xref: /openbmc/linux/arch/x86/mm/tlb.c (revision ad721bc919edfd8b4b06977458a412011e2f0c50)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 
14 #include <asm/tlbflush.h>
15 #include <asm/mmu_context.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/cache.h>
18 #include <asm/cacheflush.h>
19 #include <asm/apic.h>
20 #include <asm/perf_event.h>
21 
22 #include "mm_internal.h"
23 
24 #ifdef CONFIG_PARAVIRT
25 # define STATIC_NOPV
26 #else
27 # define STATIC_NOPV			static
28 # define __flush_tlb_local		native_flush_tlb_local
29 # define __flush_tlb_global		native_flush_tlb_global
30 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
31 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
32 #endif
33 
34 /*
35  *	TLB flushing, formerly SMP-only
36  *		c/o Linus Torvalds.
37  *
38  *	These mean you can really definitely utterly forget about
39  *	writing to user space from interrupts. (Its not allowed anyway).
40  *
41  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
42  *
43  *	More scalable flush, from Andi Kleen
44  *
45  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
46  */
47 
48 /*
49  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
50  * stored in cpu_tlb_state.last_user_mm_spec.
51  */
52 #define LAST_USER_MM_IBPB	0x1UL
53 #define LAST_USER_MM_L1D_FLUSH	0x2UL
54 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
55 
56 /* Bits to set when tlbstate and flush is (re)initialized */
57 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
58 
59 /*
60  * The x86 feature is called PCID (Process Context IDentifier). It is similar
61  * to what is traditionally called ASID on the RISC processors.
62  *
63  * We don't use the traditional ASID implementation, where each process/mm gets
64  * its own ASID and flush/restart when we run out of ASID space.
65  *
66  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
67  * that came by on this CPU, allowing cheaper switch_mm between processes on
68  * this CPU.
69  *
70  * We end up with different spaces for different things. To avoid confusion we
71  * use different names for each of them:
72  *
73  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
74  *         the canonical identifier for an mm
75  *
76  * kPCID - [1, TLB_NR_DYN_ASIDS]
77  *         the value we write into the PCID part of CR3; corresponds to the
78  *         ASID+1, because PCID 0 is special.
79  *
80  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
81  *         for KPTI each mm has two address spaces and thus needs two
82  *         PCID values, but we can still do with a single ASID denomination
83  *         for each mm. Corresponds to kPCID + 2048.
84  *
85  */
86 
87 /* There are 12 bits of space for ASIDS in CR3 */
88 #define CR3_HW_ASID_BITS		12
89 
90 /*
91  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
92  * user/kernel switches
93  */
94 #ifdef CONFIG_PAGE_TABLE_ISOLATION
95 # define PTI_CONSUMED_PCID_BITS	1
96 #else
97 # define PTI_CONSUMED_PCID_BITS	0
98 #endif
99 
100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
101 
102 /*
103  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
104  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
105  * use by non-PCID-aware users.
106  */
107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
108 
109 /*
110  * Given @asid, compute kPCID
111  */
112 static inline u16 kern_pcid(u16 asid)
113 {
114 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
115 
116 #ifdef CONFIG_PAGE_TABLE_ISOLATION
117 	/*
118 	 * Make sure that the dynamic ASID space does not conflict with the
119 	 * bit we are using to switch between user and kernel ASIDs.
120 	 */
121 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
122 
123 	/*
124 	 * The ASID being passed in here should have respected the
125 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
126 	 */
127 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
128 #endif
129 	/*
130 	 * The dynamically-assigned ASIDs that get passed in are small
131 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
132 	 * so do not bother to clear it.
133 	 *
134 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
135 	 * PCID bits.  This serves two purposes.  It prevents a nasty
136 	 * situation in which PCID-unaware code saves CR3, loads some other
137 	 * value (with PCID == 0), and then restores CR3, thus corrupting
138 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
139 	 * that any bugs involving loading a PCID-enabled CR3 with
140 	 * CR4.PCIDE off will trigger deterministically.
141 	 */
142 	return asid + 1;
143 }
144 
145 /*
146  * Given @asid, compute uPCID
147  */
148 static inline u16 user_pcid(u16 asid)
149 {
150 	u16 ret = kern_pcid(asid);
151 #ifdef CONFIG_PAGE_TABLE_ISOLATION
152 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
153 #endif
154 	return ret;
155 }
156 
157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
158 {
159 	unsigned long cr3 = __sme_pa(pgd) | lam;
160 
161 	if (static_cpu_has(X86_FEATURE_PCID)) {
162 		VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
163 		cr3 |= kern_pcid(asid);
164 	} else {
165 		VM_WARN_ON_ONCE(asid != 0);
166 	}
167 
168 	return cr3;
169 }
170 
171 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
172 					      unsigned long lam)
173 {
174 	/*
175 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
176 	 * might be called during early boot. This should work even after
177 	 * boot because all CPU's the have same capabilities:
178 	 */
179 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
180 	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
181 }
182 
183 /*
184  * We get here when we do something requiring a TLB invalidation
185  * but could not go invalidate all of the contexts.  We do the
186  * necessary invalidation by clearing out the 'ctx_id' which
187  * forces a TLB flush when the context is loaded.
