xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision c5b591e96db9d99d0126acf93f24e1fb8b368343)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *	Skip non-WB memory and ignore empty memory ranges.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56 
57 #define EFI_DEBUG
58 
59 struct efi_memory_map memmap;
60 
61 static struct efi efi_phys __initdata;
62 static efi_system_table_t efi_systab __initdata;
63 
64 static efi_config_table_type_t arch_tables[] __initdata = {
65 #ifdef CONFIG_X86_UV
66 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
67 #endif
68 	{NULL_GUID, NULL, NULL},
69 };
70 
71 u64 efi_setup;		/* efi setup_data physical address */
72 
73 static int add_efi_memmap __initdata;
74 static int __init setup_add_efi_memmap(char *arg)
75 {
76 	add_efi_memmap = 1;
77 	return 0;
78 }
79 early_param("add_efi_memmap", setup_add_efi_memmap);
80 
81 static efi_status_t __init phys_efi_set_virtual_address_map(
82 	unsigned long memory_map_size,
83 	unsigned long descriptor_size,
84 	u32 descriptor_version,
85 	efi_memory_desc_t *virtual_map)
86 {
87 	efi_status_t status;
88 	unsigned long flags;
89 	pgd_t *save_pgd;
90 
91 	save_pgd = efi_call_phys_prolog();
92 
93 	/* Disable interrupts around EFI calls: */
94 	local_irq_save(flags);
95 	status = efi_call_phys(efi_phys.set_virtual_address_map,
96 			       memory_map_size, descriptor_size,
97 			       descriptor_version, virtual_map);
98 	local_irq_restore(flags);
99 
100 	efi_call_phys_epilog(save_pgd);
101 
102 	return status;
103 }
104 
105 void efi_get_time(struct timespec *now)
106 {
107 	efi_status_t status;
108 	efi_time_t eft;
109 	efi_time_cap_t cap;
110 
111 	status = efi.get_time(&eft, &cap);
112 	if (status != EFI_SUCCESS)
113 		pr_err("Oops: efitime: can't read time!\n");
114 
115 	now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
116 			     eft.minute, eft.second);
117 	now->tv_nsec = 0;
118 }
119 
120 void __init efi_find_mirror(void)
121 {
122 	void *p;
123 	u64 mirror_size = 0, total_size = 0;
124 
125 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
126 		efi_memory_desc_t *md = p;
127 		unsigned long long start = md->phys_addr;
128 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
129 
130 		total_size += size;
131 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
132 			memblock_mark_mirror(start, size);
133 			mirror_size += size;
134 		}
135 	}
136 	if (mirror_size)
137 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
138 			mirror_size>>20, total_size>>20);
139 }
140 
141 /*
142  * Tell the kernel about the EFI memory map.  This might include
143  * more than the max 128 entries that can fit in the e820 legacy
144  * (zeropage) memory map.
145  */
146 
147 static void __init do_add_efi_memmap(void)
148 {
149 	void *p;
150 
151 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
152 		efi_memory_desc_t *md = p;
153 		unsigned long long start = md->phys_addr;
154 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
155 		int e820_type;
156 
157 		switch (md->type) {
158 		case EFI_LOADER_CODE:
159 		case EFI_LOADER_DATA:
160 		case EFI_BOOT_SERVICES_CODE:
161 		case EFI_BOOT_SERVICES_DATA:
162 		case EFI_CONVENTIONAL_MEMORY:
163 			if (md->attribute & EFI_MEMORY_WB)
164 				e820_type = E820_RAM;
165 			else
166 				e820_type = E820_RESERVED;
167 			break;
168 		case EFI_ACPI_RECLAIM_MEMORY:
169 			e820_type = E820_ACPI;
170 			break;
171 		case EFI_ACPI_MEMORY_NVS:
172 			e820_type = E820_NVS;
173 			break;
174 		case EFI_UNUSABLE_MEMORY:
