1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 15 /* 16 * Check if the two bvecs from two bios can be merged to one segment. If yes, 17 * no need to check gap between the two bios since the 1st bio and the 1st bvec 18 * in the 2nd bio can be handled in one segment. 19 */ 20 static inline bool bios_segs_mergeable(struct request_queue *q, 21 struct bio *prev, struct bio_vec *prev_last_bv, 22 struct bio_vec *next_first_bv) 23 { 24 if (!biovec_phys_mergeable(q, prev_last_bv, next_first_bv)) 25 return false; 26 if (prev->bi_seg_back_size + next_first_bv->bv_len > 27 queue_max_segment_size(q)) 28 return false; 29 return true; 30 } 31 32 static inline bool bio_will_gap(struct request_queue *q, 33 struct request *prev_rq, struct bio *prev, struct bio *next) 34 { 35 struct bio_vec pb, nb; 36 37 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 38 return false; 39 40 /* 41 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 42 * is quite difficult to respect the sg gap limit. We work hard to 43 * merge a huge number of small single bios in case of mkfs. 44 */ 45 if (prev_rq) 46 bio_get_first_bvec(prev_rq->bio, &pb); 47 else 48 bio_get_first_bvec(prev, &pb); 49 if (pb.bv_offset) 50 return true; 51 52 /* 53 * We don't need to worry about the situation that the merged segment 54 * ends in unaligned virt boundary: 55 * 56 * - if 'pb' ends aligned, the merged segment ends aligned 57 * - if 'pb' ends unaligned, the next bio must include 58 * one single bvec of 'nb', otherwise the 'nb' can't 59 * merge with 'pb' 60 */ 61 bio_get_last_bvec(prev, &pb); 62 bio_get_first_bvec(next, &nb); 63 if (bios_segs_mergeable(q, prev, &pb, &nb)) 64 return false; 65 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 66 } 67 68 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 69 { 70 return bio_will_gap(req->q, req, req->biotail, bio); 71 } 72 73 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 74 { 75 return bio_will_gap(req->q, NULL, bio, req->bio); 76 } 77 78 static struct bio *blk_bio_discard_split(struct request_queue *q, 79 struct bio *bio, 80 struct bio_set *bs, 81 unsigned *nsegs) 82 { 83 unsigned int max_discard_sectors, granularity; 84 int alignment; 85 sector_t tmp; 86 unsigned split_sectors; 87 88 *nsegs = 1; 89 90 /* Zero-sector (unknown) and one-sector granularities are the same. */ 91 granularity = max(q->limits.discard_granularity >> 9, 1U); 92 93 max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9); 94 max_discard_sectors -= max_discard_sectors % granularity; 95 96 if (unlikely(!max_discard_sectors)) { 97 /* XXX: warn */ 98 return NULL; 99 } 100 101 if (bio_sectors(bio) <= max_discard_sectors) 102 return NULL; 103 104 split_sectors = max_discard_sectors; 105 106 /* 107 * If the next starting sector would be misaligned, stop the discard at 108 * the previous aligned sector. 109 */ 110 alignment = (q->limits.discard_alignment >> 9) % granularity; 111 112 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 113 tmp = sector_div(tmp, granularity); 114 115 if (split_sectors > tmp) 116 split_sectors -= tmp; 117 118 return bio_split(bio, split_sectors, GFP_NOIO, bs); 119 } 120 121 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 122 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 123 { 124 *nsegs = 1; 125 126 if (!q->limits.max_write_zeroes_sectors) 127 return NULL; 128 129 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 130 return NULL; 131 132 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 133 } 134 135 static struct bio *blk_bio_write_same_split(struct request_queue *q, 136 struct bio *bio, 137 struct bio_set *bs, 138 unsigned *nsegs) 139 { 140 *nsegs = 1; 141 142 if (!q->limits.max_write_same_sectors) 143 return NULL; 144 145 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 146 return NULL; 147 148 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 149 } 150 151 static inline unsigned get_max_io_size(struct request_queue *q, 152 struct bio *bio) 153 { 154 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); 155 unsigned mask = queue_logical_block_size(q) - 1; 156 157 /* aligned to logical block size */ 158 sectors &= ~(mask >> 9); 159 160 return sectors; 161 } 162 163 static struct bio *blk_bio_segment_split(struct request_queue *q, 164 struct bio *bio, 165 struct bio_set *bs, 166 unsigned *segs) 167 { 168 struct bio_vec bv, bvprv, *bvprvp = NULL; 169 struct bvec_iter iter; 170 unsigned seg_size = 0, nsegs = 0, sectors = 0; 171 unsigned front_seg_size = bio->bi_seg_front_size; 172 bool do_split = true; 173 struct bio *new = NULL; 174 const unsigned max_sectors = get_max_io_size(q, bio); 175 176 bio_for_each_segment(bv, bio, iter) { 177 /* 178 * If the queue doesn't support SG gaps and adding this 179 * offset would create a gap, disallow it. 180 */ 181 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 182 goto split; 183 184 if (sectors + (bv.bv_len >> 9) > max_sectors) { 185 /* 186 * Consider this a new segment if we're splitting in 187 * the middle of this vector. 188 */ 189 if (nsegs < queue_max_segments(q) && 190 sectors < max_sectors) { 191 nsegs++; 192 sectors = max_sectors; 193 } 194 goto split; 195 } 196 197 if (bvprvp && blk_queue_cluster(q)) { 198 if (seg_size + bv.bv_len > queue_max_segment_size(q)) 199 goto new_segment; 200 if (!biovec_phys_mergeable(q, bvprvp, &bv)) 201 goto new_segment; 202 203 seg_size += bv.bv_len; 204 bvprv = bv; 205 bvprvp = &bvprv; 206 sectors += bv.bv_len >> 9; 207 208 continue; 209 } 210 new_segment: 211 if (nsegs == queue_max_segments(q)) 212 goto split; 213 214 if (nsegs == 1 && seg_size > front_seg_size) 215 front_seg_size = seg_size; 216 217 nsegs++; 218 bvprv = bv; 219 bvprvp = &bvprv; 220 seg_size = bv.bv_len; 221 sectors += bv.bv_len >> 9; 222 223 } 224 225 do_split = false; 226 split: 227 *segs = nsegs; 228 229 if (do_split) { 230 new = bio_split(bio, sectors, GFP_NOIO, bs); 231 if (new) 232 bio = new; 233 } 234 235 if (nsegs == 1 && seg_size > front_seg_size) 236 front_seg_size = seg_size; 237 bio->bi_seg_front_size = front_seg_size; 238 if (seg_size > bio->bi_seg_back_size) 239 bio->bi_seg_back_size = seg_size; 240 241 return do_split ? new : NULL; 242 } 243 244 void blk_queue_split(struct request_queue *q, struct bio **bio) 245 { 246 struct bio *split, *res; 247 unsigned nsegs; 248 249 switch (bio_op(*bio)) { 250 case REQ_OP_DISCARD: 251 case REQ_OP_SECURE_ERASE: 252 split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs); 253 break; 254 case REQ_OP_WRITE_ZEROES: 255 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs); 256 break; 257 case REQ_OP_WRITE_SAME: 258 split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs); 259 break; 260 default: 261 split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs); 262 break; 263 } 264 265 /* physical segments can be figured out during splitting */ 266 res = split ? split : *bio; 267 res->bi_phys_segments = nsegs; 268 bio_set_flag(res, BIO_SEG_VALID); 269 270 if (split) { 271 /* there isn't chance to merge the splitted bio */ 272 split->bi_opf |= REQ_NOMERGE; 273 274 /* 275 * Since we're recursing into make_request here, ensure 276 * that we mark this bio as already having entered the queue. 277 * If not, and the queue is going away, we can get stuck 278 * forever on waiting for the queue reference to drop. But 279 * that will never happen, as we're already holding a 280 * reference to it. 281 */ 282 bio_set_flag(*bio, BIO_QUEUE_ENTERED); 283 284 bio_chain(split, *bio); 285 trace_block_split(q, split, (*bio)->bi_iter.bi_sector); 286 generic_make_request(*bio); 287 *bio = split; 288 } 289 } 290 EXPORT_SYMBOL(blk_queue_split); 291 292 static unsigned int __blk_recalc_rq_segments(struct request_queue *q, 293 struct bio *bio, 294 bool no_sg_merge) 295 { 296 struct bio_vec bv, bvprv = { NULL }; 297 int cluster, prev = 0; 298 unsigned int seg_size, nr_phys_segs; 299 struct bio *fbio, *bbio; 300 struct bvec_iter iter; 301 302 if (!bio) 303 return 0; 304 305 switch (bio_op(bio)) { 306 case REQ_OP_DISCARD: 307 case REQ_OP_SECURE_ERASE: 308 case REQ_OP_WRITE_ZEROES: 309 return 0; 310 case REQ_OP_WRITE_SAME: 311 return 1; 312 } 313 314 fbio = bio; 315 cluster = blk_queue_cluster(q); 316 seg_size = 0; 317 nr_phys_segs = 0; 318 for_each_bio(bio) { 319 bio_for_each_segment(bv, bio, iter) { 