xref: /openbmc/linux/block/blk-crypto-fallback.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11 
12 #include <crypto/skcipher.h>
13 #include <linux/blk-cgroup.h>
14 #include <linux/blk-crypto.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/keyslot-manager.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/random.h>
21 
22 #include "blk-crypto-internal.h"
23 
24 static unsigned int num_prealloc_bounce_pg = 32;
25 module_param(num_prealloc_bounce_pg, uint, 0);
26 MODULE_PARM_DESC(num_prealloc_bounce_pg,
27 		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
28 
29 static unsigned int blk_crypto_num_keyslots = 100;
30 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
31 MODULE_PARM_DESC(num_keyslots,
32 		 "Number of keyslots for the blk-crypto crypto API fallback");
33 
34 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
35 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
36 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
37 		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
38 
39 struct bio_fallback_crypt_ctx {
40 	struct bio_crypt_ctx crypt_ctx;
41 	/*
42 	 * Copy of the bvec_iter when this bio was submitted.
43 	 * We only want to en/decrypt the part of the bio as described by the
44 	 * bvec_iter upon submission because bio might be split before being
45 	 * resubmitted
46 	 */
47 	struct bvec_iter crypt_iter;
48 	union {
49 		struct {
50 			struct work_struct work;
51 			struct bio *bio;
52 		};
53 		struct {
54 			void *bi_private_orig;
55 			bio_end_io_t *bi_end_io_orig;
56 		};
57 	};
58 };
59 
60 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
61 static mempool_t *bio_fallback_crypt_ctx_pool;
62 
63 /*
64  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
65  * all of a mode's tfms when that mode starts being used. Since each mode may
66  * need all the keyslots at some point, each mode needs its own tfm for each
67  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
68  * match the behavior of real inline encryption hardware (which only supports a
69  * single encryption context per keyslot), we only allow one tfm per keyslot to
70  * be used at a time - the rest of the unused tfms have their keys cleared.
71  */
72 static DEFINE_MUTEX(tfms_init_lock);
73 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
74 
75 static struct blk_crypto_keyslot {
76 	enum blk_crypto_mode_num crypto_mode;
77 	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
78 } *blk_crypto_keyslots;
79 
80 static struct blk_keyslot_manager blk_crypto_ksm;
81 static struct workqueue_struct *blk_crypto_wq;
82 static mempool_t *blk_crypto_bounce_page_pool;
83 
84 /*
85  * This is the key we set when evicting a keyslot. This *should* be the all 0's
86  * key, but AES-XTS rejects that key, so we use some random bytes instead.
87  */
88 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
89 
90 static void blk_crypto_evict_keyslot(unsigned int slot)
91 {
92 	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
93 	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
94 	int err;
95 
96 	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
97 
98 	/* Clear the key in the skcipher */
99 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
100 				     blk_crypto_modes[crypto_mode].keysize);
101 	WARN_ON(err);
102 	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
103 }
104 
105 static int blk_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
106 				      const struct blk_crypto_key *key,
107 				      unsigned int slot)
108 {
109 	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
110 	const enum blk_crypto_mode_num crypto_mode =
111 						key->crypto_cfg.crypto_mode;
112 	int err;
113 
114 	if (crypto_mode != slotp->crypto_mode &&
115 	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
116 		blk_crypto_evict_keyslot(slot);
117 
118 	slotp->crypto_mode = crypto_mode;
119 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
120 				     key->size);
121 	if (err) {
122 		blk_crypto_evict_keyslot(slot);
123 		return err;
124 	}
125 	return 0;
126 }
127 
128 static int blk_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
129 				    const struct blk_crypto_key *key,
130 				    unsigned int slot)
131 {
132 	blk_crypto_evict_keyslot(slot);
133 	return 0;
134 }
135 
136 /*
137  * The crypto API fallback KSM ops - only used for a bio when it specifies a
138  * blk_crypto_key that was not supported by the device's inline encryption
139  * hardware.
