xref: /openbmc/linux/arch/x86/xen/enlighten.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 
29 #include <xen/interface/xen.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/interface/vcpu.h>
32 #include <xen/interface/sched.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
35 
36 #include <asm/paravirt.h>
37 #include <asm/page.h>
38 #include <asm/xen/hypercall.h>
39 #include <asm/xen/hypervisor.h>
40 #include <asm/fixmap.h>
41 #include <asm/processor.h>
42 #include <asm/setup.h>
43 #include <asm/desc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/reboot.h>
47 
48 #include "xen-ops.h"
49 #include "mmu.h"
50 #include "multicalls.h"
51 
52 EXPORT_SYMBOL_GPL(hypercall_page);
53 
54 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
55 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
56 
57 /*
58  * Note about cr3 (pagetable base) values:
59  *
60  * xen_cr3 contains the current logical cr3 value; it contains the
61  * last set cr3.  This may not be the current effective cr3, because
62  * its update may be being lazily deferred.  However, a vcpu looking
63  * at its own cr3 can use this value knowing that it everything will
64  * be self-consistent.
65  *
66  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
67  * hypercall to set the vcpu cr3 is complete (so it may be a little
68  * out of date, but it will never be set early).  If one vcpu is
69  * looking at another vcpu's cr3 value, it should use this variable.
70  */
71 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
72 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
73 
74 struct start_info *xen_start_info;
75 EXPORT_SYMBOL_GPL(xen_start_info);
76 
77 static /* __initdata */ struct shared_info dummy_shared_info;
78 
79 /*
80  * Point at some empty memory to start with. We map the real shared_info
81  * page as soon as fixmap is up and running.
82  */
83 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
84 
85 /*
86  * Flag to determine whether vcpu info placement is available on all
87  * VCPUs.  We assume it is to start with, and then set it to zero on
88  * the first failure.  This is because it can succeed on some VCPUs
89  * and not others, since it can involve hypervisor memory allocation,
90  * or because the guest failed to guarantee all the appropriate
91  * constraints on all VCPUs (ie buffer can't cross a page boundary).
92  *
93  * Note that any particular CPU may be using a placed vcpu structure,
94  * but we can only optimise if the all are.
95  *
96  * 0: not available, 1: available
97  */
98 static int have_vcpu_info_placement = 1;
99 
100 static void __init xen_vcpu_setup(int cpu)
101 {
102 	struct vcpu_register_vcpu_info info;
103 	int err;
104 	struct vcpu_info *vcpup;
105 
106 	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
107 
108 	if (!have_vcpu_info_placement)
109 		return;		/* already tested, not available */
110 
111 	vcpup = &per_cpu(xen_vcpu_info, cpu);
112 
113 	info.mfn = virt_to_mfn(vcpup);
114 	info.offset = offset_in_page(vcpup);
115 
116 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
117 	       cpu, vcpup, info.mfn, info.offset);
118 
119 	/* Check to see if the hypervisor will put the vcpu_info
120 	   structure where we want it, which allows direct access via
121 	   a percpu-variable. */
122 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
123 
124 	if (err) {
125 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
126 		have_vcpu_info_placement = 0;
127 	} else {
128 		/* This cpu is using the registered vcpu info, even if
129 		   later ones fail to. */
130 		per_cpu(xen_vcpu, cpu) = vcpup;
131 
132 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
133 		       cpu, vcpup);
134 	}
135 }
136 
137 static void __init xen_banner(void)
138 {
139 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
140 	       pv_info.name);
141 	printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
142 }
143 
144 static void xen_cpuid(unsigned int *eax, unsigned int *ebx,
145 		      unsigned int *ecx, unsigned int *edx)
146 {
147 	unsigned maskedx = ~0;
148 
149 	/*
150 	 * Mask out inconvenient features, to try and disable as many
151 	 * unsupported kernel subsystems as possible.
