1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-wbt.h" 19 20 /* 21 * Mark a hardware queue as needing a restart. 22 */ 23 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 24 { 25 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 26 return; 27 28 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 29 } 30 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 31 32 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 33 { 34 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 35 36 /* 37 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 38 * in blk_mq_run_hw_queue(). Its pair is the barrier in 39 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 40 * meantime new request added to hctx->dispatch is missed to check in 41 * blk_mq_run_hw_queue(). 42 */ 43 smp_mb(); 44 45 blk_mq_run_hw_queue(hctx, true); 46 } 47 48 static int sched_rq_cmp(void *priv, const struct list_head *a, 49 const struct list_head *b) 50 { 51 struct request *rqa = container_of(a, struct request, queuelist); 52 struct request *rqb = container_of(b, struct request, queuelist); 53 54 return rqa->mq_hctx > rqb->mq_hctx; 55 } 56 57 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 58 { 59 struct blk_mq_hw_ctx *hctx = 60 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 61 struct request *rq; 62 LIST_HEAD(hctx_list); 63 unsigned int count = 0; 64 65 list_for_each_entry(rq, rq_list, queuelist) { 66 if (rq->mq_hctx != hctx) { 67 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 68 goto dispatch; 69 } 70 count++; 71 } 72 list_splice_tail_init(rq_list, &hctx_list); 73 74 dispatch: 75 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 76 } 77 78 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 79 80 /* 81 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 82 * its queue by itself in its completion handler, so we don't need to 83 * restart queue if .get_budget() fails to get the budget. 84 * 85 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 86 * be run again. This is necessary to avoid starving flushes. 87 */ 88 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 89 { 90 struct request_queue *q = hctx->queue; 91 struct elevator_queue *e = q->elevator; 92 bool multi_hctxs = false, run_queue = false; 93 bool dispatched = false, busy = false; 94 unsigned int max_dispatch; 95 LIST_HEAD(rq_list); 96 int count = 0; 97 98 if (hctx->dispatch_busy) 99 max_dispatch = 1; 100 else 101 max_dispatch = hctx->queue->nr_requests; 102 103 do { 104 struct request *rq; 105 int budget_token; 106 107 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 108 break; 109 110 if (!list_empty_careful(&hctx->dispatch)) { 111 busy = true; 112 break; 113 } 114 115 budget_token = blk_mq_get_dispatch_budget(q); 116 if (budget_token < 0) 117 break; 118 119 rq = e->type->ops.dispatch_request(hctx); 120 if (!rq) { 121 blk_mq_put_dispatch_budget(q, budget_token); 122 /* 123 * We're releasing without dispatching. Holding the 124 * budget could have blocked any "hctx"s with the 125 * same queue and if we didn't dispatch then there's 126 * no guarantee anyone will kick the queue. Kick it 127 * ourselves. 128 */ 129 run_queue = true; 130 break; 131 } 132 133 blk_mq_set_rq_budget_token(rq, budget_token); 134 135 /* 136 * Now this rq owns the budget which has to be released 137 * if this rq won't be queued to driver via .queue_rq() 138 * in blk_mq_dispatch_rq_list(). 139 */ 140 list_add_tail(&rq->queuelist, &rq_list); 141 count++; 142 if (rq->mq_hctx != hctx) 143 multi_hctxs = true; 144 145 /* 146 * If we cannot get tag for the request, stop dequeueing 147 * requests from the IO scheduler. We are unlikely to be able 148 * to submit them anyway and it creates false impression for 149 * scheduling heuristics that the device can take more IO. 150 */ 151 if (!blk_mq_get_driver_tag(rq)) 152 break; 153 } while (count < max_dispatch); 154 155 if (!count) { 156 if (run_queue) 157 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 158 } else if (multi_hctxs) { 159 /* 160 * Requests from different hctx may be dequeued from some 161 * schedulers, such as bfq and deadline. 