140  */
141 static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = {
142 	.keyslot_program	= blk_crypto_keyslot_program,
143 	.keyslot_evict		= blk_crypto_keyslot_evict,
144 };
145 
146 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
147 {
148 	struct bio *src_bio = enc_bio->bi_private;
149 	int i;
150 
151 	for (i = 0; i < enc_bio->bi_vcnt; i++)
152 		mempool_free(enc_bio->bi_io_vec[i].bv_page,
153 			     blk_crypto_bounce_page_pool);
154 
155 	src_bio->bi_status = enc_bio->bi_status;
156 
157 	bio_put(enc_bio);
158 	bio_endio(src_bio);
159 }
160 
161 static struct bio *blk_crypto_clone_bio(struct bio *bio_src)
162 {
163 	struct bvec_iter iter;
164 	struct bio_vec bv;
165 	struct bio *bio;
166 
167 	bio = bio_kmalloc(GFP_NOIO, bio_segments(bio_src));
168 	if (!bio)
169 		return NULL;
170 	bio->bi_bdev		= bio_src->bi_bdev;
171 	if (bio_flagged(bio_src, BIO_REMAPPED))
172 		bio_set_flag(bio, BIO_REMAPPED);
173 	bio->bi_opf		= bio_src->bi_opf;
174 	bio->bi_ioprio		= bio_src->bi_ioprio;
175 	bio->bi_write_hint	= bio_src->bi_write_hint;
176 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
177 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
178 
179 	bio_for_each_segment(bv, bio_src, iter)
180 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
181 
182 	bio_clone_blkg_association(bio, bio_src);
183 	blkcg_bio_issue_init(bio);
184 
185 	return bio;
186 }
187 
188 static bool blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot *slot,
189 					struct skcipher_request **ciph_req_ret,
190 					struct crypto_wait *wait)
191 {
192 	struct skcipher_request *ciph_req;
193 	const struct blk_crypto_keyslot *slotp;
194 	int keyslot_idx = blk_ksm_get_slot_idx(slot);
195 
196 	slotp = &blk_crypto_keyslots[keyslot_idx];
197 	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
198 					  GFP_NOIO);
199 	if (!ciph_req)
200 		return false;
201 
202 	skcipher_request_set_callback(ciph_req,
203 				      CRYPTO_TFM_REQ_MAY_BACKLOG |
204 				      CRYPTO_TFM_REQ_MAY_SLEEP,
205 				      crypto_req_done, wait);
206 	*ciph_req_ret = ciph_req;
207 
208 	return true;
209 }
210 
211 static bool blk_crypto_split_bio_if_needed(struct bio **bio_ptr)
212 {
213 	struct bio *bio = *bio_ptr;
214 	unsigned int i = 0;
215 	unsigned int num_sectors = 0;
216 	struct bio_vec bv;
217 	struct bvec_iter iter;
218 
219 	bio_for_each_segment(bv, bio, iter) {
220 		num_sectors += bv.bv_len >> SECTOR_SHIFT;
221 		if (++i == BIO_MAX_PAGES)
222 			break;
223 	}
224 	if (num_sectors < bio_sectors(bio)) {
225 		struct bio *split_bio;
226 
227 		split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL);
228 		if (!split_bio) {
229 			bio->bi_status = BLK_STS_RESOURCE;
230 			return false;
231 		}
232 		bio_chain(split_bio, bio);
233 		submit_bio_noacct(bio);
234 		*bio_ptr = split_bio;
235 	}
236 
237 	return true;
238 }
239 
240 union blk_crypto_iv {
241 	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
242 	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
243 };
244 
245 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
246 				 union blk_crypto_iv *iv)
247 {
248 	int i;
249 
250 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
251 		iv->dun[i] = cpu_to_le64(dun[i]);
252 }
253 
254 /*
255  * The crypto API fallback's encryption routine.
256  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
257  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
258  * large. Returns true on success. Returns false and sets bio->bi_status on
259  * error.
