1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/list_sort.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-debugfs.h" 16 #include "blk-mq-sched.h" 17 #include "blk-wbt.h" 18 19 /* 20 * Mark a hardware queue as needing a restart. 21 */ 22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 23 { 24 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 25 return; 26 27 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 28 } 29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 30 31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 32 { 33 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 34 35 /* 36 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 37 * in blk_mq_run_hw_queue(). Its pair is the barrier in 38 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 39 * meantime new request added to hctx->dispatch is missed to check in 40 * blk_mq_run_hw_queue(). 41 */ 42 smp_mb(); 43 44 blk_mq_run_hw_queue(hctx, true); 45 } 46 47 static int sched_rq_cmp(void *priv, const struct list_head *a, 48 const struct list_head *b) 49 { 50 struct request *rqa = container_of(a, struct request, queuelist); 51 struct request *rqb = container_of(b, struct request, queuelist); 52 53 return rqa->mq_hctx > rqb->mq_hctx; 54 } 55 56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 57 { 58 struct blk_mq_hw_ctx *hctx = 59 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 60 struct request *rq; 61 LIST_HEAD(hctx_list); 62 unsigned int count = 0; 63 64 list_for_each_entry(rq, rq_list, queuelist) { 65 if (rq->mq_hctx != hctx) { 66 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 67 goto dispatch; 68 } 69 count++; 70 } 71 list_splice_tail_init(rq_list, &hctx_list); 72 73 dispatch: 74 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 75 } 76 77 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 78 79 /* 80 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 81 * its queue by itself in its completion handler, so we don't need to 82 * restart queue if .get_budget() fails to get the budget. 83 * 84 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 85 * be run again. This is necessary to avoid starving flushes. 86 */ 87 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 88 { 89 struct request_queue *q = hctx->queue; 90 struct elevator_queue *e = q->elevator; 91 bool multi_hctxs = false, run_queue = false; 92 bool dispatched = false, busy = false; 93 unsigned int max_dispatch; 94 LIST_HEAD(rq_list); 95 int count = 0; 96 97 if (hctx->dispatch_busy) 98 max_dispatch = 1; 99 else 100 max_dispatch = hctx->queue->nr_requests; 101 102 do { 103 struct request *rq; 104 int budget_token; 105 106 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 107 break; 108 109 if (!list_empty_careful(&hctx->dispatch)) { 110 busy = true; 111 break; 112 } 113 114 budget_token = blk_mq_get_dispatch_budget(q); 115 if (budget_token < 0) 116 break; 117 118 rq = e->type->ops.dispatch_request(hctx); 119 if (!rq) { 120 blk_mq_put_dispatch_budget(q, budget_token); 121 /* 122 * We're releasing without dispatching. Holding the 123 * budget could have blocked any "hctx"s with the 124 * same queue and if we didn't dispatch then there's 125 * no guarantee anyone will kick the queue. Kick it 126 * ourselves. 127 */ 128 run_queue = true; 129 break; 130 } 131 132 blk_mq_set_rq_budget_token(rq, budget_token); 133 134 /* 135 * Now this rq owns the budget which has to be released 136 * if this rq won't be queued to driver via .queue_rq() 137 * in blk_mq_dispatch_rq_list(). 138 */ 139 list_add_tail(&rq->queuelist, &rq_list); 140 count++; 141 if (rq->mq_hctx != hctx) 142 multi_hctxs = true; 143 144 /* 145 * If we cannot get tag for the request, stop dequeueing 146 * requests from the IO scheduler. We are unlikely to be able 147 * to submit them anyway and it creates false impression for 148 * scheduling heuristics that the device can take more IO. 149 */ 150 if (!blk_mq_get_driver_tag(rq)) 151 break; 152 } while (count < max_dispatch); 153 154 if (!count) { 155 if (run_queue) 156 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 157 } else if (multi_hctxs) { 158 /* 159 * Requests from different hctx may be dequeued from some 160 * schedulers, such as bfq and deadline. 