162 * 163 * Sort the requests in the list according to their hctx, 164 * dispatch batching requests from same hctx at a time. 165 */ 166 list_sort(NULL, &rq_list, sched_rq_cmp); 167 do { 168 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 169 } while (!list_empty(&rq_list)); 170 } else { 171 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 172 } 173 174 if (busy) 175 return -EAGAIN; 176 return !!dispatched; 177 } 178 179 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 180 { 181 unsigned long end = jiffies + HZ; 182 int ret; 183 184 do { 185 ret = __blk_mq_do_dispatch_sched(hctx); 186 if (ret != 1) 187 break; 188 if (need_resched() || time_is_before_jiffies(end)) { 189 blk_mq_delay_run_hw_queue(hctx, 0); 190 break; 191 } 192 } while (1); 193 194 return ret; 195 } 196 197 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 198 struct blk_mq_ctx *ctx) 199 { 200 unsigned short idx = ctx->index_hw[hctx->type]; 201 202 if (++idx == hctx->nr_ctx) 203 idx = 0; 204 205 return hctx->ctxs[idx]; 206 } 207 208 /* 209 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 210 * its queue by itself in its completion handler, so we don't need to 211 * restart queue if .get_budget() fails to get the budget. 212 * 213 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 214 * be run again. This is necessary to avoid starving flushes. 215 */ 216 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 217 { 218 struct request_queue *q = hctx->queue; 219 LIST_HEAD(rq_list); 220 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 221 int ret = 0; 222 struct request *rq; 223 224 do { 225 int budget_token; 226 227 if (!list_empty_careful(&hctx->dispatch)) { 228 ret = -EAGAIN; 229 break; 230 } 231 232 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 233 break; 234 235 budget_token = blk_mq_get_dispatch_budget(q); 236 if (budget_token < 0) 237 break; 238 239 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 240 if (!rq) { 241 blk_mq_put_dispatch_budget(q, budget_token); 242 /* 243 * We're releasing without dispatching. Holding the 244 * budget could have blocked any "hctx"s with the 245 * same queue and if we didn't dispatch then there's 246 * no guarantee anyone will kick the queue. Kick it 247 * ourselves. 248 */ 249 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 250 break; 251 } 252 253 blk_mq_set_rq_budget_token(rq, budget_token); 254 255 /* 256 * Now this rq owns the budget which has to be released 257 * if this rq won't be queued to driver via .queue_rq() 258 * in blk_mq_dispatch_rq_list(). 259 */ 260 list_add(&rq->queuelist, &rq_list); 261 262 /* round robin for fair dispatch */ 263 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 264 265 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 266 267 WRITE_ONCE(hctx->dispatch_from, ctx); 268 return ret; 269 } 270 271 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 272 { 273 struct request_queue *q = hctx->queue; 274 const bool has_sched = q->elevator; 275 int ret = 0; 276 LIST_HEAD(rq_list); 277 278 /* 279 * If we have previous entries on our dispatch list, grab them first for 280 * more fair dispatch. 281 */ 282 if (!list_empty_careful(&hctx->dispatch)) { 283 spin_lock(&hctx->lock); 284 if (!list_empty(&hctx->dispatch)) 285 list_splice_init(&hctx->dispatch, &rq_list); 286 spin_unlock(&hctx->lock); 287 } 288 289 /* 290 * Only ask the scheduler for requests, if we didn't have residual 291 * requests from the dispatch list. This is to avoid the case where 292 * we only ever dispatch a fraction of the requests available because 293 * of low device queue depth. Once we pull requests out of the IO 294 * scheduler, we can no longer merge or sort them. So it's best to 295 * leave them there for as long as we can. Mark the hw queue as 296 * needing a restart in that case. 297 * 298 * We want to dispatch from the scheduler if there was nothing 299 * on the dispatch list or we were able to dispatch from the 300 * dispatch list. 301 */ 302 if (!list_empty(&rq_list)) { 303 blk_mq_sched_mark_restart_hctx(hctx); 304 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 305 if (has_sched) 306 ret = blk_mq_do_dispatch_sched(hctx); 307 else 308 ret = blk_mq_do_dispatch_ctx(hctx); 309 } 310 } else if (has_sched) { 311 ret = blk_mq_do_dispatch_sched(hctx); 312 } else if (hctx->dispatch_busy) { 313 /* dequeue request one by one from sw queue if queue is busy */ 314 ret = blk_mq_do_dispatch_ctx(hctx); 315 } else { 316 blk_mq_flush_busy_ctxs(hctx, &rq_list); 317 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 318 } 319 320 return ret; 321 } 322 323 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 324 { 325 struct request_queue *q = hctx->queue; 326 327 /* RCU or SRCU read lock is needed before checking quiesced flag */ 328 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 329 return; 330 331 hctx->run++; 332 333 /* 334 * A return of -EAGAIN is an indication that hctx->dispatch is not 335 * empty and we must run again in order to avoid starving flushes. 