260  */
261 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
262 {
263 	struct bio *src_bio, *enc_bio;
264 	struct bio_crypt_ctx *bc;
265 	struct blk_ksm_keyslot *slot;
266 	int data_unit_size;
267 	struct skcipher_request *ciph_req = NULL;
268 	DECLARE_CRYPTO_WAIT(wait);
269 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
270 	struct scatterlist src, dst;
271 	union blk_crypto_iv iv;
272 	unsigned int i, j;
273 	bool ret = false;
274 	blk_status_t blk_st;
275 
276 	/* Split the bio if it's too big for single page bvec */
277 	if (!blk_crypto_split_bio_if_needed(bio_ptr))
278 		return false;
279 
280 	src_bio = *bio_ptr;
281 	bc = src_bio->bi_crypt_context;
282 	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
283 
284 	/* Allocate bounce bio for encryption */
285 	enc_bio = blk_crypto_clone_bio(src_bio);
286 	if (!enc_bio) {
287 		src_bio->bi_status = BLK_STS_RESOURCE;
288 		return false;
289 	}
290 
291 	/*
292 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
293 	 * for the algorithm and key specified for this bio.
294 	 */
295 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
296 	if (blk_st != BLK_STS_OK) {
297 		src_bio->bi_status = blk_st;
298 		goto out_put_enc_bio;
299 	}
300 
301 	/* and then allocate an skcipher_request for it */
302 	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
303 		src_bio->bi_status = BLK_STS_RESOURCE;
304 		goto out_release_keyslot;
305 	}
306 
307 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
308 	sg_init_table(&src, 1);
309 	sg_init_table(&dst, 1);
310 
311 	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
312 				   iv.bytes);
313 
314 	/* Encrypt each page in the bounce bio */
315 	for (i = 0; i < enc_bio->bi_vcnt; i++) {
316 		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
317 		struct page *plaintext_page = enc_bvec->bv_page;
318 		struct page *ciphertext_page =
319 			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
320 
321 		enc_bvec->bv_page = ciphertext_page;
322 
323 		if (!ciphertext_page) {
324 			src_bio->bi_status = BLK_STS_RESOURCE;
325 			goto out_free_bounce_pages;
326 		}
327 
328 		sg_set_page(&src, plaintext_page, data_unit_size,
329 			    enc_bvec->bv_offset);
330 		sg_set_page(&dst, ciphertext_page, data_unit_size,
331 			    enc_bvec->bv_offset);
332 
333 		/* Encrypt each data unit in this page */
334 		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
335 			blk_crypto_dun_to_iv(curr_dun, &iv);
336 			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
337 					    &wait)) {
338 				i++;
339 				src_bio->bi_status = BLK_STS_IOERR;
340 				goto out_free_bounce_pages;
341 			}
342 			bio_crypt_dun_increment(curr_dun, 1);
343 			src.offset += data_unit_size;
344 			dst.offset += data_unit_size;
345 		}
346 	}
347 
348 	enc_bio->bi_private = src_bio;
349 	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
350 	*bio_ptr = enc_bio;
351 	ret = true;
352 
353 	enc_bio = NULL;
354 	goto out_free_ciph_req;
355 
356 out_free_bounce_pages:
357 	while (i > 0)
358 		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
359 			     blk_crypto_bounce_page_pool);
360 out_free_ciph_req:
361 	skcipher_request_free(ciph_req);
362 out_release_keyslot:
363 	blk_ksm_put_slot(slot);
364 out_put_enc_bio:
365 	if (enc_bio)
366 		bio_put(enc_bio);
367 
368 	return ret;
369 }
370 
371 /*
372  * The crypto API fallback's main decryption routine.
373  * Decrypts input bio in place, and calls bio_endio on the bio.
374  */
375 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
376 {
377 	struct bio_fallback_crypt_ctx *f_ctx =
378 		container_of(work, struct bio_fallback_crypt_ctx, work);
379 	struct bio *bio = f_ctx->bio;
380 	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
381 	struct blk_ksm_keyslot *slot;
382 	struct skcipher_request *ciph_req = NULL;
383 	DECLARE_CRYPTO_WAIT(wait);
384 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
385 	union blk_crypto_iv iv;
386 	struct scatterlist sg;
387 	struct bio_vec bv;
388 	struct bvec_iter iter;
389 	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
390 	unsigned int i;
391 	blk_status_t blk_st;
392 
393 	/*
394 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
395 	 * for the algorithm and key specified for this bio.
