xref: /openbmc/linux/arch/x86/tools/relocs.c (revision 2f76520561d01a5f37e6d6ed2c2e441b6a355a96)
1 // SPDX-License-Identifier: GPL-2.0
2 /* This is included from relocs_32/64.c */
3 
4 #define ElfW(type)		_ElfW(ELF_BITS, type)
5 #define _ElfW(bits, type)	__ElfW(bits, type)
6 #define __ElfW(bits, type)	Elf##bits##_##type
7 
8 #define Elf_Addr		ElfW(Addr)
9 #define Elf_Ehdr		ElfW(Ehdr)
10 #define Elf_Phdr		ElfW(Phdr)
11 #define Elf_Shdr		ElfW(Shdr)
12 #define Elf_Sym			ElfW(Sym)
13 
14 static Elf_Ehdr		ehdr;
15 static unsigned long	shnum;
16 static unsigned int	shstrndx;
17 
18 struct relocs {
19 	uint32_t	*offset;
20 	unsigned long	count;
21 	unsigned long	size;
22 };
23 
24 static struct relocs relocs16;
25 static struct relocs relocs32;
26 #if ELF_BITS == 64
27 static struct relocs relocs32neg;
28 static struct relocs relocs64;
29 #define FMT PRIu64
30 #else
31 #define FMT PRIu32
32 #endif
33 
34 struct section {
35 	Elf_Shdr       shdr;
36 	struct section *link;
37 	Elf_Sym        *symtab;
38 	Elf_Rel        *reltab;
39 	char           *strtab;
40 };
41 static struct section *secs;
42 
43 static const char * const sym_regex_kernel[S_NSYMTYPES] = {
44 /*
45  * Following symbols have been audited. There values are constant and do
46  * not change if bzImage is loaded at a different physical address than
47  * the address for which it has been compiled. Don't warn user about
48  * absolute relocations present w.r.t these symbols.
49  */
50 	[S_ABS] =
51 	"^(xen_irq_disable_direct_reloc$|"
52 	"xen_save_fl_direct_reloc$|"
53 	"VDSO|"
54 	"__crc_)",
55 
56 /*
57  * These symbols are known to be relative, even if the linker marks them
58  * as absolute (typically defined outside any section in the linker script.)
59  */
60 	[S_REL] =
61 	"^(__init_(begin|end)|"
62 	"__x86_cpu_dev_(start|end)|"
63 	"(__parainstructions|__alt_instructions)(_end)?|"
64 	"(__iommu_table|__apicdrivers|__smp_locks)(_end)?|"
65 	"__(start|end)_pci_.*|"
66 	"__(start|end)_builtin_fw|"
67 	"__(start|stop)___ksymtab(_gpl)?|"
68 	"__(start|stop)___kcrctab(_gpl)?|"
69 	"__(start|stop)___param|"
70 	"__(start|stop)___modver|"
71 	"__(start|stop)___bug_table|"
72 	"__tracedata_(start|end)|"
73 	"__(start|stop)_notes|"
74 	"__end_rodata|"
75 	"__end_rodata_aligned|"
76 	"__initramfs_start|"
77 	"(jiffies|jiffies_64)|"
78 #if ELF_BITS == 64
79 	"__per_cpu_load|"
80 	"init_per_cpu__.*|"
81 	"__end_rodata_hpage_align|"
82 #endif
83 	"__vvar_page|"
84 	"_end)$"
85 };
86 
87 
88 static const char * const sym_regex_realmode[S_NSYMTYPES] = {
89 /*
90  * These symbols are known to be relative, even if the linker marks them
91  * as absolute (typically defined outside any section in the linker script.)
92  */
93 	[S_REL] =
94 	"^pa_",
95 
96 /*
97  * These are 16-bit segment symbols when compiling 16-bit code.
98  */
99 	[S_SEG] =
100 	"^real_mode_seg$",
101 
102 /*
103  * These are offsets belonging to segments, as opposed to linear addresses,
104  * when compiling 16-bit code.
