xref: /openbmc/linux/arch/x86/platform/efi/efi.c (revision 78ce248faa3c46e24e9bd42db3ab3650659f16dd)
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *	Skip non-WB memory and ignore empty memory ranges.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56 
57 #define EFI_DEBUG
58 
59 struct efi_memory_map memmap;
60 
61 static struct efi efi_phys __initdata;
62 static efi_system_table_t efi_systab __initdata;
63 
64 static efi_config_table_type_t arch_tables[] __initdata = {
65 #ifdef CONFIG_X86_UV
66 	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
67 #endif
68 	{NULL_GUID, NULL, NULL},
69 };
70 
71 u64 efi_setup;		/* efi setup_data physical address */
72 
73 static int add_efi_memmap __initdata;
74 static int __init setup_add_efi_memmap(char *arg)
75 {
76 	add_efi_memmap = 1;
77 	return 0;
78 }
79 early_param("add_efi_memmap", setup_add_efi_memmap);
80 
81 static efi_status_t __init phys_efi_set_virtual_address_map(
82 	unsigned long memory_map_size,
83 	unsigned long descriptor_size,
84 	u32 descriptor_version,
85 	efi_memory_desc_t *virtual_map)
86 {
87 	efi_status_t status;
88 	unsigned long flags;
89 	pgd_t *save_pgd;
90 
91 	save_pgd = efi_call_phys_prolog();
92 
93 	/* Disable interrupts around EFI calls: */
94 	local_irq_save(flags);
95 	status = efi_call_phys(efi_phys.set_virtual_address_map,
96 			       memory_map_size, descriptor_size,
97 			       descriptor_version, virtual_map);
98 	local_irq_restore(flags);
99 
100 	efi_call_phys_epilog(save_pgd);
101 
102 	return status;
103 }
104 
105 void efi_get_time(struct timespec *now)
106 {
107 	efi_status_t status;
108 	efi_time_t eft;
109 	efi_time_cap_t cap;
110 
111 	status = efi.get_time(&eft, &cap);
112 	if (status != EFI_SUCCESS)
113 		pr_err("Oops: efitime: can't read time!\n");
114 
115 	now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
116 			     eft.minute, eft.second);
117 	now->tv_nsec = 0;
118 }
119 
120 void __init efi_find_mirror(void)
121 {
122 	efi_memory_desc_t *md;
123 	u64 mirror_size = 0, total_size = 0;
124 
125 	for_each_efi_memory_desc(md) {
126 		unsigned long long start = md->phys_addr;
127 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128 
129 		total_size += size;
130 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
131 			memblock_mark_mirror(start, size);
132 			mirror_size += size;
133 		}
134 	}
135 	if (mirror_size)
136 		pr_info("Memory: %lldM/%lldM mirrored memory\n",
137 			mirror_size>>20, total_size>>20);
138 }
139 
140 /*
141  * Tell the kernel about the EFI memory map.  This might include
142  * more than the max 128 entries that can fit in the e820 legacy
143  * (zeropage) memory map.
144  */
145 
146 static void __init do_add_efi_memmap(void)
147 {
148 	efi_memory_desc_t *md;
149 
150 	for_each_efi_memory_desc(md) {
151 		unsigned long long start = md->phys_addr;
152 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
153 		int e820_type;
154 
155 		switch (md->type) {
156 		case EFI_LOADER_CODE:
157 		case EFI_LOADER_DATA:
158 		case EFI_BOOT_SERVICES_CODE:
159 		case EFI_BOOT_SERVICES_DATA:
160 		case EFI_CONVENTIONAL_MEMORY:
161 			if (md->attribute & EFI_MEMORY_WB)
162 				e820_type = E820_RAM;
163 			else
164 				e820_type = E820_RESERVED;
165 			break;
166 		case EFI_ACPI_RECLAIM_MEMORY:
167 			e820_type = E820_ACPI;
168 			break;
169 		case EFI_ACPI_MEMORY_NVS:
170 			e820_type = E820_NVS;
171 			break;
172 		case EFI_UNUSABLE_MEMORY:
