xref: /openbmc/linux/block/blk-crypto-fallback.c (revision eebcafaebb17cb8fda671709fab5dd836bdc3a08)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11 
12 #include <crypto/skcipher.h>
13 #include <linux/blk-cgroup.h>
14 #include <linux/blk-crypto.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/keyslot-manager.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/random.h>
21 #include <linux/scatterlist.h>
22 
23 #include "blk-crypto-internal.h"
24 
25 static unsigned int num_prealloc_bounce_pg = 32;
26 module_param(num_prealloc_bounce_pg, uint, 0);
27 MODULE_PARM_DESC(num_prealloc_bounce_pg,
28 		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29 
30 static unsigned int blk_crypto_num_keyslots = 100;
31 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32 MODULE_PARM_DESC(num_keyslots,
33 		 "Number of keyslots for the blk-crypto crypto API fallback");
34 
35 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38 		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39 
40 struct bio_fallback_crypt_ctx {
41 	struct bio_crypt_ctx crypt_ctx;
42 	/*
43 	 * Copy of the bvec_iter when this bio was submitted.
44 	 * We only want to en/decrypt the part of the bio as described by the
45 	 * bvec_iter upon submission because bio might be split before being
46 	 * resubmitted
47 	 */
48 	struct bvec_iter crypt_iter;
49 	union {
50 		struct {
51 			struct work_struct work;
52 			struct bio *bio;
53 		};
54 		struct {
55 			void *bi_private_orig;
56 			bio_end_io_t *bi_end_io_orig;
57 		};
58 	};
59 };
60 
61 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62 static mempool_t *bio_fallback_crypt_ctx_pool;
63 
64 /*
65  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66  * all of a mode's tfms when that mode starts being used. Since each mode may
67  * need all the keyslots at some point, each mode needs its own tfm for each
68  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
69  * match the behavior of real inline encryption hardware (which only supports a
70  * single encryption context per keyslot), we only allow one tfm per keyslot to
71  * be used at a time - the rest of the unused tfms have their keys cleared.
72  */
73 static DEFINE_MUTEX(tfms_init_lock);
74 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75 
76 static struct blk_crypto_fallback_keyslot {
77 	enum blk_crypto_mode_num crypto_mode;
78 	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79 } *blk_crypto_keyslots;
80 
81 static struct blk_keyslot_manager blk_crypto_ksm;
82 static struct workqueue_struct *blk_crypto_wq;
83 static mempool_t *blk_crypto_bounce_page_pool;
84 static struct bio_set crypto_bio_split;
85 
86 /*
87  * This is the key we set when evicting a keyslot. This *should* be the all 0's
88  * key, but AES-XTS rejects that key, so we use some random bytes instead.
89  */
90 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
91 
92 static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93 {
94 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95 	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96 	int err;
97 
98 	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99 
100 	/* Clear the key in the skcipher */
101 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102 				     blk_crypto_modes[crypto_mode].keysize);
103 	WARN_ON(err);
104 	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105 }
106 
107 static int blk_crypto_fallback_keyslot_program(struct blk_keyslot_manager *ksm,
108 					       const struct blk_crypto_key *key,
109 					       unsigned int slot)
110 {
111 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
112 	const enum blk_crypto_mode_num crypto_mode =
113 						key->crypto_cfg.crypto_mode;
114 	int err;
115 
116 	if (crypto_mode != slotp->crypto_mode &&
117 	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
118 		blk_crypto_fallback_evict_keyslot(slot);
119 
120 	slotp->crypto_mode = crypto_mode;
121 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
122 				     key->size);
123 	if (err) {
124 		blk_crypto_fallback_evict_keyslot(slot);
125 		return err;
126 	}
127 	return 0;
128 }
129 
130 static int blk_crypto_fallback_keyslot_evict(struct blk_keyslot_manager *ksm,
131 					     const struct blk_crypto_key *key,
132 					     unsigned int slot)
133 {
134 	blk_crypto_fallback_evict_keyslot(slot);
135 	return 0;
136 }
137 
138 /*
139  * The crypto API fallback KSM ops - only used for a bio when it specifies a
140  * blk_crypto_key that was not supported by the device's inline encryption
141  * hardware.
