xref: /openbmc/linux/arch/x86/xen/time.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Xen time implementation.
3  *
4  * This is implemented in terms of a clocksource driver which uses
5  * the hypervisor clock as a nanosecond timebase, and a clockevent
6  * driver which uses the hypervisor's timer mechanism.
7  *
8  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9  */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
17 #include <linux/slab.h>
18 #include <linux/pvclock_gtod.h>
19 
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28 
29 #include "xen-ops.h"
30 
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP	100000
33 #define NS_PER_TICK	(1000000000LL / HZ)
34 
35 /* runstate info updated by Xen */
36 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
37 
38 /* snapshots of runstate info */
39 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
40 
41 /* unused ns of stolen time */
42 static DEFINE_PER_CPU(u64, xen_residual_stolen);
43 
44 /* return an consistent snapshot of 64-bit time/counter value */
45 static u64 get64(const u64 *p)
46 {
47 	u64 ret;
48 
49 	if (BITS_PER_LONG < 64) {
50 		u32 *p32 = (u32 *)p;
51 		u32 h, l;
52 
53 		/*
54 		 * Read high then low, and then make sure high is
55 		 * still the same; this will only loop if low wraps
56 		 * and carries into high.
57 		 * XXX some clean way to make this endian-proof?
58 		 */
59 		do {
60 			h = p32[1];
61 			barrier();
62 			l = p32[0];
63 			barrier();
64 		} while (p32[1] != h);
65 
66 		ret = (((u64)h) << 32) | l;
67 	} else
68 		ret = *p;
69 
70 	return ret;
71 }
72 
73 /*
74  * Runstate accounting
75  */
76 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
77 {
78 	u64 state_time;
79 	struct vcpu_runstate_info *state;
80 
81 	BUG_ON(preemptible());
82 
83 	state = this_cpu_ptr(&xen_runstate);
84 
85 	/*
86 	 * The runstate info is always updated by the hypervisor on
87 	 * the current CPU, so there's no need to use anything
88 	 * stronger than a compiler barrier when fetching it.
89 	 */
90 	do {
91 		state_time = get64(&state->state_entry_time);
92 		barrier();
93 		*res = *state;
94 		barrier();
95 	} while (get64(&state->state_entry_time) != state_time);
96 }
97 
98 /* return true when a vcpu could run but has no real cpu to run on */
99 bool xen_vcpu_stolen(int vcpu)
100 {
101 	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
102 }
103 
104 void xen_setup_runstate_info(int cpu)
105 {
106 	struct vcpu_register_runstate_memory_area area;
107 
108 	area.addr.v = &per_cpu(xen_runstate, cpu);
109 
110 	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
111 			       cpu, &area))
112 		BUG();
113 }
114 
115 static void do_stolen_accounting(void)
116 {
117 	struct vcpu_runstate_info state;
118 	struct vcpu_runstate_info *snap;
119 	s64 runnable, offline, stolen;
120 	cputime_t ticks;
121 
122 	get_runstate_snapshot(&state);
123 
124 	WARN_ON(state.state != RUNSTATE_running);
125 
126 	snap = this_cpu_ptr(&xen_runstate_snapshot);
127 
128 	/* work out how much time the VCPU has not been runn*ing*  */
129 	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130 	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131 
132 	*snap = state;
133 
134 	/* Add the appropriate number of ticks of stolen time,
135 	   including any left-overs from last time. */
136 	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
137 
138 	if (stolen < 0)
139 		stolen = 0;
140 
141 	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142 	__this_cpu_write(xen_residual_stolen, stolen);
143 	account_steal_ticks(ticks);
144 }
145 
146 /* Get the TSC speed from Xen */
147 static unsigned long xen_tsc_khz(void)
148 {
149 	struct pvclock_vcpu_time_info *info =
150 		&HYPERVISOR_shared_info->vcpu_info[0].time;
151 
152 	return pvclock_tsc_khz(info);
153 }
154 
155 cycle_t xen_clocksource_read(void)