188  */
189 static void clear_asid_other(void)
190 {
191 	u16 asid;
192 
193 	/*
194 	 * This is only expected to be set if we have disabled
195 	 * kernel _PAGE_GLOBAL pages.
196 	 */
197 	if (!static_cpu_has(X86_FEATURE_PTI)) {
198 		WARN_ON_ONCE(1);
199 		return;
200 	}
201 
202 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
203 		/* Do not need to flush the current asid */
204 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
205 			continue;
206 		/*
207 		 * Make sure the next time we go to switch to
208 		 * this asid, we do a flush:
209 		 */
210 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
211 	}
212 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
213 }
214 
215 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
216 
217 
218 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
219 			    u16 *new_asid, bool *need_flush)
220 {
221 	u16 asid;
222 
223 	if (!static_cpu_has(X86_FEATURE_PCID)) {
224 		*new_asid = 0;
225 		*need_flush = true;
226 		return;
227 	}
228 
229 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
230 		clear_asid_other();
231 
232 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
233 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
234 		    next->context.ctx_id)
235 			continue;
236 
237 		*new_asid = asid;
238 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
239 			       next_tlb_gen);
240 		return;
241 	}
242 
243 	/*
244 	 * We don't currently own an ASID slot on this CPU.
245 	 * Allocate a slot.
246 	 */
247 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
248 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
249 		*new_asid = 0;
250 		this_cpu_write(cpu_tlbstate.next_asid, 1);
251 	}
252 	*need_flush = true;
253 }
254 
255 /*
256  * Given an ASID, flush the corresponding user ASID.  We can delay this
257  * until the next time we switch to it.
258  *
259  * See SWITCH_TO_USER_CR3.
260  */
261 static inline void invalidate_user_asid(u16 asid)
262 {
263 	/* There is no user ASID if address space separation is off */
264 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
265 		return;
266 
267 	/*
268 	 * We only have a single ASID if PCID is off and the CR3
269 	 * write will have flushed it.
270 	 */
271 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
272 		return;
273 
274 	if (!static_cpu_has(X86_FEATURE_PTI))
275 		return;
276 
277 	__set_bit(kern_pcid(asid),
278 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
279 }
280 
281 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
282 			    bool need_flush)
283 {
284 	unsigned long new_mm_cr3;
285 
286 	if (need_flush) {
287 		invalidate_user_asid(new_asid);
288 		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
289 	} else {
290 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
291 	}
292 
293 	/*
294 	 * Caution: many callers of this function expect
295 	 * that load_cr3() is serializing and orders TLB
296 	 * fills with respect to the mm_cpumask writes.
297 	 */
298 	write_cr3(new_mm_cr3);
299 }
300 
301 void leave_mm(int cpu)
302 {
303 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
304 
305 	/*
306 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
307 	 * If so, our callers still expect us to flush the TLB, but there
308 	 * aren't any user TLB entries in init_mm to worry about.
309 	 *
310 	 * This needs to happen before any other sanity checks due to
311 	 * intel_idle's shenanigans.
312 	 */
313 	if (loaded_mm == &init_mm)
314 		return;
315 
316 	/* Warn if we're not lazy. */
317 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
318 
319 	switch_mm(NULL, &init_mm, NULL);
320 }
321 EXPORT_SYMBOL_GPL(leave_mm);
322 
323 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
324 	       struct task_struct *tsk)
325 {
326 	unsigned long flags;
327 
328 	local_irq_save(flags);
329 	switch_mm_irqs_off(prev, next, tsk);
330 	local_irq_restore(flags);
331 }
332 
333 /*
334  * Invoked from return to user/guest by a task that opted-in to L1D
335  * flushing but ended up running on an SMT enabled core due to wrong
336  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
337  * contract which this task requested.
338  */
339 static void l1d_flush_force_sigbus(struct callback_head *ch)
340 {
341 	force_sig(SIGBUS);
342 }
343 
344 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
345 				struct task_struct *next)
346 {
347 	/* Flush L1D if the outgoing task requests it */
348 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
349 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
350 
351 	/* Check whether the incoming task opted in for L1D flush */
352 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
353 		return;
354 
355 	/*
356 	 * Validate that it is not running on an SMT sibling as this would
357 	 * make the excercise pointless because the siblings share L1D. If
358 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
359 	 * user/guest
360 	 */
361 	if (this_cpu_read(cpu_info.smt_active)) {
362 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
363 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
364 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
365 	}
366 }
367 
368 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
369 {
370 	unsigned long next_tif = read_task_thread_flags(next);
371 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
372 
373 	/*
374 	 * Ensure that the bit shift above works as expected and the two flags
375 	 * end up in bit 0 and 1.