320 /* 321 * If SG merging is disabled, each bio vector is 322 * a segment 323 */ 324 if (no_sg_merge) 325 goto new_segment; 326 327 if (prev && cluster) { 328 if (seg_size + bv.bv_len 329 > queue_max_segment_size(q)) 330 goto new_segment; 331 if (!biovec_phys_mergeable(q, &bvprv, &bv)) 332 goto new_segment; 333 334 seg_size += bv.bv_len; 335 bvprv = bv; 336 continue; 337 } 338 new_segment: 339 if (nr_phys_segs == 1 && seg_size > 340 fbio->bi_seg_front_size) 341 fbio->bi_seg_front_size = seg_size; 342 343 nr_phys_segs++; 344 bvprv = bv; 345 prev = 1; 346 seg_size = bv.bv_len; 347 } 348 bbio = bio; 349 } 350 351 if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size) 352 fbio->bi_seg_front_size = seg_size; 353 if (seg_size > bbio->bi_seg_back_size) 354 bbio->bi_seg_back_size = seg_size; 355 356 return nr_phys_segs; 357 } 358 359 void blk_recalc_rq_segments(struct request *rq) 360 { 361 bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE, 362 &rq->q->queue_flags); 363 364 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio, 365 no_sg_merge); 366 } 367 368 void blk_recount_segments(struct request_queue *q, struct bio *bio) 369 { 370 unsigned short seg_cnt; 371 372 /* estimate segment number by bi_vcnt for non-cloned bio */ 373 if (bio_flagged(bio, BIO_CLONED)) 374 seg_cnt = bio_segments(bio); 375 else 376 seg_cnt = bio->bi_vcnt; 377 378 if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) && 379 (seg_cnt < queue_max_segments(q))) 380 bio->bi_phys_segments = seg_cnt; 381 else { 382 struct bio *nxt = bio->bi_next; 383 384 bio->bi_next = NULL; 385 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false); 386 bio->bi_next = nxt; 387 } 388 389 bio_set_flag(bio, BIO_SEG_VALID); 390 } 391 EXPORT_SYMBOL(blk_recount_segments); 392 393 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio, 394 struct bio *nxt) 395 { 396 struct bio_vec end_bv = { NULL }, nxt_bv; 397 398 if (!blk_queue_cluster(q)) 399 return 0; 400 401 if (bio->bi_seg_back_size + nxt->bi_seg_front_size > 402 queue_max_segment_size(q)) 403 return 0; 404 405 if (!bio_has_data(bio)) 406 return 1; 407 408 bio_get_last_bvec(bio, &end_bv); 409 bio_get_first_bvec(nxt, &nxt_bv); 410 411 return biovec_phys_mergeable(q, &end_bv, &nxt_bv); 412 } 413 414 static inline void 415 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec, 416 struct scatterlist *sglist, struct bio_vec *bvprv, 417 struct scatterlist **sg, int *nsegs, int *cluster) 418 { 419 420 int nbytes = bvec->bv_len; 421 422 if (*sg && *cluster) { 423 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 424 goto new_segment; 425 if (!biovec_phys_mergeable(q, bvprv, bvec)) 426 goto new_segment; 427 428 (*sg)->length += nbytes; 429 } else { 430 new_segment: 431 if (!*sg) 432 *sg = sglist; 433 else { 434 /* 435 * If the driver previously mapped a shorter 436 * list, we could see a termination bit 437 * prematurely unless it fully inits the sg 438 * table on each mapping. We KNOW that there 439 * must be more entries here or the driver 440 * would be buggy, so force clear the 441 * termination bit to avoid doing a full 442 * sg_init_table() in drivers for each command. 443 */ 444 sg_unmark_end(*sg); 445 *sg = sg_next(*sg); 446 } 447 448 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset); 449 (*nsegs)++; 450 } 451 *bvprv = *bvec; 452 } 453 454 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv, 455 struct scatterlist *sglist, struct scatterlist **sg) 456 { 457 *sg = sglist; 458 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 459 return 1; 460 } 461 462 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 463 struct scatterlist *sglist, 464 struct scatterlist **sg) 465 { 466 struct bio_vec bvec, bvprv = { NULL }; 467 struct bvec_iter iter; 468 int cluster = blk_queue_cluster(q), nsegs = 0; 469 470 for_each_bio(bio) 471 bio_for_each_segment(bvec, bio, iter) 472 __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg, 473 &nsegs, &cluster); 474 475 return nsegs; 476 } 477 478 /* 479 * map a request to scatterlist, return number of sg entries setup. Caller 480 * must make sure sg can hold rq->nr_phys_segments entries 481 */ 482 int blk_rq_map_sg(struct request_queue *q, struct request *rq, 483 struct scatterlist *sglist) 484 { 485 struct scatterlist *sg = NULL; 486 int nsegs = 0; 487 488 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 489 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg); 490 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 491 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg); 492 else if (rq->bio) 493 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); 494 495 if (unlikely(rq->rq_flags & RQF_COPY_USER) && 496 (blk_rq_bytes(rq) & q->dma_pad_mask)) { 497 unsigned int pad_len = 498 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 499 500 sg->length += pad_len; 501 rq->extra_len += pad_len; 502 } 503 504 if (q->dma_drain_size && q->dma_drain_needed(rq)) { 505 if (op_is_write(req_op(rq))) 506 memset(q->dma_drain_buffer, 0, q->dma_drain_size); 507 508 sg_unmark_end(sg); 509 sg = sg_next(sg); 510 sg_set_page(sg, virt_to_page(q->dma_drain_buffer), 511 q->dma_drain_size, 512 ((unsigned long)q->dma_drain_buffer) & 513 (PAGE_SIZE - 1)); 514 nsegs++; 515 rq->extra_len += q->dma_drain_size; 516 } 517 518 if (sg) 519 sg_mark_end(sg); 520 521 /* 522 * Something must have been wrong if the figured number of 523 * segment is bigger than number of req's physical segments 524 */ 525 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 526 527 return nsegs; 528 } 529 EXPORT_SYMBOL(blk_rq_map_sg); 530 531 static inline int ll_new_hw_segment(struct request_queue *q, 532 struct request *req, 533 struct bio *bio) 534 { 535 int nr_phys_segs = bio_phys_segments(q, bio); 536 537 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q)) 538 goto no_merge; 539 540 if (blk_integrity_merge_bio(q, req, bio) == false) 541 goto no_merge; 542 543 /* 544 * This will form the start of a new hw segment. Bump both 545 * counters. 546 */ 547 req->nr_phys_segments += nr_phys_segs; 548 return 1; 549 550 no_merge: 551 req_set_nomerge(q, req); 552 return 0; 553 } 554 555 int ll_back_merge_fn(struct request_queue *q, struct request *req, 556 struct bio *bio) 557 { 558 if (req_gap_back_merge(req, bio)) 559 return 0; 560 if (blk_integrity_rq(req) && 561 integrity_req_gap_back_merge(req, bio)) 562 return 0; 563 if (blk_rq_sectors(req) + bio_sectors(bio) > 564 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 565 req_set_nomerge(q, req); 566 return 0; 567 } 568 if (!bio_flagged(req->biotail, BIO_SEG_VALID)) 569 blk_recount_segments(q, req->biotail); 570 if (!bio_flagged(bio, BIO_SEG_VALID)) 571 blk_recount_segments(q, bio); 572 573 return ll_new_hw_segment(q, req, bio); 574 } 575 576 int ll_front_merge_fn(struct request_queue *q, struct request *req, 577 struct bio *bio) 578 { 579 580 if (req_gap_front_merge(req, bio)) 581 return 0; 582 if (blk_integrity_rq(req) && 583 integrity_req_gap_front_merge(req, bio)) 584 return 0; 585 if (blk_rq_sectors(req) + bio_sectors(bio) > 586 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 587 req_set_nomerge(q, req); 588 return 0; 589 } 590 if (!bio_flagged(bio, BIO_SEG_VALID)) 591 blk_recount_segments(q, bio); 592 if (!bio_flagged(req->bio, BIO_SEG_VALID)) 593 blk_recount_segments(q, req->bio); 594 595 return ll_new_hw_segment(q, req, bio); 596 } 597 598 /* 599 * blk-mq uses req->special to carry normal driver per-request payload, it 600 * does not indicate a prepared command that we cannot merge with. 601 */ 602 static bool req_no_special_merge(struct request *req) 603 { 604 struct request_queue *q = req->q; 605 606 return !q->mq_ops && req->special; 607 } 608 609 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 610 struct request *next) 611 { 612 unsigned short segments = blk_rq_nr_discard_segments(req); 613 614 if (segments >= queue_max_discard_segments(q)) 615 goto no_merge; 616 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 617 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 618 goto no_merge; 619 620 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 621 return true; 622 no_merge: 623 req_set_nomerge(q, req); 624 return false; 625 } 626 627 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 628 struct request *next) 629 { 630 int total_phys_segments; 631 unsigned int seg_size = 632 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size; 633 634 /* 635 * First check if the either of the requests are re-queued 636 * requests. Can't merge them if they are. 637 */ 638 if (req_no_special_merge(req) || req_no_special_merge(next)) 639 return 0; 640 641 if (req_gap_back_merge(req, next->bio)) 642 return 0; 643 644 /* 645 * Will it become too large? 