175 			e820_type = E820_UNUSABLE;
176 			break;
177 		case EFI_PERSISTENT_MEMORY:
178 			e820_type = E820_PMEM;
179 			break;
180 		default:
181 			/*
182 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
183 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
184 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
185 			 */
186 			e820_type = E820_RESERVED;
187 			break;
188 		}
189 		e820_add_region(start, size, e820_type);
190 	}
191 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
192 }
193 
194 int __init efi_memblock_x86_reserve_range(void)
195 {
196 	struct efi_info *e = &boot_params.efi_info;
197 	phys_addr_t pmap;
198 
199 	if (efi_enabled(EFI_PARAVIRT))
200 		return 0;
201 
202 #ifdef CONFIG_X86_32
203 	/* Can't handle data above 4GB at this time */
204 	if (e->efi_memmap_hi) {
205 		pr_err("Memory map is above 4GB, disabling EFI.\n");
206 		return -EINVAL;
207 	}
208 	pmap =  e->efi_memmap;
209 #else
210 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
211 #endif
212 	memmap.phys_map		= pmap;
213 	memmap.nr_map		= e->efi_memmap_size /
214 				  e->efi_memdesc_size;
215 	memmap.desc_size	= e->efi_memdesc_size;
216 	memmap.desc_version	= e->efi_memdesc_version;
217 
218 	memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
219 
220 	efi.memmap = &memmap;
221 
222 	return 0;
223 }
224 
225 void __init efi_print_memmap(void)
226 {
227 #ifdef EFI_DEBUG
228 	efi_memory_desc_t *md;
229 	void *p;
230 	int i;
231 
232 	for (p = memmap.map, i = 0;
233 	     p < memmap.map_end;
234 	     p += memmap.desc_size, i++) {
235 		char buf[64];
236 
237 		md = p;
238 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
239 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
240 			md->phys_addr,
241 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
242 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
243 	}
244 #endif  /*  EFI_DEBUG  */
245 }
246 
247 void __init efi_unmap_memmap(void)
248 {
249 	clear_bit(EFI_MEMMAP, &efi.flags);
250 	if (memmap.map) {
251 		early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size);
252 		memmap.map = NULL;
253 	}
254 }
255 
256 static int __init efi_systab_init(void *phys)
257 {
258 	if (efi_enabled(EFI_64BIT)) {
259 		efi_system_table_64_t *systab64;
260 		struct efi_setup_data *data = NULL;
261 		u64 tmp = 0;
262 
263 		if (efi_setup) {
264 			data = early_memremap(efi_setup, sizeof(*data));
265 			if (!data)
266 				return -ENOMEM;
267 		}
268 		systab64 = early_memremap((unsigned long)phys,
269 					 sizeof(*systab64));
270 		if (systab64 == NULL) {
271 			pr_err("Couldn't map the system table!\n");
272 			if (data)
273 				early_memunmap(data, sizeof(*data));
274 			return -ENOMEM;
275 		}
276 
277 		efi_systab.hdr = systab64->hdr;
278 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
279 					      systab64->fw_vendor;
280 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
281 		efi_systab.fw_revision = systab64->fw_revision;
282 		efi_systab.con_in_handle = systab64->con_in_handle;
283 		tmp |= systab64->con_in_handle;
284 		efi_systab.con_in = systab64->con_in;
285 		tmp |= systab64->con_in;
286 		efi_systab.con_out_handle = systab64->con_out_handle;
287 		tmp |= systab64->con_out_handle;
288 		efi_systab.con_out = systab64->con_out;
289 		tmp |= systab64->con_out;
290 		efi_systab.stderr_handle = systab64->stderr_handle;
291 		tmp |= systab64->stderr_handle;
292 		efi_systab.stderr = systab64->stderr;
293 		tmp |= systab64->stderr;
294 		efi_systab.runtime = data ?