105  */
106 	[S_LIN] =
107 	"^pa_",
108 };
109 
110 static const char * const *sym_regex;
111 
112 static regex_t sym_regex_c[S_NSYMTYPES];
113 static int is_reloc(enum symtype type, const char *sym_name)
114 {
115 	return sym_regex[type] &&
116 		!regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
117 }
118 
119 static void regex_init(int use_real_mode)
120 {
121         char errbuf[128];
122         int err;
123 	int i;
124 
125 	if (use_real_mode)
126 		sym_regex = sym_regex_realmode;
127 	else
128 		sym_regex = sym_regex_kernel;
129 
130 	for (i = 0; i < S_NSYMTYPES; i++) {
131 		if (!sym_regex[i])
132 			continue;
133 
134 		err = regcomp(&sym_regex_c[i], sym_regex[i],
135 			      REG_EXTENDED|REG_NOSUB);
136 
137 		if (err) {
138 			regerror(err, &sym_regex_c[i], errbuf, sizeof(errbuf));
139 			die("%s", errbuf);
140 		}
141         }
142 }
143 
144 static const char *sym_type(unsigned type)
145 {
146 	static const char *type_name[] = {
147 #define SYM_TYPE(X) [X] = #X
148 		SYM_TYPE(STT_NOTYPE),
149 		SYM_TYPE(STT_OBJECT),
150 		SYM_TYPE(STT_FUNC),
151 		SYM_TYPE(STT_SECTION),
152 		SYM_TYPE(STT_FILE),
153 		SYM_TYPE(STT_COMMON),
154 		SYM_TYPE(STT_TLS),
155 #undef SYM_TYPE
156 	};
157 	const char *name = "unknown sym type name";
158 	if (type < ARRAY_SIZE(type_name)) {
159 		name = type_name[type];
160 	}
161 	return name;
162 }
163 
164 static const char *sym_bind(unsigned bind)
165 {
166 	static const char *bind_name[] = {
167 #define SYM_BIND(X) [X] = #X
168 		SYM_BIND(STB_LOCAL),
169 		SYM_BIND(STB_GLOBAL),
170 		SYM_BIND(STB_WEAK),
171 #undef SYM_BIND
172 	};
173 	const char *name = "unknown sym bind name";
174 	if (bind < ARRAY_SIZE(bind_name)) {
175 		name = bind_name[bind];
176 	}
177 	return name;
178 }
179 
180 static const char *sym_visibility(unsigned visibility)
181 {
182 	static const char *visibility_name[] = {
183 #define SYM_VISIBILITY(X) [X] = #X
184 		SYM_VISIBILITY(STV_DEFAULT),
185 		SYM_VISIBILITY(STV_INTERNAL),
186 		SYM_VISIBILITY(STV_HIDDEN),
187 		SYM_VISIBILITY(STV_PROTECTED),
188 #undef SYM_VISIBILITY
189 	};
190 	const char *name = "unknown sym visibility name";
191 	if (visibility < ARRAY_SIZE(visibility_name)) {
192 		name = visibility_name[visibility];
193 	}
194 	return name;
195 }
196 
197 static const char *rel_type(unsigned type)
198 {
199 	static const char *type_name[] = {
200 #define REL_TYPE(X) [X] = #X
201 #if ELF_BITS == 64
202 		REL_TYPE(R_X86_64_NONE),
203 		REL_TYPE(R_X86_64_64),
204 		REL_TYPE(R_X86_64_PC64),
205 		REL_TYPE(R_X86_64_PC32),
206 		REL_TYPE(R_X86_64_GOT32),
207 		REL_TYPE(R_X86_64_PLT32),
208 		REL_TYPE(R_X86_64_COPY),
209 		REL_TYPE(R_X86_64_GLOB_DAT),
210 		REL_TYPE(R_X86_64_JUMP_SLOT),
211 		REL_TYPE(R_X86_64_RELATIVE),
212 		REL_TYPE(R_X86_64_GOTPCREL),
213 		REL_TYPE(R_X86_64_32),
214 		REL_TYPE(R_X86_64_32S),
215 		REL_TYPE(R_X86_64_16),
216 		REL_TYPE(R_X86_64_PC16),
217 		REL_TYPE(R_X86_64_8),
218 		REL_TYPE(R_X86_64_PC8),
219 #else
220 		REL_TYPE(R_386_NONE),
221 		REL_TYPE(R_386_32),
222 		REL_TYPE(R_386_PC32),
223 		REL_TYPE(R_386_GOT32),
224 		REL_TYPE(R_386_PLT32),
225 		REL_TYPE(R_386_COPY),
226 		REL_TYPE(R_386_GLOB_DAT),
227 		REL_TYPE(R_386_JMP_SLOT),
228 		REL_TYPE(R_386_RELATIVE),
229 		REL_TYPE(R_386_GOTOFF),
230 		REL_TYPE(R_386_GOTPC),
231 		REL_TYPE(R_386_8),
232 		REL_TYPE(R_386_PC8),
233 		REL_TYPE(R_386_16),
234 		REL_TYPE(R_386_PC16),
235 #endif
236 #undef REL_TYPE
237 	};
238 	const char *name = "unknown type rel type name";
239 	if (type < ARRAY_SIZE(type_name) && type_name[type]) {
240 		name = type_name[type];
241 	}
242 	return name;
243 }
244 
245 static const char *sec_name(unsigned shndx)
246 {
247 	const char *sec_strtab;
248 	const char *name;
249 	sec_strtab = secs[shstrndx].strtab;
250 	name = "<noname>";
251 	if (shndx < shnum) {
252 		name = sec_strtab + secs[shndx].shdr.sh_name;
253 	}
254 	else if (shndx == SHN_ABS) {
255 		name = "ABSOLUTE";
256 	}
257 	else if (shndx == SHN_COMMON) {
258 		name = "COMMON";
259 	}
260 	return name;
261 }
262 
263 static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
264 {
265 	const char *name;
266 	name = "<noname>";
267 	if (sym->st_name) {
268 		name = sym_strtab + sym->st_name;
269 	}
270 	else {
271 		name = sec_name(sym->st_shndx);
272 	}
273 	return name;
274 }
275 
276 static Elf_Sym *sym_lookup(const char *symname)
277 {
278 	int i;
279 	for (i = 0; i < shnum; i++) {