156 {
157         struct pvclock_vcpu_time_info *src;
158 	cycle_t ret;
159 
160 	preempt_disable_notrace();
161 	src = &__this_cpu_read(xen_vcpu)->time;
162 	ret = pvclock_clocksource_read(src);
163 	preempt_enable_notrace();
164 	return ret;
165 }
166 
167 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
168 {
169 	return xen_clocksource_read();
170 }
171 
172 static void xen_read_wallclock(struct timespec *ts)
173 {
174 	struct shared_info *s = HYPERVISOR_shared_info;
175 	struct pvclock_wall_clock *wall_clock = &(s->wc);
176         struct pvclock_vcpu_time_info *vcpu_time;
177 
178 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
179 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
180 	put_cpu_var(xen_vcpu);
181 }
182 
183 static void xen_get_wallclock(struct timespec *now)
184 {
185 	xen_read_wallclock(now);
186 }
187 
188 static int xen_set_wallclock(const struct timespec *now)
189 {
190 	return -1;
191 }
192 
193 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
194 				   unsigned long was_set, void *priv)
195 {
196 	/* Protected by the calling core code serialization */
197 	static struct timespec next_sync;
198 
199 	struct xen_platform_op op;
200 	struct timespec now;
201 
202 	now = __current_kernel_time();
203 
204 	/*
205 	 * We only take the expensive HV call when the clock was set
206 	 * or when the 11 minutes RTC synchronization time elapsed.
207 	 */
208 	if (!was_set && timespec_compare(&now, &next_sync) < 0)
209 		return NOTIFY_OK;
210 
211 	op.cmd = XENPF_settime;
212 	op.u.settime.secs = now.tv_sec;
213 	op.u.settime.nsecs = now.tv_nsec;
214 	op.u.settime.system_time = xen_clocksource_read();
215 
216 	(void)HYPERVISOR_dom0_op(&op);
217 
218 	/*
219 	 * Move the next drift compensation time 11 minutes
220 	 * ahead. That's emulating the sync_cmos_clock() update for
221 	 * the hardware RTC.
222 	 */
223 	next_sync = now;
224 	next_sync.tv_sec += 11 * 60;
225 
226 	return NOTIFY_OK;
227 }
228 
229 static struct notifier_block xen_pvclock_gtod_notifier = {
230 	.notifier_call = xen_pvclock_gtod_notify,
231 };
232 
233 static struct clocksource xen_clocksource __read_mostly = {
234 	.name = "xen",
235 	.rating = 400,
236 	.read = xen_clocksource_get_cycles,
237 	.mask = ~0,
238 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
239 };
240 
241 /*
242    Xen clockevent implementation
243 
244    Xen has two clockevent implementations:
245 
246    The old timer_op one works with all released versions of Xen prior
247    to version 3.0.4.  This version of the hypervisor provides a
248    single-shot timer with nanosecond resolution.  However, sharing the
249    same event channel is a 100Hz tick which is delivered while the
250    vcpu is running.  We don't care about or use this tick, but it will
251    cause the core time code to think the timer fired too soon, and
252    will end up resetting it each time.  It could be filtered, but
253    doing so has complications when the ktime clocksource is not yet
254    the xen clocksource (ie, at boot time).
255 
256    The new vcpu_op-based timer interface allows the tick timer period
257    to be changed or turned off.  The tick timer is not useful as a
258    periodic timer because events are only delivered to running vcpus.
259    The one-shot timer can report when a timeout is in the past, so
260    set_next_event is capable of returning -ETIME when appropriate.
261    This interface is used when available.
262 */
263 
264 
265 /*
266   Get a hypervisor absolute time.  In theory we could maintain an
267   offset between the kernel's time and the hypervisor's time, and
268   apply that to a kernel's absolute timeout.  Unfortunately the
269   hypervisor and kernel times can drift even if the kernel is using
270   the Xen clocksource, because ntp can warp the kernel's clocksource.
