1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2019 Google LLC 4 */ 5 6 /* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt 11 12 #include <crypto/skcipher.h> 13 #include <linux/blk-cgroup.h> 14 #include <linux/blk-crypto.h> 15 #include <linux/blkdev.h> 16 #include <linux/crypto.h> 17 #include <linux/keyslot-manager.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/random.h> 21 22 #include "blk-crypto-internal.h" 23 24 static unsigned int num_prealloc_bounce_pg = 32; 25 module_param(num_prealloc_bounce_pg, uint, 0); 26 MODULE_PARM_DESC(num_prealloc_bounce_pg, 27 "Number of preallocated bounce pages for the blk-crypto crypto API fallback"); 28 29 static unsigned int blk_crypto_num_keyslots = 100; 30 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0); 31 MODULE_PARM_DESC(num_keyslots, 32 "Number of keyslots for the blk-crypto crypto API fallback"); 33 34 static unsigned int num_prealloc_fallback_crypt_ctxs = 128; 35 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0); 36 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs, 37 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback"); 38 39 struct bio_fallback_crypt_ctx { 40 struct bio_crypt_ctx crypt_ctx; 41 /* 42 * Copy of the bvec_iter when this bio was submitted. 43 * We only want to en/decrypt the part of the bio as described by the 44 * bvec_iter upon submission because bio might be split before being 45 * resubmitted 46 */ 47 struct bvec_iter crypt_iter; 48 union { 49 struct { 50 struct work_struct work; 51 struct bio *bio; 52 }; 53 struct { 54 void *bi_private_orig; 55 bio_end_io_t *bi_end_io_orig; 56 }; 57 }; 58 }; 59 60 static struct kmem_cache *bio_fallback_crypt_ctx_cache; 61 static mempool_t *bio_fallback_crypt_ctx_pool; 62 63 /* 64 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate 65 * all of a mode's tfms when that mode starts being used. Since each mode may 66 * need all the keyslots at some point, each mode needs its own tfm for each 67 * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to 68 * match the behavior of real inline encryption hardware (which only supports a 69 * single encryption context per keyslot), we only allow one tfm per keyslot to 70 * be used at a time - the rest of the unused tfms have their keys cleared. 71 */ 72 static DEFINE_MUTEX(tfms_init_lock); 73 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX]; 74 75 static struct blk_crypto_keyslot { 76 enum blk_crypto_mode_num crypto_mode; 77 struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX]; 78 } *blk_crypto_keyslots; 79 80 static struct blk_keyslot_manager blk_crypto_ksm; 81 static struct workqueue_struct *blk_crypto_wq; 82 static mempool_t *blk_crypto_bounce_page_pool; 83 84 /* 85 * This is the key we set when evicting a keyslot. This *should* be the all 0's 86 * key, but AES-XTS rejects that key, so we use some random bytes instead. 87 */ 88 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE]; 89 90 static void blk_crypto_evict_keyslot(unsigned int slot) 91 { 92 struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; 93 enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode; 94 int err; 95 96 WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID); 97 98 /* Clear the key in the skcipher */ 99 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key, 100 blk_crypto_modes[crypto_mode].keysize); 101 WARN_ON(err); 102 slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID; 103 } 104 105 static int blk_crypto_keyslot_program(struct blk_keyslot_manager *ksm, 106 const struct blk_crypto_key *key, 107 unsigned int slot) 108 { 109 struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; 110 const enum blk_crypto_mode_num crypto_mode = 111 key->crypto_cfg.crypto_mode; 112 int err; 113 114 if (crypto_mode != slotp->crypto_mode && 115 slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) 116 blk_crypto_evict_keyslot(slot); 117 118 slotp->crypto_mode = crypto_mode; 119 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw, 120 key->size); 121 if (err) { 122 blk_crypto_evict_keyslot(slot); 123 return err; 124 } 125 return 0; 126 } 127 128 static int blk_crypto_keyslot_evict(struct blk_keyslot_manager *ksm, 129 const struct blk_crypto_key *key, 130 unsigned int slot) 131 { 132 blk_crypto_evict_keyslot(slot); 133 return 0; 134 } 135 136 /* 137 * The crypto API fallback KSM ops - only used for a bio when it specifies a 138 * blk_crypto_key that was not supported by the device's inline encryption 139 * hardware. 