280 		struct section *sec = &secs[i];
281 		long nsyms;
282 		char *strtab;
283 		Elf_Sym *symtab;
284 		Elf_Sym *sym;
285 
286 		if (sec->shdr.sh_type != SHT_SYMTAB)
287 			continue;
288 
289 		nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
290 		symtab = sec->symtab;
291 		strtab = sec->link->strtab;
292 
293 		for (sym = symtab; --nsyms >= 0; sym++) {
294 			if (!sym->st_name)
295 				continue;
296 			if (strcmp(symname, strtab + sym->st_name) == 0)
297 				return sym;
298 		}
299 	}
300 	return 0;
301 }
302 
303 #if BYTE_ORDER == LITTLE_ENDIAN
304 #define le16_to_cpu(val) (val)
305 #define le32_to_cpu(val) (val)
306 #define le64_to_cpu(val) (val)
307 #endif
308 #if BYTE_ORDER == BIG_ENDIAN
309 #define le16_to_cpu(val) bswap_16(val)
310 #define le32_to_cpu(val) bswap_32(val)
311 #define le64_to_cpu(val) bswap_64(val)
312 #endif
313 
314 static uint16_t elf16_to_cpu(uint16_t val)
315 {
316 	return le16_to_cpu(val);
317 }
318 
319 static uint32_t elf32_to_cpu(uint32_t val)
320 {
321 	return le32_to_cpu(val);
322 }
323 
324 #define elf_half_to_cpu(x)	elf16_to_cpu(x)
325 #define elf_word_to_cpu(x)	elf32_to_cpu(x)
326 
327 #if ELF_BITS == 64
328 static uint64_t elf64_to_cpu(uint64_t val)
329 {
330         return le64_to_cpu(val);
331 }
332 #define elf_addr_to_cpu(x)	elf64_to_cpu(x)
333 #define elf_off_to_cpu(x)	elf64_to_cpu(x)
334 #define elf_xword_to_cpu(x)	elf64_to_cpu(x)
335 #else
336 #define elf_addr_to_cpu(x)	elf32_to_cpu(x)
337 #define elf_off_to_cpu(x)	elf32_to_cpu(x)
338 #define elf_xword_to_cpu(x)	elf32_to_cpu(x)
339 #endif
340 
341 static void read_ehdr(FILE *fp)
342 {
343 	if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
344 		die("Cannot read ELF header: %s\n",
345 			strerror(errno));
346 	}
347 	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
348 		die("No ELF magic\n");
349 	}
350 	if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) {
351 		die("Not a %d bit executable\n", ELF_BITS);
352 	}
353 	if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
354 		die("Not a LSB ELF executable\n");
355 	}
356 	if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
357 		die("Unknown ELF version\n");
358 	}
359 	/* Convert the fields to native endian */
360 	ehdr.e_type      = elf_half_to_cpu(ehdr.e_type);
361 	ehdr.e_machine   = elf_half_to_cpu(ehdr.e_machine);
362 	ehdr.e_version   = elf_word_to_cpu(ehdr.e_version);
363 	ehdr.e_entry     = elf_addr_to_cpu(ehdr.e_entry);
364 	ehdr.e_phoff     = elf_off_to_cpu(ehdr.e_phoff);
365 	ehdr.e_shoff     = elf_off_to_cpu(ehdr.e_shoff);
366 	ehdr.e_flags     = elf_word_to_cpu(ehdr.e_flags);
367 	ehdr.e_ehsize    = elf_half_to_cpu(ehdr.e_ehsize);
368 	ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
369 	ehdr.e_phnum     = elf_half_to_cpu(ehdr.e_phnum);
370 	ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
371 	ehdr.e_shnum     = elf_half_to_cpu(ehdr.e_shnum);
372 	ehdr.e_shstrndx  = elf_half_to_cpu(ehdr.e_shstrndx);
373 
374 	shnum = ehdr.e_shnum;
375 	shstrndx = ehdr.e_shstrndx;
376 
377 	if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN))
378 		die("Unsupported ELF header type\n");
379 	if (ehdr.e_machine != ELF_MACHINE)
380 		die("Not for %s\n", ELF_MACHINE_NAME);
381 	if (ehdr.e_version != EV_CURRENT)
382 		die("Unknown ELF version\n");
383 	if (ehdr.e_ehsize != sizeof(Elf_Ehdr))
384 		die("Bad Elf header size\n");
385 	if (ehdr.e_phentsize != sizeof(Elf_Phdr))
386 		die("Bad program header entry\n");
387 	if (ehdr.e_shentsize != sizeof(Elf_Shdr))
388 		die("Bad section header entry\n");
389 
390 
391 	if (shnum == SHN_UNDEF || shstrndx == SHN_XINDEX) {
392 		Elf_Shdr shdr;
393 
394 		if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0)
395 			die("Seek to %" FMT " failed: %s\n", ehdr.e_shoff, strerror(errno));
396 
397 		if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
398 			die("Cannot read initial ELF section header: %s\n", strerror(errno));
399 
400 		if (shnum == SHN_UNDEF)
401 			shnum = elf_xword_to_cpu(shdr.sh_size);
402 
403 		if (shstrndx == SHN_XINDEX)
404 			shstrndx = elf_word_to_cpu(shdr.sh_link);
405 	}
406 
407 	if (shstrndx >= shnum)
408 		die("String table index out of bounds\n");
409 }
410 
411 static void read_shdrs(FILE *fp)
412 {
413 	int i;
414 	Elf_Shdr shdr;
415 
416 	secs = calloc(shnum, sizeof(struct section));
417 	if (!secs) {
418 		die("Unable to allocate %ld section headers\n",