152 	 */
153 	if (*eax == 1)
154 		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
155 			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
156 			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */
157 
158 	asm(XEN_EMULATE_PREFIX "cpuid"
159 		: "=a" (*eax),
160 		  "=b" (*ebx),
161 		  "=c" (*ecx),
162 		  "=d" (*edx)
163 		: "0" (*eax), "2" (*ecx));
164 	*edx &= maskedx;
165 }
166 
167 static void xen_set_debugreg(int reg, unsigned long val)
168 {
169 	HYPERVISOR_set_debugreg(reg, val);
170 }
171 
172 static unsigned long xen_get_debugreg(int reg)
173 {
174 	return HYPERVISOR_get_debugreg(reg);
175 }
176 
177 static unsigned long xen_save_fl(void)
178 {
179 	struct vcpu_info *vcpu;
180 	unsigned long flags;
181 
182 	vcpu = x86_read_percpu(xen_vcpu);
183 
184 	/* flag has opposite sense of mask */
185 	flags = !vcpu->evtchn_upcall_mask;
186 
187 	/* convert to IF type flag
188 	   -0 -> 0x00000000
189 	   -1 -> 0xffffffff
190 	*/
191 	return (-flags) & X86_EFLAGS_IF;
192 }
193 
194 static void xen_restore_fl(unsigned long flags)
195 {
196 	struct vcpu_info *vcpu;
197 
198 	/* convert from IF type flag */
199 	flags = !(flags & X86_EFLAGS_IF);
200 
201 	/* There's a one instruction preempt window here.  We need to
202 	   make sure we're don't switch CPUs between getting the vcpu
203 	   pointer and updating the mask. */
204 	preempt_disable();
205 	vcpu = x86_read_percpu(xen_vcpu);
206 	vcpu->evtchn_upcall_mask = flags;
207 	preempt_enable_no_resched();
208 
209 	/* Doesn't matter if we get preempted here, because any
210 	   pending event will get dealt with anyway. */
211 
212 	if (flags == 0) {
213 		preempt_check_resched();
214 		barrier(); /* unmask then check (avoid races) */
215 		if (unlikely(vcpu->evtchn_upcall_pending))
216 			force_evtchn_callback();
217 	}
218 }
219 
220 static void xen_irq_disable(void)
221 {
222 	/* There's a one instruction preempt window here.  We need to
223 	   make sure we're don't switch CPUs between getting the vcpu
224 	   pointer and updating the mask. */
225 	preempt_disable();
226 	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
227 	preempt_enable_no_resched();
228 }
229 
230 static void xen_irq_enable(void)
231 {
232 	struct vcpu_info *vcpu;
233 
234 	/* There's a one instruction preempt window here.  We need to
235 	   make sure we're don't switch CPUs between getting the vcpu
236 	   pointer and updating the mask. */
237 	preempt_disable();
238 	vcpu = x86_read_percpu(xen_vcpu);
239 	vcpu->evtchn_upcall_mask = 0;
240 	preempt_enable_no_resched();
241 
242 	/* Doesn't matter if we get preempted here, because any
243 	   pending event will get dealt with anyway. */
244 
245 	barrier(); /* unmask then check (avoid races) */
246 	if (unlikely(vcpu->evtchn_upcall_pending))
247 		force_evtchn_callback();
248 }
249 
250 static void xen_safe_halt(void)
251 {
252 	/* Blocking includes an implicit local_irq_enable(). */
253 	if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
254 		BUG();
255 }
256 
257 static void xen_halt(void)
258 {
259 	if (irqs_disabled())
260 		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
261 	else
262 		xen_safe_halt();
263 }
264 
265 static void xen_leave_lazy(void)
266 {
267 	paravirt_leave_lazy(paravirt_get_lazy_mode());
268 	xen_mc_flush();
269 }
270 
271 static unsigned long xen_store_tr(void)
272 {
273 	return 0;
274 }
275 
276 static void xen_set_ldt(const void *addr, unsigned entries)
277 {
278 	unsigned long linear_addr = (unsigned long)addr;
279 	struct mmuext_op *op;
280 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
281 
282 	op = mcs.args;
283 	op->cmd = MMUEXT_SET_LDT;
284 	if (linear_addr) {
285 		/* ldt my be vmalloced, use arbitrary_virt_to_machine */
286 		xmaddr_t maddr;
287 		maddr = arbitrary_virt_to_machine((unsigned long)addr);
288 		linear_addr = (unsigned long)maddr.maddr;
289 	}
290 	op->arg1.linear_addr = linear_addr;
291 	op->arg2.nr_ents = entries;
292 
293 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
294 
295 	xen_mc_issue(PARAVIRT_LAZY_CPU);
296 }
297 
298 static void xen_load_gdt(const struct Xgt_desc_struct *dtr)
299 {
300 	unsigned long *frames;
301 	unsigned long va = dtr->address;
302 	unsigned int size = dtr->size + 1;
303 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
304 	int f;
305 	struct multicall_space mcs;
306 
307 	/* A GDT can be up to 64k in size, which corresponds to 8192
308 	   8-byte entries, or 16 4k pages.. */
309 
310 	BUG_ON(size > 65536);
311 	BUG_ON(va & ~PAGE_MASK);
312 
313 	mcs = xen_mc_entry(sizeof(*frames) * pages);
314 	frames = mcs.args;
315 
316 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
317 		frames[f] = virt_to_mfn(va);
318 		make_lowmem_page_readonly((void *)va);
319 	}
320 
321 	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
322 
323 	xen_mc_issue(PARAVIRT_LAZY_CPU);
324 }
325 
326 static void load_TLS_descriptor(struct thread_struct *t,
327 				unsigned int cpu, unsigned int i)
328 {
329 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
330 	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
331 	struct multicall_space mc = __xen_mc_entry(0);
332 
333 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
334 }
335 
336 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
337 {
338 	xen_mc_batch();
339 
340 	load_TLS_descriptor(t, cpu, 0);
341 	load_TLS_descriptor(t, cpu, 1);
342 	load_TLS_descriptor(t, cpu, 2);
343 
344 	xen_mc_issue(PARAVIRT_LAZY_CPU);
345 
346 	/*
347 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
348 	 * it means we're in a context switch, and %gs has just been
349 	 * saved.  This means we can zero it out to prevent faults on
350 	 * exit from the hypervisor if the next process has no %gs.