295 				     (void *)(unsigned long)data->runtime :
296 				     (void *)(unsigned long)systab64->runtime;
297 		tmp |= data ? data->runtime : systab64->runtime;
298 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
299 		tmp |= systab64->boottime;
300 		efi_systab.nr_tables = systab64->nr_tables;
301 		efi_systab.tables = data ? (unsigned long)data->tables :
302 					   systab64->tables;
303 		tmp |= data ? data->tables : systab64->tables;
304 
305 		early_memunmap(systab64, sizeof(*systab64));
306 		if (data)
307 			early_memunmap(data, sizeof(*data));
308 #ifdef CONFIG_X86_32
309 		if (tmp >> 32) {
310 			pr_err("EFI data located above 4GB, disabling EFI.\n");
311 			return -EINVAL;
312 		}
313 #endif
314 	} else {
315 		efi_system_table_32_t *systab32;
316 
317 		systab32 = early_memremap((unsigned long)phys,
318 					 sizeof(*systab32));
319 		if (systab32 == NULL) {
320 			pr_err("Couldn't map the system table!\n");
321 			return -ENOMEM;
322 		}
323 
324 		efi_systab.hdr = systab32->hdr;
325 		efi_systab.fw_vendor = systab32->fw_vendor;
326 		efi_systab.fw_revision = systab32->fw_revision;
327 		efi_systab.con_in_handle = systab32->con_in_handle;
328 		efi_systab.con_in = systab32->con_in;
329 		efi_systab.con_out_handle = systab32->con_out_handle;
330 		efi_systab.con_out = systab32->con_out;
331 		efi_systab.stderr_handle = systab32->stderr_handle;
332 		efi_systab.stderr = systab32->stderr;
333 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
334 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
335 		efi_systab.nr_tables = systab32->nr_tables;
336 		efi_systab.tables = systab32->tables;
337 
338 		early_memunmap(systab32, sizeof(*systab32));
339 	}
340 
341 	efi.systab = &efi_systab;
342 
343 	/*
344 	 * Verify the EFI Table
345 	 */
346 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
347 		pr_err("System table signature incorrect!\n");
348 		return -EINVAL;
349 	}
350 	if ((efi.systab->hdr.revision >> 16) == 0)
351 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
352 		       efi.systab->hdr.revision >> 16,
353 		       efi.systab->hdr.revision & 0xffff);
354 
355 	return 0;
356 }
357 
358 static int __init efi_runtime_init32(void)
359 {
360 	efi_runtime_services_32_t *runtime;
361 
362 	runtime = early_memremap((unsigned long)efi.systab->runtime,
363 			sizeof(efi_runtime_services_32_t));
364 	if (!runtime) {
365 		pr_err("Could not map the runtime service table!\n");
366 		return -ENOMEM;
367 	}
368 
369 	/*
370 	 * We will only need *early* access to the SetVirtualAddressMap
371 	 * EFI runtime service. All other runtime services will be called
372 	 * via the virtual mapping.
373 	 */
374 	efi_phys.set_virtual_address_map =
375 			(efi_set_virtual_address_map_t *)
376 			(unsigned long)runtime->set_virtual_address_map;
377 	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
378 
379 	return 0;
380 }
381 
382 static int __init efi_runtime_init64(void)
383 {
384 	efi_runtime_services_64_t *runtime;
385 
386 	runtime = early_memremap((unsigned long)efi.systab->runtime,
387 			sizeof(efi_runtime_services_64_t));
388 	if (!runtime) {
389 		pr_err("Could not map the runtime service table!\n");
390 		return -ENOMEM;
391 	}
392 
393 	/*
394 	 * We will only need *early* access to the SetVirtualAddressMap
395 	 * EFI runtime service. All other runtime services will be called
396 	 * via the virtual mapping.
397 	 */
398 	efi_phys.set_virtual_address_map =
399 			(efi_set_virtual_address_map_t *)
400 			(unsigned long)runtime->set_virtual_address_map;
401 	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
402 
403 	return 0;
404 }
405 
406 static int __init efi_runtime_init(void)
407 {
408 	int rv;
409 
410 	/*
411 	 * Check out the runtime services table. We need to map
412 	 * the runtime services table so that we can grab the physical
413 	 * address of several of the EFI runtime functions, needed to
414 	 * set the firmware into virtual mode.
415 	 *
416 	 * When EFI_PARAVIRT is in force then we could not map runtime
417 	 * service memory region because we do not have direct access to it.
418 	 * However, runtime services are available through proxy functions
419 	 * (e.g. in case of Xen dom0 EFI implementation they call special
420 	 * hypercall which executes relevant EFI functions) and that is why
421 	 * they are always enabled.