419 		    shnum);
420 	}
421 	if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
422 		die("Seek to %" FMT " failed: %s\n",
423 		    ehdr.e_shoff, strerror(errno));
424 	}
425 	for (i = 0; i < shnum; i++) {
426 		struct section *sec = &secs[i];
427 		if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
428 			die("Cannot read ELF section headers %d/%ld: %s\n",
429 			    i, shnum, strerror(errno));
430 		sec->shdr.sh_name      = elf_word_to_cpu(shdr.sh_name);
431 		sec->shdr.sh_type      = elf_word_to_cpu(shdr.sh_type);
432 		sec->shdr.sh_flags     = elf_xword_to_cpu(shdr.sh_flags);
433 		sec->shdr.sh_addr      = elf_addr_to_cpu(shdr.sh_addr);
434 		sec->shdr.sh_offset    = elf_off_to_cpu(shdr.sh_offset);
435 		sec->shdr.sh_size      = elf_xword_to_cpu(shdr.sh_size);
436 		sec->shdr.sh_link      = elf_word_to_cpu(shdr.sh_link);
437 		sec->shdr.sh_info      = elf_word_to_cpu(shdr.sh_info);
438 		sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
439 		sec->shdr.sh_entsize   = elf_xword_to_cpu(shdr.sh_entsize);
440 		if (sec->shdr.sh_link < shnum)
441 			sec->link = &secs[sec->shdr.sh_link];
442 	}
443 
444 }
445 
446 static void read_strtabs(FILE *fp)
447 {
448 	int i;
449 	for (i = 0; i < shnum; i++) {
450 		struct section *sec = &secs[i];
451 		if (sec->shdr.sh_type != SHT_STRTAB) {
452 			continue;
453 		}
454 		sec->strtab = malloc(sec->shdr.sh_size);
455 		if (!sec->strtab) {
456 			die("malloc of %" FMT " bytes for strtab failed\n",
457 			    sec->shdr.sh_size);
458 		}
459 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
460 			die("Seek to %" FMT " failed: %s\n",
461 			    sec->shdr.sh_offset, strerror(errno));
462 		}
463 		if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
464 		    != sec->shdr.sh_size) {
465 			die("Cannot read symbol table: %s\n",
466 				strerror(errno));
467 		}
468 	}
469 }
470 
471 static void read_symtabs(FILE *fp)
472 {
473 	int i,j;
474 	for (i = 0; i < shnum; i++) {
475 		struct section *sec = &secs[i];
476 		if (sec->shdr.sh_type != SHT_SYMTAB) {
477 			continue;
478 		}
479 		sec->symtab = malloc(sec->shdr.sh_size);
480 		if (!sec->symtab) {
481 			die("malloc of %" FMT " bytes for symtab failed\n",
482 			    sec->shdr.sh_size);
483 		}
484 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
485 			die("Seek to %" FMT " failed: %s\n",
486 			    sec->shdr.sh_offset, strerror(errno));
487 		}
488 		if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
489 		    != sec->shdr.sh_size) {
490 			die("Cannot read symbol table: %s\n",
491 				strerror(errno));
492 		}
493 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
494 			Elf_Sym *sym = &sec->symtab[j];
495 			sym->st_name  = elf_word_to_cpu(sym->st_name);
496 			sym->st_value = elf_addr_to_cpu(sym->st_value);
497 			sym->st_size  = elf_xword_to_cpu(sym->st_size);
498 			sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
499 		}
500 	}
501 }
502 
503 
504 static void read_relocs(FILE *fp)
505 {
506 	int i,j;
507 	for (i = 0; i < shnum; i++) {
508 		struct section *sec = &secs[i];
509 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
510 			continue;
511 		}
512 		sec->reltab = malloc(sec->shdr.sh_size);
513 		if (!sec->reltab) {
514 			die("malloc of %" FMT " bytes for relocs failed\n",
515 			    sec->shdr.sh_size);
516 		}
517 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
518 			die("Seek to %" FMT " failed: %s\n",
519 			    sec->shdr.sh_offset, strerror(errno));
520 		}
521 		if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
522 		    != sec->shdr.sh_size) {
523 			die("Cannot read symbol table: %s\n",
524 				strerror(errno));
525 		}
526 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
527 			Elf_Rel *rel = &sec->reltab[j];
528 			rel->r_offset = elf_addr_to_cpu(rel->r_offset);
529 			rel->r_info   = elf_xword_to_cpu(rel->r_info);
530 #if (SHT_REL_TYPE == SHT_RELA)
531 			rel->r_addend = elf_xword_to_cpu(rel->r_addend);
532 #endif
533 		}
534 	}
535 }
536 
537 
538 static void print_absolute_symbols(void)
539 {
540 	int i;
541 	const char *format;
542 
543 	if (ELF_BITS == 64)
544 		format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
545 	else
546 		format = "%5d %08"PRIx32"  %5"PRId32" %10s %10s %12s %s\n";
547 
548 	printf("Absolute symbols\n");
549 	printf(" Num:    Value Size  Type       Bind        Visibility  Name\n");
