);
1929 }
1930 
1931 /* Basically redo blk_mq_init_queue with queue frozen */
1932 static void blk_mq_queue_reinit(struct request_queue *q)
1933 {
1934 	WARN_ON_ONCE(!q->mq_freeze_depth);
1935 
1936 	blk_mq_sysfs_unregister(q);
1937 
1938 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1939 
1940 	/*
1941 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1942 	 * we should change hctx numa_node according to new topology (this
1943 	 * involves free and re-allocate memory, worthy doing?)
1944 	 */
1945 
1946 	blk_mq_map_swqueue(q);
1947 
1948 	blk_mq_sysfs_register(q);
1949 }
1950 
1951 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1952 				      unsigned long action, void *hcpu)
1953 {
1954 	struct request_queue *q;
1955 
1956 	/*
1957 	 * Before new mappings are established, hotadded cpu might already
1958 	 * start handling requests. This doesn't break anything as we map
1959 	 * offline CPUs to first hardware queue. We will re-init the queue
1960 	 * below to get optimal settings.
1961 	 */
1962 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1963 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1964 		return NOTIFY_OK;
1965 
1966 	mutex_lock(&all_q_mutex);
1967 
1968 	/*
1969 	 * We need to freeze and reinit all existing queues.  Freezing
1970 	 * involves synchronous wait for an RCU grace period and doing it
1971 	 * one by one may take a long time.  Start freezing all queues in
1972 	 * one swoop and then wait for the completions so that freezing can
1973 	 * take place in parallel.
1974 	 */
1975 	list_for_each_entry(q, &all_q_list, all_q_node)
1976 		blk_mq_freeze_queue_start(q);
1977 	list_for_each_entry(q, &all_q_list, all_q_node)
1978 		blk_mq_freeze_queue_wait(q);
1979 
1980 	list_for_each_entry(q, &all_q_list, all_q_node)
1981 		blk_mq_queue_reinit(q);
1982 
1983 	list_for_each_entry(q, &all_q_list, all_q_node)
1984 		blk_mq_unfreeze_queue(q);
1985 
1986 	mutex_unlock(&all_q_mutex);
1987 	return NOTIFY_OK;
1988 }
1989 
1990 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1991 {
1992 	int i;
1993 
1994 	for (i = 0; i < set->nr_hw_queues; i++) {
1995 		set->tags[i] = blk_mq_init_rq_map(set, i);
1996 		if (!set->tags[i])
1997 			goto out_unwind;
1998 	}
1999 
2000 	return 0;
2001 
2002 out_unwind:
2003 	while (--i >= 0)
2004 		blk_mq_free_rq_map(set, set->tags[i], i);
2005 
2006 	return -ENOMEM;
2007 }
2008 
2009 /*
2010  * Allocate the request maps associated with this tag_set. Note that this
2011  * may reduce the depth asked for, if memory is tight. set->queue_depth
2012  * will be updated to reflect the allocated depth.
2013  */
2014 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2015 {
2016 	unsigned int depth;
2017 	int err;
2018 
2019 	depth = set->queue_depth;
2020 	do {
2021 		err = __blk_mq_alloc_rq_maps(set);
2022 		if (!err)
2023 			break;
2024 
2025 		set->queue_depth >>= 1;
2026 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2027 			err = -ENOMEM;
2028 			break;
2029 		}
2030 	} while (set->queue_depth);
2031 
2032 	if (!set->queue_depth || err) {
2033 		pr_err("blk-mq: failed to allocate request map\n");
2034 		return -ENOMEM;
2035 	}
2036 
2037 	if (depth != set->queue_depth)
2038 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2039 						depth, set->queue_depth);
2040 
2041 	return 0;
2042 }
2043 
2044 /*
2045  * Alloc a tag set to be associated with one or more request queues.
2046  * May fail with EINVAL for various error conditions. May adjust the
2047  * requested depth down, if if it too large. In that case, the set
2048  * value will be stored in set->queue_depth.
2049  */
2050 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2051 {
2052 	if (!set->nr_hw_queues)
2053 		return -EINVAL;
2054 	if (!set->queue_depth)
2055 		return -EINVAL;
2056 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2057 		return -EINVAL;
2058 
2059 	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2060 		return -EINVAL;
2061 
2062 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2063 		pr_info("blk-mq: reduced tag depth to %u\n",
2064 			BLK_MQ_MAX_DEPTH);
2065 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2066 	}
2067 
2068 	set->tags = kmalloc_node(set->nr_hw_queues *
2069 				 sizeof(struct blk_mq_tags *),
2070 				 GFP_KERNEL, set->numa_node);
2071 	if (!set->tags)
2072 		return -ENOMEM;
2073 
2074 	if (blk_mq_alloc_rq_maps(set))
2075 		goto enomem;
2076 
2077 	mutex_init(&set->tag_list_lock);
2078 	INIT_LIST_HEAD(&set->tag_list);
2079 
2080 	return 0;
2081 enomem:
2082 	kfree(set->tags);
2083 	set->tags = NULL;
2084 	return -ENOMEM;
2085 }
2086 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2087 
2088 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2089 {
2090 	int i;
2091 
2092 	for (i = 0; i < set->nr_hw_queues; i++) {
2093 		if (set->tags[i])
2094 			blk_mq_free_rq_map(set, set->tags[i], i);
2095 	}
2096 
2097 	kfree(set->tags);
2098 	set->tags = NULL;
2099 }
2100 EXPORT_SYMBOL(blk_mq_free_tag_set);
2101 
2102 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2103 {
2104 	struct blk_mq_tag_set *set = q->tag_set;
2105 	struct blk_mq_hw_ctx *hctx;
2106 	int i, ret;
2107 
2108 	if (!set || nr > set->queue_depth)
2109 		return -EINVAL;
2110 
2111 	ret = 0;
2112 	queue_for_each_hw_ctx(q, hctx, i) {
2113 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2114 		if (ret)
2115 			break;
2116 	}
2117 
2118 	if (!ret)
2119 		q->nr_requests = nr;
2120 
2121 	return ret;
2122 }
2123 
2124 void blk_mq_disable_hotplug(void)
2125 {
2126 	mutex_lock(&all_q_mutex);
2127 }
2128 
2129 void blk_mq_enable_hotplug(void)
2130 {
2131 	mutex_unlock(&all_q_mutex);
2132 }
2133 
2134 static int __init blk_mq_init(void)
2135 {
2136 	blk_mq_cpu_init();
2137 
2138 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2139 
2140 	return 0;
2141 }
2142 subsys_initcall(blk_mq_init);
2143