646 */ 647 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 648 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 649 return 0; 650 651 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 652 if (blk_phys_contig_segment(q, req->biotail, next->bio)) { 653 if (req->nr_phys_segments == 1) 654 req->bio->bi_seg_front_size = seg_size; 655 if (next->nr_phys_segments == 1) 656 next->biotail->bi_seg_back_size = seg_size; 657 total_phys_segments--; 658 } 659 660 if (total_phys_segments > queue_max_segments(q)) 661 return 0; 662 663 if (blk_integrity_merge_rq(q, req, next) == false) 664 return 0; 665 666 /* Merge is OK... */ 667 req->nr_phys_segments = total_phys_segments; 668 return 1; 669 } 670 671 /** 672 * blk_rq_set_mixed_merge - mark a request as mixed merge 673 * @rq: request to mark as mixed merge 674 * 675 * Description: 676 * @rq is about to be mixed merged. Make sure the attributes 677 * which can be mixed are set in each bio and mark @rq as mixed 678 * merged. 679 */ 680 void blk_rq_set_mixed_merge(struct request *rq) 681 { 682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 683 struct bio *bio; 684 685 if (rq->rq_flags & RQF_MIXED_MERGE) 686 return; 687 688 /* 689 * @rq will no longer represent mixable attributes for all the 690 * contained bios. It will just track those of the first one. 691 * Distributes the attributs to each bio. 692 */ 693 for (bio = rq->bio; bio; bio = bio->bi_next) { 694 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 695 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 696 bio->bi_opf |= ff; 697 } 698 rq->rq_flags |= RQF_MIXED_MERGE; 699 } 700 701 static void blk_account_io_merge(struct request *req) 702 { 703 if (blk_do_io_stat(req)) { 704 struct hd_struct *part; 705 int cpu; 706 707 cpu = part_stat_lock(); 708 part = req->part; 709 710 part_round_stats(req->q, cpu, part); 711 part_dec_in_flight(req->q, part, rq_data_dir(req)); 712 713 hd_struct_put(part); 714 part_stat_unlock(); 715 } 716 } 717 /* 718 * Two cases of handling DISCARD merge: 719 * If max_discard_segments > 1, the driver takes every bio 720 * as a range and send them to controller together. The ranges 721 * needn't to be contiguous. 722 * Otherwise, the bios/requests will be handled as same as 723 * others which should be contiguous. 724 */ 725 static inline bool blk_discard_mergable(struct request *req) 726 { 727 if (req_op(req) == REQ_OP_DISCARD && 728 queue_max_discard_segments(req->q) > 1) 729 return true; 730 return false; 731 } 732 733 enum elv_merge blk_try_req_merge(struct request *req, struct request *next) 734 { 735 if (blk_discard_mergable(req)) 736 return ELEVATOR_DISCARD_MERGE; 737 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 738 return ELEVATOR_BACK_MERGE; 739 740 return ELEVATOR_NO_MERGE; 741 } 742 743 /* 744 * For non-mq, this has to be called with the request spinlock acquired. 745 * For mq with scheduling, the appropriate queue wide lock should be held. 746 */ 747 static struct request *attempt_merge(struct request_queue *q, 748 struct request *req, struct request *next) 749 { 750 if (!q->mq_ops) 751 lockdep_assert_held(q->queue_lock); 752 753 if (!rq_mergeable(req) || !rq_mergeable(next)) 754 return NULL; 755 756 if (req_op(req) != req_op(next)) 757 return NULL; 758 759 if (rq_data_dir(req) != rq_data_dir(next) 760 || req->rq_disk != next->rq_disk 761 || req_no_special_merge(next)) 762 return NULL; 763 764 if (req_op(req) == REQ_OP_WRITE_SAME && 765 !blk_write_same_mergeable(req->bio, next->bio)) 766 return NULL; 767 768 /* 769 * Don't allow merge of different write hints, or for a hint with 770 * non-hint IO. 771 */ 772 if (req->write_hint != next->write_hint) 773 return NULL; 774 775 /* 776 * If we are allowed to merge, then append bio list 777 * from next to rq and release next. merge_requests_fn 778 * will have updated segment counts, update sector 779 * counts here. Handle DISCARDs separately, as they 780 * have separate settings. 