550 	for (i = 0; i < shnum; i++) {
551 		struct section *sec = &secs[i];
552 		char *sym_strtab;
553 		int j;
554 
555 		if (sec->shdr.sh_type != SHT_SYMTAB) {
556 			continue;
557 		}
558 		sym_strtab = sec->link->strtab;
559 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
560 			Elf_Sym *sym;
561 			const char *name;
562 			sym = &sec->symtab[j];
563 			name = sym_name(sym_strtab, sym);
564 			if (sym->st_shndx != SHN_ABS) {
565 				continue;
566 			}
567 			printf(format,
568 				j, sym->st_value, sym->st_size,
569 				sym_type(ELF_ST_TYPE(sym->st_info)),
570 				sym_bind(ELF_ST_BIND(sym->st_info)),
571 				sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
572 				name);
573 		}
574 	}
575 	printf("\n");
576 }
577 
578 static void print_absolute_relocs(void)
579 {
580 	int i, printed = 0;
581 	const char *format;
582 
583 	if (ELF_BITS == 64)
584 		format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64"  %s\n";
585 	else
586 		format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32"  %s\n";
587 
588 	for (i = 0; i < shnum; i++) {
589 		struct section *sec = &secs[i];
590 		struct section *sec_applies, *sec_symtab;
591 		char *sym_strtab;
592 		Elf_Sym *sh_symtab;
593 		int j;
594 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
595 			continue;
596 		}
597 		sec_symtab  = sec->link;
598 		sec_applies = &secs[sec->shdr.sh_info];
599 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
600 			continue;
601 		}
602 		sh_symtab  = sec_symtab->symtab;
603 		sym_strtab = sec_symtab->link->strtab;
604 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
605 			Elf_Rel *rel;
606 			Elf_Sym *sym;
607 			const char *name;
608 			rel = &sec->reltab[j];
609 			sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
610 			name = sym_name(sym_strtab, sym);
611 			if (sym->st_shndx != SHN_ABS) {
612 				continue;
613 			}
614 
615 			/* Absolute symbols are not relocated if bzImage is
616 			 * loaded at a non-compiled address. Display a warning
617 			 * to user at compile time about the absolute
618 			 * relocations present.
619 			 *
620 			 * User need to audit the code to make sure
621 			 * some symbols which should have been section
622 			 * relative have not become absolute because of some
623 			 * linker optimization or wrong programming usage.
624 			 *
625 			 * Before warning check if this absolute symbol
626 			 * relocation is harmless.
627 			 */
628 			if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
629 				continue;
630 
631 			if (!printed) {
632 				printf("WARNING: Absolute relocations"
633 					" present\n");
634 				printf("Offset     Info     Type     Sym.Value "
635 					"Sym.Name\n");
636 				printed = 1;
637 			}
638 
639 			printf(format,
640 				rel->r_offset,
641 				rel->r_info,
642 				rel_type(ELF_R_TYPE(rel->r_info)),
643 				sym->st_value,
644 				name);
645 		}
646 	}
647 
648 	if (printed)
649 		printf("\n");
650 }
651 
652 static void add_reloc(struct relocs *r, uint32_t offset)
653 {
654 	if (r->count == r->size) {
655 		unsigned long newsize = r->size + 50000;
656 		void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
657 
658 		if (!mem)
659 			die("realloc of %ld entries for relocs failed\n",
660                                 newsize);
661 		r->offset = mem;
662 		r->size = newsize;
663 	}
664 	r->offset[r->count++] = offset;
665 }
666 
667 static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
668 			Elf_Sym *sym, const char *symname))
669 {
670 	int i;
671 	/* Walk through the relocations */
672 	for (i = 0; i < shnum; i++) {
673 		char *sym_strtab;
674 		Elf_Sym *sh_symtab;
675 		struct section *sec_applies, *sec_symtab;
676 		int j;
677 		struct section *sec = &secs[i];
678 
679 		if (sec->shdr.sh_type != SHT_REL_TYPE) {
680 			continue;
681 		}
682 		sec_symtab  = sec->link;
683 		sec_applies = &secs[sec->shdr.sh_info];
684 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
685 			continue;
686 		}
687 		sh_symtab = sec_symtab->symtab;
688 		sym_strtab = sec_symtab->link->strtab;
689 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
690 			Elf_Rel *rel = &sec->reltab[j];
691 			Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
692 			const char *symname = sym_name(sym_strtab, sym);
693 
694 			process(sec, rel, sym, symname);
695 		}
696 	}
697 }
698 
699 /*
700  * The .data..percpu section is a special case for x86_64 SMP kernels.