271 */
272 static s64 get_abs_timeout(unsigned long delta)
273 {
274 	return xen_clocksource_read() + delta;
275 }
276 
277 static void xen_timerop_set_mode(enum clock_event_mode mode,
278 				 struct clock_event_device *evt)
279 {
280 	switch (mode) {
281 	case CLOCK_EVT_MODE_PERIODIC:
282 		/* unsupported */
283 		WARN_ON(1);
284 		break;
285 
286 	case CLOCK_EVT_MODE_ONESHOT:
287 	case CLOCK_EVT_MODE_RESUME:
288 		break;
289 
290 	case CLOCK_EVT_MODE_UNUSED:
291 	case CLOCK_EVT_MODE_SHUTDOWN:
292 		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
293 		break;
294 	}
295 }
296 
297 static int xen_timerop_set_next_event(unsigned long delta,
298 				      struct clock_event_device *evt)
299 {
300 	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
301 
302 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
303 		BUG();
304 
305 	/* We may have missed the deadline, but there's no real way of
306 	   knowing for sure.  If the event was in the past, then we'll
307 	   get an immediate interrupt. */
308 
309 	return 0;
310 }
311 
312 static const struct clock_event_device xen_timerop_clockevent = {
313 	.name = "xen",
314 	.features = CLOCK_EVT_FEAT_ONESHOT,
315 
316 	.max_delta_ns = 0xffffffff,
317 	.min_delta_ns = TIMER_SLOP,
318 
319 	.mult = 1,
320 	.shift = 0,
321 	.rating = 500,
322 
323 	.set_mode = xen_timerop_set_mode,
324 	.set_next_event = xen_timerop_set_next_event,
325 };
326 
327 
328 
329 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
330 				struct clock_event_device *evt)
331 {
332 	int cpu = smp_processor_id();
333 
334 	switch (mode) {
335 	case CLOCK_EVT_MODE_PERIODIC:
336 		WARN_ON(1);	/* unsupported */
337 		break;
338 
339 	case CLOCK_EVT_MODE_ONESHOT:
340 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
341 			BUG();
342 		break;
343 
344 	case CLOCK_EVT_MODE_UNUSED:
345 	case CLOCK_EVT_MODE_SHUTDOWN:
346 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
347 		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
348 			BUG();
349 		break;
350 	case CLOCK_EVT_MODE_RESUME:
351 		break;
352 	}
353 }
354 
355 static int xen_vcpuop_set_next_event(unsigned long delta,
356 				     struct clock_event_device *evt)
357 {
358 	int cpu = smp_processor_id();
359 	struct vcpu_set_singleshot_timer single;
360 	int ret;
361 
362 	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
363 
364 	single.timeout_abs_ns = get_abs_timeout(delta);
365 	single.flags = VCPU_SSHOTTMR_future;
366 
367 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
368 
369 	BUG_ON(ret != 0 && ret != -ETIME);
370 
371 	return ret;
372 }
373 
374 static const struct clock_event_device xen_vcpuop_clockevent = {
375 	.name = "xen",
376 	.features = CLOCK_EVT_FEAT_ONESHOT,
377 
378 	.max_delta_ns = 0xffffffff,
379 	.min_delta_ns = TIMER_SLOP,
380 
381 	.mult = 1,
382 	.shift = 0,
383 	.rating = 500,
384 
385 	.set_mode = xen_vcpuop_set_mode,
386 	.set_next_event = xen_vcpuop_set_next_event,
387 };
388 
389 static const struct clock_event_device *xen_clockevent =
390 	&xen_timerop_clockevent;
391 
392 struct xen_clock_event_device {
393 	struct clock_event_device evt;
394 	char *name;
395 };
396 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
397 
398 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
399 {
400 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
401 	irqreturn_t ret;
402 
403 	ret = IRQ_NONE;
404 	if (evt->event_handler) {
405 		evt->event_handler(evt);
406 		ret = IRQ_HANDLED;
407 	}
408 
409 	do_stolen_accounting();
410 
411 	return ret;
412 }
413 
414 void xen_teardown_timer(int cpu)
415 {
416 	struct clock_event_device *evt;
417 	BUG_ON(cpu == 0);
418 	evt = &per_cpu(xen_clock_events, cpu).evt;
419 
420 	if (evt->irq >= 0) {
421 		unbind_from_irqhandler(evt->irq, NULL);
422 		evt->irq = -1;
423 		kfree(per_cpu(xen_clock_events, cpu).name);
424 		per_cpu(xen_clock_events, cpu).name = NULL;
425 	}
426 }
427 