351 	 * Either way, it has been saved, and the new value will get
352 	 * loaded properly.  This will go away as soon as Xen has been
353 	 * modified to not save/restore %gs for normal hypercalls.
354 	 */
355 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
356 		loadsegment(gs, 0);
357 }
358 
359 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
360 				u32 low, u32 high)
361 {
362 	unsigned long lp = (unsigned long)&dt[entrynum];
363 	xmaddr_t mach_lp = virt_to_machine(lp);
364 	u64 entry = (u64)high << 32 | low;
365 
366 	preempt_disable();
367 
368 	xen_mc_flush();
369 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
370 		BUG();
371 
372 	preempt_enable();
373 }
374 
375 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
376 			    struct trap_info *info)
377 {
378 	u8 type, dpl;
379 
380 	type = (high >> 8) & 0x1f;
381 	dpl = (high >> 13) & 3;
382 
383 	if (type != 0xf && type != 0xe)
384 		return 0;
385 
386 	info->vector = vector;
387 	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
388 	info->cs = low >> 16;
389 	info->flags = dpl;
390 	/* interrupt gates clear IF */
391 	if (type == 0xe)
392 		info->flags |= 4;
393 
394 	return 1;
395 }
396 
397 /* Locations of each CPU's IDT */
398 static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc);
399 
400 /* Set an IDT entry.  If the entry is part of the current IDT, then
401    also update Xen. */
402 static void xen_write_idt_entry(struct desc_struct *dt, int entrynum,
403 				u32 low, u32 high)
404 {
405 	unsigned long p = (unsigned long)&dt[entrynum];
406 	unsigned long start, end;
407 
408 	preempt_disable();
409 
410 	start = __get_cpu_var(idt_desc).address;
411 	end = start + __get_cpu_var(idt_desc).size + 1;
412 
413 	xen_mc_flush();
414 
415 	write_dt_entry(dt, entrynum, low, high);
416 
417 	if (p >= start && (p + 8) <= end) {
418 		struct trap_info info[2];
419 
420 		info[1].address = 0;
421 
422 		if (cvt_gate_to_trap(entrynum, low, high, &info[0]))
423 			if (HYPERVISOR_set_trap_table(info))
424 				BUG();
425 	}
426 
427 	preempt_enable();
428 }
429 
430 static void xen_convert_trap_info(const struct Xgt_desc_struct *desc,
431 				  struct trap_info *traps)
432 {
433 	unsigned in, out, count;
434 
435 	count = (desc->size+1) / 8;
436 	BUG_ON(count > 256);
437 
438 	for (in = out = 0; in < count; in++) {
439 		const u32 *entry = (u32 *)(desc->address + in * 8);
440 
441 		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
442 			out++;
443 	}
444 	traps[out].address = 0;
445 }
446 
447 void xen_copy_trap_info(struct trap_info *traps)
448 {
449 	const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc);
450 
451 	xen_convert_trap_info(desc, traps);
452 }
453 
454 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
455    hold a spinlock to protect the static traps[] array (static because
456    it avoids allocation, and saves stack space). */
457 static void xen_load_idt(const struct Xgt_desc_struct *desc)
458 {
459 	static DEFINE_SPINLOCK(lock);
460 	static struct trap_info traps[257];
461 
462 	spin_lock(&lock);
463 
464 	__get_cpu_var(idt_desc) = *desc;
465 
466 	xen_convert_trap_info(desc, traps);
467 
468 	xen_mc_flush();
469 	if (HYPERVISOR_set_trap_table(traps))
470 		BUG();
471 
472 	spin_unlock(&lock);
473 }
474 
475 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
476    they're handled differently. */
477 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
478 				u32 low, u32 high)
479 {
480 	preempt_disable();
481 
482 	switch ((high >> 8) & 0xff) {
483 	case DESCTYPE_LDT:
484 	case DESCTYPE_TSS:
485 		/* ignore */
486 		break;
487 
488 	default: {
489 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
490 		u64 desc = (u64)high << 32 | low;
491 
492 		xen_mc_flush();
493 		if (HYPERVISOR_update_descriptor(maddr.maddr, desc))
494 			BUG();
495 	}
496 
497 	}
498 
499 	preempt_enable();
500 }
501 
502 static void xen_load_esp0(struct tss_struct *tss,
503 			  struct thread_struct *thread)
504 {
505 	struct multicall_space mcs = xen_mc_entry(0);
506 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0);
507 	xen_mc_issue(PARAVIRT_LAZY_CPU);
508 }
509 
510 static void xen_set_iopl_mask(unsigned mask)