701  * It is used to initialize the actual per_cpu areas and to provide
702  * definitions for the per_cpu variables that correspond to their offsets
703  * within the percpu area. Since the values of all of the symbols need
704  * to be offsets from the start of the per_cpu area the virtual address
705  * (sh_addr) of .data..percpu is 0 in SMP kernels.
706  *
707  * This means that:
708  *
709  *	Relocations that reference symbols in the per_cpu area do not
710  *	need further relocation (since the value is an offset relative
711  *	to the start of the per_cpu area that does not change).
712  *
713  *	Relocations that apply to the per_cpu area need to have their
714  *	offset adjusted by by the value of __per_cpu_load to make them
715  *	point to the correct place in the loaded image (because the
716  *	virtual address of .data..percpu is 0).
717  *
718  * For non SMP kernels .data..percpu is linked as part of the normal
719  * kernel data and does not require special treatment.
720  *
721  */
722 static int per_cpu_shndx	= -1;
723 static Elf_Addr per_cpu_load_addr;
724 
725 static void percpu_init(void)
726 {
727 	int i;
728 	for (i = 0; i < shnum; i++) {
729 		ElfW(Sym) *sym;
730 		if (strcmp(sec_name(i), ".data..percpu"))
731 			continue;
732 
733 		if (secs[i].shdr.sh_addr != 0)	/* non SMP kernel */
734 			return;
735 
736 		sym = sym_lookup("__per_cpu_load");
737 		if (!sym)
738 			die("can't find __per_cpu_load\n");
739 
740 		per_cpu_shndx = i;
741 		per_cpu_load_addr = sym->st_value;
742 		return;
743 	}
744 }
745 
746 #if ELF_BITS == 64
747 
748 /*
749  * Check to see if a symbol lies in the .data..percpu section.
750  *
751  * The linker incorrectly associates some symbols with the
752  * .data..percpu section so we also need to check the symbol
753  * name to make sure that we classify the symbol correctly.
754  *
755  * The GNU linker incorrectly associates:
756  *	__init_begin
757  *	__per_cpu_load
758  *
759  * The "gold" linker incorrectly associates:
760  *	init_per_cpu__fixed_percpu_data
761  *	init_per_cpu__gdt_page
762  */
763 static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
764 {
765 	return (sym->st_shndx == per_cpu_shndx) &&
766 		strcmp(symname, "__init_begin") &&
767 		strcmp(symname, "__per_cpu_load") &&
768 		strncmp(symname, "init_per_cpu_", 13);
769 }
770 
771 
772 static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
773 		      const char *symname)
774 {
775 	unsigned r_type = ELF64_R_TYPE(rel->r_info);
776 	ElfW(Addr) offset = rel->r_offset;
777 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
778 
779 	if (sym->st_shndx == SHN_UNDEF)
780 		return 0;
781 
782 	/*
783 	 * Adjust the offset if this reloc applies to the percpu section.
784 	 */
785 	if (sec->shdr.sh_info == per_cpu_shndx)
786 		offset += per_cpu_load_addr;
787 
788 	switch (r_type) {
789 	case R_X86_64_NONE:
790 		/* NONE can be ignored. */
791 		break;
792 
793 	case R_X86_64_PC32:
794 	case R_X86_64_PLT32:
795 		/*
796 		 * PC relative relocations don't need to be adjusted unless
797 		 * referencing a percpu symbol.
798 		 *
799 		 * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32.
800 		 */
801 		if (is_percpu_sym(sym, symname))
802 			add_reloc(&relocs32neg, offset);
803 		break;
804 
805 	case R_X86_64_PC64:
806 		/*
807 		 * Only used by jump labels
808 		 */
809 		if (is_percpu_sym(sym, symname))
810 			die("Invalid R_X86_64_PC64 relocation against per-CPU symbol %s\n",
811 			    symname);
812 		break;
813 
814 	case R_X86_64_32:
815 	case R_X86_64_32S:
816 	case R_X86_64_64:
817 		/*
818 		 * References to the percpu area don't need to be adjusted.