161 * 162 * Sort the requests in the list according to their hctx, 163 * dispatch batching requests from same hctx at a time. 164 */ 165 list_sort(NULL, &rq_list, sched_rq_cmp); 166 do { 167 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 168 } while (!list_empty(&rq_list)); 169 } else { 170 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 171 } 172 173 if (busy) 174 return -EAGAIN; 175 return !!dispatched; 176 } 177 178 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 179 { 180 unsigned long end = jiffies + HZ; 181 int ret; 182 183 do { 184 ret = __blk_mq_do_dispatch_sched(hctx); 185 if (ret != 1) 186 break; 187 if (need_resched() || time_is_before_jiffies(end)) { 188 blk_mq_delay_run_hw_queue(hctx, 0); 189 break; 190 } 191 } while (1); 192 193 return ret; 194 } 195 196 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 197 struct blk_mq_ctx *ctx) 198 { 199 unsigned short idx = ctx->index_hw[hctx->type]; 200 201 if (++idx == hctx->nr_ctx) 202 idx = 0; 203 204 return hctx->ctxs[idx]; 205 } 206 207 /* 208 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 209 * its queue by itself in its completion handler, so we don't need to 210 * restart queue if .get_budget() fails to get the budget. 211 * 212 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 213 * be run again. This is necessary to avoid starving flushes. 214 */ 215 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 216 { 217 struct request_queue *q = hctx->queue; 218 LIST_HEAD(rq_list); 219 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 220 int ret = 0; 221 struct request *rq; 222 223 do { 224 int budget_token; 225 226 if (!list_empty_careful(&hctx->dispatch)) { 227 ret = -EAGAIN; 228 break; 229 } 230 231 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 232 break; 233 234 budget_token = blk_mq_get_dispatch_budget(q); 235 if (budget_token < 0) 236 break; 237 238 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 239 if (!rq) { 240 blk_mq_put_dispatch_budget(q, budget_token); 241 /* 242 * We're releasing without dispatching. Holding the 243 * budget could have blocked any "hctx"s with the 244 * same queue and if we didn't dispatch then there's 245 * no guarantee anyone will kick the queue. Kick it 246 * ourselves. 247 */ 248 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 249 break; 250 } 251 252 blk_mq_set_rq_budget_token(rq, budget_token); 253 254 /* 255 * Now this rq owns the budget which has to be released 256 * if this rq won't be queued to driver via .queue_rq() 257 * in blk_mq_dispatch_rq_list(). 258 */ 259 list_add(&rq->queuelist, &rq_list); 260 261 /* round robin for fair dispatch */ 262 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 263 264 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 265 266 WRITE_ONCE(hctx->dispatch_from, ctx); 267 return ret; 268 } 269 270 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 271 { 272 struct request_queue *q = hctx->queue; 273 const bool has_sched = q->elevator; 274 int ret = 0; 275 LIST_HEAD(rq_list); 276 277 /* 278 * If we have previous entries on our dispatch list, grab them first for 279 * more fair dispatch. 280 */ 281 if (!list_empty_careful(&hctx->dispatch)) { 282 spin_lock(&hctx->lock); 283 if (!list_empty(&hctx->dispatch)) 284 list_splice_init(&hctx->dispatch, &rq_list); 285 spin_unlock(&hctx->lock); 286 } 287 288 /* 289 * Only ask the scheduler for requests, if we didn't have residual 290 * requests from the dispatch list. This is to avoid the case where 291 * we only ever dispatch a fraction of the requests available because 292 * of low device queue depth. Once we pull requests out of the IO 293 * scheduler, we can no longer merge or sort them. So it's best to 294 * leave them there for as long as we can. Mark the hw queue as 295 * needing a restart in that case. 296 * 297 * We want to dispatch from the scheduler if there was nothing 298 * on the dispatch list or we were able to dispatch from the 299 * dispatch list. 300 */ 301 if (!list_empty(&rq_list)) { 302 blk_mq_sched_mark_restart_hctx(hctx); 303 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 304 if (has_sched) 305 ret = blk_mq_do_dispatch_sched(hctx); 306 else 307 ret = blk_mq_do_dispatch_ctx(hctx); 308 } 309 } else if (has_sched) { 310 ret = blk_mq_do_dispatch_sched(hctx); 311 } else if (hctx->dispatch_busy) { 312 /* dequeue request one by one from sw queue if queue is busy */ 313 ret = blk_mq_do_dispatch_ctx(hctx); 314 } else { 315 blk_mq_flush_busy_ctxs(hctx, &rq_list); 316 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 317 } 318 319 return ret; 320 } 321 322 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 323 { 324 struct request_queue *q = hctx->queue; 325 326 /* RCU or SRCU read lock is needed before checking quiesced flag */ 327 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 328 return; 329 330 hctx->run++; 331 332 /* 333 * A return of -EAGAIN is an indication that hctx->dispatch is not 334 * empty and we must run again in order to avoid starving flushes. 