140 */ 141 static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = { 142 .keyslot_program = blk_crypto_keyslot_program, 143 .keyslot_evict = blk_crypto_keyslot_evict, 144 }; 145 146 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio) 147 { 148 struct bio *src_bio = enc_bio->bi_private; 149 int i; 150 151 for (i = 0; i < enc_bio->bi_vcnt; i++) 152 mempool_free(enc_bio->bi_io_vec[i].bv_page, 153 blk_crypto_bounce_page_pool); 154 155 src_bio->bi_status = enc_bio->bi_status; 156 157 bio_put(enc_bio); 158 bio_endio(src_bio); 159 } 160 161 static struct bio *blk_crypto_clone_bio(struct bio *bio_src) 162 { 163 struct bvec_iter iter; 164 struct bio_vec bv; 165 struct bio *bio; 166 167 bio = bio_kmalloc(GFP_NOIO, bio_segments(bio_src)); 168 if (!bio) 169 return NULL; 170 bio->bi_bdev = bio_src->bi_bdev; 171 if (bio_flagged(bio_src, BIO_REMAPPED)) 172 bio_set_flag(bio, BIO_REMAPPED); 173 bio->bi_opf = bio_src->bi_opf; 174 bio->bi_ioprio = bio_src->bi_ioprio; 175 bio->bi_write_hint = bio_src->bi_write_hint; 176 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 177 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 178 179 bio_for_each_segment(bv, bio_src, iter) 180 bio->bi_io_vec[bio->bi_vcnt++] = bv; 181 182 bio_clone_blkg_association(bio, bio_src); 183 blkcg_bio_issue_init(bio); 184 185 return bio; 186 } 187 188 static bool blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot *slot, 189 struct skcipher_request **ciph_req_ret, 190 struct crypto_wait *wait) 191 { 192 struct skcipher_request *ciph_req; 193 const struct blk_crypto_keyslot *slotp; 194 int keyslot_idx = blk_ksm_get_slot_idx(slot); 195 196 slotp = &blk_crypto_keyslots[keyslot_idx]; 197 ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode], 198 GFP_NOIO); 199 if (!ciph_req) 200 return false; 201 202 skcipher_request_set_callback(ciph_req, 203 CRYPTO_TFM_REQ_MAY_BACKLOG | 204 CRYPTO_TFM_REQ_MAY_SLEEP, 205 crypto_req_done, wait); 206 *ciph_req_ret = ciph_req; 207 208 return true; 209 } 210 211 static bool blk_crypto_split_bio_if_needed(struct bio **bio_ptr) 212 { 213 struct bio *bio = *bio_ptr; 214 unsigned int i = 0; 215 unsigned int num_sectors = 0; 216 struct bio_vec bv; 217 struct bvec_iter iter; 218 219 bio_for_each_segment(bv, bio, iter) { 220 num_sectors += bv.bv_len >> SECTOR_SHIFT; 221 if (++i == BIO_MAX_PAGES) 222 break; 223 } 224 if (num_sectors < bio_sectors(bio)) { 225 struct bio *split_bio; 226 227 split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL); 228 if (!split_bio) { 229 bio->bi_status = BLK_STS_RESOURCE; 230 return false; 231 } 232 bio_chain(split_bio, bio); 233 submit_bio_noacct(bio); 234 *bio_ptr = split_bio; 235 } 236 237 return true; 238 } 239 240 union blk_crypto_iv { 241 __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 242 u8 bytes[BLK_CRYPTO_MAX_IV_SIZE]; 243 }; 244 245 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 246 union blk_crypto_iv *iv) 247 { 248 int i; 249 250 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) 251 iv->dun[i] = cpu_to_le64(dun[i]); 252 } 253 254 /* 255 * The crypto API fallback's encryption routine. 256 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API, 257 * and replace *bio_ptr with the bounce bio. May split input bio if it's too 258 * large. Returns true on success. Returns false and sets bio->bi_status on 259 * error. 