428 void xen_setup_timer(int cpu)
429 {
430 	char *name;
431 	struct clock_event_device *evt;
432 	int irq;
433 
434 	evt = &per_cpu(xen_clock_events, cpu).evt;
435 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
436 	if (evt->irq >= 0)
437 		xen_teardown_timer(cpu);
438 
439 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
440 
441 	name = kasprintf(GFP_KERNEL, "timer%d", cpu);
442 	if (!name)
443 		name = "<timer kasprintf failed>";
444 
445 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
446 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
447 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
448 				      name, NULL);
449 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
450 
451 	memcpy(evt, xen_clockevent, sizeof(*evt));
452 
453 	evt->cpumask = cpumask_of(cpu);
454 	evt->irq = irq;
455 	per_cpu(xen_clock_events, cpu).name = name;
456 }
457 
458 
459 void xen_setup_cpu_clockevents(void)
460 {
461 	BUG_ON(preemptible());
462 
463 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
464 }
465 
466 void xen_timer_resume(void)
467 {
468 	int cpu;
469 
470 	pvclock_resume();
471 
472 	if (xen_clockevent != &xen_vcpuop_clockevent)
473 		return;
474 
475 	for_each_online_cpu(cpu) {
476 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
477 			BUG();
478 	}
479 }
480 
481 static const struct pv_time_ops xen_time_ops __initconst = {
482 	.sched_clock = xen_clocksource_read,
483 };
484 
485 static void __init xen_time_init(void)
486 {
487 	int cpu = smp_processor_id();
488 	struct timespec tp;
489 
490 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
491 
492 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
493 		/* Successfully turned off 100Hz tick, so we have the
494 		   vcpuop-based timer interface */
495 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
496 		xen_clockevent = &xen_vcpuop_clockevent;
497 	}
498 
499 	/* Set initial system time with full resolution */
500 	xen_read_wallclock(&tp);
501 	do_settimeofday(&tp);
502 
503 	setup_force_cpu_cap(X86_FEATURE_TSC);
504 
505 	xen_setup_runstate_info(cpu);
506 	xen_setup_timer(cpu);
507 	xen_setup_cpu_clockevents();
508 
509 	if (xen_initial_domain())
510 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
511 }
512 
513 void __init xen_init_time_ops(void)
514 {
515 	pv_time_ops = xen_time_ops;
516 
517 	x86_init.timers.timer_init = xen_time_init;
518 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
519 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
520 
521 	x86_platform.calibrate_tsc = xen_tsc_khz;
522 	x86_platform.get_wallclock = xen_get_wallclock;
523 	/* Dom0 uses the native method to set the hardware RTC. */
524 	if (!xen_initial_domain())
525 		x86_platform.set_wallclock = xen_set_wallclock;
526 }
527 
528 #ifdef CONFIG_XEN_PVHVM
529 static void xen_hvm_setup_cpu_clockevents(void)
530 {
531 	int cpu = smp_processor_id();
532 	xen_setup_runstate_info(cpu);
533 	/*
534 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
535 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
536 	 * early bootup and also during CPU hotplug events).
537 	 */
538 	xen_setup_cpu_clockevents();
539 }
540 
541 void __init xen_hvm_init_time_ops(void)
542 {
543 	/* vector callback is needed otherwise we cannot receive interrupts
544 	 * on cpu > 0 and at this point we don't know how many cpus are
545 	 * available */
546 	if (!xen_have_vector_callback)
547 		return;
548 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
549 		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
550 				"disable pv timer\n");
551 		return;
552 	}
553 
554 	pv_time_ops = xen_time_ops;
555 	x86_init.timers.setup_percpu_clockev = xen_time_init;
556 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
557 
558 	x86_platform.calibrate_tsc = xen_tsc_khz;
559 	x86_platform.get_wallclock = xen_get_wallclock;
560 	x86_platform.set_wallclock = xen_set_wallclock;
561 }
562 #endif
563