376 	 */
377 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
378 
379 	return (unsigned long)next->mm | spec_bits;
380 }
381 
382 static void cond_mitigation(struct task_struct *next)
383 {
384 	unsigned long prev_mm, next_mm;
385 
386 	if (!next || !next->mm)
387 		return;
388 
389 	next_mm = mm_mangle_tif_spec_bits(next);
390 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
391 
392 	/*
393 	 * Avoid user/user BTB poisoning by flushing the branch predictor
394 	 * when switching between processes. This stops one process from
395 	 * doing Spectre-v2 attacks on another.
396 	 *
397 	 * Both, the conditional and the always IBPB mode use the mm
398 	 * pointer to avoid the IBPB when switching between tasks of the
399 	 * same process. Using the mm pointer instead of mm->context.ctx_id
400 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
401 	 * less impossible to control by an attacker. Aside of that it
402 	 * would only affect the first schedule so the theoretically
403 	 * exposed data is not really interesting.
404 	 */
405 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
406 		/*
407 		 * This is a bit more complex than the always mode because
408 		 * it has to handle two cases:
409 		 *
410 		 * 1) Switch from a user space task (potential attacker)
411 		 *    which has TIF_SPEC_IB set to a user space task
412 		 *    (potential victim) which has TIF_SPEC_IB not set.
413 		 *
414 		 * 2) Switch from a user space task (potential attacker)
415 		 *    which has TIF_SPEC_IB not set to a user space task
416 		 *    (potential victim) which has TIF_SPEC_IB set.
417 		 *
418 		 * This could be done by unconditionally issuing IBPB when
419 		 * a task which has TIF_SPEC_IB set is either scheduled in
420 		 * or out. Though that results in two flushes when:
421 		 *
422 		 * - the same user space task is scheduled out and later
423 		 *   scheduled in again and only a kernel thread ran in
424 		 *   between.
425 		 *
426 		 * - a user space task belonging to the same process is
427 		 *   scheduled in after a kernel thread ran in between
428 		 *
429 		 * - a user space task belonging to the same process is
430 		 *   scheduled in immediately.
431 		 *
432 		 * Optimize this with reasonably small overhead for the
433 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
434 		 * pointer of the incoming task which is stored in
435 		 * cpu_tlbstate.last_user_mm_spec for comparison.
436 		 *
437 		 * Issue IBPB only if the mm's are different and one or
438 		 * both have the IBPB bit set.
439 		 */
440 		if (next_mm != prev_mm &&
441 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
442 			indirect_branch_prediction_barrier();
443 	}
444 
445 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
446 		/*
447 		 * Only flush when switching to a user space task with a
448 		 * different context than the user space task which ran
449 		 * last on this CPU.
450 		 */
451 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
452 					(unsigned long)next->mm)
453 			indirect_branch_prediction_barrier();
454 	}
455 
456 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
457 		/*
458 		 * Flush L1D when the outgoing task requested it and/or
459 		 * check whether the incoming task requested L1D flushing
460 		 * and ended up on an SMT sibling.
461 		 */
462 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
463 			l1d_flush_evaluate(prev_mm, next_mm, next);
464 	}
465 
466 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
467 }
468 
469 #ifdef CONFIG_PERF_EVENTS
470 static inline void cr4_update_pce_mm(struct mm_struct *mm)
471 {
472 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
473 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
474 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
475 		/*
476 		 * Clear the existing dirty counters to
477 		 * prevent the leak for an RDPMC task.
478 		 */
479 		perf_clear_dirty_counters();
480 		cr4_set_bits_irqsoff(X86_CR4_PCE);
481 	} else
482 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
483 }
484 
485 void cr4_update_pce(void *ignored)
486 {
487 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
488 }
489 
490 #else
491 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
492 #endif
493 
494 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
495 			struct task_struct *tsk)
496 {
497 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
498 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
499 	unsigned long new_lam = mm_lam_cr3_mask(next);
500 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
501 	unsigned cpu = smp_processor_id();
502 	u64 next_tlb_gen;
503 	bool need_flush;
504 	u16 new_asid;
505 
506 	/*
507 	 * NB: The scheduler will call us with prev == next when switching
508 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
509 	 * When this happens, we don't assume that CR3 (and hence
510 	 * cpu_tlbstate.loaded_mm) matches next.
511 	 *
512 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
513 	 */
514 
515 	/* We don't want flush_tlb_func() to run concurrently with us. */
516 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
517 		WARN_ON_ONCE(!irqs_disabled());
518 
519 	/*
520 	 * Verify that CR3 is what we think it is.  This will catch
521 	 * hypothetical buggy code that directly switches to swapper_pg_dir
522 	 * without going through leave_mm() / switch_mm_irqs_off() or that
523 	 * does something like write_cr3(read_cr3_pa()).