142  */
143 static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = {
144 	.keyslot_program	= blk_crypto_fallback_keyslot_program,
145 	.keyslot_evict		= blk_crypto_fallback_keyslot_evict,
146 };
147 
148 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
149 {
150 	struct bio *src_bio = enc_bio->bi_private;
151 	int i;
152 
153 	for (i = 0; i < enc_bio->bi_vcnt; i++)
154 		mempool_free(enc_bio->bi_io_vec[i].bv_page,
155 			     blk_crypto_bounce_page_pool);
156 
157 	src_bio->bi_status = enc_bio->bi_status;
158 
159 	bio_put(enc_bio);
160 	bio_endio(src_bio);
161 }
162 
163 static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
164 {
165 	struct bvec_iter iter;
166 	struct bio_vec bv;
167 	struct bio *bio;
168 
169 	bio = bio_kmalloc(GFP_NOIO, bio_segments(bio_src));
170 	if (!bio)
171 		return NULL;
172 	bio->bi_bdev		= bio_src->bi_bdev;
173 	if (bio_flagged(bio_src, BIO_REMAPPED))
174 		bio_set_flag(bio, BIO_REMAPPED);
175 	bio->bi_opf		= bio_src->bi_opf;
176 	bio->bi_ioprio		= bio_src->bi_ioprio;
177 	bio->bi_write_hint	= bio_src->bi_write_hint;
178 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
179 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
180 
181 	bio_for_each_segment(bv, bio_src, iter)
182 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
183 
184 	bio_clone_blkg_association(bio, bio_src);
185 	blkcg_bio_issue_init(bio);
186 
187 	return bio;
188 }
189 
190 static bool
191 blk_crypto_fallback_alloc_cipher_req(struct blk_ksm_keyslot *slot,
192 				     struct skcipher_request **ciph_req_ret,
193 				     struct crypto_wait *wait)
194 {
195 	struct skcipher_request *ciph_req;
196 	const struct blk_crypto_fallback_keyslot *slotp;
197 	int keyslot_idx = blk_ksm_get_slot_idx(slot);
198 
199 	slotp = &blk_crypto_keyslots[keyslot_idx];
200 	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
201 					  GFP_NOIO);
202 	if (!ciph_req)
203 		return false;
204 
205 	skcipher_request_set_callback(ciph_req,
206 				      CRYPTO_TFM_REQ_MAY_BACKLOG |
207 				      CRYPTO_TFM_REQ_MAY_SLEEP,
208 				      crypto_req_done, wait);
209 	*ciph_req_ret = ciph_req;
210 
211 	return true;
212 }
213 
214 static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
215 {
216 	struct bio *bio = *bio_ptr;
217 	unsigned int i = 0;
218 	unsigned int num_sectors = 0;
219 	struct bio_vec bv;
220 	struct bvec_iter iter;
221 
222 	bio_for_each_segment(bv, bio, iter) {
223 		num_sectors += bv.bv_len >> SECTOR_SHIFT;
224 		if (++i == BIO_MAX_VECS)
225 			break;
226 	}
227 	if (num_sectors < bio_sectors(bio)) {
228 		struct bio *split_bio;
229 
230 		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
231 				      &crypto_bio_split);
232 		if (!split_bio) {
233 			bio->bi_status = BLK_STS_RESOURCE;
234 			return false;
235 		}
236 		bio_chain(split_bio, bio);
237 		submit_bio_noacct(bio);
238 		*bio_ptr = split_bio;
239 	}
240 
241 	return true;
242 }
243 
244 union blk_crypto_iv {
245 	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
246 	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
247 };
248 
249 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
250 				 union blk_crypto_iv *iv)
251 {
252 	int i;
253 
254 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
255 		iv->dun[i] = cpu_to_le64(dun[i]);
256 }
257 
258 /*
259  * The crypto API fallback's encryption routine.
260  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
261  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
262  * large. Returns true on success. Returns false and sets bio->bi_status on
263  * error.