173 			e820_type = E820_UNUSABLE;
174 			break;
175 		case EFI_PERSISTENT_MEMORY:
176 			e820_type = E820_PMEM;
177 			break;
178 		default:
179 			/*
180 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
181 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
182 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
183 			 */
184 			e820_type = E820_RESERVED;
185 			break;
186 		}
187 		e820_add_region(start, size, e820_type);
188 	}
189 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
190 }
191 
192 int __init efi_memblock_x86_reserve_range(void)
193 {
194 	struct efi_info *e = &boot_params.efi_info;
195 	phys_addr_t pmap;
196 
197 	if (efi_enabled(EFI_PARAVIRT))
198 		return 0;
199 
200 #ifdef CONFIG_X86_32
201 	/* Can't handle data above 4GB at this time */
202 	if (e->efi_memmap_hi) {
203 		pr_err("Memory map is above 4GB, disabling EFI.\n");
204 		return -EINVAL;
205 	}
206 	pmap =  e->efi_memmap;
207 #else
208 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
209 #endif
210 	memmap.phys_map		= pmap;
211 	memmap.nr_map		= e->efi_memmap_size /
212 				  e->efi_memdesc_size;
213 	memmap.desc_size	= e->efi_memdesc_size;
214 	memmap.desc_version	= e->efi_memdesc_version;
215 
216 	memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
217 
218 	efi.memmap = &memmap;
219 
220 	return 0;
221 }
222 
223 void __init efi_print_memmap(void)
224 {
225 #ifdef EFI_DEBUG
226 	efi_memory_desc_t *md;
227 	int i = 0;
228 
229 	for_each_efi_memory_desc(md) {
230 		char buf[64];
231 
232 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
233 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
234 			md->phys_addr,
235 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
236 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
237 	}
238 #endif  /*  EFI_DEBUG  */
239 }
240 
241 void __init efi_unmap_memmap(void)
242 {
243 	clear_bit(EFI_MEMMAP, &efi.flags);
244 	if (memmap.map) {
245 		early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size);
246 		memmap.map = NULL;
247 	}
248 }
249 
250 static int __init efi_systab_init(void *phys)
251 {
252 	if (efi_enabled(EFI_64BIT)) {
253 		efi_system_table_64_t *systab64;
254 		struct efi_setup_data *data = NULL;
255 		u64 tmp = 0;
256 
257 		if (efi_setup) {
258 			data = early_memremap(efi_setup, sizeof(*data));
259 			if (!data)
260 				return -ENOMEM;
261 		}
262 		systab64 = early_memremap((unsigned long)phys,
263 					 sizeof(*systab64));
264 		if (systab64 == NULL) {
265 			pr_err("Couldn't map the system table!\n");
266 			if (data)
267 				early_memunmap(data, sizeof(*data));
268 			return -ENOMEM;
269 		}
270 
271 		efi_systab.hdr = systab64->hdr;
272 		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
273 					      systab64->fw_vendor;
274 		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
275 		efi_systab.fw_revision = systab64->fw_revision;
276 		efi_systab.con_in_handle = systab64->con_in_handle;
277 		tmp |= systab64->con_in_handle;
278 		efi_systab.con_in = systab64->con_in;
279 		tmp |= systab64->con_in;
280 		efi_systab.con_out_handle = systab64->con_out_handle;
281 		tmp |= systab64->con_out_handle;
282 		efi_systab.con_out = systab64->con_out;
283 		tmp |= systab64->con_out;
284 		efi_systab.stderr_handle = systab64->stderr_handle;
285 		tmp |= systab64->stderr_handle;
286 		efi_systab.stderr = systab64->stderr;
287 		tmp |= systab64->stderr;
288 		efi_systab.runtime = data ?