422 	 */
423 
424 	if (!efi_enabled(EFI_PARAVIRT)) {
425 		if (efi_enabled(EFI_64BIT))
426 			rv = efi_runtime_init64();
427 		else
428 			rv = efi_runtime_init32();
429 
430 		if (rv)
431 			return rv;
432 	}
433 
434 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
435 
436 	return 0;
437 }
438 
439 static int __init efi_memmap_init(void)
440 {
441 	if (efi_enabled(EFI_PARAVIRT))
442 		return 0;
443 
444 	/* Map the EFI memory map */
445 	memmap.map = early_memremap((unsigned long)memmap.phys_map,
446 				   memmap.nr_map * memmap.desc_size);
447 	if (memmap.map == NULL) {
448 		pr_err("Could not map the memory map!\n");
449 		return -ENOMEM;
450 	}
451 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
452 
453 	if (add_efi_memmap)
454 		do_add_efi_memmap();
455 
456 	set_bit(EFI_MEMMAP, &efi.flags);
457 
458 	return 0;
459 }
460 
461 void __init efi_init(void)
462 {
463 	efi_char16_t *c16;
464 	char vendor[100] = "unknown";
465 	int i = 0;
466 	void *tmp;
467 
468 #ifdef CONFIG_X86_32
469 	if (boot_params.efi_info.efi_systab_hi ||
470 	    boot_params.efi_info.efi_memmap_hi) {
471 		pr_info("Table located above 4GB, disabling EFI.\n");
472 		return;
473 	}
474 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
475 #else
476 	efi_phys.systab = (efi_system_table_t *)
477 			  (boot_params.efi_info.efi_systab |
478 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
479 #endif
480 
481 	if (efi_systab_init(efi_phys.systab))
482 		return;
483 
484 	efi.config_table = (unsigned long)efi.systab->tables;
485 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
486 	efi.runtime	 = (unsigned long)efi.systab->runtime;
487 
488 	/*
489 	 * Show what we know for posterity
490 	 */
491 	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
492 	if (c16) {
493 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
494 			vendor[i] = *c16++;
495 		vendor[i] = '\0';
496 	} else
497 		pr_err("Could not map the firmware vendor!\n");
498 	early_memunmap(tmp, 2);
499 
500 	pr_info("EFI v%u.%.02u by %s\n",
501 		efi.systab->hdr.revision >> 16,
502 		efi.systab->hdr.revision & 0xffff, vendor);
503 
504 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
505 		return;
506 
507 	if (efi_config_init(arch_tables))
508 		return;
509 
510 	/*
511 	 * Note: We currently don't support runtime services on an EFI
512 	 * that doesn't match the kernel 32/64-bit mode.
513 	 */
514 
515 	if (!efi_runtime_supported())
516 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
517 	else {
518 		if (efi_runtime_disabled() || efi_runtime_init())
519 			return;
520 	}
521 	if (efi_memmap_init())
522 		return;
523 
524 	if (efi_enabled(EFI_DBG))
525 		efi_print_memmap();
526 
527 	efi_esrt_init();
528 }
529 
530 void __init efi_late_init(void)
531 {
532 	efi_bgrt_init();
533 }
534 
535 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
536 {
537 	u64 addr, npages;
538 
539 	addr = md->virt_addr;
540 	npages = md->num_pages;
541 
542 	memrange_efi_to_native(&addr, &npages);
543 
544 	if (executable)
545 		set_memory_x(addr, npages);
546 	else
547 		set_memory_nx(addr, npages);
548 }
549 
550 void __init runtime_code_page_mkexec(void)
551 {
552 	efi_memory_desc_t *md;
553 	void *p;
554 
555 	/* Make EFI runtime service code area executable */
556 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
557 		md = p;
558 
559 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
560 			continue;
561 
562 		efi_set_executable(md, true);
563 	}
564 }
565 
566 void __init efi_memory_uc(u64 addr, unsigned long size)
567 {
568 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
569 	u64 npages;
570 
571 	npages = round_up(size, page_shift) / page_shift;
572 	memrange_efi_to_native(&addr, &npages);
573 	set_memory_uc(addr, npages);
574 }
575 
576 void __init old_map_region(efi_memory_desc_t *md)
577 {
578 	u64 start_pfn, end_pfn, end;
579 	unsigned long size;
580 	void *va;
581 
582 	start_pfn = PFN_DOWN(md->phys_addr);
583 	size	  = md->num_pages << PAGE_SHIFT;
584 	end	  = md->phys_addr + size;
585 	end_pfn   = PFN_UP(end);
586 
587 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
588 		va = __va(md->phys_addr);
589 
590 		if (!(md->attribute & EFI_MEMORY_WB))
591 			efi_memory_uc((u64)(unsigned long)va, size);
592 	} else
593 		va = efi_ioremap(md->phys_addr, size,
594 				 md->type, md->attribute);
595 
596 	md->virt_addr = (u64) (unsigned long) va;
597 	if (!va)
598 		pr_err("ioremap of 0x%llX failed!\n",