511 {
512 	struct physdev_set_iopl set_iopl;
513 
514 	/* Force the change at ring 0. */
515 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
516 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
517 }
518 
519 static void xen_io_delay(void)
520 {
521 }
522 
523 #ifdef CONFIG_X86_LOCAL_APIC
524 static unsigned long xen_apic_read(unsigned long reg)
525 {
526 	return 0;
527 }
528 
529 static void xen_apic_write(unsigned long reg, unsigned long val)
530 {
531 	/* Warn to see if there's any stray references */
532 	WARN_ON(1);
533 }
534 #endif
535 
536 static void xen_flush_tlb(void)
537 {
538 	struct mmuext_op *op;
539 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
540 
541 	op = mcs.args;
542 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
543 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
544 
545 	xen_mc_issue(PARAVIRT_LAZY_MMU);
546 }
547 
548 static void xen_flush_tlb_single(unsigned long addr)
549 {
550 	struct mmuext_op *op;
551 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
552 
553 	op = mcs.args;
554 	op->cmd = MMUEXT_INVLPG_LOCAL;
555 	op->arg1.linear_addr = addr & PAGE_MASK;
556 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
557 
558 	xen_mc_issue(PARAVIRT_LAZY_MMU);
559 }
560 
561 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
562 				 unsigned long va)
563 {
564 	struct {
565 		struct mmuext_op op;
566 		cpumask_t mask;
567 	} *args;
568 	cpumask_t cpumask = *cpus;
569 	struct multicall_space mcs;
570 
571 	/*
572 	 * A couple of (to be removed) sanity checks:
573 	 *
574 	 * - current CPU must not be in mask
575 	 * - mask must exist :)
576 	 */
577 	BUG_ON(cpus_empty(cpumask));
578 	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
579 	BUG_ON(!mm);
580 
581 	/* If a CPU which we ran on has gone down, OK. */
582 	cpus_and(cpumask, cpumask, cpu_online_map);
583 	if (cpus_empty(cpumask))
584 		return;
585 
586 	mcs = xen_mc_entry(sizeof(*args));
587 	args = mcs.args;
588 	args->mask = cpumask;
589 	args->op.arg2.vcpumask = &args->mask;
590 
591 	if (va == TLB_FLUSH_ALL) {
592 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
593 	} else {
594 		args->op.cmd = MMUEXT_INVLPG_MULTI;
595 		args->op.arg1.linear_addr = va;
596 	}
597 
598 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
599 
600 	xen_mc_issue(PARAVIRT_LAZY_MMU);
601 }
602 
603 static void xen_write_cr2(unsigned long cr2)
604 {
605 	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
606 }
607 
608 static unsigned long xen_read_cr2(void)
609 {
610 	return x86_read_percpu(xen_vcpu)->arch.cr2;
611 }
612 
613 static unsigned long xen_read_cr2_direct(void)
614 {
615 	return x86_read_percpu(xen_vcpu_info.arch.cr2);
616 }
617 
618 static void xen_write_cr4(unsigned long cr4)
619 {
620 	/* Just ignore cr4 changes; Xen doesn't allow us to do
621 	   anything anyway. */
622 }
623 
624 static unsigned long xen_read_cr3(void)
625 {
626 	return x86_read_percpu(xen_cr3);
627 }
628 
629 static void set_current_cr3(void *v)
630 {
631 	x86_write_percpu(xen_current_cr3, (unsigned long)v);
632 }
633 
634 static void xen_write_cr3(unsigned long cr3)
635 {
636 	struct mmuext_op *op;
637 	struct multicall_space mcs;
638 	unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
639 
640 	BUG_ON(preemptible());
641 
642 	mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
643 
644 	/* Update while interrupts are disabled, so its atomic with
645 	   respect to ipis */
646 	x86_write_percpu(xen_cr3, cr3);
647 
648 	op = mcs.args;
649 	op->cmd = MMUEXT_NEW_BASEPTR;
650 	op->arg1.mfn = mfn;
651 
652 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
653 
654 	/* Update xen_update_cr3 once the batch has actually
655 	   been submitted. */
656 	xen_mc_callback(set_current_cr3, (void *)cr3);
657 
658 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
659 }
660 
661 /* Early in boot, while setting up the initial pagetable, assume
662    everything is pinned. */
663 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
664 {
665 	BUG_ON(mem_map);	/* should only be used early */
666 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
667 }
668 
669 static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