260 */ 261 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr) 262 { 263 struct bio *src_bio, *enc_bio; 264 struct bio_crypt_ctx *bc; 265 struct blk_ksm_keyslot *slot; 266 int data_unit_size; 267 struct skcipher_request *ciph_req = NULL; 268 DECLARE_CRYPTO_WAIT(wait); 269 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 270 struct scatterlist src, dst; 271 union blk_crypto_iv iv; 272 unsigned int i, j; 273 bool ret = false; 274 blk_status_t blk_st; 275 276 /* Split the bio if it's too big for single page bvec */ 277 if (!blk_crypto_split_bio_if_needed(bio_ptr)) 278 return false; 279 280 src_bio = *bio_ptr; 281 bc = src_bio->bi_crypt_context; 282 data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; 283 284 /* Allocate bounce bio for encryption */ 285 enc_bio = blk_crypto_clone_bio(src_bio); 286 if (!enc_bio) { 287 src_bio->bi_status = BLK_STS_RESOURCE; 288 return false; 289 } 290 291 /* 292 * Use the crypto API fallback keyslot manager to get a crypto_skcipher 293 * for the algorithm and key specified for this bio. 294 */ 295 blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot); 296 if (blk_st != BLK_STS_OK) { 297 src_bio->bi_status = blk_st; 298 goto out_put_enc_bio; 299 } 300 301 /* and then allocate an skcipher_request for it */ 302 if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) { 303 src_bio->bi_status = BLK_STS_RESOURCE; 304 goto out_release_keyslot; 305 } 306 307 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); 308 sg_init_table(&src, 1); 309 sg_init_table(&dst, 1); 310 311 skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size, 312 iv.bytes); 313 314 /* Encrypt each page in the bounce bio */ 315 for (i = 0; i < enc_bio->bi_vcnt; i++) { 316 struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i]; 317 struct page *plaintext_page = enc_bvec->bv_page; 318 struct page *ciphertext_page = 319 mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO); 320 321 enc_bvec->bv_page = ciphertext_page; 322 323 if (!ciphertext_page) { 324 src_bio->bi_status = BLK_STS_RESOURCE; 325 goto out_free_bounce_pages; 326 } 327 328 sg_set_page(&src, plaintext_page, data_unit_size, 329 enc_bvec->bv_offset); 330 sg_set_page(&dst, ciphertext_page, data_unit_size, 331 enc_bvec->bv_offset); 332 333 /* Encrypt each data unit in this page */ 334 for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) { 335 blk_crypto_dun_to_iv(curr_dun, &iv); 336 if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req), 337 &wait)) { 338 i++; 339 src_bio->bi_status = BLK_STS_IOERR; 340 goto out_free_bounce_pages; 341 } 342 bio_crypt_dun_increment(curr_dun, 1); 343 src.offset += data_unit_size; 344 dst.offset += data_unit_size; 345 } 346 } 347 348 enc_bio->bi_private = src_bio; 349 enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio; 350 *bio_ptr = enc_bio; 351 ret = true; 352 353 enc_bio = NULL; 354 goto out_free_ciph_req; 355 356 out_free_bounce_pages: 357 while (i > 0) 358 mempool_free(enc_bio->bi_io_vec[--i].bv_page, 359 blk_crypto_bounce_page_pool); 360 out_free_ciph_req: 361 skcipher_request_free(ciph_req); 362 out_release_keyslot: 363 blk_ksm_put_slot(slot); 364 out_put_enc_bio: 365 if (enc_bio) 366 bio_put(enc_bio); 367 368 return ret; 369 } 370 371 /* 372 * The crypto API fallback's main decryption routine. 373 * Decrypts input bio in place, and calls bio_endio on the bio. 374 */ 375 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work) 376 { 377 struct bio_fallback_crypt_ctx *f_ctx = 378 container_of(work, struct bio_fallback_crypt_ctx, work); 379 struct bio *bio = f_ctx->bio; 380 struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx; 381 struct blk_ksm_keyslot *slot; 382 struct skcipher_request *ciph_req = NULL; 383 DECLARE_CRYPTO_WAIT(wait); 384 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 385 union blk_crypto_iv iv; 386 struct scatterlist sg; 387 struct bio_vec bv; 388 struct bvec_iter iter; 389 const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; 390 unsigned int i; 391 blk_status_t blk_st; 392 393 /* 394 * Use the crypto API fallback keyslot manager to get a crypto_skcipher 395 * for the algorithm and key specified for this bio. 396 */ 397 blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot); 