599 		       (unsigned long long)md->phys_addr);
600 }
601 
602 /* Merge contiguous regions of the same type and attribute */
603 static void __init efi_merge_regions(void)
604 {
605 	void *p;
606 	efi_memory_desc_t *md, *prev_md = NULL;
607 
608 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
609 		u64 prev_size;
610 		md = p;
611 
612 		if (!prev_md) {
613 			prev_md = md;
614 			continue;
615 		}
616 
617 		if (prev_md->type != md->type ||
618 		    prev_md->attribute != md->attribute) {
619 			prev_md = md;
620 			continue;
621 		}
622 
623 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
624 
625 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
626 			prev_md->num_pages += md->num_pages;
627 			md->type = EFI_RESERVED_TYPE;
628 			md->attribute = 0;
629 			continue;
630 		}
631 		prev_md = md;
632 	}
633 }
634 
635 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
636 {
637 	unsigned long size;
638 	u64 end, systab;
639 
640 	size = md->num_pages << EFI_PAGE_SHIFT;
641 	end = md->phys_addr + size;
642 	systab = (u64)(unsigned long)efi_phys.systab;
643 	if (md->phys_addr <= systab && systab < end) {
644 		systab += md->virt_addr - md->phys_addr;
645 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
646 	}
647 }
648 
649 static void __init save_runtime_map(void)
650 {
651 #ifdef CONFIG_KEXEC_CORE
652 	efi_memory_desc_t *md;
653 	void *tmp, *p, *q = NULL;
654 	int count = 0;
655 
656 	if (efi_enabled(EFI_OLD_MEMMAP))
657 		return;
658 
659 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
660 		md = p;
661 
662 		if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
663 		    (md->type == EFI_BOOT_SERVICES_CODE) ||
664 		    (md->type == EFI_BOOT_SERVICES_DATA))
665 			continue;
666 		tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
667 		if (!tmp)
668 			goto out;
669 		q = tmp;
670 
671 		memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
672 		count++;
673 	}
674 
675 	efi_runtime_map_setup(q, count, memmap.desc_size);
676 	return;
677 
678 out:
679 	kfree(q);
680 	pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
681 #endif
682 }
683 
684 static void *realloc_pages(void *old_memmap, int old_shift)
685 {
686 	void *ret;
687 
688 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
689 	if (!ret)
690 		goto out;
691 
692 	/*
693 	 * A first-time allocation doesn't have anything to copy.
694 	 */
695 	if (!old_memmap)
696 		return ret;
697 
698 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
699 
700 out:
701 	free_pages((unsigned long)old_memmap, old_shift);
702 	return ret;
703 }
704 
705 /*
706  * Iterate the EFI memory map in reverse order because the regions
707  * will be mapped top-down. The end result is the same as if we had
708  * mapped things forward, but doesn't require us to change the
709  * existing implementation of efi_map_region().
710  */
711 static inline void *efi_map_next_entry_reverse(void *entry)
712 {
713 	/* Initial call */
714 	if (!entry)
715 		return memmap.map_end - memmap.desc_size;
716 
717 	entry -= memmap.desc_size;
718 	if (entry < memmap.map)
719 		return NULL;
720 
721 	return entry;
722 }
723 
724 /*
725  * efi_map_next_entry - Return the next EFI memory map descriptor
726  * @entry: Previous EFI memory map descriptor
727  *
728  * This is a helper function to iterate over the EFI memory map, which
729  * we do in different orders depending on the current configuration.
730  *
731  * To begin traversing the memory map @entry must be %NULL.
732  *
733  * Returns %NULL when we reach the end of the memory map.
734  */
735 static void *efi_map_next_entry(void *entry)
736 {
737 	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
738 		/*
739 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
740 		 * config table feature requires us to map all entries
741 		 * in the same order as they appear in the EFI memory
742 		 * map. That is to say, entry N must have a lower
743 		 * virtual address than entry N+1. This is because the
744 		 * firmware toolchain leaves relative references in
745 		 * the code/data sections, which are split and become
746 		 * separate EFI memory regions. Mapping things
747 		 * out-of-order leads to the firmware accessing
748 		 * unmapped addresses.
749 		 *
750 		 * Since we need to map things this way whether or not
751 		 * the kernel actually makes use of
752 		 * EFI_PROPERTIES_TABLE, let's just switch to this
753 		 * scheme by default for 64-bit.