524 	 *
525 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
526 	 * isn't free.
527 	 */
528 #ifdef CONFIG_DEBUG_VM
529 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid,
530 						   tlbstate_lam_cr3_mask()))) {
531 		/*
532 		 * If we were to BUG here, we'd be very likely to kill
533 		 * the system so hard that we don't see the call trace.
534 		 * Try to recover instead by ignoring the error and doing
535 		 * a global flush to minimize the chance of corruption.
536 		 *
537 		 * (This is far from being a fully correct recovery.
538 		 *  Architecturally, the CPU could prefetch something
539 		 *  back into an incorrect ASID slot and leave it there
540 		 *  to cause trouble down the road.  It's better than
541 		 *  nothing, though.)
542 		 */
543 		__flush_tlb_all();
544 	}
545 #endif
546 	if (was_lazy)
547 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
548 
549 	/*
550 	 * The membarrier system call requires a full memory barrier and
551 	 * core serialization before returning to user-space, after
552 	 * storing to rq->curr, when changing mm.  This is because
553 	 * membarrier() sends IPIs to all CPUs that are in the target mm
554 	 * to make them issue memory barriers.  However, if another CPU
555 	 * switches to/from the target mm concurrently with
556 	 * membarrier(), it can cause that CPU not to receive an IPI
557 	 * when it really should issue a memory barrier.  Writing to CR3
558 	 * provides that full memory barrier and core serializing
559 	 * instruction.
560 	 */
561 	if (real_prev == next) {
562 		/* Not actually switching mm's */
563 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
564 			   next->context.ctx_id);
565 
566 		/*
567 		 * If this races with another thread that enables lam, 'new_lam'
568 		 * might not match tlbstate_lam_cr3_mask().
569 		 */
570 
571 		/*
572 		 * Even in lazy TLB mode, the CPU should stay set in the
573 		 * mm_cpumask. The TLB shootdown code can figure out from
574 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
575 		 */
576 		if (WARN_ON_ONCE(real_prev != &init_mm &&
577 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
578 			cpumask_set_cpu(cpu, mm_cpumask(next));
579 
580 		/*
581 		 * If the CPU is not in lazy TLB mode, we are just switching
582 		 * from one thread in a process to another thread in the same
583 		 * process. No TLB flush required.
584 		 */
585 		if (!was_lazy)
586 			return;
587 
588 		/*
589 		 * Read the tlb_gen to check whether a flush is needed.
590 		 * If the TLB is up to date, just use it.
591 		 * The barrier synchronizes with the tlb_gen increment in
592 		 * the TLB shootdown code.
593 		 */
594 		smp_mb();
595 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
596 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
597 				next_tlb_gen)
598 			return;
599 
600 		/*
601 		 * TLB contents went out of date while we were in lazy
602 		 * mode. Fall through to the TLB switching code below.
603 		 */
604 		new_asid = prev_asid;
605 		need_flush = true;
606 	} else {
607 		/*
608 		 * Apply process to process speculation vulnerability
609 		 * mitigations if applicable.
610 		 */
611 		cond_mitigation(tsk);
612 
613 		/*
614 		 * Stop remote flushes for the previous mm.
615 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
616 		 * but the bitmap manipulation can cause cache line contention.
617 		 */
618 		if (real_prev != &init_mm) {
619 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
620 						mm_cpumask(real_prev)));
621 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
622 		}
623 
624 		/*
625 		 * Start remote flushes and then read tlb_gen.
626 		 */
627 		if (next != &init_mm)
628 			cpumask_set_cpu(cpu, mm_cpumask(next));
629 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
630 
631 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
632 
633 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
634 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
635 		barrier();
636 	}
637 
638 	set_tlbstate_lam_mode(next);
639 	if (need_flush) {
640 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
641 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
642 		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
643 
644 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
645 	} else {
646 		/* The new ASID is already up to date. */
647 		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
648 
649 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
650 	}
651 
652 	/* Make sure we write CR3 before loaded_mm. */
653 	barrier();
654 
655 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
656 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
657 
658 	if (next != real_prev) {
659 		cr4_update_pce_mm(next);
660 		switch_ldt(real_prev, next);
661 	}
662 }
663 
664 /*
665  * Please ignore the name of this function.  It should be called
666  * switch_to_kernel_thread().
667  *
668  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
669  * kernel thread or other context without an mm.  Acceptable implementations
670  * include doing nothing whatsoever, switching to init_mm, or various clever
671  * lazy tricks to try to minimize TLB flushes.
672  *
673  * The scheduler reserves the right to call enter_lazy_tlb() several times
674  * in a row.  It will notify us that we're going back to a real mm by
675  * calling switch_mm_irqs_off().
676  */
677 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
678 {
679 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
680 		return;
681 
682 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
683 }
684 
685 /*
686  * Call this when reinitializing a CPU.  It fixes the following potential
687  * problems:
688  *
689  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
690  *   because the CPU was taken down and came back up with CR3's PCID
691  *   bits clear.  CPU hotplug can do this.