670 {
671 	struct mmuext_op op;
672 	op.cmd = level;
673 	op.arg1.mfn = pfn_to_mfn(pfn);
674 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
675 		BUG();
676 }
677 
678 /* This needs to make sure the new pte page is pinned iff its being
679    attached to a pinned pagetable. */
680 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
681 {
682 	struct page *page = pfn_to_page(pfn);
683 
684 	if (PagePinned(virt_to_page(mm->pgd))) {
685 		SetPagePinned(page);
686 
687 		if (!PageHighMem(page)) {
688 			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
689 			pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
690 		} else
691 			/* make sure there are no stray mappings of
692 			   this page */
693 			kmap_flush_unused();
694 	}
695 }
696 
697 /* This should never happen until we're OK to use struct page */
698 static void xen_release_pt(u32 pfn)
699 {
700 	struct page *page = pfn_to_page(pfn);
701 
702 	if (PagePinned(page)) {
703 		if (!PageHighMem(page)) {
704 			pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
705 			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
706 		}
707 	}
708 }
709 
710 #ifdef CONFIG_HIGHPTE
711 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
712 {
713 	pgprot_t prot = PAGE_KERNEL;
714 
715 	if (PagePinned(page))
716 		prot = PAGE_KERNEL_RO;
717 
718 	if (0 && PageHighMem(page))
719 		printk("mapping highpte %lx type %d prot %s\n",
720 		       page_to_pfn(page), type,
721 		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
722 
723 	return kmap_atomic_prot(page, type, prot);
724 }
725 #endif
726 
727 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
728 {
729 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
730 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
731 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
732 			       pte_val_ma(pte));
733 
734 	return pte;
735 }
736 
737 /* Init-time set_pte while constructing initial pagetables, which
738    doesn't allow RO pagetable pages to be remapped RW */
739 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
740 {
741 	pte = mask_rw_pte(ptep, pte);
742 
743 	xen_set_pte(ptep, pte);
744 }
745 
746 static __init void xen_pagetable_setup_start(pgd_t *base)
747 {
748 	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
749 
750 	/* special set_pte for pagetable initialization */
751 	pv_mmu_ops.set_pte = xen_set_pte_init;
752 
753 	init_mm.pgd = base;
754 	/*
755 	 * copy top-level of Xen-supplied pagetable into place.	 For
756 	 * !PAE we can use this as-is, but for PAE it is a stand-in
757 	 * while we copy the pmd pages.
758 	 */
759 	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
760 
761 	if (PTRS_PER_PMD > 1) {
762 		int i;
763 		/*
764 		 * For PAE, need to allocate new pmds, rather than
765 		 * share Xen's, since Xen doesn't like pmd's being
766 		 * shared between address spaces.
767 		 */
768 		for (i = 0; i < PTRS_PER_PGD; i++) {
769 			if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
770 				pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
771 
772 				memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
773 				       PAGE_SIZE);
774 
775 				make_lowmem_page_readonly(pmd);
776 
777 				set_pgd(&base[i], __pgd(1 + __pa(pmd)));
778 			} else
779 				pgd_clear(&base[i]);
780 		}
781 	}
782 
783 	/* make sure zero_page is mapped RO so we can use it in pagetables */
784 	make_lowmem_page_readonly(empty_zero_page);
785 	make_lowmem_page_readonly(base);
786 	/*
787 	 * Switch to new pagetable.  This is done before
788 	 * pagetable_init has done anything so that the new pages
789 	 * added to the table can be prepared properly for Xen.
790 	 */
791 	xen_write_cr3(__pa(base));
792 }
793 
794 static __init void xen_pagetable_setup_done(pgd_t *base)
795 {
796 	/* This will work as long as patching hasn't happened yet
797 	   (which it hasn't) */
798 	pv_mmu_ops.alloc_pt = xen_alloc_pt;
799 	pv_mmu_ops.set_pte = xen_set_pte;
800 
801 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
802 		/*
803 		 * Create a mapping for the shared info page.
804 		 * Should be set_fixmap(), but shared_info is a machine
805 		 * address with no corresponding pseudo-phys address.