336 */ 337 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 338 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 339 blk_mq_run_hw_queue(hctx, true); 340 } 341 } 342 343 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 344 unsigned int nr_segs) 345 { 346 struct elevator_queue *e = q->elevator; 347 struct blk_mq_ctx *ctx; 348 struct blk_mq_hw_ctx *hctx; 349 bool ret = false; 350 enum hctx_type type; 351 352 if (e && e->type->ops.bio_merge) { 353 ret = e->type->ops.bio_merge(q, bio, nr_segs); 354 goto out_put; 355 } 356 357 ctx = blk_mq_get_ctx(q); 358 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 359 type = hctx->type; 360 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 361 list_empty_careful(&ctx->rq_lists[type])) 362 goto out_put; 363 364 /* default per sw-queue merge */ 365 spin_lock(&ctx->lock); 366 /* 367 * Reverse check our software queue for entries that we could 368 * potentially merge with. Currently includes a hand-wavy stop 369 * count of 8, to not spend too much time checking for merges. 370 */ 371 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 372 ret = true; 373 374 spin_unlock(&ctx->lock); 375 out_put: 376 return ret; 377 } 378 379 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 380 struct list_head *free) 381 { 382 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 383 } 384 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 385 386 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 387 struct request *rq) 388 { 389 /* 390 * dispatch flush and passthrough rq directly 391 * 392 * passthrough request has to be added to hctx->dispatch directly. 393 * For some reason, device may be in one situation which can't 394 * handle FS request, so STS_RESOURCE is always returned and the 395 * FS request will be added to hctx->dispatch. However passthrough 396 * request may be required at that time for fixing the problem. If 397 * passthrough request is added to scheduler queue, there isn't any 398 * chance to dispatch it given we prioritize requests in hctx->dispatch. 399 */ 400 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 401 return true; 402 403 return false; 404 } 405 406 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 407 bool run_queue, bool async) 408 { 409 struct request_queue *q = rq->q; 410 struct elevator_queue *e = q->elevator; 411 struct blk_mq_ctx *ctx = rq->mq_ctx; 412 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 413 414 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); 415 416 if (blk_mq_sched_bypass_insert(hctx, rq)) { 417 /* 418 * Firstly normal IO request is inserted to scheduler queue or 419 * sw queue, meantime we add flush request to dispatch queue( 420 * hctx->dispatch) directly and there is at most one in-flight 421 * flush request for each hw queue, so it doesn't matter to add 422 * flush request to tail or front of the dispatch queue. 423 * 424 * Secondly in case of NCQ, flush request belongs to non-NCQ 425 * command, and queueing it will fail when there is any 426 * in-flight normal IO request(NCQ command). When adding flush 427 * rq to the front of hctx->dispatch, it is easier to introduce 428 * extra time to flush rq's latency because of S_SCHED_RESTART 429 * compared with adding to the tail of dispatch queue, then 430 * chance of flush merge is increased, and less flush requests 431 * will be issued to controller. It is observed that ~10% time 432 * is saved in blktests block/004 on disk attached to AHCI/NCQ 433 * drive when adding flush rq to the front of hctx->dispatch. 434 * 435 * Simply queue flush rq to the front of hctx->dispatch so that 436 * intensive flush workloads can benefit in case of NCQ HW. 437 */ 438 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 439 blk_mq_request_bypass_insert(rq, at_head, false); 440 goto run; 441 } 442 443 if (e) { 444 LIST_HEAD(list); 445 446 list_add(&rq->queuelist, &list); 447 e->type->ops.insert_requests(hctx, &list, at_head); 448 } else { 449 spin_lock(&ctx->lock); 450 __blk_mq_insert_request(hctx, rq, at_head); 451 spin_unlock(&ctx->lock); 452 } 453 454 run: 455 if (run_queue) 456 blk_mq_run_hw_queue(hctx, async); 457 } 458 459 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 460 struct blk_mq_ctx *ctx, 461 struct list_head *list, bool run_queue_async) 462 { 463 struct elevator_queue *e; 464 struct request_queue *q = hctx->queue; 465 466 /* 467 * blk_mq_sched_insert_requests() is called from flush plug 468 * context only, and hold one usage counter to prevent queue 469 * from being released. 470 */ 471 percpu_ref_get(&q->q_usage_counter); 472 473 e = hctx->queue->elevator; 474 if (e) { 475 e->type->ops.insert_requests(hctx, list, false); 476 } else { 477 /* 478 * try to issue requests directly if the hw queue isn't 479 * busy in case of 'none' scheduler, and this way may save 480 * us one extra enqueue & dequeue to sw queue. 