396 	 */
397 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
398 	if (blk_st != BLK_STS_OK) {
399 		bio->bi_status = blk_st;
400 		goto out_no_keyslot;
401 	}
402 
403 	/* and then allocate an skcipher_request for it */
404 	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
405 		bio->bi_status = BLK_STS_RESOURCE;
406 		goto out;
407 	}
408 
409 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
410 	sg_init_table(&sg, 1);
411 	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
412 				   iv.bytes);
413 
414 	/* Decrypt each segment in the bio */
415 	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
416 		struct page *page = bv.bv_page;
417 
418 		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
419 
420 		/* Decrypt each data unit in the segment */
421 		for (i = 0; i < bv.bv_len; i += data_unit_size) {
422 			blk_crypto_dun_to_iv(curr_dun, &iv);
423 			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
424 					    &wait)) {
425 				bio->bi_status = BLK_STS_IOERR;
426 				goto out;
427 			}
428 			bio_crypt_dun_increment(curr_dun, 1);
429 			sg.offset += data_unit_size;
430 		}
431 	}
432 
433 out:
434 	skcipher_request_free(ciph_req);
435 	blk_ksm_put_slot(slot);
436 out_no_keyslot:
437 	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
438 	bio_endio(bio);
439 }
440 
441 /**
442  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
443  *
444  * @bio: the bio to queue
445  *
446  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
447  * workqueue, since this function will be called from an atomic context.
448  */
449 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
450 {
451 	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
452 
453 	bio->bi_private = f_ctx->bi_private_orig;
454 	bio->bi_end_io = f_ctx->bi_end_io_orig;
455 
456 	/* If there was an IO error, don't queue for decrypt. */
457 	if (bio->bi_status) {
458 		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
459 		bio_endio(bio);
460 		return;
461 	}
462 
463 	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
464 	f_ctx->bio = bio;
465 	queue_work(blk_crypto_wq, &f_ctx->work);
466 }
467 
468 /**
469  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
470  *
471  * @bio_ptr: pointer to the bio to prepare
472  *
473  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
474  * too big (see blk_crypto_split_bio_if_needed). It then allocates a bounce bio
475  * for the first part, encrypts it, and update bio_ptr to point to the bounce
476  * bio.
477  *
478  * For a READ operation, we mark the bio for decryption by using bi_private and
479  * bi_end_io.
480  *
481  * In either case, this function will make the bio look like a regular bio (i.e.
482  * as if no encryption context was ever specified) for the purposes of the rest
483  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
484  * currently supported together).
485  *
486  * Return: true on success. Sets bio->bi_status and returns false on error.
487  */
488 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
489 {
490 	struct bio *bio = *bio_ptr;
491 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
492 	struct bio_fallback_crypt_ctx *f_ctx;
493 
494 	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
495 		/* User didn't call blk_crypto_start_using_key() first */
496 		bio->bi_status = BLK_STS_IOERR;
497 		return false;
498 	}
499 
500 	if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm,
501 					  &bc->bc_key->crypto_cfg)) {
502 		bio->bi_status = BLK_STS_NOTSUPP;
503 		return false;
504 	}
505 
506 	if (bio_data_dir(bio) == WRITE)
507 		return blk_crypto_fallback_encrypt_bio(bio_ptr);
508 
509 	/*
510 	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
511 	 * bi_end_io appropriately to trigger decryption when the bio is ended.