806 		 */
807 		set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
808 			    PFN_DOWN(xen_start_info->shared_info),
809 			    PAGE_KERNEL);
810 
811 		HYPERVISOR_shared_info =
812 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
813 
814 	} else
815 		HYPERVISOR_shared_info =
816 			(struct shared_info *)__va(xen_start_info->shared_info);
817 
818 	/* Actually pin the pagetable down, but we can't set PG_pinned
819 	   yet because the page structures don't exist yet. */
820 	{
821 		unsigned level;
822 
823 #ifdef CONFIG_X86_PAE
824 		level = MMUEXT_PIN_L3_TABLE;
825 #else
826 		level = MMUEXT_PIN_L2_TABLE;
827 #endif
828 
829 		pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
830 	}
831 }
832 
833 /* This is called once we have the cpu_possible_map */
834 void __init xen_setup_vcpu_info_placement(void)
835 {
836 	int cpu;
837 
838 	for_each_possible_cpu(cpu)
839 		xen_vcpu_setup(cpu);
840 
841 	/* xen_vcpu_setup managed to place the vcpu_info within the
842 	   percpu area for all cpus, so make use of it */
843 	if (have_vcpu_info_placement) {
844 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
845 
846 		pv_irq_ops.save_fl = xen_save_fl_direct;
847 		pv_irq_ops.restore_fl = xen_restore_fl_direct;
848 		pv_irq_ops.irq_disable = xen_irq_disable_direct;
849 		pv_irq_ops.irq_enable = xen_irq_enable_direct;
850 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
851 		pv_cpu_ops.iret = xen_iret_direct;
852 	}
853 }
854 
855 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
856 			  unsigned long addr, unsigned len)
857 {
858 	char *start, *end, *reloc;
859 	unsigned ret;
860 
861 	start = end = reloc = NULL;
862 
863 #define SITE(op, x)							\
864 	case PARAVIRT_PATCH(op.x):					\
865 	if (have_vcpu_info_placement) {					\
866 		start = (char *)xen_##x##_direct;			\
867 		end = xen_##x##_direct_end;				\
868 		reloc = xen_##x##_direct_reloc;				\
869 	}								\
870 	goto patch_site
871 
872 	switch (type) {
873 		SITE(pv_irq_ops, irq_enable);
874 		SITE(pv_irq_ops, irq_disable);
875 		SITE(pv_irq_ops, save_fl);
876 		SITE(pv_irq_ops, restore_fl);
877 #undef SITE
878 
879 	patch_site:
880 		if (start == NULL || (end-start) > len)
881 			goto default_patch;
882 
883 		ret = paravirt_patch_insns(insnbuf, len, start, end);
884 
885 		/* Note: because reloc is assigned from something that
886 		   appears to be an array, gcc assumes it's non-null,
887 		   but doesn't know its relationship with start and
888 		   end. */
889 		if (reloc > start && reloc < end) {
890 			int reloc_off = reloc - start;
891 			long *relocp = (long *)(insnbuf + reloc_off);
892 			long delta = start - (char *)addr;
893 
894 			*relocp += delta;
895 		}
896 		break;
897 
898 	default_patch:
899 	default:
900 		ret = paravirt_patch_default(type, clobbers, insnbuf,
901 					     addr, len);
902 		break;
903 	}
904 
905 	return ret;
906 }
907 
908 static const struct pv_info xen_info __initdata = {
909 	.paravirt_enabled = 1,
910 	.shared_kernel_pmd = 0,
911 
912 	.name = "Xen",
913 };
914 
915 static const struct pv_init_ops xen_init_ops __initdata = {
916 	.patch = xen_patch,
917 
918 	.banner = xen_banner,
919 	.memory_setup = xen_memory_setup,
920 	.arch_setup = xen_arch_setup,
921 	.post_allocator_init = xen_mark_init_mm_pinned,
922 };
923 
924 static const struct pv_time_ops xen_time_ops __initdata = {
925 	.time_init = xen_time_init,
926 
927 	.set_wallclock = xen_set_wallclock,
928 	.get_wallclock = xen_get_wallclock,
929 	.get_cpu_khz = xen_cpu_khz,
930 	.sched_clock = xen_sched_clock,
931 };
932 
933 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
934 	.cpuid = xen_cpuid,
935 
936 	.set_debugreg = xen_set_debugreg,