398 if (blk_st != BLK_STS_OK) { 399 bio->bi_status = blk_st; 400 goto out_no_keyslot; 401 } 402 403 /* and then allocate an skcipher_request for it */ 404 if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) { 405 bio->bi_status = BLK_STS_RESOURCE; 406 goto out; 407 } 408 409 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); 410 sg_init_table(&sg, 1); 411 skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size, 412 iv.bytes); 413 414 /* Decrypt each segment in the bio */ 415 __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) { 416 struct page *page = bv.bv_page; 417 418 sg_set_page(&sg, page, data_unit_size, bv.bv_offset); 419 420 /* Decrypt each data unit in the segment */ 421 for (i = 0; i < bv.bv_len; i += data_unit_size) { 422 blk_crypto_dun_to_iv(curr_dun, &iv); 423 if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req), 424 &wait)) { 425 bio->bi_status = BLK_STS_IOERR; 426 goto out; 427 } 428 bio_crypt_dun_increment(curr_dun, 1); 429 sg.offset += data_unit_size; 430 } 431 } 432 433 out: 434 skcipher_request_free(ciph_req); 435 blk_ksm_put_slot(slot); 436 out_no_keyslot: 437 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); 438 bio_endio(bio); 439 } 440 441 /** 442 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption 443 * 444 * @bio: the bio to queue 445 * 446 * Restore bi_private and bi_end_io, and queue the bio for decryption into a 447 * workqueue, since this function will be called from an atomic context. 448 */ 449 static void blk_crypto_fallback_decrypt_endio(struct bio *bio) 450 { 451 struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private; 452 453 bio->bi_private = f_ctx->bi_private_orig; 454 bio->bi_end_io = f_ctx->bi_end_io_orig; 455 456 /* If there was an IO error, don't queue for decrypt. */ 457 if (bio->bi_status) { 458 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); 459 bio_endio(bio); 460 return; 461 } 462 463 INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio); 464 f_ctx->bio = bio; 465 queue_work(blk_crypto_wq, &f_ctx->work); 466 } 467 468 /** 469 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption 470 * 471 * @bio_ptr: pointer to the bio to prepare 472 * 473 * If bio is doing a WRITE operation, this splits the bio into two parts if it's 474 * too big (see blk_crypto_split_bio_if_needed). It then allocates a bounce bio 475 * for the first part, encrypts it, and update bio_ptr to point to the bounce 476 * bio. 477 * 478 * For a READ operation, we mark the bio for decryption by using bi_private and 479 * bi_end_io. 480 * 481 * In either case, this function will make the bio look like a regular bio (i.e. 482 * as if no encryption context was ever specified) for the purposes of the rest 483 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not 484 * currently supported together). 485 * 486 * Return: true on success. Sets bio->bi_status and returns false on error. 487 */ 488 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr) 489 { 490 struct bio *bio = *bio_ptr; 491 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 492 struct bio_fallback_crypt_ctx *f_ctx; 493 494 if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) { 495 /* User didn't call blk_crypto_start_using_key() first */ 496 bio->bi_status = BLK_STS_IOERR; 497 return false; 498 } 499 500 if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm, 501 &bc->bc_key->crypto_cfg)) { 502 bio->bi_status = BLK_STS_NOTSUPP; 503 return false; 504 } 505 506 if (bio_data_dir(bio) == WRITE) 507 return blk_crypto_fallback_encrypt_bio(bio_ptr); 508 509 /* 510 * bio READ case: Set up a f_ctx in the bio's bi_private and set the 511 * bi_end_io appropriately to trigger decryption when the bio is ended. 