819 		 */
820 		if (is_percpu_sym(sym, symname))
821 			break;
822 
823 		if (shn_abs) {
824 			/*
825 			 * Whitelisted absolute symbols do not require
826 			 * relocation.
827 			 */
828 			if (is_reloc(S_ABS, symname))
829 				break;
830 
831 			die("Invalid absolute %s relocation: %s\n",
832 			    rel_type(r_type), symname);
833 			break;
834 		}
835 
836 		/*
837 		 * Relocation offsets for 64 bit kernels are output
838 		 * as 32 bits and sign extended back to 64 bits when
839 		 * the relocations are processed.
840 		 * Make sure that the offset will fit.
841 		 */
842 		if ((int32_t)offset != (int64_t)offset)
843 			die("Relocation offset doesn't fit in 32 bits\n");
844 
845 		if (r_type == R_X86_64_64)
846 			add_reloc(&relocs64, offset);
847 		else
848 			add_reloc(&relocs32, offset);
849 		break;
850 
851 	default:
852 		die("Unsupported relocation type: %s (%d)\n",
853 		    rel_type(r_type), r_type);
854 		break;
855 	}
856 
857 	return 0;
858 }
859 
860 #else
861 
862 static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
863 		      const char *symname)
864 {
865 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
866 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
867 
868 	switch (r_type) {
869 	case R_386_NONE:
870 	case R_386_PC32:
871 	case R_386_PC16:
872 	case R_386_PC8:
873 	case R_386_PLT32:
874 		/*
875 		 * NONE can be ignored and PC relative relocations don't need
876 		 * to be adjusted. Because sym must be defined, R_386_PLT32 can
877 		 * be treated the same way as R_386_PC32.
878 		 */
879 		break;
880 
881 	case R_386_32:
882 		if (shn_abs) {
883 			/*
884 			 * Whitelisted absolute symbols do not require
885 			 * relocation.
886 			 */
887 			if (is_reloc(S_ABS, symname))
888 				break;
889 
890 			die("Invalid absolute %s relocation: %s\n",
891 			    rel_type(r_type), symname);
892 			break;
893 		}
894 
895 		add_reloc(&relocs32, rel->r_offset);
896 		break;
897 
898 	default:
899 		die("Unsupported relocation type: %s (%d)\n",
900 		    rel_type(r_type), r_type);
901 		break;
902 	}
903 
904 	return 0;
905 }
906 
907 static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
908 			 const char *symname)
909 {
910 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
911 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
912 
913 	switch (r_type) {
914 	case R_386_NONE:
915 	case R_386_PC32:
916 	case R_386_PC16:
917 	case R_386_PC8:
918 	case R_386_PLT32:
919 		/*
920 		 * NONE can be ignored and PC relative relocations don't need
921 		 * to be adjusted. Because sym must be defined, R_386_PLT32 can
922 		 * be treated the same way as R_386_PC32.
923 		 */
924 		break;
925 
926 	case R_386_16:
927 		if (shn_abs) {
928 			/*
929 			 * Whitelisted absolute symbols do not require
930 			 * relocation.
931 			 */
932 			if (is_reloc(S_ABS, symname))
933 				break;
934 
935 			if (is_reloc(S_SEG, symname)) {
936 				add_reloc(&relocs16, rel->r_offset);
937 				break;
938 			}
939 		} else {
940 			if (!is_reloc(S_LIN, symname))
941 				break;
942 		}
943 		die("Invalid %s %s relocation: %s\n",
944 		    shn_abs ? "absolute" : "relative",
945 		    rel_type(r_type), symname);
946 		break;
947 
948 	case R_386_32:
949 		if (shn_abs) {
950 			/*
951 			 * Whitelisted absolute symbols do not require
952 			 * relocation.