692  *
693  * - The TLB contains junk in slots corresponding to inactive ASIDs.
694  *
695  * - The CPU went so far out to lunch that it may have missed a TLB
696  *   flush.
697  */
698 void initialize_tlbstate_and_flush(void)
699 {
700 	int i;
701 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
702 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
703 	unsigned long cr3 = __read_cr3();
704 
705 	/* Assert that CR3 already references the right mm. */
706 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
707 
708 	/* LAM expected to be disabled */
709 	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
710 	WARN_ON(mm_lam_cr3_mask(mm));
711 
712 	/*
713 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
714 	 * doesn't work like other CR4 bits because it can only be set from
715 	 * long mode.)
716 	 */
717 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
718 		!(cr4_read_shadow() & X86_CR4_PCIDE));
719 
720 	/* Disable LAM, force ASID 0 and force a TLB flush. */
721 	write_cr3(build_cr3(mm->pgd, 0, 0));
722 
723 	/* Reinitialize tlbstate. */
724 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
725 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
726 	this_cpu_write(cpu_tlbstate.next_asid, 1);
727 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
728 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
729 	set_tlbstate_lam_mode(mm);
730 
731 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
732 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
733 }
734 
735 /*
736  * flush_tlb_func()'s memory ordering requirement is that any
737  * TLB fills that happen after we flush the TLB are ordered after we
738  * read active_mm's tlb_gen.  We don't need any explicit barriers
739  * because all x86 flush operations are serializing and the
740  * atomic64_read operation won't be reordered by the compiler.
741  */
742 static void flush_tlb_func(void *info)
743 {
744 	/*
745 	 * We have three different tlb_gen values in here.  They are:
746 	 *
747 	 * - mm_tlb_gen:     the latest generation.
748 	 * - local_tlb_gen:  the generation that this CPU has already caught
749 	 *                   up to.
750 	 * - f->new_tlb_gen: the generation that the requester of the flush
751 	 *                   wants us to catch up to.
752 	 */
753 	const struct flush_tlb_info *f = info;
754 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
755 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
756 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
757 	bool local = smp_processor_id() == f->initiating_cpu;
758 	unsigned long nr_invalidate = 0;
759 	u64 mm_tlb_gen;
760 
761 	/* This code cannot presently handle being reentered. */
762 	VM_WARN_ON(!irqs_disabled());
763 
764 	if (!local) {
765 		inc_irq_stat(irq_tlb_count);
766 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
767 
768 		/* Can only happen on remote CPUs */
769 		if (f->mm && f->mm != loaded_mm)
770 			return;
771 	}
772 
773 	if (unlikely(loaded_mm == &init_mm))
774 		return;
775 
776 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
777 		   loaded_mm->context.ctx_id);
778 
779 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
780 		/*
781 		 * We're in lazy mode.  We need to at least flush our
782 		 * paging-structure cache to avoid speculatively reading
783 		 * garbage into our TLB.  Since switching to init_mm is barely
784 		 * slower than a minimal flush, just switch to init_mm.
785 		 *
786 		 * This should be rare, with native_flush_tlb_multi() skipping
787 		 * IPIs to lazy TLB mode CPUs.
788 		 */
789 		switch_mm_irqs_off(NULL, &init_mm, NULL);
790 		return;
791 	}
792 
793 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
794 		     f->new_tlb_gen <= local_tlb_gen)) {
795 		/*
796 		 * The TLB is already up to date in respect to f->new_tlb_gen.
797 		 * While the core might be still behind mm_tlb_gen, checking
798 		 * mm_tlb_gen unnecessarily would have negative caching effects
799 		 * so avoid it.
800 		 */
801 		return;
802 	}
803 
804 	/*
805 	 * Defer mm_tlb_gen reading as long as possible to avoid cache
806 	 * contention.
807 	 */
808 	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
809 
810 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
811 		/*
812 		 * There's nothing to do: we're already up to date.  This can
813 		 * happen if two concurrent flushes happen -- the first flush to
814 		 * be handled can catch us all the way up, leaving no work for
815 		 * the second flush.
816 		 */
817 		goto done;
818 	}
819 
820 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
821 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
822 
823 	/*
824 	 * If we get to this point, we know that our TLB is out of date.
825 	 * This does not strictly imply that we need to flush (it's
826 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
827 	 * going to need to flush in the very near future, so we might
828 	 * as well get it over with.
829 	 *
830 	 * The only question is whether to do a full or partial flush.
831 	 *
832 	 * We do a partial flush if requested and two extra conditions
833 	 * are met:
834 	 *
835 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
836 	 *    we've always done all needed flushes to catch up to
837 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
838 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
839 	 *    us up to date for tlb_gen 3 is the partial flush we're
840 	 *    processing.