335 */ 336 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 337 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 338 blk_mq_run_hw_queue(hctx, true); 339 } 340 } 341 342 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 343 unsigned int nr_segs) 344 { 345 struct elevator_queue *e = q->elevator; 346 struct blk_mq_ctx *ctx; 347 struct blk_mq_hw_ctx *hctx; 348 bool ret = false; 349 enum hctx_type type; 350 351 if (e && e->type->ops.bio_merge) { 352 ret = e->type->ops.bio_merge(q, bio, nr_segs); 353 goto out_put; 354 } 355 356 ctx = blk_mq_get_ctx(q); 357 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 358 type = hctx->type; 359 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 360 list_empty_careful(&ctx->rq_lists[type])) 361 goto out_put; 362 363 /* default per sw-queue merge */ 364 spin_lock(&ctx->lock); 365 /* 366 * Reverse check our software queue for entries that we could 367 * potentially merge with. Currently includes a hand-wavy stop 368 * count of 8, to not spend too much time checking for merges. 369 */ 370 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 371 ret = true; 372 373 spin_unlock(&ctx->lock); 374 out_put: 375 return ret; 376 } 377 378 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 379 struct list_head *free) 380 { 381 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 382 } 383 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 384 385 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 386 struct request *rq) 387 { 388 /* 389 * dispatch flush and passthrough rq directly 390 * 391 * passthrough request has to be added to hctx->dispatch directly. 392 * For some reason, device may be in one situation which can't 393 * handle FS request, so STS_RESOURCE is always returned and the 394 * FS request will be added to hctx->dispatch. However passthrough 395 * request may be required at that time for fixing the problem. If 396 * passthrough request is added to scheduler queue, there isn't any 397 * chance to dispatch it given we prioritize requests in hctx->dispatch. 398 */ 399 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 400 return true; 401 402 return false; 403 } 404 405 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 406 bool run_queue, bool async) 407 { 408 struct request_queue *q = rq->q; 409 struct elevator_queue *e = q->elevator; 410 struct blk_mq_ctx *ctx = rq->mq_ctx; 411 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 412 413 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); 414 415 if (blk_mq_sched_bypass_insert(hctx, rq)) { 416 /* 417 * Firstly normal IO request is inserted to scheduler queue or 418 * sw queue, meantime we add flush request to dispatch queue( 419 * hctx->dispatch) directly and there is at most one in-flight 420 * flush request for each hw queue, so it doesn't matter to add 421 * flush request to tail or front of the dispatch queue. 422 * 423 * Secondly in case of NCQ, flush request belongs to non-NCQ 424 * command, and queueing it will fail when there is any 425 * in-flight normal IO request(NCQ command). When adding flush 426 * rq to the front of hctx->dispatch, it is easier to introduce 427 * extra time to flush rq's latency because of S_SCHED_RESTART 428 * compared with adding to the tail of dispatch queue, then 429 * chance of flush merge is increased, and less flush requests 430 * will be issued to controller. It is observed that ~10% time 431 * is saved in blktests block/004 on disk attached to AHCI/NCQ 432 * drive when adding flush rq to the front of hctx->dispatch. 433 * 434 * Simply queue flush rq to the front of hctx->dispatch so that 435 * intensive flush workloads can benefit in case of NCQ HW. 436 */ 437 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 438 blk_mq_request_bypass_insert(rq, at_head, false); 439 goto run; 440 } 441 442 if (e) { 443 LIST_HEAD(list); 444 445 list_add(&rq->queuelist, &list); 446 e->type->ops.insert_requests(hctx, &list, at_head); 447 } else { 448 spin_lock(&ctx->lock); 449 __blk_mq_insert_request(hctx, rq, at_head); 450 spin_unlock(&ctx->lock); 451 } 452 453 run: 454 if (run_queue) 455 blk_mq_run_hw_queue(hctx, async); 456 } 457 458 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 459 struct blk_mq_ctx *ctx, 460 struct list_head *list, bool run_queue_async) 461 { 462 struct elevator_queue *e; 463 struct request_queue *q = hctx->queue; 464 465 /* 466 * blk_mq_sched_insert_requests() is called from flush plug 467 * context only, and hold one usage counter to prevent queue 468 * from being released. 