289 				     (void *)(unsigned long)data->runtime :
290 				     (void *)(unsigned long)systab64->runtime;
291 		tmp |= data ? data->runtime : systab64->runtime;
292 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
293 		tmp |= systab64->boottime;
294 		efi_systab.nr_tables = systab64->nr_tables;
295 		efi_systab.tables = data ? (unsigned long)data->tables :
296 					   systab64->tables;
297 		tmp |= data ? data->tables : systab64->tables;
298 
299 		early_memunmap(systab64, sizeof(*systab64));
300 		if (data)
301 			early_memunmap(data, sizeof(*data));
302 #ifdef CONFIG_X86_32
303 		if (tmp >> 32) {
304 			pr_err("EFI data located above 4GB, disabling EFI.\n");
305 			return -EINVAL;
306 		}
307 #endif
308 	} else {
309 		efi_system_table_32_t *systab32;
310 
311 		systab32 = early_memremap((unsigned long)phys,
312 					 sizeof(*systab32));
313 		if (systab32 == NULL) {
314 			pr_err("Couldn't map the system table!\n");
315 			return -ENOMEM;
316 		}
317 
318 		efi_systab.hdr = systab32->hdr;
319 		efi_systab.fw_vendor = systab32->fw_vendor;
320 		efi_systab.fw_revision = systab32->fw_revision;
321 		efi_systab.con_in_handle = systab32->con_in_handle;
322 		efi_systab.con_in = systab32->con_in;
323 		efi_systab.con_out_handle = systab32->con_out_handle;
324 		efi_systab.con_out = systab32->con_out;
325 		efi_systab.stderr_handle = systab32->stderr_handle;
326 		efi_systab.stderr = systab32->stderr;
327 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
328 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
329 		efi_systab.nr_tables = systab32->nr_tables;
330 		efi_systab.tables = systab32->tables;
331 
332 		early_memunmap(systab32, sizeof(*systab32));
333 	}
334 
335 	efi.systab = &efi_systab;
336 
337 	/*
338 	 * Verify the EFI Table
339 	 */
340 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
341 		pr_err("System table signature incorrect!\n");
342 		return -EINVAL;
343 	}
344 	if ((efi.systab->hdr.revision >> 16) == 0)
345 		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
346 		       efi.systab->hdr.revision >> 16,
347 		       efi.systab->hdr.revision & 0xffff);
348 
349 	return 0;
350 }
351 
352 static int __init efi_runtime_init32(void)
353 {
354 	efi_runtime_services_32_t *runtime;
355 
356 	runtime = early_memremap((unsigned long)efi.systab->runtime,
357 			sizeof(efi_runtime_services_32_t));
358 	if (!runtime) {
359 		pr_err("Could not map the runtime service table!\n");
360 		return -ENOMEM;
361 	}
362 
363 	/*
364 	 * We will only need *early* access to the SetVirtualAddressMap
365 	 * EFI runtime service. All other runtime services will be called
366 	 * via the virtual mapping.
367 	 */
368 	efi_phys.set_virtual_address_map =
369 			(efi_set_virtual_address_map_t *)
370 			(unsigned long)runtime->set_virtual_address_map;
371 	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
372 
373 	return 0;
374 }
375 
376 static int __init efi_runtime_init64(void)
377 {
378 	efi_runtime_services_64_t *runtime;
379 
380 	runtime = early_memremap((unsigned long)efi.systab->runtime,
381 			sizeof(efi_runtime_services_64_t));
382 	if (!runtime) {
383 		pr_err("Could not map the runtime service table!\n");
384 		return -ENOMEM;
385 	}
386 
387 	/*
388 	 * We will only need *early* access to the SetVirtualAddressMap
389 	 * EFI runtime service. All other runtime services will be called
390 	 * via the virtual mapping.
391 	 */
392 	efi_phys.set_virtual_address_map =
393 			(efi_set_virtual_address_map_t *)
394 			(unsigned long)runtime->set_virtual_address_map;
395 	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
396 
397 	return 0;
398 }
399 
400 static int __init efi_runtime_init(void)
401 {
402 	int rv;
403 
404 	/*
405 	 * Check out the runtime services table. We need to map
406 	 * the runtime services table so that we can grab the physical
407 	 * address of several of the EFI runtime functions, needed to
408 	 * set the firmware into virtual mode.
409 	 *
410 	 * When EFI_PARAVIRT is in force then we could not map runtime
411 	 * service memory region because we do not have direct access to it.
412 	 * However, runtime services are available through proxy functions
413 	 * (e.g. in case of Xen dom0 EFI implementation they call special
414 	 * hypercall which executes relevant EFI functions) and that is why
415 	 * they are always enabled.