754 		 */
755 		return efi_map_next_entry_reverse(entry);
756 	}
757 
758 	/* Initial call */
759 	if (!entry)
760 		return memmap.map;
761 
762 	entry += memmap.desc_size;
763 	if (entry >= memmap.map_end)
764 		return NULL;
765 
766 	return entry;
767 }
768 
769 /*
770  * Map the efi memory ranges of the runtime services and update new_mmap with
771  * virtual addresses.
772  */
773 static void * __init efi_map_regions(int *count, int *pg_shift)
774 {
775 	void *p, *new_memmap = NULL;
776 	unsigned long left = 0;
777 	efi_memory_desc_t *md;
778 
779 	p = NULL;
780 	while ((p = efi_map_next_entry(p))) {
781 		md = p;
782 		if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
783 #ifdef CONFIG_X86_64
784 			if (md->type != EFI_BOOT_SERVICES_CODE &&
785 			    md->type != EFI_BOOT_SERVICES_DATA)
786 #endif
787 				continue;
788 		}
789 
790 		efi_map_region(md);
791 		get_systab_virt_addr(md);
792 
793 		if (left < memmap.desc_size) {
794 			new_memmap = realloc_pages(new_memmap, *pg_shift);
795 			if (!new_memmap)
796 				return NULL;
797 
798 			left += PAGE_SIZE << *pg_shift;
799 			(*pg_shift)++;
800 		}
801 
802 		memcpy(new_memmap + (*count * memmap.desc_size), md,
803 		       memmap.desc_size);
804 
805 		left -= memmap.desc_size;
806 		(*count)++;
807 	}
808 
809 	return new_memmap;
810 }
811 
812 static void __init kexec_enter_virtual_mode(void)
813 {
814 #ifdef CONFIG_KEXEC_CORE
815 	efi_memory_desc_t *md;
816 	unsigned int num_pages;
817 	void *p;
818 
819 	efi.systab = NULL;
820 
821 	/*
822 	 * We don't do virtual mode, since we don't do runtime services, on
823 	 * non-native EFI
824 	 */
825 	if (!efi_is_native()) {
826 		efi_unmap_memmap();
827 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
828 		return;
829 	}
830 
831 	if (efi_alloc_page_tables()) {
832 		pr_err("Failed to allocate EFI page tables\n");
833 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
834 		return;
835 	}
836 
837 	/*
838 	* Map efi regions which were passed via setup_data. The virt_addr is a
839 	* fixed addr which was used in first kernel of a kexec boot.
840 	*/
841 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
842 		md = p;
843 		efi_map_region_fixed(md); /* FIXME: add error handling */
844 		get_systab_virt_addr(md);
845 	}
846 
847 	save_runtime_map();
848 
849 	BUG_ON(!efi.systab);
850 
851 	num_pages = ALIGN(memmap.nr_map * memmap.desc_size, PAGE_SIZE);
852 	num_pages >>= PAGE_SHIFT;
853 
854 	if (efi_setup_page_tables(memmap.phys_map, num_pages)) {
855 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
856 		return;
857 	}
858 
859 	efi_sync_low_kernel_mappings();
860 
861 	/*
862 	 * Now that EFI is in virtual mode, update the function
863 	 * pointers in the runtime service table to the new virtual addresses.
864 	 *
865 	 * Call EFI services through wrapper functions.
866 	 */
867 	efi.runtime_version = efi_systab.hdr.revision;
868 
869 	efi_native_runtime_setup();
870 
871 	efi.set_virtual_address_map = NULL;
872 
873 	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
874 		runtime_code_page_mkexec();
875 
876 	/* clean DUMMY object */
877 	efi_delete_dummy_variable();
878 #endif
879 }
880 
881 /*
882  * This function will switch the EFI runtime services to virtual mode.
883  * Essentially, we look through the EFI memmap and map every region that
884  * has the runtime attribute bit set in its memory descriptor into the
885  * efi_pgd page table.
886  *
887  * The old method which used to update that memory descriptor with the
888  * virtual address obtained from ioremap() is still supported when the
889  * kernel is booted with efi=old_map on its command line. Same old
890  * method enabled the runtime services to be called without having to
891  * thunk back into physical mode for every invocation.
892  *
893  * The new method does a pagetable switch in a preemption-safe manner
894  * so that we're in a different address space when calling a runtime
895  * function. For function arguments passing we do copy the PUDs of the
896  * kernel page table into efi_pgd prior to each call.