481 */ 482 if (!hctx->dispatch_busy && !run_queue_async) { 483 blk_mq_run_dispatch_ops(hctx->queue, 484 blk_mq_try_issue_list_directly(hctx, list)); 485 if (list_empty(list)) 486 goto out; 487 } 488 blk_mq_insert_requests(hctx, ctx, list); 489 } 490 491 blk_mq_run_hw_queue(hctx, run_queue_async); 492 out: 493 percpu_ref_put(&q->q_usage_counter); 494 } 495 496 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q, 497 struct blk_mq_hw_ctx *hctx, 498 unsigned int hctx_idx) 499 { 500 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 501 hctx->sched_tags = q->sched_shared_tags; 502 return 0; 503 } 504 505 hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx, 506 q->nr_requests); 507 508 if (!hctx->sched_tags) 509 return -ENOMEM; 510 return 0; 511 } 512 513 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue) 514 { 515 blk_mq_free_rq_map(queue->sched_shared_tags); 516 queue->sched_shared_tags = NULL; 517 } 518 519 /* called in queue's release handler, tagset has gone away */ 520 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 521 { 522 struct blk_mq_hw_ctx *hctx; 523 unsigned long i; 524 525 queue_for_each_hw_ctx(q, hctx, i) { 526 if (hctx->sched_tags) { 527 if (!blk_mq_is_shared_tags(flags)) 528 blk_mq_free_rq_map(hctx->sched_tags); 529 hctx->sched_tags = NULL; 530 } 531 } 532 533 if (blk_mq_is_shared_tags(flags)) 534 blk_mq_exit_sched_shared_tags(q); 535 } 536 537 static int blk_mq_init_sched_shared_tags(struct request_queue *queue) 538 { 539 struct blk_mq_tag_set *set = queue->tag_set; 540 541 /* 542 * Set initial depth at max so that we don't need to reallocate for 543 * updating nr_requests. 544 */ 545 queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set, 546 BLK_MQ_NO_HCTX_IDX, 547 MAX_SCHED_RQ); 548 if (!queue->sched_shared_tags) 549 return -ENOMEM; 550 551 blk_mq_tag_update_sched_shared_tags(queue); 552 553 return 0; 554 } 555 556 /* caller must have a reference to @e, will grab another one if successful */ 557 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 558 { 559 unsigned int flags = q->tag_set->flags; 560 struct blk_mq_hw_ctx *hctx; 561 struct elevator_queue *eq; 562 unsigned long i; 563 int ret; 564 565 /* 566 * Default to double of smaller one between hw queue_depth and 128, 567 * since we don't split into sync/async like the old code did. 568 * Additionally, this is a per-hw queue depth. 569 */ 570 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 571 BLKDEV_DEFAULT_RQ); 572 573 if (blk_mq_is_shared_tags(flags)) { 574 ret = blk_mq_init_sched_shared_tags(q); 575 if (ret) 576 return ret; 577 } 578 579 queue_for_each_hw_ctx(q, hctx, i) { 580 ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i); 581 if (ret) 582 goto err_free_map_and_rqs; 583 } 584 585 ret = e->ops.init_sched(q, e); 586 if (ret) 587 goto err_free_map_and_rqs; 588 589 mutex_lock(&q->debugfs_mutex); 590 blk_mq_debugfs_register_sched(q); 591 mutex_unlock(&q->debugfs_mutex); 592 593 queue_for_each_hw_ctx(q, hctx, i) { 594 if (e->ops.init_hctx) { 595 ret = e->ops.init_hctx(hctx, i); 596 if (ret) { 597 eq = q->elevator; 598 blk_mq_sched_free_rqs(q); 599 blk_mq_exit_sched(q, eq); 600 kobject_put(&eq->kobj); 601 return ret; 602 } 603 } 604 mutex_lock(&q->debugfs_mutex); 605 blk_mq_debugfs_register_sched_hctx(q, hctx); 606 mutex_unlock(&q->debugfs_mutex); 607 } 608 609 return 0; 610 611 err_free_map_and_rqs: 612 blk_mq_sched_free_rqs(q); 613 blk_mq_sched_tags_teardown(q, flags); 614 615 q->elevator = NULL; 616 return ret; 617 } 618 619 /* 620 * called in either blk_queue_cleanup or elevator_switch, tagset 621 * is required for freeing requests 622 */ 623 void blk_mq_sched_free_rqs(struct request_queue *q) 624 { 625 struct blk_mq_hw_ctx *hctx; 626 unsigned long i; 627 628 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 629 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 630 BLK_MQ_NO_HCTX_IDX); 631 } else { 632 queue_for_each_hw_ctx(q, hctx, i) { 633 if (hctx->sched_tags) 634 blk_mq_free_rqs(q->tag_set, 635 hctx->sched_tags, i); 636 } 637 } 638 } 639 640 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 641 { 642 struct blk_mq_hw_ctx *hctx; 643 unsigned long i; 644 unsigned int flags = 0; 645 646 queue_for_each_hw_ctx(q, hctx, i) { 647 mutex_lock(&q->debugfs_mutex); 648 blk_mq_debugfs_unregister_sched_hctx(hctx); 649 mutex_unlock(&q->debugfs_mutex); 650 651 if (e->type->ops.exit_hctx && hctx->sched_data) { 652 e->type->ops.exit_hctx(hctx, i); 653 hctx->sched_data = NULL; 654 } 655 flags = hctx->flags; 656 } 657 658 mutex_lock(&q->debugfs_mutex); 659 blk_mq_debugfs_unregister_sched(q); 660 mutex_unlock(&q->debugfs_mutex); 661 662 if (e->type->ops.exit_sched) 663 e->type->ops.exit_sched(e); 664 blk_mq_sched_tags_teardown(q, flags); 665 q->elevator = NULL; 666 } 667