841 	 *
842 	 *    As an example of why this check is needed, suppose that there
843 	 *    are two concurrent flushes.  The first is a full flush that
844 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
845 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
846 	 *    processed on this CPU in reverse order, we'll see
847 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
848 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
849 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
850 	 *    1 without the full flush that's needed for tlb_gen 2.
851 	 *
852 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
853 	 *    Partial TLB flushes are not all that much cheaper than full TLB
854 	 *    flushes, so it seems unlikely that it would be a performance win
855 	 *    to do a partial flush if that won't bring our TLB fully up to
856 	 *    date.  By doing a full flush instead, we can increase
857 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
858 	 *    avoid another flush in the very near future.
859 	 */
860 	if (f->end != TLB_FLUSH_ALL &&
861 	    f->new_tlb_gen == local_tlb_gen + 1 &&
862 	    f->new_tlb_gen == mm_tlb_gen) {
863 		/* Partial flush */
864 		unsigned long addr = f->start;
865 
866 		/* Partial flush cannot have invalid generations */
867 		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
868 
869 		/* Partial flush must have valid mm */
870 		VM_WARN_ON(f->mm == NULL);
871 
872 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
873 
874 		while (addr < f->end) {
875 			flush_tlb_one_user(addr);
876 			addr += 1UL << f->stride_shift;
877 		}
878 		if (local)
879 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
880 	} else {
881 		/* Full flush. */
882 		nr_invalidate = TLB_FLUSH_ALL;
883 
884 		flush_tlb_local();
885 		if (local)
886 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
887 	}
888 
889 	/* Both paths above update our state to mm_tlb_gen. */
890 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
891 
892 	/* Tracing is done in a unified manner to reduce the code size */
893 done:
894 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
895 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
896 						  TLB_LOCAL_MM_SHOOTDOWN,
897 			nr_invalidate);
898 }
899 
900 static bool tlb_is_not_lazy(int cpu, void *data)
901 {
902 	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
903 }
904 
905 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
906 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
907 
908 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
909 					 const struct flush_tlb_info *info)
910 {
911 	/*
912 	 * Do accounting and tracing. Note that there are (and have always been)
913 	 * cases in which a remote TLB flush will be traced, but eventually
914 	 * would not happen.
915 	 */
916 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
917 	if (info->end == TLB_FLUSH_ALL)
918 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
919 	else
920 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
921 				(info->end - info->start) >> PAGE_SHIFT);
922 
923 	/*
924 	 * If no page tables were freed, we can skip sending IPIs to
925 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
926 	 * at the next context switch.
927 	 *
928 	 * However, if page tables are getting freed, we need to send the
929 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
930 	 * up on the new contents of what used to be page tables, while
931 	 * doing a speculative memory access.
932 	 */
933 	if (info->freed_tables)
934 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
935 	else
936 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
937 				(void *)info, 1, cpumask);
938 }
939 
940 void flush_tlb_multi(const struct cpumask *cpumask,
941 		      const struct flush_tlb_info *info)
942 {
943 	__flush_tlb_multi(cpumask, info);
944 }
945 
946 /*
947  * See Documentation/arch/x86/tlb.rst for details.  We choose 33
948  * because it is large enough to cover the vast majority (at
949  * least 95%) of allocations, and is small enough that we are
950  * confident it will not cause too much overhead.  Each single
951  * flush is about 100 ns, so this caps the maximum overhead at
952  * _about_ 3,000 ns.
953  *
954  * This is in units of pages.
955  */
956 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
957 
958 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
959 
960 #ifdef CONFIG_DEBUG_VM
961 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
962 #endif
963 
964 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
965 			unsigned long start, unsigned long end,
966 			unsigned int stride_shift, bool freed_tables,
967 			u64 new_tlb_gen)
968 {
969 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
970 
971 #ifdef CONFIG_DEBUG_VM
972 	/*
973 	 * Ensure that the following code is non-reentrant and flush_tlb_info
974 	 * is not overwritten. This means no TLB flushing is initiated by
975 	 * interrupt handlers and machine-check exception handlers.
976 	 */
977 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
978 #endif
979 
980 	info->start		= start;
981 	info->end		= end;
982 	info->mm		= mm;
983 	info->stride_shift	= stride_shift;
984 	info->freed_tables	= freed_tables;
985 	info->new_tlb_gen	= new_tlb_gen;
986 	info->initiating_cpu	= smp_processor_id();
987 
988 	return info;
989 }
990 
991 static void put_flush_tlb_info(void)
992 {
993 #ifdef CONFIG_DEBUG_VM
994 	/* Complete reentrancy prevention checks */
995 	barrier();
996 	this_cpu_dec(flush_tlb_info_idx);
997 #endif
998 }
999 
1000 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1001 				unsigned long end, unsigned int stride_shift,
1002 				bool freed_tables)
1003 {
1004 	struct flush_tlb_info *info;
1005 	u64 new_tlb_gen;
1006 	int cpu;
1007 
1008 	cpu = get_cpu();
1009 
1010 	/* Should we flush just the requested range? */
1011 	if ((end == TLB_FLUSH_ALL) ||
1012 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1013 		start = 0;
1014 		end = TLB_FLUSH_ALL;
1015 	}
1016 
1017 	/* This is also a barrier that synchronizes with switch_mm(). */
1018 	new_tlb_gen = inc_mm_tlb_gen(mm);
1019 
1020 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1021 				  new_tlb_gen);
1022 
1023 	/*
1024 	 * flush_tlb_multi() is not optimized for the common case in which only
1025 	 * a local TLB flush is needed. Optimize this use-case by calling
1026 	 * flush_tlb_func_local() directly in this case.