512 */ 513 f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO); 514 f_ctx->crypt_ctx = *bc; 515 f_ctx->crypt_iter = bio->bi_iter; 516 f_ctx->bi_private_orig = bio->bi_private; 517 f_ctx->bi_end_io_orig = bio->bi_end_io; 518 bio->bi_private = (void *)f_ctx; 519 bio->bi_end_io = blk_crypto_fallback_decrypt_endio; 520 bio_crypt_free_ctx(bio); 521 522 return true; 523 } 524 525 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) 526 { 527 return blk_ksm_evict_key(&blk_crypto_ksm, key); 528 } 529 530 static bool blk_crypto_fallback_inited; 531 static int blk_crypto_fallback_init(void) 532 { 533 int i; 534 int err; 535 536 if (blk_crypto_fallback_inited) 537 return 0; 538 539 prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE); 540 541 err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots); 542 if (err) 543 goto out; 544 err = -ENOMEM; 545 546 blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops; 547 blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; 548 549 /* All blk-crypto modes have a crypto API fallback. */ 550 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) 551 blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF; 552 blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0; 553 554 blk_crypto_wq = alloc_workqueue("blk_crypto_wq", 555 WQ_UNBOUND | WQ_HIGHPRI | 556 WQ_MEM_RECLAIM, num_online_cpus()); 557 if (!blk_crypto_wq) 558 goto fail_free_ksm; 559 560 blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots, 561 sizeof(blk_crypto_keyslots[0]), 562 GFP_KERNEL); 563 if (!blk_crypto_keyslots) 564 goto fail_free_wq; 565 566 blk_crypto_bounce_page_pool = 567 mempool_create_page_pool(num_prealloc_bounce_pg, 0); 568 if (!blk_crypto_bounce_page_pool) 569 goto fail_free_keyslots; 570 571 bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0); 572 if (!bio_fallback_crypt_ctx_cache) 573 goto fail_free_bounce_page_pool; 574 575 bio_fallback_crypt_ctx_pool = 576 mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs, 577 bio_fallback_crypt_ctx_cache); 578 if (!bio_fallback_crypt_ctx_pool) 579 goto fail_free_crypt_ctx_cache; 580 581 blk_crypto_fallback_inited = true; 582 583 return 0; 584 fail_free_crypt_ctx_cache: 585 kmem_cache_destroy(bio_fallback_crypt_ctx_cache); 586 fail_free_bounce_page_pool: 587 mempool_destroy(blk_crypto_bounce_page_pool); 588 fail_free_keyslots: 589 kfree(blk_crypto_keyslots); 590 fail_free_wq: 591 destroy_workqueue(blk_crypto_wq); 592 fail_free_ksm: 593 blk_ksm_destroy(&blk_crypto_ksm); 594 out: 595 return err; 596 } 597 598 /* 599 * Prepare blk-crypto-fallback for the specified crypto mode. 600 * Returns -ENOPKG if the needed crypto API support is missing. 601 */ 602 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num) 603 { 604 const char *cipher_str = blk_crypto_modes[mode_num].cipher_str; 605 struct blk_crypto_keyslot *slotp; 606 unsigned int i; 607 int err = 0; 608 609 /* 610 * Fast path 611 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] 612 * for each i are visible before we try to access them. 613 */ 614 if (likely(smp_load_acquire(&tfms_inited[mode_num]))) 615 return 0; 616 617 mutex_lock(&tfms_init_lock); 618 if (tfms_inited[mode_num]) 619 goto out; 620 621 err = blk_crypto_fallback_init(); 622 if (err) 623 goto out; 624 625 for (i = 0; i < blk_crypto_num_keyslots; i++) { 626 slotp = &blk_crypto_keyslots[i]; 627 slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0); 628 if (IS_ERR(slotp->tfms[mode_num])) { 629 err = PTR_ERR(slotp->tfms[mode_num]); 630 if (err == -ENOENT) { 631 pr_warn_once("Missing crypto API support for \"%s\"\n", 632 cipher_str); 633 err = -ENOPKG; 634 } 635 slotp->tfms[mode_num] = NULL; 636 goto out_free_tfms; 637 } 638 639 crypto_skcipher_set_flags(slotp->tfms[mode_num], 640 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 641 } 642 643 /* 644 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] 645 * for each i are visible before we set tfms_inited[mode_num]. 646 */ 647 smp_store_release(&tfms_inited[mode_num], true); 648 goto out; 649 650 out_free_tfms: 651 for (i = 0; i < blk_crypto_num_keyslots; i++) { 652 slotp = &blk_crypto_keyslots[i]; 653 crypto_free_skcipher(slotp->tfms[mode_num]); 654 slotp->tfms[mode_num] = NULL; 655 } 656 out: 657 mutex_unlock(&tfms_init_lock); 658 return err; 659 } 660