897  *
898  * Specially for kexec boot, efi runtime maps in previous kernel should
899  * be passed in via setup_data. In that case runtime ranges will be mapped
900  * to the same virtual addresses as the first kernel, see
901  * kexec_enter_virtual_mode().
902  */
903 static void __init __efi_enter_virtual_mode(void)
904 {
905 	int count = 0, pg_shift = 0;
906 	void *new_memmap = NULL;
907 	efi_status_t status;
908 
909 	efi.systab = NULL;
910 
911 	if (efi_alloc_page_tables()) {
912 		pr_err("Failed to allocate EFI page tables\n");
913 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
914 		return;
915 	}
916 
917 	efi_merge_regions();
918 	new_memmap = efi_map_regions(&count, &pg_shift);
919 	if (!new_memmap) {
920 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
921 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
922 		return;
923 	}
924 
925 	save_runtime_map();
926 
927 	BUG_ON(!efi.systab);
928 
929 	if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
930 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
931 		return;
932 	}
933 
934 	efi_sync_low_kernel_mappings();
935 
936 	if (efi_is_native()) {
937 		status = phys_efi_set_virtual_address_map(
938 				memmap.desc_size * count,
939 				memmap.desc_size,
940 				memmap.desc_version,
941 				(efi_memory_desc_t *)__pa(new_memmap));
942 	} else {
943 		status = efi_thunk_set_virtual_address_map(
944 				efi_phys.set_virtual_address_map,
945 				memmap.desc_size * count,
946 				memmap.desc_size,
947 				memmap.desc_version,
948 				(efi_memory_desc_t *)__pa(new_memmap));
949 	}
950 
951 	if (status != EFI_SUCCESS) {
952 		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
953 			 status);
954 		panic("EFI call to SetVirtualAddressMap() failed!");
955 	}
956 
957 	/*
958 	 * Now that EFI is in virtual mode, update the function
959 	 * pointers in the runtime service table to the new virtual addresses.
960 	 *
961 	 * Call EFI services through wrapper functions.
962 	 */
963 	efi.runtime_version = efi_systab.hdr.revision;
964 
965 	if (efi_is_native())
966 		efi_native_runtime_setup();
967 	else
968 		efi_thunk_runtime_setup();
969 
970 	efi.set_virtual_address_map = NULL;
971 
972 	/*
973 	 * Apply more restrictive page table mapping attributes now that
974 	 * SVAM() has been called and the firmware has performed all
975 	 * necessary relocation fixups for the new virtual addresses.
976 	 */
977 	efi_runtime_update_mappings();
978 	efi_dump_pagetable();
979 
980 	/*
981 	 * We mapped the descriptor array into the EFI pagetable above
982 	 * but we're not unmapping it here because if we're running in
983 	 * EFI mixed mode we need all of memory to be accessible when
984 	 * we pass parameters to the EFI runtime services in the
985 	 * thunking code.
986 	 *
987 	 * efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift);
988 	 */
989 	free_pages((unsigned long)new_memmap, pg_shift);
990 
991 	/* clean DUMMY object */
992 	efi_delete_dummy_variable();
993 }
994 
995 void __init efi_enter_virtual_mode(void)
996 {
997 	if (efi_enabled(EFI_PARAVIRT))
998 		return;
999 
1000 	if (efi_setup)
1001 		kexec_enter_virtual_mode();
1002 	else
1003 		__efi_enter_virtual_mode();
1004 }
1005 
1006 /*
1007  * Convenience functions to obtain memory types and attributes
1008  */
1009 u32 efi_mem_type(unsigned long phys_addr)
1010 {
1011 	efi_memory_desc_t *md;
1012 	void *p;
1013 
1014 	if (!efi_enabled(EFI_MEMMAP))
1015 		return 0;
1016 
1017 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1018 		md = p;
1019 		if ((md->phys_addr <= phys_addr) &&
1020 		    (phys_addr < (md->phys_addr +
1021 				  (md->num_pages << EFI_PAGE_SHIFT))))
1022 			return md->type;
1023 	}
1024 	return 0;
1025 }
1026 
1027 static int __init arch_parse_efi_cmdline(char *str)
1028 {
1029 	if (!str) {
1030 		pr_warn("need at least one option\n");
1031 		return -EINVAL;
1032 	}
1033 
1034 	if (parse_option_str(str, "old_map"))
1035 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1036 
1037 	return 0;
1038 }
1039 early_param("efi", arch_parse_efi_cmdline);
1040