264  */
265 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
266 {
267 	struct bio *src_bio, *enc_bio;
268 	struct bio_crypt_ctx *bc;
269 	struct blk_ksm_keyslot *slot;
270 	int data_unit_size;
271 	struct skcipher_request *ciph_req = NULL;
272 	DECLARE_CRYPTO_WAIT(wait);
273 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
274 	struct scatterlist src, dst;
275 	union blk_crypto_iv iv;
276 	unsigned int i, j;
277 	bool ret = false;
278 	blk_status_t blk_st;
279 
280 	/* Split the bio if it's too big for single page bvec */
281 	if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
282 		return false;
283 
284 	src_bio = *bio_ptr;
285 	bc = src_bio->bi_crypt_context;
286 	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
287 
288 	/* Allocate bounce bio for encryption */
289 	enc_bio = blk_crypto_fallback_clone_bio(src_bio);
290 	if (!enc_bio) {
291 		src_bio->bi_status = BLK_STS_RESOURCE;
292 		return false;
293 	}
294 
295 	/*
296 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
297 	 * for the algorithm and key specified for this bio.
298 	 */
299 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
300 	if (blk_st != BLK_STS_OK) {
301 		src_bio->bi_status = blk_st;
302 		goto out_put_enc_bio;
303 	}
304 
305 	/* and then allocate an skcipher_request for it */
306 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
307 		src_bio->bi_status = BLK_STS_RESOURCE;
308 		goto out_release_keyslot;
309 	}
310 
311 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
312 	sg_init_table(&src, 1);
313 	sg_init_table(&dst, 1);
314 
315 	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
316 				   iv.bytes);
317 
318 	/* Encrypt each page in the bounce bio */
319 	for (i = 0; i < enc_bio->bi_vcnt; i++) {
320 		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
321 		struct page *plaintext_page = enc_bvec->bv_page;
322 		struct page *ciphertext_page =
323 			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
324 
325 		enc_bvec->bv_page = ciphertext_page;
326 
327 		if (!ciphertext_page) {
328 			src_bio->bi_status = BLK_STS_RESOURCE;
329 			goto out_free_bounce_pages;
330 		}
331 
332 		sg_set_page(&src, plaintext_page, data_unit_size,
333 			    enc_bvec->bv_offset);
334 		sg_set_page(&dst, ciphertext_page, data_unit_size,
335 			    enc_bvec->bv_offset);
336 
337 		/* Encrypt each data unit in this page */
338 		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
339 			blk_crypto_dun_to_iv(curr_dun, &iv);
340 			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
341 					    &wait)) {
342 				i++;
343 				src_bio->bi_status = BLK_STS_IOERR;
344 				goto out_free_bounce_pages;
345 			}
346 			bio_crypt_dun_increment(curr_dun, 1);
347 			src.offset += data_unit_size;
348 			dst.offset += data_unit_size;
349 		}
350 	}
351 
352 	enc_bio->bi_private = src_bio;
353 	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
354 	*bio_ptr = enc_bio;
355 	ret = true;
356 
357 	enc_bio = NULL;
358 	goto out_free_ciph_req;
359 
360 out_free_bounce_pages:
361 	while (i > 0)
362 		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
363 			     blk_crypto_bounce_page_pool);
364 out_free_ciph_req:
365 	skcipher_request_free(ciph_req);
366 out_release_keyslot:
367 	blk_ksm_put_slot(slot);
368 out_put_enc_bio:
369 	if (enc_bio)
370 		bio_put(enc_bio);
371 
372 	return ret;
373 }
374 
375 /*
376  * The crypto API fallback's main decryption routine.
377  * Decrypts input bio in place, and calls bio_endio on the bio.
378  */
379 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
380 {
381 	struct bio_fallback_crypt_ctx *f_ctx =
382 		container_of(work, struct bio_fallback_crypt_ctx, work);
383 	struct bio *bio = f_ctx->bio;
384 	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
385 	struct blk_ksm_keyslot *slot;
386 	struct skcipher_request *ciph_req = NULL;
387 	DECLARE_CRYPTO_WAIT(wait);
388 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
389 	union blk_crypto_iv iv;
390 	struct scatterlist sg;
391 	struct bio_vec bv;
392 	struct bvec_iter iter;
393 	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
394 	unsigned int i;
395 	blk_status_t blk_st;
396 
397 	/*
398 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
399 	 * for the algorithm and key specified for this bio.