416 	 */
417 
418 	if (!efi_enabled(EFI_PARAVIRT)) {
419 		if (efi_enabled(EFI_64BIT))
420 			rv = efi_runtime_init64();
421 		else
422 			rv = efi_runtime_init32();
423 
424 		if (rv)
425 			return rv;
426 	}
427 
428 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
429 
430 	return 0;
431 }
432 
433 static int __init efi_memmap_init(void)
434 {
435 	if (efi_enabled(EFI_PARAVIRT))
436 		return 0;
437 
438 	/* Map the EFI memory map */
439 	memmap.map = early_memremap((unsigned long)memmap.phys_map,
440 				   memmap.nr_map * memmap.desc_size);
441 	if (memmap.map == NULL) {
442 		pr_err("Could not map the memory map!\n");
443 		return -ENOMEM;
444 	}
445 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
446 
447 	if (add_efi_memmap)
448 		do_add_efi_memmap();
449 
450 	set_bit(EFI_MEMMAP, &efi.flags);
451 
452 	return 0;
453 }
454 
455 void __init efi_init(void)
456 {
457 	efi_char16_t *c16;
458 	char vendor[100] = "unknown";
459 	int i = 0;
460 	void *tmp;
461 
462 #ifdef CONFIG_X86_32
463 	if (boot_params.efi_info.efi_systab_hi ||
464 	    boot_params.efi_info.efi_memmap_hi) {
465 		pr_info("Table located above 4GB, disabling EFI.\n");
466 		return;
467 	}
468 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
469 #else
470 	efi_phys.systab = (efi_system_table_t *)
471 			  (boot_params.efi_info.efi_systab |
472 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
473 #endif
474 
475 	if (efi_systab_init(efi_phys.systab))
476 		return;
477 
478 	efi.config_table = (unsigned long)efi.systab->tables;
479 	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
480 	efi.runtime	 = (unsigned long)efi.systab->runtime;
481 
482 	/*
483 	 * Show what we know for posterity
484 	 */
485 	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
486 	if (c16) {
487 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
488 			vendor[i] = *c16++;
489 		vendor[i] = '\0';
490 	} else
491 		pr_err("Could not map the firmware vendor!\n");
492 	early_memunmap(tmp, 2);
493 
494 	pr_info("EFI v%u.%.02u by %s\n",
495 		efi.systab->hdr.revision >> 16,
496 		efi.systab->hdr.revision & 0xffff, vendor);
497 
498 	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
499 		return;
500 
501 	if (efi_config_init(arch_tables))
502 		return;
503 
504 	/*
505 	 * Note: We currently don't support runtime services on an EFI
506 	 * that doesn't match the kernel 32/64-bit mode.
507 	 */
508 
509 	if (!efi_runtime_supported())
510 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
511 	else {
512 		if (efi_runtime_disabled() || efi_runtime_init())
513 			return;
514 	}
515 	if (efi_memmap_init())
516 		return;
517 
518 	if (efi_enabled(EFI_DBG))
519 		efi_print_memmap();
520 
521 	efi_esrt_init();
522 }
523 
524 void __init efi_late_init(void)
525 {
526 	efi_bgrt_init();
527 }
528 
529 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
530 {
531 	u64 addr, npages;
532 
533 	addr = md->virt_addr;
534 	npages = md->num_pages;
535 
536 	memrange_efi_to_native(&addr, &npages);
537 
538 	if (executable)
539 		set_memory_x(addr, npages);
540 	else
541 		set_memory_nx(addr, npages);
542 }
543 
544 void __init runtime_code_page_mkexec(void)
545 {
546 	efi_memory_desc_t *md;
547 
548 	/* Make EFI runtime service code area executable */
549 	for_each_efi_memory_desc(md) {
550 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
551 			continue;
552 
553 		efi_set_executable(md, true);
554 	}
555 }
556 
557 void __init efi_memory_uc(u64 addr, unsigned long size)
558 {
559 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
560 	u64 npages;
561 
562 	npages = round_up(size, page_shift) / page_shift;
563 	memrange_efi_to_native(&addr, &npages);
564 	set_memory_uc(addr, npages);
565 }
566 
567 void __init old_map_region(efi_memory_desc_t *md)
568 {
569 	u64 start_pfn, end_pfn, end;
570 	unsigned long size;
571 	void *va;
572 
573 	start_pfn = PFN_DOWN(md->phys_addr);
574 	size	  = md->num_pages << PAGE_SHIFT;
575 	end	  = md->phys_addr + size;
576 	end_pfn   = PFN_UP(end);
577 
578 	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
579 		va = __va(md->phys_addr);
580 
581 		if (!(md->attribute & EFI_MEMORY_WB))
582 			efi_memory_uc((u64)(unsigned long)va, size);
583 	} else
584 		va = efi_ioremap(md->phys_addr, size,
585 				 md->type, md->attribute);
586 
587 	md->virt_addr = (u64) (unsigned long) va;
588 	if (!va)