512 	 */
513 	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
514 	f_ctx->crypt_ctx = *bc;
515 	f_ctx->crypt_iter = bio->bi_iter;
516 	f_ctx->bi_private_orig = bio->bi_private;
517 	f_ctx->bi_end_io_orig = bio->bi_end_io;
518 	bio->bi_private = (void *)f_ctx;
519 	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
520 	bio_crypt_free_ctx(bio);
521 
522 	return true;
523 }
524 
525 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
526 {
527 	return blk_ksm_evict_key(&blk_crypto_ksm, key);
528 }
529 
530 static bool blk_crypto_fallback_inited;
531 static int blk_crypto_fallback_init(void)
532 {
533 	int i;
534 	int err;
535 
536 	if (blk_crypto_fallback_inited)
537 		return 0;
538 
539 	prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
540 
541 	err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots);
542 	if (err)
543 		goto out;
544 	err = -ENOMEM;
545 
546 	blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops;
547 	blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
548 
549 	/* All blk-crypto modes have a crypto API fallback. */
550 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
551 		blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF;
552 	blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
553 
554 	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
555 					WQ_UNBOUND | WQ_HIGHPRI |
556 					WQ_MEM_RECLAIM, num_online_cpus());
557 	if (!blk_crypto_wq)
558 		goto fail_free_ksm;
559 
560 	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
561 				      sizeof(blk_crypto_keyslots[0]),
562 				      GFP_KERNEL);
563 	if (!blk_crypto_keyslots)
564 		goto fail_free_wq;
565 
566 	blk_crypto_bounce_page_pool =
567 		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
568 	if (!blk_crypto_bounce_page_pool)
569 		goto fail_free_keyslots;
570 
571 	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
572 	if (!bio_fallback_crypt_ctx_cache)
573 		goto fail_free_bounce_page_pool;
574 
575 	bio_fallback_crypt_ctx_pool =
576 		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
577 					 bio_fallback_crypt_ctx_cache);
578 	if (!bio_fallback_crypt_ctx_pool)
579 		goto fail_free_crypt_ctx_cache;
580 
581 	blk_crypto_fallback_inited = true;
582 
583 	return 0;
584 fail_free_crypt_ctx_cache:
585 	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
586 fail_free_bounce_page_pool:
587 	mempool_destroy(blk_crypto_bounce_page_pool);
588 fail_free_keyslots:
589 	kfree(blk_crypto_keyslots);
590 fail_free_wq:
591 	destroy_workqueue(blk_crypto_wq);
592 fail_free_ksm:
593 	blk_ksm_destroy(&blk_crypto_ksm);
594 out:
595 	return err;
596 }
597 
598 /*
599  * Prepare blk-crypto-fallback for the specified crypto mode.
600  * Returns -ENOPKG if the needed crypto API support is missing.
601  */
602 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
603 {
604 	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
605 	struct blk_crypto_keyslot *slotp;
606 	unsigned int i;
607 	int err = 0;
608 
609 	/*
610 	 * Fast path
611 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
612 	 * for each i are visible before we try to access them.
613 	 */
614 	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
615 		return 0;
616 
617 	mutex_lock(&tfms_init_lock);
618 	if (tfms_inited[mode_num])
619 		goto out;
620 
621 	err = blk_crypto_fallback_init();
622 	if (err)
623 		goto out;
624 
625 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
626 		slotp = &blk_crypto_keyslots[i];
627 		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
628 		if (IS_ERR(slotp->tfms[mode_num])) {
629 			err = PTR_ERR(slotp->tfms[mode_num]);
630 			if (err == -ENOENT) {
631 				pr_warn_once("Missing crypto API support for \"%s\"\n",
632 					     cipher_str);
633 				err = -ENOPKG;
634 			}
635 			slotp->tfms[mode_num] = NULL;
636 			goto out_free_tfms;
637 		}
638 
639 		crypto_skcipher_set_flags(slotp->tfms[mode_num],
640 					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
641 	}
642 
643 	/*
644 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
645 	 * for each i are visible before we set tfms_inited[mode_num].
646 	 */
647 	smp_store_release(&tfms_inited[mode_num], true);
648 	goto out;
649 
650 out_free_tfms:
651 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
652 		slotp = &blk_crypto_keyslots[i];
653 		crypto_free_skcipher(slotp->tfms[mode_num]);
654 		slotp->tfms[mode_num] = NULL;
655 	}
656 out:
657 	mutex_unlock(&tfms_init_lock);
658 	return err;
659 }
660