937 	.get_debugreg = xen_get_debugreg,
938 
939 	.clts = native_clts,
940 
941 	.read_cr0 = native_read_cr0,
942 	.write_cr0 = native_write_cr0,
943 
944 	.read_cr4 = native_read_cr4,
945 	.read_cr4_safe = native_read_cr4_safe,
946 	.write_cr4 = xen_write_cr4,
947 
948 	.wbinvd = native_wbinvd,
949 
950 	.read_msr = native_read_msr_safe,
951 	.write_msr = native_write_msr_safe,
952 	.read_tsc = native_read_tsc,
953 	.read_pmc = native_read_pmc,
954 
955 	.iret = (void *)&hypercall_page[__HYPERVISOR_iret],
956 	.irq_enable_sysexit = NULL,  /* never called */
957 
958 	.load_tr_desc = paravirt_nop,
959 	.set_ldt = xen_set_ldt,
960 	.load_gdt = xen_load_gdt,
961 	.load_idt = xen_load_idt,
962 	.load_tls = xen_load_tls,
963 
964 	.store_gdt = native_store_gdt,
965 	.store_idt = native_store_idt,
966 	.store_tr = xen_store_tr,
967 
968 	.write_ldt_entry = xen_write_ldt_entry,
969 	.write_gdt_entry = xen_write_gdt_entry,
970 	.write_idt_entry = xen_write_idt_entry,
971 	.load_esp0 = xen_load_esp0,
972 
973 	.set_iopl_mask = xen_set_iopl_mask,
974 	.io_delay = xen_io_delay,
975 
976 	.lazy_mode = {
977 		.enter = paravirt_enter_lazy_cpu,
978 		.leave = xen_leave_lazy,
979 	},
980 };
981 
982 static const struct pv_irq_ops xen_irq_ops __initdata = {
983 	.init_IRQ = xen_init_IRQ,
984 	.save_fl = xen_save_fl,
985 	.restore_fl = xen_restore_fl,
986 	.irq_disable = xen_irq_disable,
987 	.irq_enable = xen_irq_enable,
988 	.safe_halt = xen_safe_halt,
989 	.halt = xen_halt,
990 };
991 
992 static const struct pv_apic_ops xen_apic_ops __initdata = {
993 #ifdef CONFIG_X86_LOCAL_APIC
994 	.apic_write = xen_apic_write,
995 	.apic_write_atomic = xen_apic_write,
996 	.apic_read = xen_apic_read,
997 	.setup_boot_clock = paravirt_nop,
998 	.setup_secondary_clock = paravirt_nop,
999 	.startup_ipi_hook = paravirt_nop,
1000 #endif
1001 };
1002 
1003 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1004 	.pagetable_setup_start = xen_pagetable_setup_start,
1005 	.pagetable_setup_done = xen_pagetable_setup_done,
1006 
1007 	.read_cr2 = xen_read_cr2,
1008 	.write_cr2 = xen_write_cr2,
1009 
1010 	.read_cr3 = xen_read_cr3,
1011 	.write_cr3 = xen_write_cr3,
1012 
1013 	.flush_tlb_user = xen_flush_tlb,
1014 	.flush_tlb_kernel = xen_flush_tlb,
1015 	.flush_tlb_single = xen_flush_tlb_single,
1016 	.flush_tlb_others = xen_flush_tlb_others,
1017 
1018 	.pte_update = paravirt_nop,
1019 	.pte_update_defer = paravirt_nop,
1020 
1021 	.alloc_pt = xen_alloc_pt_init,
1022 	.release_pt = xen_release_pt,
1023 	.alloc_pd = paravirt_nop,
1024 	.alloc_pd_clone = paravirt_nop,
1025 	.release_pd = paravirt_nop,
1026 
1027 #ifdef CONFIG_HIGHPTE
1028 	.kmap_atomic_pte = xen_kmap_atomic_pte,
1029 #endif
1030 
1031 	.set_pte = NULL,	/* see xen_pagetable_setup_* */
1032 	.set_pte_at = xen_set_pte_at,
1033 	.set_pmd = xen_set_pmd,
1034 
1035 	.pte_val = xen_pte_val,
1036 	.pgd_val = xen_pgd_val,
1037 
1038 	.make_pte = xen_make_pte,
1039 	.make_pgd = xen_make_pgd,
1040 
1041 #ifdef CONFIG_X86_PAE
1042 	.set_pte_atomic = xen_set_pte_atomic,
1043 	.set_pte_present = xen_set_pte_at,
1044 	.set_pud = xen_set_pud,
1045 	.pte_clear = xen_pte_clear,
1046 	.pmd_clear = xen_pmd_clear,
1047 
1048 	.make_pmd = xen_make_pmd,
1049 	.pmd_val = xen_pmd_val,
1050 #endif	/* PAE */
1051 
1052 	.activate_mm = xen_activate_mm,
1053 	.dup_mmap = xen_dup_mmap,
1054 	.exit_mmap = xen_exit_mmap,
1055 
1056 	.lazy_mode = {
1057 		.enter = paravirt_enter_lazy_mmu,
1058 		.leave = xen_leave_lazy,
1059 	},
1060 };
1061 
1062 #ifdef CONFIG_SMP
1063 static const struct smp_ops xen_smp_ops __initdata = {
1064 	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1065 	.smp_prepare_cpus = xen_smp_prepare_cpus,
1066 	.cpu_up = xen_cpu_up,