589 		pr_err("ioremap of 0x%llX failed!\n",
590 		       (unsigned long long)md->phys_addr);
591 }
592 
593 /* Merge contiguous regions of the same type and attribute */
594 static void __init efi_merge_regions(void)
595 {
596 	efi_memory_desc_t *md, *prev_md = NULL;
597 
598 	for_each_efi_memory_desc(md) {
599 		u64 prev_size;
600 
601 		if (!prev_md) {
602 			prev_md = md;
603 			continue;
604 		}
605 
606 		if (prev_md->type != md->type ||
607 		    prev_md->attribute != md->attribute) {
608 			prev_md = md;
609 			continue;
610 		}
611 
612 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
613 
614 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
615 			prev_md->num_pages += md->num_pages;
616 			md->type = EFI_RESERVED_TYPE;
617 			md->attribute = 0;
618 			continue;
619 		}
620 		prev_md = md;
621 	}
622 }
623 
624 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
625 {
626 	unsigned long size;
627 	u64 end, systab;
628 
629 	size = md->num_pages << EFI_PAGE_SHIFT;
630 	end = md->phys_addr + size;
631 	systab = (u64)(unsigned long)efi_phys.systab;
632 	if (md->phys_addr <= systab && systab < end) {
633 		systab += md->virt_addr - md->phys_addr;
634 		efi.systab = (efi_system_table_t *)(unsigned long)systab;
635 	}
636 }
637 
638 static void __init save_runtime_map(void)
639 {
640 #ifdef CONFIG_KEXEC_CORE
641 	efi_memory_desc_t *md;
642 	void *tmp, *q = NULL;
643 	int count = 0;
644 
645 	if (efi_enabled(EFI_OLD_MEMMAP))
646 		return;
647 
648 	for_each_efi_memory_desc(md) {
649 		if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
650 		    (md->type == EFI_BOOT_SERVICES_CODE) ||
651 		    (md->type == EFI_BOOT_SERVICES_DATA))
652 			continue;
653 		tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
654 		if (!tmp)
655 			goto out;
656 		q = tmp;
657 
658 		memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
659 		count++;
660 	}
661 
662 	efi_runtime_map_setup(q, count, memmap.desc_size);
663 	return;
664 
665 out:
666 	kfree(q);
667 	pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
668 #endif
669 }
670 
671 static void *realloc_pages(void *old_memmap, int old_shift)
672 {
673 	void *ret;
674 
675 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
676 	if (!ret)
677 		goto out;
678 
679 	/*
680 	 * A first-time allocation doesn't have anything to copy.
681 	 */
682 	if (!old_memmap)
683 		return ret;
684 
685 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
686 
687 out:
688 	free_pages((unsigned long)old_memmap, old_shift);
689 	return ret;
690 }
691 
692 /*
693  * Iterate the EFI memory map in reverse order because the regions
694  * will be mapped top-down. The end result is the same as if we had
695  * mapped things forward, but doesn't require us to change the
696  * existing implementation of efi_map_region().
697  */
698 static inline void *efi_map_next_entry_reverse(void *entry)
699 {
700 	/* Initial call */
701 	if (!entry)
702 		return memmap.map_end - memmap.desc_size;
703 
704 	entry -= memmap.desc_size;
705 	if (entry < memmap.map)
706 		return NULL;
707 
708 	return entry;
709 }
710 
711 /*
712  * efi_map_next_entry - Return the next EFI memory map descriptor
713  * @entry: Previous EFI memory map descriptor
714  *
715  * This is a helper function to iterate over the EFI memory map, which
716  * we do in different orders depending on the current configuration.
717  *
718  * To begin traversing the memory map @entry must be %NULL.
719  *
720  * Returns %NULL when we reach the end of the memory map.
721  */
722 static void *efi_map_next_entry(void *entry)
723 {
724 	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
725 		/*
726 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
727 		 * config table feature requires us to map all entries
728 		 * in the same order as they appear in the EFI memory
729 		 * map. That is to say, entry N must have a lower
730 		 * virtual address than entry N+1. This is because the
731 		 * firmware toolchain leaves relative references in
732 		 * the code/data sections, which are split and become
733 		 * separate EFI memory regions. Mapping things
734 		 * out-of-order leads to the firmware accessing
735 		 * unmapped addresses.
736 		 *
737 		 * Since we need to map things this way whether or not
738 		 * the kernel actually makes use of
739 		 * EFI_PROPERTIES_TABLE, let's just switch to this
740 		 * scheme by default for 64-bit.