1027 	 */
1028 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1029 		flush_tlb_multi(mm_cpumask(mm), info);
1030 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1031 		lockdep_assert_irqs_enabled();
1032 		local_irq_disable();
1033 		flush_tlb_func(info);
1034 		local_irq_enable();
1035 	}
1036 
1037 	put_flush_tlb_info();
1038 	put_cpu();
1039 }
1040 
1041 
1042 static void do_flush_tlb_all(void *info)
1043 {
1044 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1045 	__flush_tlb_all();
1046 }
1047 
1048 void flush_tlb_all(void)
1049 {
1050 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1051 	on_each_cpu(do_flush_tlb_all, NULL, 1);
1052 }
1053 
1054 static void do_kernel_range_flush(void *info)
1055 {
1056 	struct flush_tlb_info *f = info;
1057 	unsigned long addr;
1058 
1059 	/* flush range by one by one 'invlpg' */
1060 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1061 		flush_tlb_one_kernel(addr);
1062 }
1063 
1064 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1065 {
1066 	/* Balance as user space task's flush, a bit conservative */
1067 	if (end == TLB_FLUSH_ALL ||
1068 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1069 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1070 	} else {
1071 		struct flush_tlb_info *info;
1072 
1073 		preempt_disable();
1074 		info = get_flush_tlb_info(NULL, start, end, 0, false,
1075 					  TLB_GENERATION_INVALID);
1076 
1077 		on_each_cpu(do_kernel_range_flush, info, 1);
1078 
1079 		put_flush_tlb_info();
1080 		preempt_enable();
1081 	}
1082 }
1083 
1084 /*
1085  * This can be used from process context to figure out what the value of
1086  * CR3 is without needing to do a (slow) __read_cr3().
1087  *
1088  * It's intended to be used for code like KVM that sneakily changes CR3
1089  * and needs to restore it.  It needs to be used very carefully.
1090  */
1091 unsigned long __get_current_cr3_fast(void)
1092 {
1093 	unsigned long cr3 =
1094 		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1095 			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1096 			  tlbstate_lam_cr3_mask());
1097 
1098 	/* For now, be very restrictive about when this can be called. */
1099 	VM_WARN_ON(in_nmi() || preemptible());
1100 
1101 	VM_BUG_ON(cr3 != __read_cr3());
1102 	return cr3;
1103 }
1104 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1105 
1106 /*
1107  * Flush one page in the kernel mapping
1108  */
1109 void flush_tlb_one_kernel(unsigned long addr)
1110 {
1111 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1112 
1113 	/*
1114 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1115 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1116 	 * use PCID if we also use global PTEs for the kernel mapping, and
1117 	 * INVLPG flushes global translations across all address spaces.
1118 	 *
1119 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1120 	 * __flush_tlb_one_user() will flush the given address for the current
1121 	 * kernel address space and for its usermode counterpart, but it does
1122 	 * not flush it for other address spaces.
1123 	 */
1124 	flush_tlb_one_user(addr);
1125 
1126 	if (!static_cpu_has(X86_FEATURE_PTI))
1127 		return;
1128 
1129 	/*
1130 	 * See above.  We need to propagate the flush to all other address
1131 	 * spaces.  In principle, we only need to propagate it to kernelmode
1132 	 * address spaces, but the extra bookkeeping we would need is not
1133 	 * worth it.
1134 	 */
1135 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1136 }
1137 
1138 /*
1139  * Flush one page in the user mapping
1140  */
1141 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1142 {
1143 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1144 
1145 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1146 
1147 	if (!static_cpu_has(X86_FEATURE_PTI))
1148 		return;
1149 
1150 	/*
1151 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1152 	 * Just use invalidate_user_asid() in case we are called early.
1153 	 */
1154 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1155 		invalidate_user_asid(loaded_mm_asid);
1156 	else
1157 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1158 }
1159 
1160 void flush_tlb_one_user(unsigned long addr)
1161 {
1162 	__flush_tlb_one_user(addr);
1163 }
1164 
1165 /*
1166  * Flush everything
1167  */
1168 STATIC_NOPV void native_flush_tlb_global(void)
1169 {
1170 	unsigned long flags;
1171 
1172 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1173 		/*
1174 		 * Using INVPCID is considerably faster than a pair of writes
1175 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1176 		 *
1177 		 * Note, this works with CR4.PCIDE=0 or 1.