400 	 */
401 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
402 	if (blk_st != BLK_STS_OK) {
403 		bio->bi_status = blk_st;
404 		goto out_no_keyslot;
405 	}
406 
407 	/* and then allocate an skcipher_request for it */
408 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
409 		bio->bi_status = BLK_STS_RESOURCE;
410 		goto out;
411 	}
412 
413 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
414 	sg_init_table(&sg, 1);
415 	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
416 				   iv.bytes);
417 
418 	/* Decrypt each segment in the bio */
419 	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
420 		struct page *page = bv.bv_page;
421 
422 		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
423 
424 		/* Decrypt each data unit in the segment */
425 		for (i = 0; i < bv.bv_len; i += data_unit_size) {
426 			blk_crypto_dun_to_iv(curr_dun, &iv);
427 			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
428 					    &wait)) {
429 				bio->bi_status = BLK_STS_IOERR;
430 				goto out;
431 			}
432 			bio_crypt_dun_increment(curr_dun, 1);
433 			sg.offset += data_unit_size;
434 		}
435 	}
436 
437 out:
438 	skcipher_request_free(ciph_req);
439 	blk_ksm_put_slot(slot);
440 out_no_keyslot:
441 	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
442 	bio_endio(bio);
443 }
444 
445 /**
446  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
447  *
448  * @bio: the bio to queue
449  *
450  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
451  * workqueue, since this function will be called from an atomic context.
452  */
453 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
454 {
455 	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
456 
457 	bio->bi_private = f_ctx->bi_private_orig;
458 	bio->bi_end_io = f_ctx->bi_end_io_orig;
459 
460 	/* If there was an IO error, don't queue for decrypt. */
461 	if (bio->bi_status) {
462 		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
463 		bio_endio(bio);
464 		return;
465 	}
466 
467 	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
468 	f_ctx->bio = bio;
469 	queue_work(blk_crypto_wq, &f_ctx->work);
470 }
471 
472 /**
473  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
474  *
475  * @bio_ptr: pointer to the bio to prepare
476  *
477  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
478  * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
479  * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
480  * the bounce bio.
481  *
482  * For a READ operation, we mark the bio for decryption by using bi_private and
483  * bi_end_io.
484  *
485  * In either case, this function will make the bio look like a regular bio (i.e.
486  * as if no encryption context was ever specified) for the purposes of the rest
487  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
488  * currently supported together).
489  *
490  * Return: true on success. Sets bio->bi_status and returns false on error.
491  */
492 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
493 {
494 	struct bio *bio = *bio_ptr;
495 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
496 	struct bio_fallback_crypt_ctx *f_ctx;
497 
498 	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
499 		/* User didn't call blk_crypto_start_using_key() first */
500 		bio->bi_status = BLK_STS_IOERR;
501 		return false;
502 	}
503 
504 	if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm,
505 					  &bc->bc_key->crypto_cfg)) {
506 		bio->bi_status = BLK_STS_NOTSUPP;
507 		return false;
508 	}
509 
510 	if (bio_data_dir(bio) == WRITE)
511 		return blk_crypto_fallback_encrypt_bio(bio_ptr);
512 
513 	/*
514 	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
515 	 * bi_end_io appropriately to trigger decryption when the bio is ended.