741 		 */
742 		return efi_map_next_entry_reverse(entry);
743 	}
744 
745 	/* Initial call */
746 	if (!entry)
747 		return memmap.map;
748 
749 	entry += memmap.desc_size;
750 	if (entry >= memmap.map_end)
751 		return NULL;
752 
753 	return entry;
754 }
755 
756 /*
757  * Map the efi memory ranges of the runtime services and update new_mmap with
758  * virtual addresses.
759  */
760 static void * __init efi_map_regions(int *count, int *pg_shift)
761 {
762 	void *p, *new_memmap = NULL;
763 	unsigned long left = 0;
764 	efi_memory_desc_t *md;
765 
766 	p = NULL;
767 	while ((p = efi_map_next_entry(p))) {
768 		md = p;
769 		if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
770 #ifdef CONFIG_X86_64
771 			if (md->type != EFI_BOOT_SERVICES_CODE &&
772 			    md->type != EFI_BOOT_SERVICES_DATA)
773 #endif
774 				continue;
775 		}
776 
777 		efi_map_region(md);
778 		get_systab_virt_addr(md);
779 
780 		if (left < memmap.desc_size) {
781 			new_memmap = realloc_pages(new_memmap, *pg_shift);
782 			if (!new_memmap)
783 				return NULL;
784 
785 			left += PAGE_SIZE << *pg_shift;
786 			(*pg_shift)++;
787 		}
788 
789 		memcpy(new_memmap + (*count * memmap.desc_size), md,
790 		       memmap.desc_size);
791 
792 		left -= memmap.desc_size;
793 		(*count)++;
794 	}
795 
796 	return new_memmap;
797 }
798 
799 static void __init kexec_enter_virtual_mode(void)
800 {
801 #ifdef CONFIG_KEXEC_CORE
802 	efi_memory_desc_t *md;
803 	unsigned int num_pages;
804 
805 	efi.systab = NULL;
806 
807 	/*
808 	 * We don't do virtual mode, since we don't do runtime services, on
809 	 * non-native EFI
810 	 */
811 	if (!efi_is_native()) {
812 		efi_unmap_memmap();
813 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
814 		return;
815 	}
816 
817 	if (efi_alloc_page_tables()) {
818 		pr_err("Failed to allocate EFI page tables\n");
819 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
820 		return;
821 	}
822 
823 	/*
824 	* Map efi regions which were passed via setup_data. The virt_addr is a
825 	* fixed addr which was used in first kernel of a kexec boot.
826 	*/
827 	for_each_efi_memory_desc(md) {
828 		efi_map_region_fixed(md); /* FIXME: add error handling */
829 		get_systab_virt_addr(md);
830 	}
831 
832 	save_runtime_map();
833 
834 	BUG_ON(!efi.systab);
835 
836 	num_pages = ALIGN(memmap.nr_map * memmap.desc_size, PAGE_SIZE);
837 	num_pages >>= PAGE_SHIFT;
838 
839 	if (efi_setup_page_tables(memmap.phys_map, num_pages)) {
840 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
841 		return;
842 	}
843 
844 	efi_sync_low_kernel_mappings();
845 
846 	/*
847 	 * Now that EFI is in virtual mode, update the function
848 	 * pointers in the runtime service table to the new virtual addresses.
849 	 *
850 	 * Call EFI services through wrapper functions.
851 	 */
852 	efi.runtime_version = efi_systab.hdr.revision;
853 
854 	efi_native_runtime_setup();
855 
856 	efi.set_virtual_address_map = NULL;
857 
858 	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
859 		runtime_code_page_mkexec();
860 
861 	/* clean DUMMY object */
862 	efi_delete_dummy_variable();
863 #endif
864 }
865 
866 /*
867  * This function will switch the EFI runtime services to virtual mode.
868  * Essentially, we look through the EFI memmap and map every region that
869  * has the runtime attribute bit set in its memory descriptor into the
870  * efi_pgd page table.
871  *
872  * The old method which used to update that memory descriptor with the
873  * virtual address obtained from ioremap() is still supported when the
874  * kernel is booted with efi=old_map on its command line. Same old
875  * method enabled the runtime services to be called without having to
876  * thunk back into physical mode for every invocation.
877  *
878  * The new method does a pagetable switch in a preemption-safe manner
879  * so that we're in a different address space when calling a runtime
880  * function. For function arguments passing we do copy the PUDs of the
881  * kernel page table into efi_pgd prior to each call.