953 			 */
954 			if (is_reloc(S_ABS, symname))
955 				break;
956 
957 			if (is_reloc(S_REL, symname)) {
958 				add_reloc(&relocs32, rel->r_offset);
959 				break;
960 			}
961 		} else {
962 			if (is_reloc(S_LIN, symname))
963 				add_reloc(&relocs32, rel->r_offset);
964 			break;
965 		}
966 		die("Invalid %s %s relocation: %s\n",
967 		    shn_abs ? "absolute" : "relative",
968 		    rel_type(r_type), symname);
969 		break;
970 
971 	default:
972 		die("Unsupported relocation type: %s (%d)\n",
973 		    rel_type(r_type), r_type);
974 		break;
975 	}
976 
977 	return 0;
978 }
979 
980 #endif
981 
982 static int cmp_relocs(const void *va, const void *vb)
983 {
984 	const uint32_t *a, *b;
985 	a = va; b = vb;
986 	return (*a == *b)? 0 : (*a > *b)? 1 : -1;
987 }
988 
989 static void sort_relocs(struct relocs *r)
990 {
991 	qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
992 }
993 
994 static int write32(uint32_t v, FILE *f)
995 {
996 	unsigned char buf[4];
997 
998 	put_unaligned_le32(v, buf);
999 	return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
1000 }
1001 
1002 static int write32_as_text(uint32_t v, FILE *f)
1003 {
1004 	return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
1005 }
1006 
1007 static void emit_relocs(int as_text, int use_real_mode)
1008 {
1009 	int i;
1010 	int (*write_reloc)(uint32_t, FILE *) = write32;
1011 	int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
1012 			const char *symname);
1013 
1014 #if ELF_BITS == 64
1015 	if (!use_real_mode)
1016 		do_reloc = do_reloc64;
1017 	else
1018 		die("--realmode not valid for a 64-bit ELF file");
1019 #else
1020 	if (!use_real_mode)
1021 		do_reloc = do_reloc32;
1022 	else
1023 		do_reloc = do_reloc_real;
1024 #endif
1025 
1026 	/* Collect up the relocations */
1027 	walk_relocs(do_reloc);
1028 
1029 	if (relocs16.count && !use_real_mode)
1030 		die("Segment relocations found but --realmode not specified\n");
1031 
1032 	/* Order the relocations for more efficient processing */
1033 	sort_relocs(&relocs32);
1034 #if ELF_BITS == 64
1035 	sort_relocs(&relocs32neg);
1036 	sort_relocs(&relocs64);
1037 #else
1038 	sort_relocs(&relocs16);
1039 #endif
1040 
1041 	/* Print the relocations */
1042 	if (as_text) {
1043 		/* Print the relocations in a form suitable that
1044 		 * gas will like.
1045 		 */
1046 		printf(".section \".data.reloc\",\"a\"\n");
1047 		printf(".balign 4\n");
1048 		write_reloc = write32_as_text;
1049 	}
1050 
1051 	if (use_real_mode) {
1052 		write_reloc(relocs16.count, stdout);
1053 		for (i = 0; i < relocs16.count; i++)
1054 			write_reloc(relocs16.offset[i], stdout);
1055 
1056 		write_reloc(relocs32.count, stdout);
1057 		for (i = 0; i < relocs32.count; i++)
1058 			write_reloc(relocs32.offset[i], stdout);
1059 	} else {
1060 #if ELF_BITS == 64
1061 		/* Print a stop */
1062 		write_reloc(0, stdout);
1063 
1064 		/* Now print each relocation */
1065 		for (i = 0; i < relocs64.count; i++)
1066 			write_reloc(relocs64.offset[i], stdout);
1067 
1068 		/* Print a stop */
1069 		write_reloc(0, stdout);
1070 
1071 		/* Now print each inverse 32-bit relocation */
1072 		for (i = 0; i < relocs32neg.count; i++)
1073 			write_reloc(relocs32neg.offset[i], stdout);
1074 #endif
1075 
1076 		/* Print a stop */
1077 		write_reloc(0, stdout);
1078 
1079 		/* Now print each relocation */
1080 		for (i = 0; i < relocs32.count; i++)
1081 			write_reloc(relocs32.offset[i], stdout);
1082 	}
1083 }
1084 
1085 /*
1086  * As an aid to debugging problems with different linkers
1087  * print summary information about the relocs.
1088  * Since different linkers tend to emit the sections in
1089  * different orders we use the section names in the output.
1090  */
1091 static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
1092 				const char *symname)
1093 {
1094 	printf("%s\t%s\t%s\t%s\n",
1095 		sec_name(sec->shdr.sh_info),
1096 		rel_type(ELF_R_TYPE(rel->r_info)),
1097 		symname,
1098 		sec_name(sym->st_shndx));
1099 	return 0;
1100 }
1101 
1102 static void print_reloc_info(void)
1103 {
1104 	printf("reloc section\treloc type\tsymbol\tsymbol section\n");
1105 	walk_relocs(do_reloc_info);
1106 }
1107 
1108 #if ELF_BITS == 64
1109 # define process process_64
1110 #else
1111 # define process process_32
1112 #endif
1113 
1114 void process(FILE *fp, int use_real_mode, int as_text,
1115 	     int show_absolute_syms, int show_absolute_relocs,
1116 	     int show_reloc_info)
1117 {
1118 	regex_init(use_real_mode);
1119 	read_ehdr(fp);
1120 	read_shdrs(fp);
1121 	read_strtabs(fp);
1122 	read_symtabs(fp);
1123 	read_relocs(fp);
1124 	if (ELF_BITS == 64)
1125 		percpu_init();
1126 	if (show_absolute_syms) {
1127 		print_absolute_symbols();
1128 		return;
1129 	}
1130 	if (show_absolute_relocs) {
1131 		print_absolute_relocs();
1132 		return;
1133 	}
1134 	if (show_reloc_info) {
1135 		print_reloc_info();
1136 		return;
1137 	}
1138 	emit_relocs(as_text, use_real_mode);
1139 }
1140