1067 	.smp_cpus_done = xen_smp_cpus_done,
1068 
1069 	.smp_send_stop = xen_smp_send_stop,
1070 	.smp_send_reschedule = xen_smp_send_reschedule,
1071 	.smp_call_function_mask = xen_smp_call_function_mask,
1072 };
1073 #endif	/* CONFIG_SMP */
1074 
1075 static void xen_reboot(int reason)
1076 {
1077 #ifdef CONFIG_SMP
1078 	smp_send_stop();
1079 #endif
1080 
1081 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1082 		BUG();
1083 }
1084 
1085 static void xen_restart(char *msg)
1086 {
1087 	xen_reboot(SHUTDOWN_reboot);
1088 }
1089 
1090 static void xen_emergency_restart(void)
1091 {
1092 	xen_reboot(SHUTDOWN_reboot);
1093 }
1094 
1095 static void xen_machine_halt(void)
1096 {
1097 	xen_reboot(SHUTDOWN_poweroff);
1098 }
1099 
1100 static void xen_crash_shutdown(struct pt_regs *regs)
1101 {
1102 	xen_reboot(SHUTDOWN_crash);
1103 }
1104 
1105 static const struct machine_ops __initdata xen_machine_ops = {
1106 	.restart = xen_restart,
1107 	.halt = xen_machine_halt,
1108 	.power_off = xen_machine_halt,
1109 	.shutdown = xen_machine_halt,
1110 	.crash_shutdown = xen_crash_shutdown,
1111 	.emergency_restart = xen_emergency_restart,
1112 };
1113 
1114 
1115 static void __init xen_reserve_top(void)
1116 {
1117 	unsigned long top = HYPERVISOR_VIRT_START;
1118 	struct xen_platform_parameters pp;
1119 
1120 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1121 		top = pp.virt_start;
1122 
1123 	reserve_top_address(-top + 2 * PAGE_SIZE);
1124 }
1125 
1126 /* First C function to be called on Xen boot */
1127 asmlinkage void __init xen_start_kernel(void)
1128 {
1129 	pgd_t *pgd;
1130 
1131 	if (!xen_start_info)
1132 		return;
1133 
1134 	BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0);
1135 
1136 	/* Install Xen paravirt ops */
1137 	pv_info = xen_info;
1138 	pv_init_ops = xen_init_ops;
1139 	pv_time_ops = xen_time_ops;
1140 	pv_cpu_ops = xen_cpu_ops;
1141 	pv_irq_ops = xen_irq_ops;
1142 	pv_apic_ops = xen_apic_ops;
1143 	pv_mmu_ops = xen_mmu_ops;
1144 
1145 	machine_ops = xen_machine_ops;
1146 
1147 #ifdef CONFIG_SMP
1148 	smp_ops = xen_smp_ops;
1149 #endif
1150 
1151 	xen_setup_features();
1152 
1153 	/* Get mfn list */
1154 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1155 		phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1156 
1157 	pgd = (pgd_t *)xen_start_info->pt_base;
1158 
1159 	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1160 
1161 	init_mm.pgd = pgd; /* use the Xen pagetables to start */
1162 
1163 	/* keep using Xen gdt for now; no urgent need to change it */
1164 
1165 	x86_write_percpu(xen_cr3, __pa(pgd));
1166 	x86_write_percpu(xen_current_cr3, __pa(pgd));
1167 
1168 #ifdef CONFIG_SMP
1169 	/* Don't do the full vcpu_info placement stuff until we have a
1170 	   possible map. */
1171 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1172 #else
1173 	/* May as well do it now, since there's no good time to call
1174 	   it later on UP. */
1175 	xen_setup_vcpu_info_placement();
1176 #endif
1177 
1178 	pv_info.kernel_rpl = 1;
1179 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1180 		pv_info.kernel_rpl = 0;
1181 
1182 	/* set the limit of our address space */
1183 	xen_reserve_top();
1184 
1185 	/* set up basic CPUID stuff */
1186 	cpu_detect(&new_cpu_data);
1187 	new_cpu_data.hard_math = 1;
1188 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1189 
1190 	/* Poke various useful things into boot_params */
1191 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1192 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1193 		? __pa(xen_start_info->mod_start) : 0;
1194 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1195 
1196 	/* Start the world */
1197 	start_kernel();
1198 }
1199