516 	 */
517 	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
518 	f_ctx->crypt_ctx = *bc;
519 	f_ctx->crypt_iter = bio->bi_iter;
520 	f_ctx->bi_private_orig = bio->bi_private;
521 	f_ctx->bi_end_io_orig = bio->bi_end_io;
522 	bio->bi_private = (void *)f_ctx;
523 	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
524 	bio_crypt_free_ctx(bio);
525 
526 	return true;
527 }
528 
529 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
530 {
531 	return blk_ksm_evict_key(&blk_crypto_ksm, key);
532 }
533 
534 static bool blk_crypto_fallback_inited;
535 static int blk_crypto_fallback_init(void)
536 {
537 	int i;
538 	int err;
539 
540 	if (blk_crypto_fallback_inited)
541 		return 0;
542 
543 	prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
544 
545 	err = bioset_init(&crypto_bio_split, 64, 0, 0);
546 	if (err)
547 		goto out;
548 
549 	err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots);
550 	if (err)
551 		goto fail_free_bioset;
552 	err = -ENOMEM;
553 
554 	blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops;
555 	blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
556 
557 	/* All blk-crypto modes have a crypto API fallback. */
558 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
559 		blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF;
560 	blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
561 
562 	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
563 					WQ_UNBOUND | WQ_HIGHPRI |
564 					WQ_MEM_RECLAIM, num_online_cpus());
565 	if (!blk_crypto_wq)
566 		goto fail_free_ksm;
567 
568 	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
569 				      sizeof(blk_crypto_keyslots[0]),
570 				      GFP_KERNEL);
571 	if (!blk_crypto_keyslots)
572 		goto fail_free_wq;
573 
574 	blk_crypto_bounce_page_pool =
575 		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
576 	if (!blk_crypto_bounce_page_pool)
577 		goto fail_free_keyslots;
578 
579 	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
580 	if (!bio_fallback_crypt_ctx_cache)
581 		goto fail_free_bounce_page_pool;
582 
583 	bio_fallback_crypt_ctx_pool =
584 		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
585 					 bio_fallback_crypt_ctx_cache);
586 	if (!bio_fallback_crypt_ctx_pool)
587 		goto fail_free_crypt_ctx_cache;
588 
589 	blk_crypto_fallback_inited = true;
590 
591 	return 0;
592 fail_free_crypt_ctx_cache:
593 	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
594 fail_free_bounce_page_pool:
595 	mempool_destroy(blk_crypto_bounce_page_pool);
596 fail_free_keyslots:
597 	kfree(blk_crypto_keyslots);
598 fail_free_wq:
599 	destroy_workqueue(blk_crypto_wq);
600 fail_free_ksm:
601 	blk_ksm_destroy(&blk_crypto_ksm);
602 fail_free_bioset:
603 	bioset_exit(&crypto_bio_split);
604 out:
605 	return err;
606 }
607 
608 /*
609  * Prepare blk-crypto-fallback for the specified crypto mode.
610  * Returns -ENOPKG if the needed crypto API support is missing.
611  */
612 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
613 {
614 	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
615 	struct blk_crypto_fallback_keyslot *slotp;
616 	unsigned int i;
617 	int err = 0;
618 
619 	/*
620 	 * Fast path
621 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
622 	 * for each i are visible before we try to access them.
623 	 */
624 	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
625 		return 0;
626 
627 	mutex_lock(&tfms_init_lock);
628 	if (tfms_inited[mode_num])
629 		goto out;
630 
631 	err = blk_crypto_fallback_init();
632 	if (err)
633 		goto out;
634 
635 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
636 		slotp = &blk_crypto_keyslots[i];
637 		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
638 		if (IS_ERR(slotp->tfms[mode_num])) {
639 			err = PTR_ERR(slotp->tfms[mode_num]);
640 			if (err == -ENOENT) {
641 				pr_warn_once("Missing crypto API support for \"%s\"\n",
642 					     cipher_str);
643 				err = -ENOPKG;
644 			}
645 			slotp->tfms[mode_num] = NULL;
646 			goto out_free_tfms;
647 		}
648 
649 		crypto_skcipher_set_flags(slotp->tfms[mode_num],
650 					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
651 	}
652 
653 	/*
654 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
655 	 * for each i are visible before we set tfms_inited[mode_num].
656 	 */
657 	smp_store_release(&tfms_inited[mode_num], true);
658 	goto out;
659 
660 out_free_tfms:
661 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
662 		slotp = &blk_crypto_keyslots[i];
663 		crypto_free_skcipher(slotp->tfms[mode_num]);
664 		slotp->tfms[mode_num] = NULL;
665 	}
666 out:
667 	mutex_unlock(&tfms_init_lock);
668 	return err;
669 }
670