469 */ 470 percpu_ref_get(&q->q_usage_counter); 471 472 e = hctx->queue->elevator; 473 if (e) { 474 e->type->ops.insert_requests(hctx, list, false); 475 blk_mq_run_hw_queue(hctx, run_queue_async); 476 } else { 477 blk_mq_insert_requests(hctx, ctx, list, run_queue_async); 478 } 479 percpu_ref_put(&q->q_usage_counter); 480 } 481 482 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q, 483 struct blk_mq_hw_ctx *hctx, 484 unsigned int hctx_idx) 485 { 486 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 487 hctx->sched_tags = q->sched_shared_tags; 488 return 0; 489 } 490 491 hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx, 492 q->nr_requests); 493 494 if (!hctx->sched_tags) 495 return -ENOMEM; 496 return 0; 497 } 498 499 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue) 500 { 501 blk_mq_free_rq_map(queue->sched_shared_tags); 502 queue->sched_shared_tags = NULL; 503 } 504 505 /* called in queue's release handler, tagset has gone away */ 506 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 507 { 508 struct blk_mq_hw_ctx *hctx; 509 unsigned long i; 510 511 queue_for_each_hw_ctx(q, hctx, i) { 512 if (hctx->sched_tags) { 513 if (!blk_mq_is_shared_tags(flags)) 514 blk_mq_free_rq_map(hctx->sched_tags); 515 hctx->sched_tags = NULL; 516 } 517 } 518 519 if (blk_mq_is_shared_tags(flags)) 520 blk_mq_exit_sched_shared_tags(q); 521 } 522 523 static int blk_mq_init_sched_shared_tags(struct request_queue *queue) 524 { 525 struct blk_mq_tag_set *set = queue->tag_set; 526 527 /* 528 * Set initial depth at max so that we don't need to reallocate for 529 * updating nr_requests. 530 */ 531 queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set, 532 BLK_MQ_NO_HCTX_IDX, 533 MAX_SCHED_RQ); 534 if (!queue->sched_shared_tags) 535 return -ENOMEM; 536 537 blk_mq_tag_update_sched_shared_tags(queue); 538 539 return 0; 540 } 541 542 /* caller must have a reference to @e, will grab another one if successful */ 543 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 544 { 545 unsigned int flags = q->tag_set->flags; 546 struct blk_mq_hw_ctx *hctx; 547 struct elevator_queue *eq; 548 unsigned long i; 549 int ret; 550 551 /* 552 * Default to double of smaller one between hw queue_depth and 128, 553 * since we don't split into sync/async like the old code did. 554 * Additionally, this is a per-hw queue depth. 555 */ 556 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 557 BLKDEV_DEFAULT_RQ); 558 559 if (blk_mq_is_shared_tags(flags)) { 560 ret = blk_mq_init_sched_shared_tags(q); 561 if (ret) 562 return ret; 563 } 564 565 queue_for_each_hw_ctx(q, hctx, i) { 566 ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i); 567 if (ret) 568 goto err_free_map_and_rqs; 569 } 570 571 ret = e->ops.init_sched(q, e); 572 if (ret) 573 goto err_free_map_and_rqs; 574 575 mutex_lock(&q->debugfs_mutex); 576 blk_mq_debugfs_register_sched(q); 577 mutex_unlock(&q->debugfs_mutex); 578 579 queue_for_each_hw_ctx(q, hctx, i) { 580 if (e->ops.init_hctx) { 581 ret = e->ops.init_hctx(hctx, i); 582 if (ret) { 583 eq = q->elevator; 584 blk_mq_sched_free_rqs(q); 585 blk_mq_exit_sched(q, eq); 586 kobject_put(&eq->kobj); 587 return ret; 588 } 589 } 590 mutex_lock(&q->debugfs_mutex); 591 blk_mq_debugfs_register_sched_hctx(q, hctx); 592 mutex_unlock(&q->debugfs_mutex); 593 } 594 595 return 0; 596 597 err_free_map_and_rqs: 598 blk_mq_sched_free_rqs(q); 599 blk_mq_sched_tags_teardown(q, flags); 600 601 q->elevator = NULL; 602 return ret; 603 } 604 605 /* 606 * called in either blk_queue_cleanup or elevator_switch, tagset 607 * is required for freeing requests 608 */ 609 void blk_mq_sched_free_rqs(struct request_queue *q) 610 { 611 struct blk_mq_hw_ctx *hctx; 612 unsigned long i; 613 614 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 615 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 616 BLK_MQ_NO_HCTX_IDX); 617 } else { 618 queue_for_each_hw_ctx(q, hctx, i) { 619 if (hctx->sched_tags) 620 blk_mq_free_rqs(q->tag_set, 621 hctx->sched_tags, i); 622 } 623 } 624 } 625 626 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 627 { 628 struct blk_mq_hw_ctx *hctx; 629 unsigned long i; 630 unsigned int flags = 0; 631 632 queue_for_each_hw_ctx(q, hctx, i) { 633 mutex_lock(&q->debugfs_mutex); 634 blk_mq_debugfs_unregister_sched_hctx(hctx); 635 mutex_unlock(&q->debugfs_mutex); 636 637 if (e->type->ops.exit_hctx && hctx->sched_data) { 638 e->type->ops.exit_hctx(hctx, i); 639 hctx->sched_data = NULL; 640 } 641 flags = hctx->flags; 642 } 643 644 mutex_lock(&q->debugfs_mutex); 645 blk_mq_debugfs_unregister_sched(q); 646 mutex_unlock(&q->debugfs_mutex); 647 648 if (e->type->ops.exit_sched) 649 e->type->ops.exit_sched(e); 650 blk_mq_sched_tags_teardown(q, flags); 651 q->elevator = NULL; 652 } 653