781 */ 782 783 switch (blk_try_req_merge(req, next)) { 784 case ELEVATOR_DISCARD_MERGE: 785 if (!req_attempt_discard_merge(q, req, next)) 786 return NULL; 787 break; 788 case ELEVATOR_BACK_MERGE: 789 if (!ll_merge_requests_fn(q, req, next)) 790 return NULL; 791 break; 792 default: 793 return NULL; 794 } 795 796 /* 797 * If failfast settings disagree or any of the two is already 798 * a mixed merge, mark both as mixed before proceeding. This 799 * makes sure that all involved bios have mixable attributes 800 * set properly. 801 */ 802 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 803 (req->cmd_flags & REQ_FAILFAST_MASK) != 804 (next->cmd_flags & REQ_FAILFAST_MASK)) { 805 blk_rq_set_mixed_merge(req); 806 blk_rq_set_mixed_merge(next); 807 } 808 809 /* 810 * At this point we have either done a back merge or front merge. We 811 * need the smaller start_time_ns of the merged requests to be the 812 * current request for accounting purposes. 813 */ 814 if (next->start_time_ns < req->start_time_ns) 815 req->start_time_ns = next->start_time_ns; 816 817 req->biotail->bi_next = next->bio; 818 req->biotail = next->biotail; 819 820 req->__data_len += blk_rq_bytes(next); 821 822 if (req_op(req) != REQ_OP_DISCARD) 823 elv_merge_requests(q, req, next); 824 825 /* 826 * 'next' is going away, so update stats accordingly 827 */ 828 blk_account_io_merge(next); 829 830 req->ioprio = ioprio_best(req->ioprio, next->ioprio); 831 if (blk_rq_cpu_valid(next)) 832 req->cpu = next->cpu; 833 834 /* 835 * ownership of bio passed from next to req, return 'next' for 836 * the caller to free 837 */ 838 next->bio = NULL; 839 return next; 840 } 841 842 struct request *attempt_back_merge(struct request_queue *q, struct request *rq) 843 { 844 struct request *next = elv_latter_request(q, rq); 845 846 if (next) 847 return attempt_merge(q, rq, next); 848 849 return NULL; 850 } 851 852 struct request *attempt_front_merge(struct request_queue *q, struct request *rq) 853 { 854 struct request *prev = elv_former_request(q, rq); 855 856 if (prev) 857 return attempt_merge(q, prev, rq); 858 859 return NULL; 860 } 861 862 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 863 struct request *next) 864 { 865 struct elevator_queue *e = q->elevator; 866 struct request *free; 867 868 if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn) 869 if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next)) 870 return 0; 871 872 free = attempt_merge(q, rq, next); 873 if (free) { 874 __blk_put_request(q, free); 875 return 1; 876 } 877 878 return 0; 879 } 880 881 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 882 { 883 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 884 return false; 885 886 if (req_op(rq) != bio_op(bio)) 887 return false; 888 889 /* different data direction or already started, don't merge */ 890 if (bio_data_dir(bio) != rq_data_dir(rq)) 891 return false; 892 893 /* must be same device and not a special request */ 894 if (rq->rq_disk != bio->bi_disk || req_no_special_merge(rq)) 895 return false; 896 897 /* only merge integrity protected bio into ditto rq */ 898 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 899 return false; 900 901 /* must be using the same buffer */ 902 if (req_op(rq) == REQ_OP_WRITE_SAME && 903 !blk_write_same_mergeable(rq->bio, bio)) 904 return false; 905 906 /* 907 * Don't allow merge of different write hints, or for a hint with 908 * non-hint IO. 909 */ 910 if (rq->write_hint != bio->bi_write_hint) 911 return false; 912 913 return true; 914 } 915 916 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 917 { 918 if (blk_discard_mergable(rq)) 919 return ELEVATOR_DISCARD_MERGE; 920 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 921 return ELEVATOR_BACK_MERGE; 922 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 923 return ELEVATOR_FRONT_MERGE; 924 return ELEVATOR_NO_MERGE; 925 } 926