882  *
883  * Specially for kexec boot, efi runtime maps in previous kernel should
884  * be passed in via setup_data. In that case runtime ranges will be mapped
885  * to the same virtual addresses as the first kernel, see
886  * kexec_enter_virtual_mode().
887  */
888 static void __init __efi_enter_virtual_mode(void)
889 {
890 	int count = 0, pg_shift = 0;
891 	void *new_memmap = NULL;
892 	efi_status_t status;
893 
894 	efi.systab = NULL;
895 
896 	if (efi_alloc_page_tables()) {
897 		pr_err("Failed to allocate EFI page tables\n");
898 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
899 		return;
900 	}
901 
902 	efi_merge_regions();
903 	new_memmap = efi_map_regions(&count, &pg_shift);
904 	if (!new_memmap) {
905 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
906 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
907 		return;
908 	}
909 
910 	save_runtime_map();
911 
912 	BUG_ON(!efi.systab);
913 
914 	if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
915 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
916 		return;
917 	}
918 
919 	efi_sync_low_kernel_mappings();
920 
921 	if (efi_is_native()) {
922 		status = phys_efi_set_virtual_address_map(
923 				memmap.desc_size * count,
924 				memmap.desc_size,
925 				memmap.desc_version,
926 				(efi_memory_desc_t *)__pa(new_memmap));
927 	} else {
928 		status = efi_thunk_set_virtual_address_map(
929 				efi_phys.set_virtual_address_map,
930 				memmap.desc_size * count,
931 				memmap.desc_size,
932 				memmap.desc_version,
933 				(efi_memory_desc_t *)__pa(new_memmap));
934 	}
935 
936 	if (status != EFI_SUCCESS) {
937 		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
938 			 status);
939 		panic("EFI call to SetVirtualAddressMap() failed!");
940 	}
941 
942 	/*
943 	 * Now that EFI is in virtual mode, update the function
944 	 * pointers in the runtime service table to the new virtual addresses.
945 	 *
946 	 * Call EFI services through wrapper functions.
947 	 */
948 	efi.runtime_version = efi_systab.hdr.revision;
949 
950 	if (efi_is_native())
951 		efi_native_runtime_setup();
952 	else
953 		efi_thunk_runtime_setup();
954 
955 	efi.set_virtual_address_map = NULL;
956 
957 	/*
958 	 * Apply more restrictive page table mapping attributes now that
959 	 * SVAM() has been called and the firmware has performed all
960 	 * necessary relocation fixups for the new virtual addresses.
961 	 */
962 	efi_runtime_update_mappings();
963 	efi_dump_pagetable();
964 
965 	/*
966 	 * We mapped the descriptor array into the EFI pagetable above
967 	 * but we're not unmapping it here because if we're running in
968 	 * EFI mixed mode we need all of memory to be accessible when
969 	 * we pass parameters to the EFI runtime services in the
970 	 * thunking code.
971 	 *
972 	 * efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift);
973 	 */
974 	free_pages((unsigned long)new_memmap, pg_shift);
975 
976 	/* clean DUMMY object */
977 	efi_delete_dummy_variable();
978 }
979 
980 void __init efi_enter_virtual_mode(void)
981 {
982 	if (efi_enabled(EFI_PARAVIRT))
983 		return;
984 
985 	if (efi_setup)
986 		kexec_enter_virtual_mode();
987 	else
988 		__efi_enter_virtual_mode();
989 }
990 
991 /*
992  * Convenience functions to obtain memory types and attributes
993  */
994 u32 efi_mem_type(unsigned long phys_addr)
995 {
996 	efi_memory_desc_t *md;
997 
998 	if (!efi_enabled(EFI_MEMMAP))
999 		return 0;
1000 
1001 	for_each_efi_memory_desc(md) {
1002 		if ((md->phys_addr <= phys_addr) &&
1003 		    (phys_addr < (md->phys_addr +
1004 				  (md->num_pages << EFI_PAGE_SHIFT))))
1005 			return md->type;
1006 	}
1007 	return 0;
1008 }
1009 
1010 static int __init arch_parse_efi_cmdline(char *str)
1011 {
1012 	if (!str) {
1013 		pr_warn("need at least one option\n");
1014 		return -EINVAL;
1015 	}
1016 
1017 	if (parse_option_str(str, "old_map"))
1018 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1019 
1020 	return 0;
1021 }
1022 early_param("efi", arch_parse_efi_cmdline);
1023