1178 		 */
1179 		invpcid_flush_all();
1180 		return;
1181 	}
1182 
1183 	/*
1184 	 * Read-modify-write to CR4 - protect it from preemption and
1185 	 * from interrupts. (Use the raw variant because this code can
1186 	 * be called from deep inside debugging code.)
1187 	 */
1188 	raw_local_irq_save(flags);
1189 
1190 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1191 
1192 	raw_local_irq_restore(flags);
1193 }
1194 
1195 /*
1196  * Flush the entire current user mapping
1197  */
1198 STATIC_NOPV void native_flush_tlb_local(void)
1199 {
1200 	/*
1201 	 * Preemption or interrupts must be disabled to protect the access
1202 	 * to the per CPU variable and to prevent being preempted between
1203 	 * read_cr3() and write_cr3().
1204 	 */
1205 	WARN_ON_ONCE(preemptible());
1206 
1207 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1208 
1209 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1210 	native_write_cr3(__native_read_cr3());
1211 }
1212 
1213 void flush_tlb_local(void)
1214 {
1215 	__flush_tlb_local();
1216 }
1217 
1218 /*
1219  * Flush everything
1220  */
1221 void __flush_tlb_all(void)
1222 {
1223 	/*
1224 	 * This is to catch users with enabled preemption and the PGE feature
1225 	 * and don't trigger the warning in __native_flush_tlb().
1226 	 */
1227 	VM_WARN_ON_ONCE(preemptible());
1228 
1229 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1230 		__flush_tlb_global();
1231 	} else {
1232 		/*
1233 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1234 		 */
1235 		flush_tlb_local();
1236 	}
1237 }
1238 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1239 
1240 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1241 {
1242 	struct flush_tlb_info *info;
1243 
1244 	int cpu = get_cpu();
1245 
1246 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1247 				  TLB_GENERATION_INVALID);
1248 	/*
1249 	 * flush_tlb_multi() is not optimized for the common case in which only
1250 	 * a local TLB flush is needed. Optimize this use-case by calling
1251 	 * flush_tlb_func_local() directly in this case.
1252 	 */
1253 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1254 		flush_tlb_multi(&batch->cpumask, info);
1255 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1256 		lockdep_assert_irqs_enabled();
1257 		local_irq_disable();
1258 		flush_tlb_func(info);
1259 		local_irq_enable();
1260 	}
1261 
1262 	cpumask_clear(&batch->cpumask);
1263 
1264 	put_flush_tlb_info();
1265 	put_cpu();
1266 }
1267 
1268 /*
1269  * Blindly accessing user memory from NMI context can be dangerous
1270  * if we're in the middle of switching the current user task or
1271  * switching the loaded mm.  It can also be dangerous if we
1272  * interrupted some kernel code that was temporarily using a
1273  * different mm.
1274  */
1275 bool nmi_uaccess_okay(void)
1276 {
1277 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1278 	struct mm_struct *current_mm = current->mm;
1279 
1280 	VM_WARN_ON_ONCE(!loaded_mm);
1281 
1282 	/*
1283 	 * The condition we want to check is
1284 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1285 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1286 	 * is supposed to be reasonably fast.
1287 	 *
1288 	 * Instead, we check the almost equivalent but somewhat conservative
1289 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1290 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1291 	 */
1292 	if (loaded_mm != current_mm)
1293 		return false;
1294 
1295 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1296 
1297 	return true;
1298 }
1299 
1300 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1301 			     size_t count, loff_t *ppos)
1302 {
1303 	char buf[32];
1304 	unsigned int len;
1305 
1306 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1307 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1308 }
1309 
1310 static ssize_t tlbflush_write_file(struct file *file,
1311 		 const char __user *user_buf, size_t count, loff_t *ppos)
1312 {
1313 	char buf[32];
1314 	ssize_t len;
1315 	int ceiling;
1316 
1317 	len = min(count, sizeof(buf) - 1);
1318 	if (copy_from_user(buf, user_buf, len))
1319 		return -EFAULT;
1320 
1321 	buf[len] = '\0';
1322 	if (kstrtoint(buf, 0, &ceiling))
1323 		return -EINVAL;
1324 
1325 	if (ceiling < 0)
1326 		return -EINVAL;
1327 
1328 	tlb_single_page_flush_ceiling = ceiling;
1329 	return count;
1330 }
1331 
1332 static const struct file_operations fops_tlbflush = {
1333 	.read = tlbflush_read_file,
1334 	.write = tlbflush_write_file,
1335 	.llseek = default_llseek,
1336 };
1337 
1338 static int __init create_tlb_single_page_flush_ceiling(void)
1339 {
1340 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1341 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1342 	return 0;
1343 }
1344 late_initcall(create_tlb_single_page_flush_ceiling);
1345